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This article presents several ideas for using a spreadsheet to
reinforce teaching of enumerative combinatorics in the sec-
cndary mathematics classroom. More specifically, a spread-
sheet’s operational capability provides an environment con-
ducive to students’ modelling numbers with combinatorial
meaning and testing their own conjectures about rules (iden-
uties) which constrain these numbers. We argue that every
combinatorial identity can be associated with the visual im-
agery that introduces students to the art of counting without
counting. Finally, it is shown how students, both in specializ-
ing and in generalizing, can unexpectedly come to recognize
the capacity of the Fibonacci numbers to solve combinatorial
problems. The Microsoft Excel 3 for the Macintosh computer
is used.

An important aspect of learning mathematics with computers is the
possibility to use the latter as a technological tool for facilitating creativity.
Probably the most natural way to draw students into challenging and pro-
ductive mathematics aclivity is to arrange the environment for recognizing
patterns and regularities, making connections and generalizations, and
speculating on methods of testing their own conjectures. All these were
claimed as a major goal of the school mathematics curriculum (N.C.T.M.,
1989),

Computers today strongly influence mathematics teaching and learn-
ing, and provide support by which, as noted by Noss (1988), students can
explore and develop relationships within mathematics contents that are just
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beyond their grasp with pencil-and-paper technology. Moreover, computers
change the traditional role of a teacher who has the opportunity to integrate
students’ learning of mathematics with their doing mathematics, at differ-
ent levels beginning from the most elementary. One way 10 turn a class-
room into a place where learners are encouraged to do mathematics is to
provide modelling and analysis of the obtained results. Indeed, such a
teaching approach could make students themselves both pose and solve
problems in a natural way, as new mathematical facts appear not through
didactic transmission of erudition by a know-all teacher (leaving open the
question of how the teacher him/herself has learned this lore), but as a re-
sult of independent discovery and cognitive activity.

In the following we shall discuss teaching ideas concerning the appli-
cation of a spreadsheet in contriving combinatorial identities. Usually, in
the course of enumerative combinatorics, these identitics are introduced to
students in the form of a finished formula. Most students lack the willing-
ness and motivation to be concerned with already solved problems, so that
the teacher has difficulty drawing students into a process of proving combi-
natorial identities, Even when the task is offered with the right-hand-side
removed, the question remains how the teacher knew the expression could
be simplified. The spreadsheet, however, provides an ideal medium for
making up these formulae by speculating on results of modelling. Propos-
ing the use of a spreadsheet for teaching enumerative combinatorics 1s the
result of the following 1dea. The basic combinatorial notions of ordered se-
lections and unordered seclections (combinations) depend on two positive
integral wvariables and through “‘recursive definition™” (Jacobs, 1992,
p.100) can be expressed by equations of partial differences subject to
boundary conditions. It is possible that owing to unfamiliarity with the
ways of tackling such equations, learners are left with long and tedious
computations that allow them to think of nothing but numbers. But this 1s
not necessary, A spreadsheet has the outstanding ability to numerically
model equations of partial differences and provides an opportunity to study
discrete concepts through the numerical approach. This approach, as will
be shown below, can effectively involve students in the making of mathe-
matical connections—the rich source of modelling data can help students
find regularities in many special cases and generalize from these. Exploit-
ing these opportunitics constitutes an important step toward answering
Fey's (1989) challenge regarding more appreciation of the role that ease of
numerical computation can play in development of conceptual understand-
ing of topics in discrete mathematics, particularly in combinatorics.
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RECURSIVE DEFINITION OF BASIC NOTIONS

The simplest combinatorial notion is that of permutations: the number
of ways of listing in order » given objects. Denoting this number as P(n), it
is not hard to understand that if » is small then P(n) can be found without
much difficulty. For example, for n<2 one can easily **guess’” of that one
given object can be placed on the list in only one way, and two objects—in
two ways. This suggests that the method of finding P(n) for n>2 would be
to express P(n) in similar terms with a smaller value of n or, in other
words, to make use of recursive reasoning, In so doing a teacher can guide
students to the conclusion that one of the n given objects can be placed first
on the list in n ways and each of these » choices results in (n-1) remaining
objects which can be placed in P(n-1) different orders, which results in the
recursion formula P(n)=nP(n-1), n=2.3,... . At this point it would be help-
ful to emphasize that recursion is a discrete process of defining the current
state in terms of the preceding and that therefore g recursive definition
would be completed when the starting point (or, in other words, the base
clause) of the process is assigned. Using the above “‘guess™ at a base
clausmd providing the case n=0 by the equality P(0)=1 result eventually in
the formal recursive definition of permutations

P(n)y=nP(n-1), n=1,2,...; P(0)=1 (1)

Passing to ordered selections, the teacher subsequently introduces the
next basic problem, namely that of counting A{n,k)—the number of Wways
of listing k objects chosen from # given objects. It may be noticed that the
first object on the list can be chosen in n ways and then (k-1) of (n-1) re-
maining objects have to be added to the list. This results in the recursion
formula A(nk)=nA(n-1k-1), I<ksn, A good way to promote students’
skills in recursion techniques consists of encouraging a discussion concern-
ing the boundary conditions for A(n k). The discussion eventually will lead
to the formal recursive definition of ordered selections:

1 ifk=10
Aln k)= 0 ifn=0andk>1 (2)
oA(n-1Lk-1) otherwise

Finally the concept of unordered selections (combinations) C(n,k)—
the number of ways of choosing k objects from n given objects can be intro-
duced as the corollary of (1) and (2) through the following formula

Cink)= A(nk)/P(k); n=0,1,2,.., k=0, 1.2..... k<n (3)
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To spark students” interest the teacher must now provide the necessary
assistance in the modelling of combinations C(n,k) within a spreadsheet.

i1}
Below we shall use the standard notation K for combinations .

CONSTRUCTION OF THE BASIC SPREADSHEET

We assume that students have elementary skills in operating a spread-
sheet and defining functions in cells (Cobb, McGuffey, & Dodge, 1991).
The teacher can eleuit this by providing only technical assistance in mod-

1]
elling numbers i J- To this end, in accordance with Relations 1 and 2,

two auxiliary spreadsheets which implement numbers P(k) and A(n.k) (re-
ferred to below as TP and TA respectively) are programmed as follows.

The spreadsheet TP. In column A ( beginning from cell A2) non-negative
integral values of & are defined. The base clause for P(k), that is number 1,
is defined in the cell B2. The spreadsheet function =SB2*SA3 is defined in
cell B3 and computes the value of P(1). This function is copied down to
cell B16 by using the Copy and Paste commands from the Option menu.

Note that here and below when formatting the entries (to get integers
rather than floating point numbers) students first set a spreadsheet to Inte-
ger by choosing the line Numbers from the Format menu to display its dia-
log box, and by switching on first the Integer regime and then OK.

The spreadsheet TA. In row 1 (beginning from cell B1) and in column A
(beginning from cell A2) non-negative integral values of » and k are de-
fined respectively. In row 2 and column B boundary conditions for A(n k)
are defined (that is number 1 is defined in B2:P2, number 0 is defined in
B3:B16). The spreadsheet function =B2*C%1 is defined in cell C3 and
computes the value of A(L,1). This function is replicated to cell P16 by us-
ing the Copy and Paste commands.

The basic spreadsheet TC which implements numbers [:] in accor-

dance with Formula 3 is programmed as follows. In row 1 (beginning from
cell BI) and in column A (beginning from cell A2) non-negative integral
values of » and & are defined respectively. All other cells of this spread-
sheet must consist of ratios of corresponding cells of spreadsheets TA and

TP. To this end the spreadsheet function =TA!B2/TP!3B2 is defined in

0
cell B2 and computes the value of [u] This function is replicated to cell
P16 by using the Copy and Paste commands. The spreadsheet TC (Pascal’s
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triangle represented as a rectangular array) filled with numbers(kj and its
“*screen-snap” with formulas which compute these numbers (binomial co- -
efficients), are shown in Figures I(a), and 1(b) respectively.

Because the computer calculates and recalculates so quickly the teach-
er can provoke what-if questions, promoting a discussion about changes in
the base clause for P(k). Entering different values for P(0) into cell B2 of
the spreadsheet TP enables students to experience the importance of the
correct assignment of initial data for the description of a recursion process.

Note that students may compare results of modelling of binomial coef-
ficients| » igiven through recursive definition with those of given by the

k

well-known formula

(:]zﬁﬂ?—lﬁ 0<k<n

which is not hard to ascertain when counting A(n,k) and P(k) through
combinatorial reasoning, This formula, however, will not be of use below.

MODELLING AS A METHOD OF DISCOVERING
COMBINATORIAL IDENTITIES

Mow moving to the major goal of the lesson, the teacher asks students
to recognize patterns and regularities through examination of the results of
modelling. The template of the spreadsheet TC that consists of numbers

¢ | provides students with an exciting pursuit in contriving combinatorial
identities.

-

Figure 2. Visual imagery of the rule of three numbers (L-shaped triple of cells)




230 Abramovich and Levin

Observing the template shown in Figure 1(a) students may first discov-
er regularities within each L-shaped triple of numbers (see Figure 2) which
provides the simple rule: The sum of two numbers equals the third.

Affirming this rule through special cases students set down the follow-
ing connections:

(OO

Trying to attain generalization then results in developing the following

conjecture:
n—1 . n-1} fn
¢ Tle=1)"1k @
The teacher could use the recursive definition and the rule of sum 1n
order to provide students , ,with the combinatorial proof of identity (4).
Really, mmbinatinns(“}wmy be divided into those which include a

given object, say the * irst, and those which do not. The number of
those of the first kind is
[n~1
k-1

since fixing one element of a combination reduces both n and &k by one

and the number of those of the second kind is

n-1
[ k ] The rule of sum yields (4).

Figure 2. Visual imagery of the rule of four numbers, type 1 (R-shaped chain of cells)
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Becoming aware of their ability to invent formulae they never knew
before and, possibly, experiencing “‘the thrill of discovery—a thrill that
memorization cannot match™ (Miller, 1991, p.96), students are highly mo-
tivated in doing this work. The teacher can exploit this by encouraging
them to look for new patterns and connections, for example among sets of
four numbers, walking along different four-step paths within the template.
Most likely students then arrive at an R-shaped chain of cells, shown in
Figure 3, providing the three-clement analogue of the last rule: The sum of
three numbers equals the fourth.

Applying this analogous rule to different R-shaped chains of cells may
lead students to the new identity:

n-=1} (n-2} (n=2 f (5)
+ + —;
k—1) (k=1 k k
Note that students could uncover Identity 5 geometrically as a conse-
quence of the rule of three cells (numbers). Indeed, applying the L-shaped
rule to itself, i.e., substituting the bottom lefi cell in Figure 2 with two cells
results in the R-shaped combination of cells (see Figure 3). Once students
have understood this, they can replace the top cell similarly in accordance

with the L-shaped rule. Now the rule of four numbers assumes the shape
shown in Figure 4.

-

Figure 4. Visual imagery of the rule of four numbers, type 2
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Continuing in this vein students may recognize recurring numbers
within each column. For example, a few special cases provide the equali-
ties

(o-(H-GIE-CIC-GHD-CIE-C)

etc. Then obviously the question arises: How to write down the general for-
mula which includes these equalities as special cases? It is quite easy to ar-
rive at the conclusion that cells containing the recurring numbers have the
same first coordinate while the sum of their second coordinates equals the
first. This results in the following conjecture:

bH)

Identity 6, equating the number of ways of choosing k objects from n
given objects to that of choosing n-k objects from » is quite obvious. In-
deed, the choice of k objects from n is equivalent to the choice of n-k re-
maining objects. By the way, the numerical approach enables a teacher to
show students how Identity 6 could be proved through the method of math-
ematical induction. To this end it should be noticed that the template of
combinations (see Figure I(a)) provides an ideal medium for creating
proofs that use mathematical induction through an understanding of how
the numerical evidence has been generated. Actually, with regard to Identi-
ty 6, observing the column n=1 students read two nearest recurring num-
bers as the base of the induction, Then they recognize that the fact of the
existence in a cerntain column, say in the n-th column, of the template of
two recurring numbers results in another two recurring numbers in the col-
umn immediately to the right, that is the column with the number (n+1).
This observation provides students with the numerical evidence of the re-
cursion clause which constitutes the essence of mathematical induction.
MNow it is not hard to prove the conjecture about Identity 6 through this
method. Actually, the base clause for Identity 6 can be seen on the template
in the column which corresponds to n=1, Next, in order to complete the re-
cursion clause students assume Identity 6 to be true for a certain value of n.
This assumption together with the already proved Identity 4 yields

M Mo o)

Identity 6 has been proved.
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MODELLING RECURSION RELATIONS AS A METHOD OF TESTING
COMBINATORIAL IDENTITIES

The teacher can also offer students different computer-based approach-
es for testing their conjectures through numerical evidence, each relevant
to a particular type of proposed formula. The first approach (referred to be-
low as the R-method) is based on the possibility of modelling recursion re-
lations within a spreadsheet, and can be applied to test conjectures about
Identities 4 and 5.

Starting with Identity 4 the teacher explains that this identity can be
rewritten in the form of the following recursion relation (first-order equa-
tion of partial differences)

Cink)=C(n-1.k+C(n-1,k-1) (7)
subject to the boundary condition
C(0,k)=0, k=1; C(n,0)=1, n20 (8)

The spreadsheet T-Id4 which implements the function C(n,k) as the
solution of Equation 7 under Condition 8 is programmed as follows. The
contents of rows 1, 2 and columns A, B of the spreadsheet T-Id4 coincide
with those of the spreadsheet TC. The spreadsheet function =B2+B3 is de-
fined in cell €3 and computes the sum C(0,0)+C(0,1). This function is rep-
licated to cell M12 by using the Copy and Paste commands. As a result the

template is immediately filled up with numbers : . This completes the
numerical proof of the students’ conjecture about Identity 4. The template
of the spreadsheet T-Id4 and a “*screen-snap’’ with the above spreadsheet
formula which is embedded into it are shown in Figure 5.

The R-method can be applied to test the conjecture about Identity §
through modelling the following second-order (in variable n ) recursion re-
lation

Cin.k)=C(n-1.k-1)+C(n-2k-1)+C(n-2.k) (9)

To specify the solution of Equation 9 it should be emphasized that
when dealing with the second-order recursion relation in variable n stu-
dents must define numbers C{n.k) not only for n=0 and k=0 but for n=1 as
well. Modelling equation (9) results in the template filled up with numbers

o

k )



Abramovich and Levin

234

PPI-1 122yspeasds 2y g aunfig

m |1 0 0 | 0 0 | o 0 0 0 [ 0 0 | of
s o] 1 o | o [ o | o 0 0 0 | o 0 6
S91 | sv | 6 I 0o | o | 0 0 0 0 | o 0 g
oce | ozr | 9 | 8 I 0 | o 0 0 0 | 0 0 L
o | oiz | v | 8T | L 1 0 Y ey [ 9
vy |t [ou | s | 1w |9 | 1| of €ETTH=1 <
e oz [om [ & [ | 55 | s | Bl o | »
sor lozt [ v | 95 | sc [ oz | o | ¥ I 0N 0 0 £
s | sp | 9 | sz e | st | or | 9 £ 1 |9y 0 z
imlor | 6 § [ E1 § ¥ £ 7 I 0 [
1 I I I I I 1 I I I I I 0
[rl orl| 6 gl rl el el #£t E| £ L] O W




Microcomputer-Based Discovering and Testing 235

USE OF A SPREADSHEET FUNCTION INDEX IN TESTING
COMBINATORIAL IDENTITIES

It should be useful to draw students’ attention 1o the fact that Identity

6, being written down in the form of recursion relation (difference equa-
tion)

C(n,k)=C(n,n-k) (10)

turns out to be of the order | 2k-n . To specify the solution of Equation 10,
| 2k-n | boundary conditions in the second variable are required, i.e., | 2k-n |
rows of a spreadsheet must be known and this, of course, is impossible.
Proposing, therefore a different method to attack the problem the teacher
introduces students to a new technique (referred to below as the I-method)
of modelling numbers C(n,n-k) that uses the function =INDEX (index
range, row, column ). The above three arguments of this spreadsheet func-
tion have the following meaning (Cobb, McGuffey, & Dodge, 1991): index
range indicates the given spreadsheet’s array and its range, i.e., it refers to
the upper left cell and the lower right cell; row and column indicate the co-
ordinates of a certain cell within this spreadsheet’s array and whose con-
tent we need to compute. Entering the function INDEX into an arbitrary
cell of a spreadsheet results in computing the content of the cell referred to
by its arguments row and column .

Therefore students can model numbers C(n,n-k) within a spreadsheet
by entering into its cell (nk) the function INDEX whose first argument
corresponds to the index range of the TC array, and numbers of row and
column equal n-k and » respectively ( in accordance with Equation 10).

The spreadsheet T-1d6, which models numbers

LA

by transforming the spreadsheet TC through the [-method, is programmed
as follows. The contents of rows 1, 2 and columns A, B of the spreadsheet
T-1d4 coincide with those of the spreadsheet TC. The spreadsheet function
=INDEX(TC!SCS$3:8M512,C51-5A3,CS1) is defined in cell C3 and com-

1
putes the value of [

f}]‘ This function is replicated to cell J10 by using the
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Figure 6. Horizontully-shaped chain of cells

Figure 7. Diagonally-shaped chain of cells
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Copy and Paste commands. As a result the template is immediately filled
n
up with numbers | , |. In other words, by modelling numbers

e

we arrived al numbers [:J thus confirming Identity 6 through numerical
evidence.

IDENTITIES WITH EVOLVING LEFT-HAND SIDE

To pursue the discussion on recognizing patterns in more complicated
shapes the teacher could sketch the shapes shown in Figures 6 and 7, ask-

ing for new links among numbers : . The horizontally-shaped chain of
cells (see Figure 6) will prompt students to discover that adding up the
contents of two, three, four, and so forth, cells along each row of the tem-
plate, starting from the first non-zero element, results in the sum indicated
in the cell below,

Moving along such chains with an evolving upper component results
in the following general identity.

—— [ -

Figure 8 (a, b, ¢). The geomelncal interpretation of the proofl of Identity 11
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W) o

Note that the visual imagery associated with Identity 11 provides stu-
dents with the geometrical interpretation of its proof through mathematical
induction. Really, the base clause for Identity 11 constitutes the fact that in
the template TC every left cell with the unity has the diagonally-adjacent
cell also with the unity (see Figure 8(a)). The recursion clause is geometri-
cally quite obvious (see Figures 8(b), and 8(c)) since, by virtue of the rule
of the L-shaped triple, the assumption that the sum of n cells equals the
sum indicated in the adjacent cell remains true when n is replaced by n+1.

MNow it is not hard to complete the proof of Identity 11 through mathe-
matical induction with respect to n. Actually, the equality

k Ih k+1
k) Lk+l
constitutes the base clause of the induction. Assuming Identity 11 to be true

for a certain value of » results in the following transformation of the sum
of (n+1) numbers:

k) [k+1 n| {n+l n+l) (n+1 n+2
Il 2 el e Dl e T hesa
This completes the proof of Identity 11.

With regard to the diagonally-shaped chain (see Figure 7), after set-
ting down the following equalities:
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L |
n
o
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i k o
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=

Figure 9 (a, b, ). The geometrical interpretation of the proof of Identity 12

students realize that these equalities relate to the cases k=n=0, k=n=1,
k=n=2, k=n=3 respectively. Generalizing from these special cases leads
students to the conclusion that the evolving sum for the general case with
arbitrarily chosen k and » has the following performance

[n]+[n+IJ+[n+2]+m+[n+k]=[n+k+l] (12)
0 | 2 k k

The geometrical interpretation of the proof of Identity 12 through
mathematical induction (with respect to k) is shown in Figure 9(a) (the
base clause: k=0) and in Figures 9(b), and 9(c) (the recursion clause).

This visual imagery enables students to carry out the proof of Identity

12 by using, as above, the rule of the L-shaped triple of numbers. Actually
the transfer from & to k+1 can be performed as follows:
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[n]+[n+ I}[n+ 2} +[n+k]+[n +k+ I}= {n+ k+ l)+[n+ k +l]- [n+ k +2]
0 I 2 L ok k+1 k k+1 k+1

Mote that students could arrive at Identities 11 and 12 geometrically, when
evolving an arbitrary L-shaped triple of cells on a template by successive
application to itself of the rule of the L-shaped triple. Really, by starting
from both the bottom left cell and the top cell alike one will easily obtain

the shapes generating Identities 11 and 12 respectively thus demonstrating
the art of counting without counting.

A FEW MORE DISCOVERIES:
FIBONACCI NUMBERS AND THE GOLDEN RATIO

A natural sequel to these studies is to investigate the top right and bot-
tom left diagonals of the template (see Figure 10),

Figure 10. Top right and bottom left chain of cells
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The teacher may ask students to write down the sums of non-zero ele-
ments along each diagonal in terms of (“) beginning from cell n=0, k=0.
k

In doing so students will arrive at the following sequence of sums:

no)lo)s - H0)m ) bCIE - MEME)

ete.

They might guess that each term of this sequence beginning from the
third equals the sum of its two precedents. To prove this conjecture the
teacher asks students to write down three arbitrary subsequent terms

(5 T bl I
o JH M
ol el (0 o I (o (e

Comparing F_,, written in the expanded form with F_, and F, results
in the following recursion relation

l:'-n4-1=F1: % le
(13)
which by virtue of equalities
F,=1,Fy=1 (14)

represents the recursive definition of the celebrated Fibonacci numbers.
These numbers possess a variety of remarkable properties. One property—
constituting a link between the Fibonacci numbers and combinations—is
the following;
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e MR

w]u:rc]-r; 2 ifn tswenander if n 15 odd.

The importance of the present teaching sequence is that using a
spreadsheet has made it possible for students to discover Formula 15 by
themselves, The teacher may provide students with a combinatorial inter-
pretation of this formula by formulating the following problem: An n-sto-
ried building is given and you must color it with a fixed color in such a
way that no consecufive stories are colored the same—how many different
ways of coloring are possible? To answer this question the combinatorial

n Fn FrniFn+l
I 1 0.500000000|
2 1 DE66666667
¥ : I 0.600000000]
4 5 0.625000000|
5 B DEL5IB4615
(2 13 0.619047619
7 I1 0617647059
[} M 0.618181818)
9 | s=s 0.617977523)
10 | 8 0.618055556
il 144 QE18025T5]1
12 133 0.A18DATIAS
13 | am 0.618032787
4 E10 0.618034445]
15 | ss1 0.613033813]
16 | 1597 0.618034056
I7 2584 0618033063
I8 4181 0418033999
e 6765 0615033985
20 | 10946 0.6 18033990]
21 |1 0.618033988
22 | 28857 0.618033989
23 | 46368 AR

Figure 11, The spreadsheet TF: Fibonacei numbers and the golden ratio
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meaning of combinations can be used which will lead students to the con-
clusion that there exist
n—k
k

permitted ways of coloring an (n-1)-storied building so that exactly k sto-
ries turn out to be colored with the fixed color. Therefore, in accordance
with Formula 15, one, two, three, four, etc.-storied buildings can be col-
ored in F, (=2), F, (=3), F5(=3), F, (=8), etc. ways.

At last, students may be offered to model the sequence of sums F_ by
implementing Equation 13 subject to Condition 14 within a spreadsheet.
To this end positive integral values of n are defined in column A of the
spreadsheet TF (see Figure 11). The basc clause for F is defined in cells
B2 and B3. The spreadsheet function =B2+B3 is defined in cell B4 and
computes the value of F. This function is copied down by using the Copy
and Paste commands. As a result the sequence of Fibonacci numbers 1, 1,
2.3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, ... immediately occurs on
the screen.

Finally, by entering into cell C2 the spreadsheet function = B2/B3 and
by replicating this function the teacher introduces students to a behavior of
the ratio

F

Ml i

Fn+|

as n increases. (Note that here students must switch the General regime in
the line Numbers from the Format menu). This ratio seems to approach the
number 0.6180339... which is referred to after Leonardo da Vinci as the
golden ratio, a number that often appears in the study of geometry, archi-
tecture and art.

DISCUSSION

Following are some remarks designed to answer the challenge of
Kaput (1991); “*Will the technology help us do better what we have been
trying to do 7" (p.548).

1. With regard to implementing a spreadsheet as a technological tool in
the classroom to enhance the teaching/learning of combinatorics—the
branch of mathematics concerned with the theory of enumeration—it
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has already been mentioned above that the common method of attack-
ing such problems is through *‘recursive definition’’. That is why a
spreadsheet whose recurrent nature emphasizes its methodological ef-
fectiveness, as applied to the subjects and concepts involved, may help
instructors in their efforts to reinforce teaching and to promote learn-
ing.

2. The advantage of the numerical approach to basic concepts of algebra
was demonstrated by Demana and Leitzel (1988). The same is true for
combinatorics. A spreadsheet permils to observe at once the array of

numbers | | |, of as large a size as students wish, whilst it at the same

time provides an interactive learning environment where learners can
exercise their own creativity (Lawer, 1987). The rich source of model-
ling data can help students find regularities in many special cases and
generalize from these cases.

3. The feature of the spreadsheet that contributes to its pedagogical use-
fulness is its capability to make students investigate through visualiza-
tion. The spreadsheet-oriented teaching of combinatorics makes it pos-
sible to support learning relationships among integers with combinato-
rial meaning, with visual imagery. As is shown above (see also
Comtet’s (1974) diagrams and Hilton and Pedersen’s (1987) palterns
in the Pascal triangle) different shapes arising from a template provide
definite rules (combinatorial identities) which constrain these num-
bers. The simple transformation of these shapes enables students not
only to invent one identity after another, and thereby 1o do mathemat-
ics but, better still, to do mathematics without computations, This ac-
tually opens up the possibility of making the study of enumerative
combinatorics an exciting challenge for independent investigation.

4. The last section of the article demonstrates merely one example of
linking integers with combinatorial meaning to different discrete top-
ics. The rich store of these numbers that results from the spreadsheets’
computational capability provides an excellent opportunity for students
to arrive unexpectedly at the Fibonacci numbers, so that they may rec-
ognize the capacity of these numbers to solve combinatorial problems.
This, in turn, helps teachers to make students experience the contigui-
ty of different concepts of discrete mathematics and to appreciate its
integrity—a significant source in the development of mathematical
knowledge.

To conclude, it should be noted that teaching to contrive combinatorial
identities with associated visual imagery can introduce students to the art
of counting without counting. While working with the above method, how-
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ever, combinatorics becomes not only the visual area of discrete mathemat-
ics, but it also exemplifies the topic which contributes to students’ becom-
ing aware of their personal ability to do mathematics. The mathematical
technique needed for these activities is not complex yet the results are pow-
erful because they help students to appreciate mathematics, to communi-
cate and to reason mathematically, We believe moreover that the proposed
approach will actually help teachers to come up with skillful, enjoyable,
and stimulating instruction.
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