
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 401616, 13 pages
http://dx.doi.org/10.1155/2013/401616

Research Article
A Generalized If-Then-Else Operator for the
Representation of Multi-Output Functions

Ilya Levin1 and Osnat Keren2

1 School of Education, Tel-Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
2 School of Engineering, Bar-Ilan University, Ramat-Gan 52900, Israel

Correspondence should be addressed to Ilya Levin; ilia1@post.tau.ac.il

Received 6 September 2012; Revised 30 December 2012; Accepted 22 January 2013

Academic Editor: Bozidar Sarler

Copyright © 2013 I. Levin and O. Keren. (is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

(e paper deals with fundamentals of systems of Boolean functions called multi-output functions (MOFs). A new approach to
representing MOFs is introduced based on a Generalized If-(en-Else (GITE) function. It is shown that known operations on
MOFs may be expressed by a GITE function.(e GITE forms the algebra of MOFs. We use the properties of this algebra to solve
an MOF-decomposition problem.(e solution provides a compact representation of MOFs.

1. Introduction

Logic design, as a scienti)c discipline, has a fascinating
history.(is)eldwas intensively studied from the 1950s to the
1970s. (is produced many remarkable results including the
theorem of function completeness, optimization techniques,
decomposition techniques, a number of spectral methods,
and a theory of multivalued functions [1–7]. However, there
are topics in logic design which are still interesting and have
untapped potential from a theoretical point of view [8, 9].
One such topic is “systems of logic functions” (logic systems)
and their corresponding representations. (e most popular
representations of logic systems are (a) the matrix (which
is actually a Karnaugh-like form) and (b) the Multiterminal
Binary Decision Diagram (MTBDD) [10–14].(ere are three
known ways to treat and optimize systems of logic functions:
(a) as a set of single decision diagrams with two terminal
nodes that may share conditional nodes (Shared Binary
Decision Diagrams (SBDDs)) [15]; (b) as a single, so-called
characteristic function, where the output of each function of
the system is considered to be an additional input variable
of the characteristic function [16]; (c) as a single decision
diagram whose terminals are words [14].

In this paper, we present a di-erent approach. We
represent a system of logic functions as a network of

interconnected subfunctions. In other words, we decompose
a given system into a number of subsystems of lower com-
plexity, thus achieving a compact representation of the given
system.

We introduce a new Generalized If-(en-Else operator,
denoted as GITE, and an algebra based on this operator.
A system of logic functions can be described as a GITE
formula. In this sense, the conventional algebra of the
Boolean formulas is a particular case of the GITE algebra. In
turn, the new operator is considered to be a generalization of
the known If-(en-Else (ITE) operator that is widely used in
computer science.

GITE-algebra makes it possible to formulate and solve
various optimization problems. In our work, we formulate a
general optimization problem, which is the decomposition
of a system into a compact network of GITE components
with prede)ned characteristics. We present a solution of
this task in the form of an optimization algorithm. (e
decomposition algorithm is based on a theorem of GITE
formula transformation presented in Section 4.

(e paper is organized as follows. Basics of the theory
of logic functions and Boolean formula are brie.y reviewed
in Section 2. (e GITE operator is introduced in Section 3.
A polynomial representation of GITE formulas is presented
in Section 4. (e optimization problem is formulated in



2 Mathematical Problems in Engineering

Section 5. A solution to the optimization problem is given
in Section 6. Section 7 includes experimental results. Conclu-
sions are given in Section 8.

2. Preliminaries

In this section we review some fundamentals of logic design
underlying our work.

2.1. Representation of a Single Logic Function. A logic func-
tion!("1, . . . ,"!) is a function that takes the values of 0 and 1.
An expression obtained by substitution of functions into each
other followed by renaming variables is called a formula that
describes this substitution.(e formula-based representation
of logic functions is an analytical expression.

Let ! be a set of functions, and letF be a set of formulas.
We de)ne the depth of a formula # ∈ F as follows.

De)nition 1. Symbols representing the input variables are
considered to be formulas of depth 0. A formula # has depth(% + 1) if # can be expressed as !"(#1, . . . ,#!!), where !" ∈ !,#1, . . . ,#!! ∈ F are formulas of the maximal depth %, and &"
is the number of arguments of !".

(e formulas #1, . . . ,#!! are called subformulas of #.
Function !" is called the outside or the main operation
of formula #. All subformulas of the #1, . . . ,#!! are also
considered as subformulas of #.

When talking about a formula corresponding to a speci)c
function, it is acceptable to say that a formula represents the
function. Unlike the truth table representation of a function,
the formula representation is not unique. Formulas repre-
senting one and the same function are equivalent. Actually,
in most cases, we do not deal with functions but rather with
formulas representing these functions. In other words, we
deal with the algebra of formulas [17, 18].

One of the popular forms for the representation of a
logic function is a Binary Decision Diagram (BDD) [17]. A
fundamental operator enabling operations between BDDs is
the If-*en-Else (ITE) operator [19]. In our paper, we use the
ITE operator as an operator on the system of logic functions
and not just on the set of BDDs.

(e ITE operator serves to represent any function of
two variables [17, 19] and consequently may be considered
as a universal basis for the set of logic functions. In other
words, any function of & variables can be represented as a
substitution of ITEs. We de)ne the depth of an ITE formula
as follows.

De)nition 2. Symbols representing the input variables are
considered ITE formulas of depth 0. An ITE formula # has
depth (% + 1) if # can be expressed as !"(#1, . . . ,#!!), where!" ∈ !, #1, . . .#!! ∈ F are ITE formulas of the maximal depth%.
2.2. Representation of the System of Functions. (e present
study deals primarily with a system of logic functions and
not necessarily a single Boolean function. (e system of

logic functions can be considered as a single function of& input Boolean variables and ' Boolean output variables.
Such functions are calledmulti-output functions (MOFs) [10,
11, 20–23]. (e domain and range of an MOF are the &-
dimensional and '-dimensional Boolean cubes, B! and B#,
respectively. We refer to a vertex of a Boolean cube by its
corresponding integer value or as a minterm (A literal is a
variable or its complement. A minterm is a product of all the
literals). AnMOF can be de)ned by a truth vector (also called
a truth table); that is, a list of all possible input combinations
with the corresponding output values (vectors). In this paper
we refer to the output vectors by their corresponding integer
values. An analytical representation of MOFs di-ers from
the conventional Boolean representation. An analytical MOF
representation is the focus of the present study.

Multiterminal Binary Decision Diagram (MTBDD) is a
data structure for representation and e/cient manipulations
with MOFs [10, 24]. Unlike the conventional BDD that
has two terminal nodes, the MTBDD has a number of the
terminal nodes.

De)nition 3. An MTBDD is a directed acyclic graph, repre-
senting an MOF or a set of logic functions ! : B! → B#.

Properties of MTBDD and other MOF representations
and their applications have been studied intensively [25–
33]. To the best of our knowledge, some aspects of the
representation of MOFs and especially an algebra for MOFs
have never been developed, although two main operations
on MOF, the Apply and the ITE, were studied in [10]. (e
Apply may be used to accomplish a large number of matrix
operations. Its de)nition is Apply(!,), ∘) = !∘), where! and) are MOFs and ∘ is any binary operation on two operands,
for example, +,−, min, max, and so forth.

(e ITE operator has three arguments.(e )rst argument
takes 0 or 1.(e second and third arguments are MOFs. ITE
is de)ned as follows:

ITE (!,), ℎ) = {) if ! = 1ℎ if ! = 0. (1)

(e following example illustrates the above operations.
To simplify the explanation we use the truth vector repre-
sentation of MOFs. (at is, a function ! of & variables is
represented as a vector of length 2!, ! = [V0, V1, . . . , V2"−1],
where V% is the value of the function !(") at " = 0.
Example 4. Let !,), and ℎ be three MOF functions speci)ed
by the following truth vectors:! = [1, 0, 0, 1] , ) = [4, 4, 2, 2] , ℎ = [3, 3, 3, 3] ,

(2)

and let 12 stand for addition of integers.(en,

Apply (!,), +) = [5, 4, 2, 3] ,
ITE (!,), ℎ) = [4, 3, 3, 2] . (3)

In the following section we generalize these two opera-
tions to de)ne the algebra of MOFs.



Mathematical Problems in Engineering 3

2.3. Partition on a Boolean Cube. In this section we describe
the concept of partition on Boolean cubes.

De)nition 5. A partition 3 on a set 4 is a collection of 5
disjoint subsets of 4 whose set union is 4; that is, 3 = {6"}&"=1
such that 6" ∩ 6' = 0 (9 ̸= ;) and ∪&"=16" = 4.

We refer to the subsets of 3 as blocks of 3.
(e fact that two distinct elements = and > are in the same

block % of 3 is denoted as = ≡ >(3). In other words, = ≡ >(3) if
and only if there exists % such that = ∈ 6( and > ∈ 6(.
De)nition 6 (intersection of partitions). Let 31 and 32 be two
partitions.(e product 3 = 31 ∗ 32 is a partition comprising
intersections of blocks of 31 and 32, such that= ≡ > (31 ∗ 32) ⇐⇒ = ≡ > (32) , = ≡ > (31) . (4)

De)nition 7 (summation of partitions). Let 31 and 32 be two
partitions.(e sum 3 = 31 + 32 consists of blocks for which= ≡ >(31 + 32) if and only if a chain =0, =1, . . . , =! exists in 4
such as: = = =0, =1, . . . , =! = > for which either =" ≡ ="+1(31) or=" ≡ ="+1(32), 0 ≤ 9 ≤ & − 1.

We denote the product and the sum of partitions as!∏"=13" = 31 ∗ ⋅ ⋅ ⋅ ∗ 3!,!∑"=1 3" = 31 + ⋅ ⋅ ⋅ + 3!, (5)

respectively.
For 31 and 32, we say that 31 is larger or equal to 32 and

write 31 ≥ 32 if and only if every block of 32 is contained in
a block of 31.(us, 31 ≥ 32 if 31 ∗ 32 = 32 and if and only if31 + 32 = 31. (e algebraic structure of partitions is known
as a lattice.(is lattice has both Zero (the smallest partition)
and One (the largest partition).(ese elements are30 = {{=1} ; . . . ; {=#}} ,31 = {=1, . . . , =#} . (6)

Obviously,30 ≤ 31 ∗ 32 ≤ 31, 32 ≤ 31 + 32 ≤ 31. (7)

In this paper, the partition is performed on the &-
dimensional Boolean cube B!. A block of the partition is
the subsets of vertices of the cube. Vertices that belong to
the same block must have the same output value. (e Zero
partition 30 on a Boolean cube corresponds to the Sum-Of-
Minterms (SOM) representation of a function.

Example 8. Consider a function!("2,"1,"0) speci)ed by the
truth vector ! = [V0, . . . V7] = [2, 2, 1, 1, 1, 1, 2, 0] (8)

and a partition3 = {61,62,63,64} = {{0, 1} ; {2, 3, 4, 5} ; {6} ; {7}} . (9)

Note that all the elements in a block are associated with the
same value of the function, for example, V0 = V1 = 2.
Consider a di-erent partition3̂ = {{0} ; {1, 6} ; {2, 3, 4, 5} ; {7}} . (10)

(e product of partitions is3 ∗ 3̂ = {{0} ; {1} ; {2, 3, 4, 5} ; 6; {7}} . (11)

(e sum of partitions is3 + 3̂ = {{0, 1, 6} ; {2, 3, 4, 5} ; {7}} . (12)

Since we are dealing with partitions of the Boolean cube,
blocks in the partition can be expressed as Boolean functions.
For example, the Boolean functions that correspond to the
blocks of 3 = {{0, 1} ; {2, 3, 4, 5} ; {6} ; {7}} (13)

are {0, 1} M⇒ "2"1,{2, 3, 4, 5} M⇒ "2"1 + "2"1,{6} M⇒ "2"1"0,{7} M⇒ "2"1"0.
(14)

3. The Generalized ITE Operator

(e )rst argument in the de)nition of the ITE operator can
be interpreted as a two-block partition of the Boolean cube
or as a Boolean function. (e present paper is focused on
a Generalized ITE (GITE) operator which uses an &-block
partition instead of the two-block partition.

3.1. De)nition of theGITEOperator. First, we de)ne theGITE
operator on MOFs that are speci)ed by truth vectors.

De)nition 9. Let 3 be a partition of the &-dimensional
Boolean cube comprising5 blocks: 3 = {6"}&"=1, and let {ℎ"}&"=1
be a set of MOFs de)ned by their truth vectors:ℎ" = [Vℎ! ,0, Vℎ! ,1, . . . Vℎ! ,2"−1] . (15)

(en, theGITE operator is) = GITE(3, ℎ1, . . . ℎ&), where the;th element in the truth vector ) is
V*,' = &∑"=1 P",'Vℎ! ,', 0 ≤ ; < 2!, (16)

where P",' = {1 if ; ∈ 6"0 if otherwise. (17)



4 Mathematical Problems in Engineering

Example 10. Let 3 be a 4-block partition of B3, and let
the vertices of the Boolean cube be addressed by their
corresponding integer value, for example, 6 = (110),3 = {61,62,63,64} = {1; 2; {3, 4, 7} ; {0, 5, 6}} . (18)

Let ) = GITE(3, ℎ1, ℎ2, ℎ3, ℎ4), whereℎ1 = [1, 1, 2, 1, 1, 1, 2, 2] , ℎ2 = [3, 3, 3, 3, 3, 3, 3, 3] ,ℎ3 = [2, 2, 4, 4, 2, 2, 4, 4] , ℎ4 = [5, 6, 5, 6, 5, 6, 5, 6] .
(19)

(en ) is) = [V*,0, V*,1, . . . , V*,7]= [Vℎ4 ,0, Vℎ1 ,1, Vℎ2 ,2, Vℎ3 ,3, Vℎ3 ,4, Vℎ4 ,5, Vℎ4 ,6, Vℎ3 ,7]= [5, 1, 3, 4, 2, 6, 5, 4] . (20)

Now we are ready to formulate the concept of MOF in
terms of GITE.

De)nition 11. An MOF is a mapping from B! to B#, which
is a GITE(3,Q) operation de)ned on two sets: the set of
partitions and the set Q, Q ⊆ B# of terminals (In [10],
the values of an MOF, that is, the Q’s, are called terminal
nodes or terminals (this is di-erent from the internal nodes
that correspond to variables). In Algorithmic State Machine
theory, the values of the MOF represent operations to be
performed and hence are called operators [34]. In this paper
we use the term “terminals.”).

In other words, the GITE comprises a partition portion
and a terminals portion.(eGITE operationmaps a partition
of the Boolean cube B! on the prede)ned set Q.
3.2. GITE Formulas. In this section we introduce the algebra
of GITE formulas.(e elements of the algebra areMOFs, and
the basic operator is the GITE. We de)ne the depth of the
GITE formula as follows.

De)nition 12. Symbols of given terminals from the )nite setQ = {Q1, . . . ,Q!} ⊆ B# are considered as GITE formulas of
depth 0. A GITE formula S has depth (% + 1) if S can be
expressed as S = GITE(3, (S1, . . . ,S!!)), where S1, . . . ,S!!
are formulas of the maximal depth % and &" is the number of
blocks in the partition 3.

Unlike the case of the algebra of Boolean functions, the
algebra of GITE formulas contains an additional operation
composition. (e composition operation (Compose) corre-
sponds to the known Apply operation in the algebra of ITE.
Composition means to construct a GITE from two other
GITEs. (e values of the composed GITE are calculated by
performing a bitwise operation denoted by “∘” on the values
of the given GITEs.

De)nition 13 (composition). LetS1 = GITE (31,Q1,1, . . . ,Q1,() ,S2 = GITE (32,Q2,1, . . . ,Q2,#) , (21)

then,

Compose (S1,S2)
def= S1 ∘ S2= GITE (31 ∗ 32;Q1,1 ∘ Q2,1, . . . ,Q1,( ∘ Q2,#) . (22)

In otherwords, the composition of theGITE is performed
by multiplying the corresponding partitions 31 and 32 and
pairwise “∘” operations on terminal Q.
Example 14. Let31 = {611,612,613,614} = {1; 2; {3, 4, 7} ; {0, 5, 6}} ,32 = {621,622,620} = {{1, 2, 3} ; {0, 4, 7} ; {5, 6}}} , (23)

and let S1 = GITE (31,Q1,1,Q1,2,Q1,3,Q1,4) ,S2 = GITE (32,Q2,1,Q2,2,Q2,0) , (24)

where Q1,1 = 2, Q1,2 = 6, Q1,3 = 5, Q1,4 = 11,Q2,1 = 3, Q2,2 = 8, Q2,0 = 0. (25)

Let the “∘” stand for a bitwise XOR between two integers
represented in radix two.(en,3 = 31 ∗ 32 = {0; 1; 2; 3; {4, 7} ; {5, 6}} ,S1 ∘ S2 = Compose (S1,S2)= GITE (3;Q1,4 ∘ Q2,2,Q1,1 ∘ Q2,1,Q1,2 ∘ Q2,1,Q1,3 ∘ Q2,1,Q1,3 ∘ Q2,2,Q1,4 ∘ Q2,0)= GITE (3; 3, 1, 5, 6, 13, 11) .

(26)

4. D-Polynomials Analytical Representation
of GITE Formulas

In this section we describe a special type of GITE formulas.
(is type corresponds to the case where a GITE formula
is de)ned by partitions expressed in an analytic form—the
form of a Boolean expression—the Sum-of-Products (SOP)
form. We call this analytical representation a D-polynomial
representation [35–37].



Mathematical Problems in Engineering 5

De)nition 15. Let 61, . . . ,6# be Boolean functions expressed
in an SOP form, and let 3 = {61, . . . ,6#,60} be a partition,
where 60 = ∨#"=16". A D-polynomial is de)ned as follows:

W def= #∑"=1 6"Q" + 60Q0= GITE (3,Q)= GITE (61, . . . ,6#,60;Q1, . . . ,Q#,Q0) , (27)

where Q0 = (0, . . . , 0) ∈ B#.
A D-polynomial W can be interpreted as follows. If 6"

evaluates to 1, then W = Q". If all of the explicit functions 6"
are equal to 0, thenW = Q0.

A D-polynomial of depth 0 is a formula de)ned over a set
of terminal Q. D-polynomials of depth % are de)ned in the
same way as in the general case of GITE formulas.

Since the D-polynomials are de)ned in the SOP-based
analytical form, the Compose operation on the set of D-
polynomials may be easier to perform than in the general
case of GITE, namely, by using Boolean operations. In turn,
the Compose operation is interpreted as a composition of D-
polynomials.

De)nition 16 (composition of D-polynomials). Let

W1 = #∑"=1 61" Q" + 610Q0, W2 = #∑"=1 62" Q" + 620Q0. (28)

(e composition ofW1 andW2 denoted byW1 ∘ W2 is de)ned
as W1 ∘ W2 =∑",' (61" ⋅ 62') {Q" ∘ Q'} + (610 ⋅ 620) Q0, (29)

over each pair of products from W1 and W2, including the
implicit terms 610Q0 and 620Q0.

Here61" ⋅62' is a logic product (AND) of the corresponding
functions, and Q" ∘ Q' is a prede)ned bitwise operation
between Q" and Q'. In other words, when 61" ⋅ 62' evaluates
to 1, the operation between Q" and Q' is performed.

Note that partition algebra and Boolean algebra use
di-erent terminologies. Consequently, the terminologies of
the GITE and D-polynomials are also di-erent. In particular,
if two partition blocks are disjoint, their corresponding
Boolean functions are orthogonal.

According to this de)nition, the composition operation
corresponds to the product of the partition ofD-polynomials.
Next we show that the D-polynomial operation that corre-
sponds to the sum of the partition portions is not a sum of
D-polynomials (as may be expected), but is a factorization.

Without loss of generality, let a D-polynomial W be
represented asW = W1 ∘ W2.

De)nition 17 (factorization ofD-polynomials). (e factoriza-
tion ofWwith respect toW1 andW2 is its representation in the
following form:W = GITE (31 + 32; Ŵ1, . . . , Ŵ+) , (30)

where [ is a number of blocks in (31+32) and Ŵ1, . . . , Ŵ+ stand
forD-polynomials corresponding to the remaining functions.

Note that sum of the partition is equivalent to the max
operation in lattices [22]. In this sense the sum is theminimal
partition that is larger than both of them; that is, 31 + 32 ≥31,32 (see De)nition 7). Hence, the sum can be interpreted
as a common factor.

Example 18. Consider two partitions:31 = {611,612,613,610} = {"1,"1"2,"1"2, 0} ,32 = {621,622,623,620} = {"1,"1"3,"1"3, 0} . (31)

Let W1 = GITE (31,Q1,Q2,Q3,Q0)= "1Q1 + "1"2Q2 + "1"2Q3,W2 = GITE (31,Q4,Q5,Q6,Q0)= "1Q4 + "1"3Q5 + "1"3Q6.
(32)

(en, 31 + 32 = {"1,"1, 0}, andW1 ∘ W2 = GITE (31 + 32;W156,W234,Q0)= "1W156 + "1W234, (33)

where W156 = Q1 ∘ ("3Q5 + "3Q6) ,W234 = ("2Q2 + "2Q3) ∘ Q4. (34)

Laws and Properties of D-Polynomials.(eD-polynomials are
the special class of GITE formulas. In what follows we use the
D-polynomial notation to represent and manipulate MOFs.
(ere are two main reasons for using the D-polynomial
notation: (a)D-polynomials are formulas; (b)D-polynomials
support SOP function representations.

We now introduce a substitution of certain D-
polynomials into another D-polynomial as follows. LetW1,W2, andW3 be MOFs:W1 = GITE (31;Q11,Q12) ,W2 = GITE (32;Q21, . . . ,Q2#) ,W3 = GITE (33;Q31, . . . ,Q3() . (35)

A0er substitution Q11 ← W2,Q12 ← W3 we haveW,1 = GITE(31;W2,W3) which is a hierarchical structure
comprising a number of D-polynomials.



6 Mathematical Problems in Engineering

In general, let W = GITE(3;Q1, . . . ,Q#) be a formula
representing a multi-output function !. A substitution of
formula W1, . . . ,W# in the place of the terminals gives a new
formula W, = GITE (3;W1, . . . ,W#) . (36)

Obviously, W, ̸=W but we consider them as the same
function (!) with di-erent arguments. As a result, we can
deal with the algebra of functions, which are determined by
their partition portion of the corresponding GITE formula.
(e same situation is found in the conventional Boolean
algebra of logic functions where we usually talk about
logic operations (AND, OR, NOT, etc.) on the set of logic
functions.

A special class of D-polynomials is the class of atomic D-
polynomials; that is, D-binomials.

De)nition 19. A D-binomial is a special case of D-
polynomials, including exactly one product:W = 61Q1+60Q0.

(e following theorem states that any D-polynomial can
be represented as a composition of all of its D-binomials.

!eorem 20. An arbitrary D-polynomialW = ∑' 6'Q'+60Q0
can be represented as a composition of W-binomials W' =(6'Q' + 6'0Q0), where 60 = ∏'6'0.

(e proof of this theorem is given in the Appendix.

5. The Decomposition Problem

Each class of hardware technology requires its own speci)c
optimization criterion. Both the technology and the corre-
sponding optimization criteria are changing continuously as
a function of progress in the )eld of hardware and updates
in design requirements. However, universal criteria of opti-
mization do exist.(ese universal criteria relate to a measure
of complexity of the formulas for the representation of a dis-
crete function. Complexity may be considered quantitatively
and qualitatively. Here we consider the compactness of the
formula representation as a quantitative complexity criterion
and the modularity as the qualitatively complexity criterion.
Compactness is an important parameter for storing and
remote communication of information, as well as for so0ware
representations of discrete functions. In our experiments,
we assessed compactness as the number of nodes in the
corresponding decision diagram.

(e universal qualitative criterion for complexity is mod-
ularity. We represent a given discrete function as a hierarchi-
cal network of modular components, each performing part
of a common functionality. (ere are number of reasons to
prefer a modular (structured) representation. First of all, a
structured representation simpli)es the process of debug-
ging and testing; further, modules are potentially reusable.
Moreover, structured representations usually correspond to
their speci)cations. (is correspondence is highly desirable,
since it helps understand and interpret the realization of the

Table 1:(e MOF for Example 21.9 "0 "1 "2 "3 "4 #0 #1 #2 #3 Q
1 0 1 — 0 — 1 0 0 0 8
2 0 1 — 1 — 0 1 1 0 6
3 — — 1 — 0 0 0 1 1 3
4 — — — — 1 0 0 0 1 1
5 1 0 — 1 — 1 1 0 0 12

function and can be seen as a powerfulmeasure of complexity
of the representation of the function.

Below we discuss methods for transforming a system
of logic functions into a structured hierarchical network
of interconnected components. We decompose the system
while minimizing the total number of nodes in the resulting
structure.

Let us consider two extreme cases of decomposition of
D-polynomials that are the D-binomials (i.e., the binomial
representation) and the monolith. (e monolith corresponds
to the D-polynomial W = GITE(3,Q1, . . . ,Q(), where 3 is
a partition corresponding to the Reduced Ordered MTBDD
representation of MOF [17, 19, 20, 32].(e following example
illustrates these two extreme cases.

Example 21. Consider the MOF speci)ed in Table 1. (e
function has )ve inputs and four outputs. Each row of the
table corresponds to one D-binomial. Hence,W = W1 ∘ W2 ∘ W3 ∘ W4 ∘ W5, (37)

whereW" is theD-binomial that corresponds to the 9th row in
the table. For example, for 9 = 1,31 = {61,610} = {"0"1"3,"0"1"3} , (38)

and therefore W1 = 861 + 0610. (e binomial representation
of the function is shown in Figure 1, and the corresponding
monolith is presented in Figure 2. (e terminal nodes of
the decision diagrams are marked by the decimal numbers
of corresponding outputs. Note that, as a result of the
composition operation, the sets of terminal nodes in the
diagrams are not the same. In this example, let the ∘ be
a bitwise-OR between corresponding output vectors. For
example, terminal node “7” in Figure 2 corresponds to the
two terminal nodes “6” and “3” in Figure 1. Such cases where
new values are being created stem from the nonorthogonality
of products (in our case, 62 and 63 are nonorthogonal).

Note that the monolith can be derived by composing
all the D-binomials. However, this procedure has high com-
plexity. For example to obtain the monolith representation
in Example 21 one has to compose the )ve D-binomials ofW. (e )rst Compose is quite simple since 61 and 62 are
orthogonal (6162 = 0); that is,W1 ∘ W2 = 861 + 662 + 061,20 . (39)



Mathematical Problems in Engineering 7

8 0 6 0 3 0 1 0 12 0

!1 !1 !1!0 !0 !0
!2

!4!4!3 !3 !3
Figure 1: Binomial representation of the MOF in Example 21.

0 1 3 15 13 12 6 7 8 9 11

!4 !4 !4 !4 !4 !4 !4!3 !3 !3 !3
!1 !1!2 !2 !2

!0

Figure 2: Monolith representation of the MOF in Example 21.

(e second Compose is(W1 ∘ W2) ∘ W3 = (8 ∘ 3)6163 + (6 ∘ 3)6263+ (0 ∘ 3)61,20 63 + (8 ∘ 0)61630+ (6 ∘ 0)62630 + 061,20 63= 116163 + 76263 + 361,20 63+ 861630 + 662630 + 061,20 63.
(40)

It is possible to avoid this complex calculation and, at the
same time, reduce the resulting number of MTBDD nodes
by factorization on subsets of D-binomials. (e proposed
decomposition presented below is based on this principle.

(ere are many ways to group D-binomials to form
a network of D-polynomials. Di-erent groupings of the
binomials yield di-erent representations of MOF. Each D-
polynomial in the network has its own optimal structure,
that is, its own optimal header. (is fact forms the basis of
our decomposition approach. (e decomposition goal is to
represent the given D-polynomial in a compact form so as to
optimize a certain cost function, for example, the number of
nodes in the corresponding decision diagram.(e number of
nodes in the decomposedD-polynomial is upper bounded by
min(2!, &').

8 6 0 12 0 1 3

!0
!1

!3 !3 !4 !4
!1 !2

Figure 3: Decomposed MTBDD corresponding to Example 21.

In our example, Figure 3 shows a compact representation
of the MOF as a network of MTBDDs. Namely,W = Wleft ∘ Wright = (W1 ∘ W2 ∘ W5) ∘ (W3 ∘ W4) . (41)

For comparison, in this example, the monolith MTBDD has
17 nonterminal nodes (NTNs), whereas the decomposition
allows to reduce the number of nonterminal nodes to 8.

6. Decomposition Algorithm

(e main decomposition algorithm is a recursive grouping
of the set of products representing the givenD-polynomial to
a number of portions.(e main decomposition algorithm is
presented in Figure 4. Each recursion step comprises a frag-
mentation of current portion into a block and a remainder.
In turn, a block is divided into a block header and a number
of block fragments (tails). (e fragmentation algorithm is
described below and presented in Figure 5.

(emain decomposition algorithmuses a stack for saving
a current portion of the given D-polynomial. A0er the
fragmentation of the current portion, each of the resulting
tails the remainder are saved in the stack sequentially. If the
remainder portion is empty, which means that all products
of the current portion of the D-polynomial are included in
the block; then, obviously, nothing is saved into the stack.
Similarly, if a certain resulting tail comprises just one product
(one terminal), then nothing is saved into the stack. (e
main decomposition algorithm stopswhen the stack is empty.
Clearly, this happens when all products of the given D-
polynomial are distributed between blocks.

6.1. Fragmentation Algorithm. In each step, the fragmenta-
tion algorithm divides the set of D-binomials (which is the
set of products) into two subsets. One subset is called _-, and
the second subset is called_.;_- consists of the products that
determine the block D-polynomial—6, and _. contains the
products that form the reminderD-polynomial—`. Formally,Ŵ = 6 ∘ ` = GITE (3ℎ,W1, . . .W') ∘ `, (42)



8 Mathematical Problems in Engineering

Begin

Stack ≤ #-tail $ Stack ≤ #-polynomial

No

No

NoNo

Yes

EndStack is empty

#-polynomial ≤ stack

Fragmentation
block-remainder-tails

Reminder is empty

Stack ≤ reminderTail 1 is
terminal

Stack ≤ #-tail 1

Yes

Yes

Yes

Tail $ is terminal

Figure 4: Block diagram of the main decomposition procedure.

where the partition 3ℎ determines a common factor (block
header) and W"’s (block fragments) of 6.(e block header is
selected in such a way so as to provide a minimization of the
resulting structure.

De)nition 22 (pre)x). Let a be a product in a block. Each
product a, covering the product a is called a pre)x.

(e set of all pre)xes associated with the products of the
block de)nes the block header.

(e block header can be represented as a monolith whose
internal nodes are associated with the pre)x variables. (e
terminal nodes of the monolith correspond to the block
fragments representing a D-polynomial with the remaining
input variables. We call such fragments tails.

In what follows we describe fragmentation algorithm.
In each iteration the fragmentation algorithm chooses

the pre)xes for the current block. (e pre)xes that form the

block header are chosen one by one. Each newly added pre)x
must be orthogonal to all pre)xes accumulated so far. (e
algorithm is depicted in Figure 5.

Each iteration starts by preparing a list of candidate
pre)xes (see Section 6.3). (en, the )rst (basic) pre)x is
chosen.(e basic pre)x de)nes the set of input variables that
will determine the partition3ℎ.(erefore it has special signif-
icance. (e le0 hand side of Figure 5 shows the steps related
to choosing the basic pre)x.(e set of criteria for ranking the
candidate pre)xes is described in Section 6.4. A0er choosing
the pre)x that is ranked the highest as the basic pre)x, the
algorithm constructs the block header by adding secondary
pre)xes.(e right hand side of Figure 5 shows the algorithm
that gathers all the pre)xes that form the block header. (e
set of criteria for ranking the candidate secondary pre)xes
is described in Section 6.5. Let us start by presenting the
notations.



Mathematical Problems in Engineering 9

Begin End
Form tails and

reminder

Yes

Yes

Form list of pre!x-
candidates

Form list of pre!x-
candidates

Choose basic pre!x
(alpha criterion)

Choose secondary
pre!x %&

(beta criterion)

%& ort to block
pre!xes(nonorthogonal)

'( empty

No

No

Form '),'*,'(
'( : = '( \ '%&'* : = '* ∪ ('%& ∩ ')

') : = ') \ '%&'( : = '( ∪ '%&

Form set '-.

'( : = '('( : = '( \ '-.'* : = '* ∪ '-.
Figure 5: Block diagram of the fragmentation Algorithm.

6.2. Notations

(i) _—the set of products for a given MOF.

(ii) a—the pre)x under consideration, that is, the basic
pre)x in the block header.

(iii) a/—a secondary pre)x to be added to the block
header.

(iv) b—the number of variables in the pre)x.

(v) _-(a)—the set of products having pre)x a. (e set_-(a) is called the family of the pre)x.When it is clear
from the context we write _- instead of _-(a).

(vi) _.(a)—the set of the products that do not depend on
any of the pre)x variables.

(vii) _0(a)—the set of products depending on some of the
pre)x variables, _0 = ` \ (_1 ∪ _.). Set _0 is the
“undecided” set, since these products are neither in
the pre)x family nor in its remainder.

(viii) _2(a)—the set of products orthogonal to the pre)x.
Clearly, _2 ⊆ _0.

(ix) _32(a)—the set of products that are not orthogonal
to the pre)x, _32 = _0 \ _2.

(x) c(d)—the set of variables in all the products in a setd.
(xi) 4(d)—the number of literals in all the products in a

set d.
(xii) Q(d)—the set of outputs corresponding to all the

products in a set d.
Example 23. Consider the function speci)ed in Table 1. (e
function is speci)ed by )ve products.

Leta = "0"1 be a pre)x under consideration.(e number
of variables in a is b = 2. (e family of a, that is, the
set of products having pre)x a, is _- = {61,62}. (ere are
two products in _-. Note that the set of variables in all the
products of _- is c(_-) = {"0,"1,"3}, the number of literals
in all the products of _- is 4(_-) = 2 ⋅ 3 = 6, and the set of



10 Mathematical Problems in Engineering

INPUT: List of products _0.
OUTPUT: List of candidates.ef>2f> ← g&2f>_h'21← ef>2f>
REPEAT_h'22← Φ

Compose common to every pair of
products from _h'21.

If the result is not empty, add it to _h'22.ef>2f> ← ef>2f> ∪ _h'22_h'21← _h'22
UNTIL |_h'21| = 0

Algorithm 1: Constructing the list of candidates.

outputs corresponding to all the products of _- is Q(_-) ={8, 6}.
(e set of the products that do not depend on any of

the pre)x variables is _. = {63,64}, and the set of products
depending on some of the pre)x variables is _0 = {65}. Note
that 65 is orthogonal to the pre)x; hence _0 = {65}.
6.3. Preparing the List of Candidates. (e pre)x can be either
a product or a product that covers it. A straightforward
procedure is proposed below for constructing the list of the
candidates from the products in _0(a).

Let ",j be variables with values from {0, 1,−}. De)ne an
operator Ψ(",j), that compares these two Boolean variables" andj, and returns the value of one of them if they are equal,
and otherwise it returns a “−”.(e function Common (_1,_2)
accepts two products _1 and _2 and applies Ψ in a bitwise
manner to each of the variables in the setc(_1) ∪c(_2).(e
suggested procedure for constructing the list of candidates is
presented in Algorithm 1.

6.4. Choosing the Basic Pre)x. (e basic pre)x is the foun-
dation of a block. It is chosen to simplify the representation
of the block header. For this, the basic pre)x has to attract the
secondary pre)xes “close” to it and repel those “far” from it.

(ere are three main concerns to consider here: the input
variables, the output functions, and the length of the pre)x.
In addition, since the secondary pre)xes will be chosen from
set _2, it is imperative to measure the orthogonality of _0.
(e four criteria are as follows.

(e )rst criterion ful)lls the input requirement:

l4 = 1 − mmmmc (_-) ∩ c (_.)mmmmmmmm(c (_-) \c (a)) ∪ c (_.)mmmm . (43)

It counts the variables common to the tail and the remainder
corresponding to the pre)x. (e ratio must be reduced as
much as possible to separate the block (with its tails) from
the remainder.(is criterion has values in the [0, 1] interval,
where 0 corresponds to the case, where all the remainder
variables are present in the tail, and 1 to the opposite.

(e second criterion responds to the output requirement:

l5 = 1 − mmmmQ (_-) ∩ Q (_.)mmmmmmmmQ (_-) ∪ Q (_.)mmmm . (44)

It counts the outputs common to the tail and the remainder
corresponding to the pre)x.(e rationale here is the same as
for the input requirement.

(e third criterion, called Pre)x Signi)cance, measures
the percentage of literals in the products of the pre)x family:

l1 = b ⋅ mmmm_-mmmm4 (_-) . (45)

(e reason for this is simple: the longer the basic pre)x,
the longer the list of candidates for the secondary pre)xes.

(e last criterion, called Orthogonality, responds to an
additional requirement. It counts the number of literals in the
products orthogonal to the pre)x relative to the number of
literals in all the candidates:l6 = 4 (_2)4 (_0) . (46)

(e weighted grade of a candidate pre)x is de)ned asl = n4l4 + n5l5 + n1l1 + n6l6. When choosing the
basic pre)x, the candidate with the highest l is taken. Note
that the coe/cients of the criteria should be chosen so as to
re.ect the relative signi)cance/contribution of each criterion
to the quality of the overall solution. In this paper (since it
is conceptual) we assumed that all the criteria were equally
signi)cant; that is, the experimental results described in
Section 7 were produced with n4 = n5 = n1 = n6 = 1.
(erefore, the results are suboptimal: they can be further
improved.(is however is le0 for future study.

6.5. Construction of the Block Header by Choosing the Sec-
ondary Pre)xes. In the following equations, the superscript
indices 9 and 9 + 1 stand for “current situation” and “a0er
adding the target pre)x,” respectively.



Mathematical Problems in Engineering 11

(e )rst criterion, called Additional Inputs, counts the
number of variables common to the tail and to the remainder
of the target pre)x, but only those not yet present in the block,o4 = 1 − mmmmmc"+1 (_-) ∩ c"+1 (_.)mmmmm − mmmmmc" (_-) ∩ c" (_.)mmmmmmmmm(c"+1 (_-) \c"+1 (a)) ∪ c"+1 (_.)mmmm .

(47)

(e second criterion, called Additional Outputs, counts
the number of output functions common to the tail and to
the remainder of the pre)x:o5 = 1 − mmmmmQ"+1 (_-) ∩ Q"+1 (_.)mmmmm − mmmmmQ" (_-) ∩ Q" (_.)mmmmmmmmmQ"+1 (_-) ∪ Q"+1 (_.)mmmm .

(48)

Here, as in the previous criterion, only the newly added
outputs are considered.

(e third criterion, called Overhead, measures the literal
overhead introduced to the block and removed from the
remainder by selecting the target pre)x,o7 = 4"+1 (_-) − 4" (_-)4"+1 (_-) − 4"+1 (_.) − 4" (_.)4"+1 (_.) . (49)

(is equation can be rewritten as follows:o7 = 1 − 4" (_-)4"+1 (_-) − (1 − 4" (_.)4"+1 (_.))= 4" (_.)4"+1 (_.) − 4" (_-)4"+1 (_-) . (50)

Each of the two fractions is limited to the interval [0, 1], but
the total value of o7 is in the interval [−1, 1].

(e weighted grade of a candidate pre)x is de)ned as o =P4o4+ P5o5+ P7o7.(e candidate with the highest o is taken
and added to the set of pre)xes that form the block header.

(e complexity of the algorithm can be estimated as
follows. Denote by r the number of products in the given
D-polynomial. Unlike the fragmentation algorithm that deals
with the partitions, the main decomposition algorithm con-
siders only the values of the MOF. Since the main decompo-
sition algorithm separates the r products by using a binary
tree, its complexity is of order O(r). (e complexity of the
fragmentation algorithm is of orderO(r2), since itsmain task
is the generation of the set of secondary pre)xes.

7. Experimental Results

(e e/ciency of the proposed approach was tested exper-
imentally by applying the above decomposition algorithm
to a number of benchmark functions. (e e-ectiveness of
the method was evaluated by comparing the compactness
of a monolith MTBDD which corresponds to the given
MOF with the compactness of the proposed decomposed
network. In the experiments, PLA-like representations of the
standard combinatorial-circuit benchmarks (LGSYNTH93)
were used.

Table 2: Experimental results in which the decomposed network is
simpler than the monolith MTBDD.

Title |c| W% rmon rnet Ratio
ALU1 12 18 982 25 0.02
B12 15 29 155 145 0.93
DK48 15 31 3428 58 0.02
DK27 9 34 79 22 0.28
CON1 7 37 16 15 0.94
ALU2 10 39 264 150 0.57
DUKE2 22 40 1435 326 0.23
ALU3 10 42 278 151 0.54
MISEX3C 14 43 10875 705 0.06
WIM 4 50 15 10 0.67
F51M 8 53 255 155 0.61
DK17 10 57 160 55 0.34
APLA 10 64 128 85 0.66
INC 7 79 39 35 0.90

Table 3: Experimental results in which the monolith MTBDD is
simpler than the decomposed network.

Title |c| W% rmon rnet Ratio
ADD6 12 52 504 731 1.45
RADD 8 57 90 143 1.59
CLIP 9 59 189 376 1.99
Z4 7 61 52 101 1.94
ROOT 8 65 72 134 1.86
SQR6 6 67 63 85 1.35
SQN 7 69 81 116 1.43
MLP4 8 73 240 345 1.44
SAO2 10 73 95 157 1.65
DIST 8 73 125 326 2.61
BW 5 80 25 58 2.32
RD53 5 90 15 53 3.53

(e experiments demonstrate that the proposed decom-
position, when successful, greatly reduces the size of the
decision diagram as compared to the monolith solution.

To analyze the experimental results, we de)ned a block
density—a speci)c parameter of a block. (is parameter
corresponds to the number of literals in the block’s products
normalized by themaximal possible number of literals in this
block.(e success of the decomposition strongly depends on
this de)ned density. Consequently, the e-ectiveness of the
decomposition can be predicted quite reliably by making a
preliminary study of the given MOF.

(e experimental results are shown in Tables 2 and 3.
Table 2 lists the benchmarks for which the decomposition
network was simpler than the monolith MTBDD of the
MOF. Table 3 shows the opposite cases. (e columns in the
tables are as follows: |c| is the number of inputs, W is the
benchmark’s density W, and rmon and rnet are the number
of nodes in the monolith MTBDD and in the decomposition
network. (e last column shows the ratio rnet/rmon. Both
tables are arranged by ascending density.



12 Mathematical Problems in Engineering

(e results show that density is a consistent indicator of
the success of the decomposition. (e successful cases are
mostly in the low-density area (density up to 45%), and the
unsuccessful ones aremostly in the high-density area (density
of at least 60%). (e middle functions (density 40–60%)
are divided more or less evenly between the successes and
the failures. Moreover, there are several examples where the
high-density functions are successfully decomposed and no
examples where the method failed to work on low-density
functions.

(e proposed decomposition, on the other hand, relies
upon extracting dense blocks from the given MOF and
treating the sparse remainders and tails separately.(erefore,
a sparse MOF can be easily dealt with by splitting them
into a network of component MTBDDs. With dense MOFs,
choosing suitable blocks is di/cult, and arbitrary choices lead
to an ine-ective resulting network.

8. Conclusions

Despite extensive research on building the fundamentals of
logic design, some of its topics have yet to be examined.
One of these topics relates to representation of systems
of Boolean functions (multioutput functions) by decision
diagrams. Speci)cally, the conceptual transition from the
Boolean function domain to the multi-output functions
is considered hard. Although introducing the If-(en-Else
(ITE) operator on the Boolean domain makes it possible
to construct the decision diagram of a logic function in a
very clear way, the analogous procedure for multi-output
functions was unknown. (is work )lls this gap. (e main
results can be summarized as follows.

(i) A GITE operator was introduced.(e GITE operator
is a generalization of the ITE operator on the Boolean
domain.

(ii) Based on the GITE operator, an algebra of the GITE
formula was developed and studied.

(iii) (e concept ofD-polynomials as a compact analytical
representation of the GITE formula was presented.
(e problem of the compact representation of multi-
output functions was then formulated as a problem of
decomposition of D-polynomials.

(iv) Finally, a solution to this problem, based on the GITE
algebra and its properties, was introduced.

Experimental results obtained on a number of benchmarks
are promising. We believe that the present work will initiate
future research on the GITE algebra and its possible applica-
tions in logic design.

Appendix

Proof of Theorem 20

(eorem 20 states that any D-polynomial can be represented
as the composition of its all D-binomials. To prove the
theorem we show that the composition of D-binomials

(6'Q' + 6'0Q0) is equal to the D-polynomial with the same
coe/cients.

When composing two D-binomials, one of the following
cases can occur.

(1) (e products6' are pairwise orthogonal:6(Q(⋅6'Q' =0, for % ̸= ;.
In this case, the orthogonality of the products and the
completeness condition yield6'0 = 6'. Hence,6' ⋅6(0 =6'.
(erefore,#∏'=1 (6'Q' + 6'0Q0)= (61 ⋅ 62 {Q1 ∘ Q2} + 61 ⋅ 620 {Q1 ∘ Q0}+ 62 ⋅ 610 {Q2 ∘ Q0} + 610 ⋅ 620 {Q0 ∘ Q0}) ,#∏'=3 (6'Q' + 6'0Q0)= (61Q1 + 62Q2 + 610 ⋅ 620Q0) #∏'=3 (6'Q' + 6'0Q0)= ⋅ ⋅ ⋅= (61Q1 + 62Q2 + ⋅ ⋅ ⋅ + 6#Q# + 610 ⋅ 620 ⋅ ⋅ ⋅ ⋅ ⋅ 6#0 Q0)= (61Q1 + 62Q2 + ⋅ ⋅ ⋅ + 6#Q# + 60Q0)=∑' 6'Q' + 60Q0.

(A.1)

(2) Products6' and6' are not orthogonal:6(Q( ⋅6'Q' ̸= 0,
for % ̸= ;.
Note that the nonorthogonal products are associated
with one and the same terminal Q.
Let W = (6'Q + 6'0Q0) ∘ (6(Q + 6(0Q0) . (A.2)

A0er composition we haveW = 6' ⋅ 6( {Q1 ∘ Q1} + 6' ⋅ 60( {Q1 ∘ Q0}+ 60 ⋅ 6( {Q0 ∘ Q1} + 60' ⋅ 60(Q0= (6' ⋅ 6( + 6' ⋅ 60( + 60' ⋅ 6() Q1+ 60' ⋅ 60(Q0= (6' ⋅ 6( + 6' ⋅ 6( + 6' ⋅ 6() Q1+ 60' ⋅ 60(Q0= (6' + 6() Q1 + 60Q0.
(A.3)



Mathematical Problems in Engineering 13

Acknowledgment

(is paper was partially supported by the Israel Science
Foundation (Grant no. 1200/12).

References

[1] R. L. Ashenhurst, “(e decomposition of switching functions,”
in Procceedings of an International Symposium on the*eory of
Switching, pp. 74–116, April 1957.

[2] G. de Micheli, Synthesis and Optimization of Digital Circuits,
McGraw-Hill Higher Education,, 1994.

[3] J. P. Hayes, Introduction to Digital Logic Design, Addison-Wesley
Longman Publishing, Boston, Mass, USA, 1993.

[4] M. G. Karpovsky, Finite Orthogonal Series in the Design of
Digital Devices, John Wiley & Sons, New York, NY, USA, 1976.

[5] Z. Kohavi, Switching and Finite Automata*eory,McGraw-Hill,
1970.

[6] E. J. McCluskey, Logic Design Principles, Prentice-Hall, Engle-
wood Cli-s, NJ, USA, 1986.

[7] R. E. Miller, Switching *eory, John Wiley & Sons, New York,
NY, USA, 1965.

[8] R. Brayton, “(e future of logic synthesis and veri)cation,”
in Logic Synthesis and Veri)cation, pp. 403–4434, Kluwer
Academic Publishers, Norwell, Mass, USA, 2002.

[9] M. A. Perkowski, “A survey of literature on function decompo-
sition,” Technical Report, GSRPWright Laboratories, 1995.

[10] R. I. Bahar, E. A. Frohm, C. M. Gaona et al., “Algebraic
decision diagrams and their applications,” in Proceedings of
the IEEE/ACM International Conference on Computer-Aided
Design, pp. 188–191, November 1993.

[11] C. M. Files and M. A. Perkowski, “New multivalued functional
decomposition algorithms based onMDDs,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
vol. 19, no. 9, pp. 1081–1086, 2000.

[12] Y. Iguchi, T. Sasao, and M. Matasuura, “Evaluation of multiple-
output logic functions using decision diagrams,” in Proceedings
of the Asia and South Paci)c Design Automation Conference,
2003.

[13] T. Sasao, Y. Iguchi, and M. Matsuura, “Comparison of decision
diagrams for multiple-output functions,” in Proceedings of the
International Workshop on Logic and Synthesis, 2002.

[14] S. N. Yanushkevich, D. M. Miller, V. P. Shmerko, and R.
S. Stankovic, Decision Diagram Techniques For Micro- and
Nanoelectronic Design Handbook, CRC Press, 2005.

[15] T. Sasao,Memory-Based Logic Synthesis, Springer, 2011.
[16] T. Sasao and M. Matsuura, “A method to decompose multiple-

output logic functions,” in Proceedings of the 41st Design
Automation Conference, pp. 428–433, San Diego, Calif, USA,
June 2004.

[17] R. E. Bryant, “Symbolic boolean manipulation with ordered
binary decision diagrams,”ACMComputing Surveys, vol. 24, no.
3, pp. 293–318, 1992.

[18] P. G. Hinman, Fundamentals of Mathematical Logic, A K Peters,
2005.

[19] G. D. Hachtel and F. Somenzi, Logic Synthesis and Veri)cation
Algorithms, Kluwer Academic Publisher, 2005.

[20] S. Hassoun and T. Sasao, Eds., Logic Synthesis and Veri)cation,
vol. 654 of *e Springer International Series in Engineering and
Computer Science, 2002.

[21] S. Nagayama and T. Sasao, “Compact representations of logic
functions using heterogeneous MDDs,” in Proceedings of the
33rd International Symposium on Multiple-Valued Logic, pp.
247–252, May 2003.

[22] T. Sasao, Switching*eory For Logic Synthesis, KluwerAcademic
Publishers, 1999.

[23] T. Sasao and M. Fujita, Representations of Discrete Functions,
Kluwer Academic Publishers, 1996.

[24] C. Baier and E. Clarke, “(e algebraic Mu-calculus and MTB-
DDs,” in Proceedings of the 5th Workshop on Logic, Language,
Information and Computation (WoLLIC ’98), pp. 27–38, 1998.

[25] B. Chen and C. L. Lee, “Complement-based fast algorithm to
generate universal test sets for multi-output functions,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 13, no. 3, pp. 370–377, 1994.

[26] R. Drechsler, J. Shi, and G. Fey, “Synthesis of fully testable
circuits from BDDs,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 23, no. 3, pp. 440–
443, 2004.

[27] G. Fey and R. Drechsler, “Minimizing the number of paths in
BDDs: theory and algorithm,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 25, no. 1, pp.
4–11, 2006.

[28] W. N. N. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski,
“Optimal synthesis of multiple output Boolean functions using
a set of quantum gates by symbolic reachability analysis,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 25, no. 9, pp. 1652–1663, 2006.

[29] M. G. Karpovsky, R. S. Stankovic, and J. T. Astola, “Reduction of
sizes of decision diagrams by autocorrelation functions,” IEEE
Transactions on Computers, vol. 52, no. 5, pp. 592–606, 2003.

[30] O. Keren, “Reduction of the average path length in binary
decision diagrams by spectral methods,” IEEE Transactions on
Computers, vol. 57, no. 4, pp. 520–531, 2008.

[31] O. Keren I. Levin and R. S. Stankovic, “Minimization of
the number of paths in binary decision diagrams by using
autocorrelation coe/cients,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 30, no. 1,
pp. 31–44, 2011.

[32] C. Meinel, F. Somenzi, and T.(eobald, “Linear si0ing of deci-
sion diagrams and its application synthesis,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
vol. 19, no. 5, pp. 521–533, 2000.

[33] C. Yang and M. Ciesielski, “BDS: A BDD-based logic optimiza-
tion system,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 21, no. 7, pp. 866–876, 2002.

[34] S. Baranov, Logic and System Design of Digital Systems, TUT
Press, 2008.

[35] I. Levin, O. Keren, V. Ostrovsky, and G. Kolotov, “Concurrent
decomposition of multi-terminal BDDs,” pp. 165–169, Proceed-
ings of the 7th International Workshop on Boolean Problems,
Freiberg, Germany, September 2006.

[36] I. Levin and O. Keren, “Split multi-terminal binary decision
diagrams,” in Proceedings of the 8th International Workshop on
Boolean Problems, pp. 161–167, 2008.

[37] I. Levin and O. Keren, “Generalized if-then-else operator for
compact polynomial representation of multi output functions,”
in Proceedings of the 14th Euromicro Conference on Digital
System Design (DSD ’11), pp. 15–20, 2011.


