U S ll;o}b
X

Automatic Control and Aviomatika i
Computer Sciences Vychislitel 'naya Tekhnika
Vol 37, No.2, pp.40-45, 2003 Vol.37, No.2, pp.48-55, 2003

SYNTHESIS OF SELF-CHECKING CONTROLLERS
BASED ON MODIFIED (m, n)-CODE

V1. OSTROVSKII, Assisiant Professor, Cand, Sc. (Technical Sciences)
LS. LEVIN, Professor, Cand.Sc. (Technical Sciences)
S.ALOSTANIN, Cand.Se. (Technical Sciences)

Tel Aviv University
Ramat Aviv 69978 Tel Aviv (Israel}
e-mail: ilialeepestiawac.il, sery os(@vahoo.com

The present article proposes 2 method of constructing self-checking controllers based on a novel
code that makes it possible to detect any unidirectional errors in a check word. Unlike
traditional codes, the proposed code makes possible a reduction in hardware costs due to an
increase in the number of check bits. In fest examples this method makes possible a roughly
50% decrease in hardware costs from that in traditional solutions while maintaining the
properties of seli-checkability.

1. INTRODUCTION

Use of self-checking circuits [1], that is, circuits capable of detecting faults in the course of operation is one of
the more effective techniques of increasing the reliability of discrete devices. A broad class of faults in discrete
devices produces unidirectional errors at their outputs [2]. By a unidirectional error is understood 2 distortion (Le.,
change in values to their opposite) of an arbitrary number of either only zero or only unit bits of the word.

Most methods of constructing self-checking circuits are based on the use of corresponding codes that detect
errors. The entire set of codes may be provisionally divided into two classes, universal codes and context-oriented
codes. In the construction of universal codes no constraints are placed on the set of check words, i.e., it is assumed
that the set may contain all b words, where k is the number of bits in the check words. In context-oriented codes, it
is assumed that some of the 2¥ words are not used and, as a result, it becomes possible to reduce the number of code
bits.

The Berger code [3] is the most frequently used code for the class of universal separable codes, while the
(m,m)-code [4] is the most frequently used code for the class of nonseparable codes. In 1984 a context-oriented,
separable code was proposed [5]. This code produces 2 decrease in the number of check bits by comparison with the
Berger code, retaining the detectability of the code without any change. These codes are all optimal, i.e., each code
requires the least number of additional bits to encode all the codes in its class.

The basic drawback of the Berger code is the substantial increase in the length of the word which it entails. In
general, the use of words of lesser length as well as the use of sufficiently simple checkers make it possible to
employ (m, n)-codes. The principal drawback of (m, n)-codes lies in the need to recode the data bits. This drawback
becomes especially significant in those cases in which the method used to encode words that are protected against
noise is defined by the particular application and cannot be arbitrarily varied even for the purpose of increasing
noise immunity. For example, such a situation is encountered in the design of controllers based on the principle of
microprogramming contro! [6]. In such controliers each bit of the output word is interpreted as a signal that initiates
a definite action (microoperation) in the operational control device. It is precisely these types of devices which are
considered in the present article,

Resides the features that have been noted, what is essential for our discussion is that in many cases the total
number of microoperations is quite high. At the same time, the number of microoperations that may be executed
simultaneously and that are specified by a single contre] word (microinstruction) is much less than k. Thus, in each
of the values of the controlied words employed most of the binary variables are equal to 0, and, moreover, the
number of such values is much less than 2%,

©2003 by Allertan Press, Inc.

Authorization to photocopy individual items for internal or personal use, of the internal or personai use of specific clients, is granted by Allerton. Press, Inc. for libraries and other
users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee %50.00 per copy is paid dirsctly to CCC, 222
Rosewood Drive, Danvers, MA 01823

40

Automatic Confrol and
Computer Sciences Vol 37, No.2

We finally have

BT Q03 24V Oy Ou Ty V Py Oy Zg NV @3 03 Zg,s (20)

Py =@ Py Zg NV PPy 2oV @ Py Za NV Py Py 24 (21}

Note that the circuits are testable on the set of admissible words and that no inverters are used in the circuits.

To calculate the conjunction p = a&b we represent each of the variables p, a, and b in paraphase code by
means of pairs of signals (py, pa), (a1, @) and (by, by), respectively. Then the conjunction will be represented in the
following form:

p|=a|&b]va2&b2, p2=a1&b2va2&bl. (22)

4, ESTIMATING THE COMPLEXITY OF THE CIRCUITS

To estimate the complexity of the control circuits we will use a realization in an FPGA basis. We will estimate
the complexity of the circuits by the number of logic elements used in the particular circuit that realizes the look-up
tables. For the sake of simplicity we will limit the discussion fo the case in which the number of inputs in LUT s = 4.
Suppose that & microoperations for the encoding are divided into m classes containing % , % ,..., k&, clements,
respectively. In this case the number of LUTSs used in the circuit will be

sz(if(k,.—z)/zhm—l} (23)

i=}
Using the latter formula the following bounds may be obtained:
k+m-2<H<k+2m-1 or n-2sH<n+m-2. (24)

In the special case in which all the microoperations are incompatible and, consequently, m =1 and n =k + 1,
there is no circuit for use in computing a conjurnction and, in general, the complexity of the checker satisfies the
inequality k1< H <k Otherwise, in the case in which each microoperation forms a separate class, m = k and
H = 2{k - 1). In automata belonging to this class, in which m is much less than k, the complexity of the control
circuit is approximately proportional to k.

Experimepts for benchmark circuits [10] with FPGA realization from the firm of Altera were undertaken. The
results of the experiments are presented in Table 2. The number of LUTs required for realization of nonself-
checking controliers are indicated in column F. The number of additional output variables required for the
realization of a corresponding code on the controller outputs (for the Berger code, Smith code, and reduced (m, n)-
code) is indicated in the respective ADD_Out columns. The number of LUTSs required for realization of a self-
checking system (controller + control circuit) with the use of the Berger, Smith, and reduced (m, n)-code i3 indicated
in columns Ty, Ty, and T 5, respectively. Column Q shows the relative reduction in hardware costs in supporting the
property of self-checkability, achieved as a result of the application of the reduced (m, n)-code,

o= (min @, T5)T5)*100
min (T, T',)

(25)

The results of the experiments show that, on average, 2 greater number of additional output variables is
required to realize the reduced (m, n)-code by comparison with the Berger and Smith codes, though at the same time
there is still an approximately 30% reduction in hardware costs.

44

Automaric Conirol and
Computer Sciences Vol 37 W3

if and only if on all sets of arguments on which R =1, r,, v, = 01 or 10, while R = 0 is represented by the
combinations 7, r; = 11 or 00,

Obviously, the function may have several distinct representations in the paraphase code. To construct the
control circuit we will use only those paraphase representations that do not require inverters upon realization.

Theorem 2. The function F.(U/) of variables of the set U/ = {u;, uy ,..., #;} admits a representation in
paraphase code in the form
ry=Fa(Uh) v F(Uy) and ry=Fa(Uh) v Faa(U)), (10}
U, Uy U, U]U UZ: U, U;(“l U2=®.

Proof. To prove the theorem the set of values of the input variables is divided into the following three groups:
{1) input variables equal to 0:

W= U= e, =W =0 F_(U) =0, then le(U1)=Faz(Uz)‘“in(Uz)=F32(U1)=0, (1

consequently, r, = r, =0, which corresponds to the assertion of the theorem.
(2) precisely one of the # input variables is equal to 1, £y (U) = 1. Without loss of generality, we set u, = I and
u; & Uy, Then

Fo(U) =1, Fu(lh)= Fa(Us) = Fu(l) =10, (12)
consequently, r, = | and r, = 0, which corresponds to the assertion of the theorem. !
{3) two or more input variables are equal to 1, F~,({/) = 0. Suppose that all these unit varizbles belong to one
of the subsets, say U,. Then

Fol(U))=Fp(Ui) =1, Fu(Uh)=F{lh) =0, (13)

consequently, 7 = r, = 1, which corresponds to the assertion of the theorem. We now suppose that unit variables are
contained in the each of the subsets I/, and ;. In this case,

For(Uh) = Far(Uh) = 0, (14)

consequently, 7, = r, = 1, which also corresponds to the assertion of the theorem. The theorem is proved.
Let us illustrate Theorem 2 using as an example a reafization of the function F_y(ut), ua, us, g, us). Let

Uy =y, Uy ={1,uy,us5), {15
whence
R=u Vg V gy V i us Vi iy and v Suply VU V iy Vs (16}
In the example from Table 1,
R=F_(2,,25,%5,27) & FL (23,25, 25) & F_ (24, 25) . (17

The function F-i(z1, 22, Zs, 27) is represented in paraphase code in the form of two functions,
Py =z vzvisz; and @y =27, V5V Iy, (18)
The function Fw(zs, Z, Zs) is represented in paraphase code in the form of two functions:

Py =2yvz, and @q =237,V 7. (19}

43

Auwtomatic Control and
Computer Sciences Vol 37, No.2

The encoded output words are represented by columns |, 34 ,..., ¥ . To construct the code we use the
following partition of set of microoperations into subsets of incompatible microoperations:

3 Y Yas s Yo = {4 v, vsb o D eb o Dl 4)

The control bits in Table 1 are represented by the three rightmost columns. We introduce a composite
enumeration of the data bits and control bits in the word thus encoded and denote a bit of this word by the symbol z;,
as was done in Table 1. In the set Z= {z|, z;...., z,} the partition

Z= {2y, 20 Zn), Where Z=V, 0 e}, i=1,2,..m (s)

will correspond to the code.
In the example being considered here,

ZI = {Zh 2, Z5, 27}5 'Z?: {231 Zgy 28}7 Z3 T_W {245 29}' (6)

Note that there is present in each code word precisely one variable from each subset Z; . We call this partition the
encoding partition. Several algorithms by means of which this partition may be obtained are known {7, 8].

It is best to use symmetric functions to describe the functional and structural organization of the control circuit
[9]. We will use the symbol F,(U/) to denote these functions, where U/ is the set of arguments specified by an
enumeration or naming and / a condition that determines what is the number of arguments that must have unit value
in order for the particular function to be equal to 1. For example, F({/) assumes unit value only in the case in
which precisely one variable from U 15 equal to 1 (function "l-out-gf-n"),

Theorem 1. Let Z= {Z,, Z, ,..., Z,} is an encoding partition in which the compatibility relation is determined
by the set W of admissible words. Then for any ¥; € W,

R=F (Z)&F(Z,) &..&F.(Z,)=1 (7

and for any unidirectional distortion ¥;, the function K is equal to C.

Proof. The code is constructed so that precisely m bits in any code word will have unit value, one for each set
Z;. Thus, all the functions FL(Z) =1, =1, 2, ..., m, and, consequently, R = 1. To prove the second part of the
theorem, we will assume that as a result of unidirectional distortion, out of all the other bits that bit which
corresponds to the variable z; € Z; will experience a change in its value. Qbviously, with any change in the value of
z; (from 0 to 1 or from 1 to 0) the number of high bits belonging to the set Z; will not be equal to 1 and this will hoid
true for any admissible distortions in the other bits that may occur at the same time as distortions in z; .
Consequent]'y, Fo{Z)=0and R =0. QED.

By the theorer, the function (3) may be vsed to detect unidirectional errors.

3. SYNTHESIS OF CONTROL CIRCUIT FOR REDUCED (#1, n)-CODE
As is done in most cirenit designs of control circuits, we will represent the output signal R in the paraphase
code by two signals ry and r; : if r) 5 ry, there are no errors, otherwise an error has ocourred either in the code

circuit or in the control circuit. To implement the function (3) 1n the paraphase code, cireuits that implement "1-out-
of-r" functions and a conjunction must be constructed.

Definition 4. We will say that the function
R=FUN, U= {uy,tlg e, 1t} (&)
admits a representation in paraphase code in the form

ry= (U} and ry=f(U), (9)

42

Computer Sciences Vol.37, No.2

In the present study we propose to construct self-checking controllers based on a reduced (m, n)-code that
differ in two substantial respects from the traditional (m, #)-code. First, it is a separable code, 1.¢., the data bits do
net change in the construction of the code. Control bits are added to the code so that the total number of unit
components in the encoded word is equal to m. Second, the value of the control bits is selected so as to simplify the
design of the contro] devices.

2. REDUCED (i, n)-CODE

We introduce the following notation:
y;, microoperation or i-th bit of output word, i=1, 2,..., & ¥;, microinstruction or output word of controller,

Y=y ¥yt 7= 120K (n
¥, set of microoperations,
V=012 Yihi (2}
W, set of microinstructions or set of (admissitle) cutput words used,
W={Y,, ¥a,. Y} 3

Definition 1. Two microoperations y; and y; are said to be compatible if they are encountered together in at
least one microinstruction. Otherwise these microinstructions are incompatible.

Definition 2. The subset V; < ¥ is called the subset of compatible (respectively, incompatible) micro-
instructions if any two microoperations belonging to this subset are compatible (respectively, incompatible).

Definition 3. Suppose that the set ¥ is partitioned into subsets ¥}, V,..., ¥, of incompatible microinstructions
such that

V= Uty un OV, and VY, =@, where i {l,2,.,m}, i# . (3)

To construct the code we correlate to each subset V; a single additional {contrel} bit ¢; 1 ¢; = 1 in those (and only
those) microinstructions that do not contain any microoperations from ¥;. We call such a code the reduced (m,n)-
code.

Obviously in such an encoding each output word will contain precisely m high bits, one for each of the subsets
¥,. An example of such an encoding is presented in Table 1.

Table 1
Microinstructions Encoded by Reduced {m, r)-Code
Microoperations (data bits) Control bits

Microinstruction 7 2 13 Z4 5 76 27 I3 Ty
! Y1 ¥a Y Vs Vs Cy G2 C3

¥ 0 0 0 0 0 0 1 1 1
¥, 1 0 1 1 0 0 0 0 0
Y, 0 1 0 1 0 ¢ 0 1 0
¢] 0 0 1 1 i 0 5} 0
¥, 1 0 0 0 0 1 0 0 1
¥s 0 it 0 1 0 1 1 0 0
¥ 0 0 i 1 0 0 1 0 G
Y 0 0 0 0 1)) 1 1
Yy 0 0 1 0 0 0 1 0 1
Y G 1 0 0 0 1 0 0 1

41

Automatic Control and

Computer Sciences Vol.37, No.2
Table 2
Results of Experiments
Berger Code Smith Code Reduced (m, n)-Code Q (%)
N Example O]
Add_Out T Add_Out r, Add_Out I's
1 CSE 79 3 39 2 39 3 38 2.6
2 EX1 206 3 165 4 118 9 3 74.6
3 EX6 54 4 32 3 24 6 16 333
4 PLANET 182 5 166 3 156 10 74 52.6
) PMA 112 4 62 3 56 7 44 179
& 5386 58 3 33 2 28 3 24 L 172
7 | 5820 263 5 62 2 37 3 25 | 324
8 | $832 261 5 87 2 50 3 5 0 -
9 SAND 192 4 114 3 95 5 80 15.8
10 | SSE 52] 26 2 27 3 27 0
: Average - 1459 4.1 78.6 2.6 63.1 52 39.5 27.6

5. CONCLUSION

In the present study a method for the design of self-checking controllers is proposed. A'reduced (m, n)-code is
used to support the properties of self-checkability. The reduced (m, n)-code is, in the general case, not optimal,
though because of some redundancy in the encoding of the output words, the hardware costs required to detsct any
unidirectional errors in an output word can be reduced. The results of the experiments on benchmark circuits show
that in practically all cases application of the reduced (m, n)-code leads to simpler circuit designs. Moreover, the
reduction in hardware costs in most complex automata reaches 50%. Because of this result, it may be suggested that
the proposed method of constructing self-checking controllers may be of interest for practical application.

(6]
{71

(8]

[9]

REFERENCES

P. Lala, Self-Checking and Fault-Tolerant Digital Design, Morgan Kaufmann, San Francisco, 2000.

D.K. Pradhan and J.I Stiffler, "Error correcting codes and self-checking circuits in fault tolerant
computers,” Computer, pp. 27-37, March, 1980.

J.M. Berger, "A rote on error detection codes for completely asymmetric binary channels,” Inform. Contr.,
vol. 4, pp. 6873, March, 1961.

C.V. Freiman, "Optimal error detection codes for completely asymmetric binary channels," Inferm. Conir,,
vol. 5, pp. 6471, March, 1962,

J. Smith, "On separable unordered codes,” IEEE Trans. Computers, vol. C-33, no. 8, pp. 741743, August,
1984,

S. Baranov, Logic Synthesis for Control Automata, Kluwer Academic, Dordrecht/Boston, 1994

M.C. Paull and S.H. Unger, "Minimizing the number of states in incompletely specified sequentizl
switching functions,” IRE Trans. Electron. Comput., EC-8.3, 1959,

VI Ostrovskii and Yu.V. Pottosin, "Investigation of algorithms for use in the search for maximum
complete subgraphs in a symmetric graph,” Avtomatika i Vychislitel'naya Tekhnika, no. 2, pp. 19-26,
1970.

S.B. Akers, "A rectangular logic airay,” IEEE Trans. Computers, vol. C-21, pp. 848-857, August, 1972.

[10] R. Lisanke, "Logic synthesis benchmark circuits,” Intermn. Workshop on Logic Synthesis, Research Triangle

Park, NC, May, 1985. .

Received following revisions 17 June 2002; originally submitied 13 May 2002

45

