Designing Concurrent Checking Circuits by using
Partitioning1

Vladimir Ostrovsky*, Ilya Levin*, Osnat Keren**, and Binyamin Abramov*

Tel Aviv University*, Bar Ilan University**, Israel

Abstract

The paper describes a new method for synthesis of concurrent checking logic
circuits having a limited number of codewords. This method is based on
implementing such a circuit by a network of separate independent subcircuits. Each of
these subcircuits implements its own subset of output variables. Since the subcircuits
have no common elements, any single fault results in errors only in one of the subsets.
The partition of the circuit is made in such a way that the subcircuits are able to check
each other. Two ways of selecting the optimal partition are examined: a) partitioning
that minimizes a number of subcircuits; and b) partitioning that minimizes a number
of encoded variables. It is shown that a trade-off between these two ways allows one
to select the optimal solution for the synthesis. The benchmarks’ results indicate the
efficiency of the proposed technique.

1. Introduction

Progress in the microelectronics industry leads to increase of complexity of VLSI
schemes and components. The number of transistors in the VLSI schemes has already
reached millions, and in some cases has risen even higher. Shrinkage of a device size
and reduction of power supply levels, as well as the increase in operating speed has
resulted in reduced noise margins [1]. The failures phenomena, together with the need
for higher reliability of complex digital systems, are of special interest. As the
microelectronics industry moves towards deep sub-micron technologies, systems
designers have become increasingly concerned about the reliability of future devices
that will have propagation delays shorter than the duration of transient pulses induced
by radiation attacks. They are also concerned about smaller transistors, which will be
more sensitive to the effects of electromagnetic noise, neutron and alpha particles,
which may cause transient faults, even in fully tested and approved circuits [2].

Numerous publications concerning designing on-line checking circuits have
presented significant results, but the problem remains unresolved. The problem of
developing highly reliable and economical hardware methods for detecting faults
(errors) remains a real and important task in practice.

Our work presents a new way of designing a concurrently checking functional
circuit with the aid of partitioning the circuit into a number of independent sub-
circuits. For the sake of simplicity, we consider only combinational circuits. Faults
(both temporary and permanent) may occur in the functional circuit and may lead to a
distortion of one or more positions of an output codeword. Traditionally, it is assumed
that the time interval between any two faults is sufficient for eliminating the

! This research was supported by the Israeli Science Foundation under grant No. 545/04.

consequences of the first fault before the second fault occurs. Therefore, only one
fault may occur in a circuit at a given time. This assumption is used for constructing
models of acceptable distortions of output words [3].

The majority of the known concurrent checking schemes assume that a set of output
codewords of the functional circuit to be checked is complete, i.e., any binary vector
is a codeword. However, it is often reasonable to construct a so-called context-
oriented concurrent checking scheme, where: a) the number of possible codewords,
M is much smaller than 2", where m is the width of the output vector (M <<2") and
b) the set of possible codewords is known in advance. The context-orientation has
some advantages in comparison with the universal orientation. Namely, it allows
utilizing the redundancy of the circuit’s output codewords, which is an intrinsic
feature of such circuits. One of the ways of utilizing the redundancy is by dividing the
functional circuit into a number of separate independent sub-circuits. Each of these
subcircuits implements its own subset of output signals. Since the sub-circuits have no
common elements, any single fault may result in errors only in a subset of the output
signals.

The idea of using the context orientation for partitioning a functional circuit for
mutually checking components was studied by [4]. In that work, the authors examined
only a two-block partition, thus minimizing the number of encoded variables in a
concurrent checking scheme that detects any arbitrary errors.

In the present paper, the idea of a circuit’s partitioning for concurrent checking is
studied more in-depth. It is shown that the partitioning may be performed in different
ways and in accordance with a number of optimization criteria. We show that the
partitioning into independent sub-circuits is efficient for detecting both unidirectional
and arbitrary errors.

The partition-based approach allows different trade-offs to be handled. One of them
is a trade-off between the number of subcircuits and a number of additional check
variables that have to be introduced into the circuit. We examine the following two
tasks: a) minimizing a number of coding variables while the circuit is divided into two
sub-circuits; b) minimizing the number of sub-circuits while just one coding variable
is introduced.

The paper is organized as follows. Section 2 presents some important definitions
and a brief overview of related error-detecting techniques. In Section 3, a new
detecting partition concept is introduced and a number of its properties are described
and proven. Algorithms of optimized partitioning are presented in Section 4.
Experimental results are presented in Section 5. Conclusions are provided in Section 6.

2. Definitions and Related Works

Let v :{ Viseeos ym} be a set of output variables of the functional circuit to be
checked. We call these variables functional variables. Let c,...,c, , be a set of
(n—m) check variables that are added to the set of functional variables. Let
Z Z{Zl,...,Zn} be the common set of encoded variables, including those being
checked and the additional ones,

{ v, if i<m
z, =

¢ ., If i>m.

During a normal operation of the circuit, the variables z; take values from a set of
codewords 4= { ay,....a M} . The set of codewords is complete if M =2" and

incomplete iff M < 2" . The complete set of m -bit words is denoted by W .

To distinguish the encoded words from the non-encoded (original) words, we
denote the non-encoded words and the corresponding sets of the words by the symbol

nn

as follows: 4~ ={a1_ a&} Note that g, is an n —dimensional vector whereas
a; is an m - dimensional vector.

We define a fault model by operatoriy as follows.

Let a codeword a, € 4 take an erroneous value from a set (q,) because of a fault

in the circuit. Lety (4)=|Jw(a,). If a functional circuit satisfies the fault-secure

a;ed

property i.e., iff:
v(4)N4=0, (1)

then the set of words A4 allows detecting erroneous values designated by the
operatory .

Let a function R = R(a) be a checking function on the set of variables Z . That is,
the function R allows distinguishing a codeword from a non-codeword: R (a)zl
ifae A, and R(a)=0 ifaey(A4). The function takes arbitrary values for vectors
that are not in y (4)U 4.

If a fault model on the set y/(A) specifies some restrictions, then Eq. (1) can be

fulfilled by using suitable error-detecting methods. The majority of relevant
publications use either the following two models of possible distortions in codewords
or some combinations thereof.

The first model is based on the assumption that the system of logic functions
describing a functional circuit is monotonic. In such circuits, any single fault may lead
only to unidirectional errors in the output codeword. The most popular code for
detecting unidirectional errors is the universal Berger code [5]. The context-oriented
Smith code [6] and a separable m —out —of —n code [7] are well known. A method

for synthesizing inverter-free circuits is described in [8]. Another solution that is
based on duplication of some elements of the circuit is proposed in [9], where a
method for the design of unidirectional combinational circuits is presented.

The second model assumes that the number of distorted bits in the word cannot
exceed a predetermined threshold 7 [3]. Such a model can be applied to circuits,
where the splitting coefficient of the input gates is relatively small and each of the
gates participates in forming a relatively small number of output signals. The paper
[10], which is based on a study of numerous benchmarks, shows that usually a single

fault results in errors in two or less bits of a codeword(t < 2) .

In order to detect faults in a scheme satisfying both of the above models, one uses the
Bose-Lin codes [11]. The paper [12] describes an algorithm that allows determining the

maximal value of ¢ for an arbitrary scheme, and therefore allows simplifying the
checking scheme so that the overhead can be lowered by up to 25%. There are circuits
where using the above models is insufficient, since Eq. (1) is not satisfied. Here a
duplication-based solution should be considered.

In this paper, in all cases (excluding Theorem 2 case), we assume that there are no
restrictions regarding the operatory . Let us call such an operator universal. This
means that if the circuit is not partitioned into subcircuits, then any word from the set
W, may appear on the circuit's output instead of the correct s -bit codeword b,

namely, (b) =W_\b. Thus, there is no encoding that would ensure fulfillment of Eq.

(1), and therefore there is no code that can distinguish between a codeword and a non-
codeword. As was already mentioned, in such cases, the checking is usually based on
the duplication.

It is important to emphasize that duplication allows detecting any error resulting in a
single fault in a circuit because the two identical circuits of the duplicated scheme
have no common elements and not because a large number of additional variables are
used. Similarly, the proposed partition of the circuit into independent sub-circuits
restricts affects a single fault on the output variables and consequently restricts the set
w(4), fulfilling Eq. (1).

The following example illustrates the above idea.

Example 1. Let y,, y,,v;,y,be output variables and let 4= {0100,1001} be a set

of two codewords. If the error operator y is universal, then yw(A4)=W, and,
consequently, Eq. (1) is not satisfied.

Note that in this case, there exists no encoding that can fulfill Eq. (1). Let us divide
the circuit into two separate subcircuits. The first subcircuit
implements Z, = { Vs yz} and the second subcircuit implements Z, = { Vs, y4} . To

emphasize the fact that the circuit has been partitioned, we use 7 instead ofy . Now
any fault may affect Z; orZ, . In this case, there are no restrictions on the fault model

at each subcircuit, i.e., outputs of the subcircuits may have any values
from W, ={00,01,10,11} . For instance,

w(0100) = {0000,1000,1 100,0101,0110,011 1}
whereas

Ww(A) = {0000,1000,1 100,0101,0110,0111,0001,1101,1010,101 1} .

In this case, y(A)(1 4=, consequently, all the codewords may be separated from
the non-codewords.

Other solutions are usually based on redundant encoding combined with
independent implementation of functional variables and do not use duplications. More
economic solutions are obtained by using a method of parity checking [13-16] and by
sorting the set of functional variables into groups. Variables of each group are pair-
wise independent. Because of this, any single fault may cause only one error in each
group. An error can be detected by adding a single check variable to each group.
Paper [14] proposes a method for optimally grouping the variables and an efficient
design procedure based on a local modification of the given circuit. The approach

proposed in [15] uses independence between groups. Each of the groups is
implemented by a separate sub-circuit. The authors use variation of the above parity
checking: one variable is taken from each group and these variables form a specific
subset. A single check variable is added and used within the subset. All the variables
in the subset are compared by parity. Based on the benchmarks' results, the authors of
[15] concluded that the optimal partition for the considered case is a partition where
each variable under check forms a separate group, i.e., is implemented by a separate
independent scheme. A method proposed in [16] uses partitioning of a circuit into a
number of cascades implemented by independent schemes. Outputs of the schemes
are checked by parity.

In our paper, a new partitioning-based approach is developed. More specifically, the
functional circuit is divided into a number of independent components (subcircuits).
In contrast with the above-mentioned works, in the proposed approach the additional
check bits are not parity bits. The additional bits are, in most cases, a nonlinear
function of the functional bits. This allows more efficient encoding.

The newly introduced approach opens up new possibilities for the concurrent
checking. It enables both decreasing the number of subcircuits for a constant number
of check bits, and reducing the number of check bits for a constant number of
subcircuits.

3. Partitions on a Set of Functional Variables

The present section focuses on the fundamentals of constructing error-detection
partitions on a set of functional variables. The first subsection (3.1) introduces the
concepts of a detection partition and describes its properties. Sections 3.2 and 3.3 are
devoted to partitioning for detection of arbitrary errors. Section 3.4 focuses on
partitioning for detection of unidirectional errors.

3.1. Partitioning for detection of arbitrary errors

Let P= {Zl,...,Zk} be a partition on the setZ, which means that Z is partitioned

k
into k blocksZ,,...,Z,. Denote the number of variables in Z; by n, , Zni =n. We

i=1

state that variables of block Z form the i-th field of the codeword.

Assume that each of blocks Z, of the partition P = {Zl,...,Zk} corresponds to a
certain independent circuit. Two circuits are considered independent if they do not
comprise common logical elements. A single fault may occur only in one of the
independent sub-circuits and, consequently, only the variables belonging to one of the
blocks can be simultaneously erroneous.

By analogy with the codes, we call partition P = {Zl,...,Z k} a detecting partition,
i.e., a partition that can detect the errors defined by functiony , if and only if the set
l//(A) of erroneous words meets Eq. (1).

Let B, be a set of assignments of variables of block Z, i € {1,...,k}in the codewords,

B c {0,1}"‘ . The codewords determine a relation of compatibility between elements

of any two sets B, and B, .

We call elementsb, € B, andb, € B, i,je { l,...,k} compatible if both of these

values occur in at least one of the codewords. In some specific cases, the
compatibility relation may be a function. If b, € B, is a function ofb, € B, , this means

that the values of the variables of the set Z; , in all the codewords, are uniquely
defined by the variables of the set Z,. If a relation of this type exists, then we
write Z, = F(Zj).

In Example 1,P = {Zl,Zz} , where Z ={y,,»,} and Z, ={y;,y,}. Since the values of

variables from one block define the values of variables from the other block, then:
Z,=F(Z,),Z,=F(Z)) or Z,=F(Z\Z,),Z, = F(Z\Z,), which is the same.

Theorem 1. Partition P = {Zl,...,Zk} is the detecting partition, if and only if for
each block, Z,, the following equation is correct:
Z,=F(z\Z,) (2)

Proof. Let Eq. (2) be fulfilled, and let (because of a fault in the circuit) an erroneous
vector b be formed instead of the correct vectorh e B;. Denote by, (b, =b) sets of
codewords, the 7 -th field of which has values of b, i e{ 1,...,k} . Then, either
b, ¢ Bandg, (b,- =Z;)=®, or (as a result of Eq. (2)), (b, =b)Ne, (bl. =5)=®. In

both cases, Eq. (1) is satisfied and, consequently, any erroneous word differs from a
codeword.

To prove that Eq. (2) is necessary, let us assume that a block Z, exists, for which Eq.
(2) is not fulfilled. This means that one can find at least one vector in Z\ Z, that is

compatible with at least two different vectors b,l; €B,. Sinced e l//(b) , Eq. (1) is not

satisfied and such an error cannot be detected. Thus, the theorem is proven.

Example 2.

Let us illustrate Theorem 1 by using the example of codewords shown in Table 1. In
this table z,...,z, are functional variables and z; is a single check

variable,z; =z, @--- @ z.

Table 1. Set of codewords for Example 2.

Vi Y2 xS Va4 Vs Ve €1

Z Z Z3 Zy4 Zs Z6 Z7
a; 1 1 0 1 0 1 1
a, 1 0 1 1 0 0 0
a; 0 1 0 0 1 0 1
a, 1 1 1 1 0 0 1
as 1 0 1 0 1 0 0
ag 0 1 1 1 0 0 0
a, 1 0 0 0 0 1 1
ag 1 1 0 0 1 1 1

A codeword can be represented as a point in a three-dimensional space. Consider

the partition B, ={Z,Z,,Z;} :{212325,5,242627} . The corresponding partition is
shown in Figure 1. The coordinates of aed are a=(b,b,,b,) |,
whereb, € B;,i=1,2,3. For example, the codeword a, is placed at 5, =100,b, =0 and

b, =011. A fault in a subcircuit moves a point (codeword) along the corresponding

axis. It is clear from the figure that two points cannot coincide owing to a single fault.
Therefore, any error is detectable.

(=3 — (=) — o — (=) —
8 8 = = 2 = —_ — Z]Z3Zs5
M4
000 as g&
001 ‘
010 @, N ds 2=l

011 z=0 O
100 \Qf A >
4
101 V\'\
110 ”
111 ®

242627

Figure 1. Three-dimensional representation of partition Pl

One can readily see that this partition allows detecting any arbitrary error. Indeed,
Eq. (2) is satisfied. For example, if a fault occurs in a subcircuit implementing z, , the

output codeword z,,...,z, takes one of the erroneous values V,= {1001011, 1111000,

0000101, 1011001, 1110100, 0011000, 1100011, 1000111} andV, N A= .

Similarly, it is clear that if a fault occurs in one of the other subcircuits, the
corresponding sets of erroneous words ¥} and ¥ also do not include codewords.
Variables belonging to any two blocks of the partition /; determine the codeword
uniquely, and consequently, they define the values of a third block of variables.

Consider, for example, another partition P, ={Z,,Z.}, where Z, = Z, U Z, . Figure 2
shows the location of the codewords as points in a two-dimensional space (note that
the codewords a, and q, differ only in one coordinate). For this partition, Eq. (2) is

not satisfied. This partition does not allow detecting errors. As a result, a fault in
block Z, may lead to the appearance of codeword 4, instead of codeword a, in the

output, and there is no indication that this situation is erroneous.

It is clear from the example that the main problem is to define a minimal number of
partitions k£ and/or to add a minimal number of check variablesc,, such that the
points (codewords) in the & -dimensional space will differ by at least two coordinates.

Consequence 1 from Theorem 1 formulates the problem of defining a detecting
partition in terms of so-called differences between codewords.

0100
0101
0110
1000
1001
1010
1011
1100
1101
1110
1111

0000
0001
0010
0011

Z2Z1Z3Z5

>
000 ‘.l\ \‘l\
as
001
ds

010

011 ar as
100
a ags
ay

101
110

111 P
1
Z426Z7

Figure 2. Two-dimensional representation of partition P2

3.2. Partitioning differences of codewords

j
of variables that have different values in these words. For example, the difference

between codewords @,=101100 and d4=0111000 equals &(a,,a,)=1{z,z,}.

Let us define a difference & (a,.,aj) between any two codewords «, and a; as a set

Consequence 1. For providing to the partitioning P:{Zl,...,Zk} an ability to
detect any error in words from the set 4 = {al,...,aM }, it is necessary
and sufficient that for each two words g; and a; from A4 the

following condition be met:
Sla.a)zZije{l.. .M}, 1e{l. . k}. (3

In other words, the difference between any two codewords cannot belong to only
one block of those codewords obtained by the partition.

Proof. To prove the necessity of Eq. (3), we assume that this condition is not
satisfied. This means that there are two words, a; anda,, having the difference that
belongs to one and the same block of partition Z;, . Hence, at least two different
combinations of values of variables from the block correspond to equal values of
variables not belonging to Z;, which means that Z, # F' (Z \Z,). To prove the
sufficiency of Eq. (3), we assume that Eq. (3) is satisfied but that Eq. (2) is not
satisfied. This means that the partition contains such a block Z,thatZ, # F(Z\Z,). It

is possible that when two words reflect the difference, they belong to the same block
where Z, exist. This contradiction concludes the proof.

Note that if the difference between two codewords comprises exactly two variables,
in any detecting partitioning these two variables must belong to different blocks of the

partition (according to Eq. (3)). If A~ comprises at least one pair of words differing,
one from another, by a value of only one binary variable, then no detecting partition

exists for this set 4~ . In this case, before constructing the detecting partition, at least
one coding variable should be added to the set, in order to obtain the minimal distance
between no less than two words.

This conclusion is well supported by the known results of the coding theory.
However, in the general case, partitioning of a circuit into separately implemented

sub-circuits opens up a new way for detecting errors and thus changes the coding
requirements. For example, for detecting errors in not more than ¢ bits, the
requirement of the minimal distance ¢+1 between the words becomes not obligatory.

In Example 2, illustrated in Table 1, the words are encoded by a single additional
variable z, in such a manner that any one of the differences comprises at least two

variables. The differences between the words are presented in the shape of a triangle
in Table 2.

Table 2. Difference in the relations regarding the set of codewords

a, (0110011

az [1001110 | 1111101

ay | 0010010 | 0100001 | 1011100

as | 0111111 | 0001100 | 1110001 | 0101101

as | 1010011 | 1100000 | 0011101 | 1000001 | 1101100

az| 0101000 | 0011011 | 1100110 | 0111010 | 0010111 | 1111011

as | 0001100 | 0111111 | 1000010 | 0011110 | 0110011 | 1011111 | 0100100
aj a as ay as as az

Any element &, ; of Table 2 is a binary vector, of which non-zero components

correspond to the variables that belong tod (al.,aj); 6,;=a,®a,. It is clear that all

differences comprising more than two elements can be removed if each of such
differences comprises at least one two-element difference. The bold font in the table
denotes elements that remain upon removing the absorbing ones. Thus, in the
discussed example, Consequence 1 states a kind of “incompatibility” between
variables, namely, incompatible variables cannot belong to one and the same block of
the partition. Table 3 visually demonstrates such incompatibility: the incompatible
pairs of variables are denoted by “1”. Each partitioning block is a sub-set of
compatible variables.

Table 3. Incompatibility relations

Z 1

Z3 0 0

Z4 0 1 0

Zs 0 1 0 1

Z6 1 0 1 0 0

z7 1 1 0 0 0 0
z; zy | zz | z4 | z5 | z6

Let us represent the above relations by a compatibility graph. The compatibility
graph for our example is shown in Figure 3, where two variables are connected by an
edge if they are compatible. The variables of a partitioning block form a complete

sub-graph. In the discussed example, the variables z,,z,,z, are pair wise incompatible.
Therefore, the number of blocks in any fault that detects partitioning is three or more.
One of the two possible triple-block partitioning /; was discussed earlier. However, if

we assume that only unidirectional faults may appear in the scheme, the number of
partitioning blocks can be reduced to two (see Section 3.4).

Figure 3. Compatability relation graph for Example 2.

3.3. Partitions on the set of codewords

In some cases, a so-called algebra of partitions [17] can be used for obtaining the
optimal partitioning. Partitioning the set of output variables into blocks determines
another type of partitioning that is also important in the proposed approach, namely,
partitioning on the set of codewords 4. Whereas for partitions on the set of output
variables we use the letter P, the second type of partitions on the set of codewords is
denoted by the letter 7 . The relation between the two types of partitions is as follows:

Each block Z, (1 <i< k) of the partition P = {Zl,...,Zk} determines a partition 7,
on the set 4 of codewords. A certain block of 7, comprises all the codewords having

the same values of variables from set Z, . In our example of the partition,

b= {Zn Z,, Z3} and P, ={Z,,Z,} determine the following partitions on the set of
codewords:

Indeed, a partition 7z, divides the points in the k -dimensional space into sets
according to their i-th coordinate. For example, 7, separates the black points from
and white points in Figure 1.

Recall some basic definitions of the partition algebra. We say thatz, is smaller than
7; (denotez, < 7 ;) if each block of 7, is either equal to a block of 7, or is contained

in a block of 7, . In our example, 7z, <7,,7, <7, 7, <7, 7, 7,and 7, are pairwise

10

incomparable. The relation smaller is a partial ordering on the set of partitions with a
minimal element ﬂ'(O) , Where 72'(0) is a null-partition including only blocks

consisting of exactly one element of the set 4 . In our example, 7, is equal to;r(O) .

The product operation on the set of partitions is defined as follows:

If blocks of partition 7 comprise non-empty intersections of blocks of 7, and blocks

of 7z, , the partition 7 is called a product of m,andz,: 7 =7x, -7,
For example, 7, -7, = 7(0).

Consequence 2. Partition P = {Zl,...,Z k} is a detecting partition if and only if for

every i € { 1,...,k}, the following condition is satisfied:

T e T Ty e T = 72'(0) 4)

Proof. Eq. (2) is equivalent to

T et T TT 7, ST, (5)

i+l e

It is obvious that (5) follows from (4), i.e., Eq. (4) is sufficient. The necessity of this
condition follows from

T, = 7(0), (6)

1

which is correct since all words of the set 4 are different. Let us replace 7, in Eq. (6)

by the left portion of expression Eq. (5). If one of its 7z, values is decreased, the

product may decrease. This means that Eq. (4) holds, and therefore the consequence is
proven.

It is easy to see that in Example 2 7, -7z, = 7, - 7, = 77, - 7y = 7(0), which means that

the partition B ={ZI,Z2,Z3} is a detecting partition and allows detecting any

arbitrary error.

3.4. Partitioning for detection of unidirectional errors
Here we discuss the use of partitioning for detecting unidirectional errors. Let us
call a difference & (a,.,a j) monotonic if a, and a; are comparable
Words(a,. >a;,ora <a;) For example, &(ay,a,) is monotonic, whereas &(a,, a,)is

non-monotonic. Theorem 2 states the necessary and the sufficient conditions that
should be satisfied by partitioning capable of detecting unidirectional errors.

Theorem 2: Necessary and sufficient conditions for partitioning P = {Zl,...,Zk} to
detect a unidirectional error in the words of the set Az{al,...,aM}

satisfying Eq. (3) for any two ordered wordsa; and a;of A (these words

have a monotonic difference).
The proof of Theorem 2 is similar to the proof of Consequence 2 from Theorem 1.

It can be seen that Theorem 2 poses less strict requirements for partitioning, in
comparison with the requirements of Consequence 2. For example, if the faults are

11

only unidirectional, then three non-zero elements (that are not denoted in bold in
Table 3) should actually be replaced by zeros (see Table 4).

Table 4. Table of the monotonic differences

Z 0

Z3 0 0

Z4 0 1 0

Z5 0 1 0 0

Zg 1 0 0 0 0

z7 1 1 0 0 0 0
z; z2 | zz | z4 | z5s | zs

This measure allows reducing the number of partition blocks to two in the fault
detecting partitioning. For example, unidirectional faults can be detected by

partition P, = {212223,24252627} . We must emphasize that the partitioning P, does not
detect all faults according to the universal fault model. For example, an error in the

circuit producing variables Z;,Z,,Z; may lead to forming an erroneous codeword,
a, =0111000, instead of codeworda, =1011000, and that fault will not be detected.

Such a situation is impossible in circuits not comprising invertors since the error “011
instead of 101” is not unidirectional.

Note that partitioning of the functional circuit into separately implemented sub-
circuits allows reducing the number of additional check bits. Various errors caused by
a single fault can be detected by using just one additional check bit. The greater the
number of additional check bits, the fewer the number of blocks required for
constructing the detecting partition.

4. Algorithms of partitioning

In view of the discussion above, a task will optimally select the tradeoff between the
number of check bits and the number of independent sub-circuits. Since these two
criteria are contradictory and we do not have a general measure, which would allow
their mutual weighting, it is worthwhile to consider two extreme cases. In each of
them, one of the numbers to be minimized is considered as a limitation, which takes
the minimal possible value. The first case is the two-block partitioning. In this case,
the task is to find the solution with a minimal number of check bits. The second case
is the multiple-block partitioning. In this case, at most, one check variable is used, and
the number of partition blocks is to be minimized.

Note that if the set of codewords is complete, i.e., all 2" binary vectors are used;
any of the two extreme cases has a trivial solution. In the first case, the solution is to
duplicate all variables and check by comparison. In the second case, it is to implement
each variable by a separate independent circuit followed by the parity checking. If a
specific set of words is incomplete, the trivial solutions can be further simplified.

12

In the present paper, both of the above-mentioned settings of the problems are
discussed.

4.1. Algorithms for constructing two-block partitions

It is clear that if the number of codewords isM , they can be coded by / =log,M

additional check bits. It is also obvious that a partition, one block of which comprises
all the functional variables and the other block — all the check variables, satisfies Eq.
(4) and thus constitutes the detecting partition. However, if not all the functional
variables are independent, the number of check bits can be reduced. Assume that the

set Y of functional variables can be divided into two blocks, ¥, and Y,, so that the
variables from block Y, are functions of the variables from blockY,. Now we have
blocks Y, and Y, correspond to respective partitions 7z,;and 7, of the set of codewords

according to the rules formulated above.

According to the proof of Consequence (2), 7, = 72'(0). Ifz, # 7r(0) , check bits are
added to block Y, so that the partition 7, , corresponding to block Y, after adding
check bits, is equal to 7(0) (;z; = 71(0)) As a result, the encoded set of words will
be divided into two blocks satisfying Eq. (4) and, consequently, this enables detection
of any error in a word. In this case, the number of check bits is equal to/’ =log, M,
where M’ is the maximal number of words in one block of partition,. Note that
sinceM'< M ,thenl' </.

Constructing the partitions with the minimal M’ can be performed by simple
enumeration. The enumeration can be shortened by determining a core — a set of
variables in each block ¥, that satisfies r, =7r(0). The core consists of variables that

have different values in adjacent vectors of 4.

In Example 2, the core is formed by variables y, and y,. The core corresponds to

partition 7, = { a1a4a8;a3a6;a2a5a7}. Since the partition comprises a group of three
elements, block Y, has to include at least two additional variables. For example, let us
add y, andy, to variables y; and y,. Accordingly, variables y; and ybelong to the

second block Y, . These variables correspond to partition {a1a7;a8;a3a5;a2a4a6} ,

M'=3 and, consequently, at least two check bits are required. We denote them as

zzandzg: P = { y1y2y3y4;y5y627zg}. We may assume that z; = y; andzg = y, . In this

case, instead of six additional duplicated functional variables in the duplicated circuit
of our example, we use only two functional variables.

4.2. Algorithms for constructing multiple-block partitions

We will now discuss methods for obtaining a multiple-block partition capable of
detecting errors in binary words. To this end, we are going to use no more than one
check variable minimize the number of blocks in the partition.

It should be clarified that if the set of binary words is complete (i.e., all 2" binary
vectors are in use); only a trivial solution is possible, namely, implementing each
variable by a separate independent circuit and further parity checking. In this case, the
number of blocks is equal tok =m+1. If we deal with a specific incomplete set of

13

binary words, a smaller number of blocks in the partition may be obtained. Several
such context-oriented solutions are presented below.

The following multiple-block partition algorithm is based on Consequence 1 of
Theorem 1. First, if the set of words that is in use comprises adjacent vectors, they are
encoded by one coding variable in such a manner that the number of non-zero
positions in each code word is odd. Second, differences are determined between code
words in all of the pairs. To accelerate the algorithm, absorbing differences are
removed from the set of differences: if the differences 6,andd; relate to one another

as follows: 5, & D then & j is removed from the set of differences. Let us assume that

the differences form a set A:{Sl,...,SH} upon removing the absorbing ones.

According to Consequence 1, the differences in the new set comprise information that
limits partitioning the set of variables under check: no such differences can be part of
one block of the partition.

The selection of the partition satisfying the limitations and comprising the minimal
number of blocks can be performed by random enumeration. The algorithm comprises
a) constructing a number of random partitioning versions satisfying the limitations,
and b) selecting the best partition among them. The construction of each of the
versions can be performed in n steps. Each of the steps is related to one of the
variables under check and requires selecting the block of partitions for that specific
variable. Enumeration of the variables is performed randomly, since the random
selection of variables allows obtaining different solutions when repeatedly applying
the same algorithm.

Assume that i variables forming a subset Z' — Z have been enumerated at the
beginning of step(i+1). And let the sub-set be divided into blocks Z|,...,Z, . At step

(i+1) , using the random equally probabilistic selection from the set of variables

Z\Z" , which have not yet been selected, the next variable is selected. Let it be
variable z''. If there exists a block Zj.,j =1,...,k such that foranyh=1,...,H ,

6,1 s Z; U{ZH-I}’

then z*' will be attached to the block, Zj.” =7 U{ZM} . If a number of such blocks

exist, one of them (preferably the first found) should be selected. If the variable z*'
cannot be attached to any of the earlier formed blocks, a new block is formed

comprising only that specific variable: Z;"| :{z”l}. Step(i+1) is now terminated.

Obviously, the partition obtained after n steps represents the detecting partition for
words of the given set.

5. Experimental Results

One of the purposes of the present study was to estimate the efficiency of the above-
described method of fault detection. The quality of the obtained solutions is estimated
by a number of coding variables and the number of blocks in the partition. Since it is
quite difficult to proportionally weigh and estimate the interrelation of these two
parameters, the quality of the proposed solutions has been additionally estimated by
the required overhead. For obtaining independent estimations, we used benchmarks
and random functions. We also used the Mentor Graphics Leonardo Spectrum

14

synthesis tool and a CAD System “Synthesis 1” [18] developed for academic studies.
Results of estimating some two-block partitioning versions are presented in section
6.1. Section 6.2 presents results of multi-block partitioning versions utilizing only one
coding variable.

5.1. Evaluation results for two block partitioning

The experiments were conducted with “Synthesis 1”. Combinational circuits
forming output signals of sequential circuits were used as benchmarks. Such an
approach can be explained by the fact that the set of codewords is strictly defined in
the sequential circuits, and that in most cases this set essentially differs from the

complete set(M << 2") Estimation of a number / of check bits required for arbitrary

error detection is shown in Table 5.

Table 5. Estimation of the number of check Table 6. Overhead estimation
bits required for arbitrary error detection

Benchmark| t number of gates
Benchmark | M | m |n1|n2| ovez/head % g g, [overhead®
ACDL 1912711311511 3.7 ACDL 21 | 434 | 415] 418] 919
ASS13 1512511311210 0 ASS13 10 | 102 | 85 92 73.5
BIG 150128]15]13]0 0 BIG 23 1 264 | 2521 249 89.8
DORON 56 1110]95]20] 5 4.5 DORON 28 | 321 | 295 | 318 91
CAT 151221161 9] 3 13.6 CAT 151 70 67 | 63 | 857
CPU 19]129]19]12] 2 6.9 CPU 18 | 90 84 | 85 | 87.8
EX6 131 815 3 37.5 EX6 9 69 68 | 651 927
E2 16]18]14]1 8] 4 222 E2 48 1 200 | 166 | 186 76
E7 171201151 8] 3 15 E7 17 | 151 | 143 | 135] 84.1
E17 14117111 3 17.6 E17 12 | 63 54 | 58] 778
KOBZ 541 53140]17] 4 7.5 KOBZ 24 1 238] 226 | 221 | 87.8
LIOR 271311271915 16.1 LIOR 29 | 225] 207 | 234 96
PP 15]28]14]14] 0 0 PP 25 1 188] 169 | 164 77.1
SASI 57| 54144]14] 4 7.4 SASI 251233] 219 | 218 875
SOL 60] 68 159]14] 5 7.4 SOL 30 | 449 | 385 | 446 | 85.1
v16 121181121 8] 2 11.1 v16 19 | 183 | 133 | 175] 68.3
v110 13]18]11 2 11.1 v110 20 | 263 | 183] 253 | 65.8
v1120 17129]14]15] 0 0 v1120 19 | 311 | 280 | 298| 85.8
Average 251 34124])12]2.6 10 Average 22 1214.1]190.6] 204 84

Columns in Table 5 are as follows:

M — the number of codewords, m — the number of variables being checked, n,, n, —

the number of variables in the first and in the second blocks of partition, respectively,
[— the number of coding variables n, +n ,=m+1=n.

Overhead is calculated in percents and reflects the relative increase in the number
of variables. The table shows that the number of check bits is smaller by about 10%
than the number of variables under check. Some schemes exist, where detecting any
errors in a word is possible without using additional (check) variables. The
experimental results therefore confirmed that the proposed algorithms are efficient
from the point of reducing the number of check bits.

15

Table 6 presents estimations of additional overhead caused by the partitioning of
the scheme into separate independent sub-schemes and by increasing the number of
outputs.

In Table 6, ¢ is the number of inputs and g, is the numbers of gates in the scheme.

Index 0 indicates characteristics of the initial scheme, whereas indexes 1 and 2 denote
two separate sub-schemes into which the initial scheme is partitioned. Overhead
reflects the relative increase in hardware in percents.

In comparison with the duplication, overhead is decreased by about 15%. In some
schemes, the overhead reduction reaches 30% and even more.

5.2. Evaluation results for multiple block partitioning

This study was performed using statistical methods. We have developed a generator
of pseudo-random codewords enabling random equally-probable selection from a set
W of the subset 4 — W, comprising M words. The selection was performed so that
none of the m variables under check takes a constant (zero or non-zero) value in all
codewords. For each of the generated sets of codewords, a partition with a minimal
number of blocks was selected. In each point (m,M) , ME {4, 6,8,10} ,

M 6{4, 6,8,10,20,40} , and an average number k" of blocks was calculated (by

averaging over 100 experiments). Results of the experimental study are presented in
Table 7.

Table 7. Statistical relation between the number of blocks in detecting partitions and the number
of check variables and the number of codewords.

m |4 6 8 10

M

4 2,40 [2,09 |[2,16 |2092
6 3,19 | 245 (239 2,80
8 437 [343 [2,72 295
10 [500 [3,63 [292 |3,00
20 6,82 | 420 |331
40 7,00 |834 |4,79

Figure 1 illustrates the experimental results in a more visual manner. The graph
reflects how the average number m/k~ of variables under check in a block depends
on the relative number ¢ = M /2" of code words. As was expected, the number of

blocks in a partition grows as ¢ increases, reaching the maximal value of k =m+1
wheng =0.5. Wheng <0.1, the average number of elements in the block is no less

than two, i.e., £ <0.5m .

In other words, the proposed method of detecting faults is advantageous exactly in
that area. Note that the mentioned area is the area of practical interest. For example, in
MCNC benchmarks in all cases whenm > 7,4 <0.1.

16

45

35

y =-0.5299Ln(x) + 0.7405
R =0.859

257
N
_ L S|

151 l/ Y7 __\._\.

0.5

m/k*

M/2"m

Fig. 1. Relation between the average number 71/ k" of functional variables in a single

block and the relative number ¢ = M /2" of codewords.

In order to address the question of increasing complexity of a circuit upon
dividing the circuit into independent sub-circuits, a number of experiments have been
performed using the CAD Leonardo Spectrum. In the experiments, pseudo-random
functions of 6 or 8 variables were generated; parameters M and m were varied
within the above-mentioned ranges. Each of the functions was implemented in the
form of FPGA in two versions: with and without dividing them into sub-circuits. Both
of the versions were compared by their area overhead. The results show that the
complexity of the circuit increases with the growth of ¢ . More specifically, the factor

of complexity varies from 1.3 for ¢ =0.02 up to 1.7 for ¢ =0.16, and the numbers
indicate that the proposed method seems to be less complex than the duplication.

6. Conclusions

In the present paper we have introduced a new method for designing concurrent
checking logic circuits. This method is characterized by two features.

First, the method combines the redundant encoding with the partitioning of the
circuit into separate independently implemented sub-circuits. The partitioning may be
adjusted either by increasing the number of coding variables or by reducing the
number of blocks in the partition.

Second, the method is context-oriented, i.e., selection of the code and the partition
is performed for a given specific set of codewords to be checked.

We formulated theoretical fundamentals of the proposed design method. Based on
the fundamentals, we have solved the problem of optimal partitioning on the set of
functional outputs. The main criteria of the optimal partitioning are as follows: a) a
minimized number of check bits, and b) a minimized number of partition blocks. We
introduced a method for handling a trade-off between these criteria for obtaining the
optimal solution.

The method has proven to be efficient for detecting both arbitrary and
unidirectional errors.

Benchmark experiments, together with the Monte Carlo statistical experiments,
show that the average number of check bits required for detecting arbitrary faults can

17

be estimated as close to 10% of the number of functional variables. In the majority of
the performed experiments with multi-block partitioning, the required hardware
overhead did not exceed 50%.

The newly formulated theoretical fundamentals and the design method utilizing
these fundamentals form a new approach for designing on-line checking circuits. This
approach allows obtaining solutions that can be flexibly optimized according to
various criteria.

7. References

[1] Znghel L., Nicolaidis M., Alzaher-Noufal I., Self-Checking circuits versus
realistic faults in very deep submicron, / 8™ IEEE VLSI Test Symposium (VTS 2000),
pp. 55-63, May 2000.

[2] Alidina M. et al., Precomputation-based Sequential Logic Optimization for Low
Power, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 2,
pp-426-436, Dec. 1994.

[3] Lala P., Self-checking and Fault-Tolerant Digital Design, Morgan Kaufmann
Publishers, San Francisco / San-Diego / New York/ Boston/ London/ Sydney/ Tokyo,
2000.

[4] Ostrovsky V. and Levin 1., Implementation of Concurrent Checking Circuits by
Independent Sub-circuits, Proceedings of 20" IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems (DFT'05), pp. 343-351, 2005.

[5] Berger J. M., A Note on Error Detection Codes for Asymmetric Channels,
Information and Control, Vol. 4, pp. 68-73, Mar. 1961.

[6] Smith J. E., On Separable Unordered Codes, IEEE Transaction on Computers, Vol.
Vol. 33, No. 8, pp. 741-743, Aug. 1984.

[7] Ostrovsky V., Levin 1., Ostanin S., Synthesis of Self-checking Controllers Based
on Modified (m, n)-cod, Automatic Control and Computer Science, Vol. 37, No. 2, pp.
48-55, 2003

[8] Jha N.K. and Wang S.-J., Design and Synthesis of Self-Checking VLSI Circuits,
IEEE Transaction CAD, Vol. 12, No. 6, pp. 878-887, Jun. 1993.

[9] Saposhnikov V.V., Morosov A., Saposhnikov VL.V., Gdssel M., A New Design
Method for Self-Checking Unidirectional Combinational Circuits, Journal of
Electronic Testing: Theory and Applications, Vol. 12, pp. 41-53, Feb. 1998.

[10] Pomeranz I. and Reddy S.M., Recovery During Concurrent On-Line Testing of
Identical Circuits, Proceedings of the 20™ IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems (DFT’05), pp. 475-483, Oct. 2005.

[11] Bose B. and D. J. Lin. Systematic Unidirectional Error-Detecting Codes, IEEE
Transaction on Computers, Vol. 34, pp. 1026-1032, Nov. 1985.

[12] Omana M., Losco O., Metra C., Pagni A., On the Selection of Unidirectional
Error Detecting Codes for Self-Checking Circuits Area Overhead and Performance

Optimization, Proceedings of the 11 ™ IEEE International On-line T. esting Symposium,
pp- 163-168, Jul. 2005.

[13] Sogomonyan E.S., Design of Built-in Self-Checking Monitoring Circuits for
Combinational Devices, Automation and Remote Control, Vol. 35, No. 2, pp. 280-289,
1974.

18

[14] Saposhnikov V.V., Morosov A., Saposhnikov V1.V., Gdssel M., Design of Self-
Checking Unidirectional Combinational Circuits with Low Area Overhead,
Proceeding of the 2" JEEE International On-line T esting Workshop, pp. 56-67, Jul.
199¢.

[15] Kaushik De., Chitra Natarajan, Devi Nair, Prithviraj Banerjee, RSYN: A System
for Automated Synthesis of Reliable Multilevel Circuits, I[EEE Transactions on Very
Large Integration (VLSI) Systems, Vol. 2, No. 2, pp. 186-195, June 1994.

[16] Levin L., Ostrovsky V., Keren O., Sinelnikov V., Cascade Scheme for Concurrent
Errors Detection, Proc. of 9th EUROMICRO Conference on Digital System Design
(DSD'06) pp. 359-368, 2006.

[17] Hartmanis J. and Stearns R. E., Pair Algebra and Its Application to Automata
Theory, Information and Control, Vol. 7, pp. 485-507, 1964.

[18] Baranov S., CAD System for ASM and FSM Synthesis, Lecture Notes in
Computer Science, Vol 1482, “Field-Programming Logic and Applications”,
Springer-Verlag, Berlin Heidelberg, pp. 119-128, 1998.

19

