
©EDA Publishing/EWME2012 ISBN: 978-2-35500-019-5

EWME, 9-11 May, 2012 - Grenoble, France EWME, 9-11 May, 2012 - Grenoble, France

Spreadsheet Learning Environment for Teaching
Advanced Topics in Computer Engineering

Ilya Levin and Hillel Rosensweig
School of Education, Tel Aviv University,

Ramat Aviv, Tel Aviv, 69978, Israel
Phone: +972-3-6407109, fax: +972-3-6405068, ilia1@post.tau.ac.il, hillelro@yahoo.com

Abstract- Despite differences between Computer Science (CS)

education and Computer Engineering (CE) education, certain basic
principles exist in both. We present a spreadsheet model of an
elementary hardware Sorter, and show its efficiency in allowing
students to gain deep understanding into the complicated inner
workings of Checkers and in expressing some basic principles
shared by both CS and CE. We describe the usage of Sorters in
designing Checkers and describe a potential constructive teaching
method for advanced hardware topics.

I. INTRODUCTION

It is accepted that computers are studied in two different
academic curriculums – Computer Science (CS) and
Computer Engineering (CE). Though some integrated
curriculums have been developed and are in use in a number
of universities, there is a principle difference in the
approaches to teaching CS and CE.

The difference can be seen at all levels – in the
curriculum, in the theoretical base, in the methodology of
research, etc. Due to that, graduating students of CS and CE
have different approaches to problem solving, different
structure of scientific knowledge, and different practical
capabilities and skills. Understanding these differences
between CS and CE is very important for preparing and
teaching specific courses within the two curriculums

For example, the process of teaching hardware courses has
some distinctive features in comparison with teaching
software courses. It should be noted that these features
couldn’t be formulated just as different mental approaches or
difference in basic knowledge. The very approach to solving
problems and performing tasks can be principally different.

While the key term in teaching software is the
"algorithm", the key term in teaching hardware is "structure"
and interaction between elements in a structure. These
different approaches and terms indicate computer specialists
of two different types: a programmer and a hardware
engineer.

In this paper, we focus our attention not on the differences
between approaches; on the contrary, we formulate
principles we believe to be common to both approaches. It is
our goal to show that these principles may become the base
for building individual learning environments by students.
One of such environments is the spreadsheet tool. The idea
using the spreadsheet as learning environment in Computer
Engineering was studied in [1, 2]. Later the approach was
extended for teaching principles of on-line hardware
checking [3].

Our the present work, we demonstrate a number of
innovative spreadsheet based solutions for teaching complex
hardware constructs belonging to advanced topics of
Computer Engineering.

We examine teaching principles of a checker for equal-
weighted codes - codes with an equal amount of 0's and 1's
[4]. The properties of this type of topics are unique:

1) complex structural connections are characteristic in
two-dimensional schemes of hardware solutions, as well as
parallel functioning of elements within the scheme;

2) the traditional algorithmic approach for Computer
Science is principally unsuitable when searching for a
hardware solution. A more structural approach is necessary.

The common principle that binds this topic to both CS and
CE has to do with the nature of solutions to problems in this
area. Teaching hardware solutions has an essential difficulty.
As a rule, hardware solutions have an inductive character.
Namely, some elementary scheme with a simple function is
taken as a base, and further on, a more complex solution is
developed on that base.

If the way of connecting simple component schemes is
understandable, the resulting scheme usually occurs to be
understandable, as well. However, very often the resulting
scheme is complex and comprises an original idea of the
developer. In such situations, a student encounters a non-
trivial task when the study of a common scheme requires
serious and usually informal analytical skills.

Spreadsheets as Constructive learning environments
New means for computer simulations that have recently

appeared present powerful tools which support solving
analytic problems. One important step in teaching hardware
is using computer micro-worlds and utilizing the
constructive approach for building learning environments.
According to this novel method, study of a scheme proceeds
dynamically.

In this work, we show that learning the functioning rules
of an elementary scheme, fulfilled by constructive
experiments with a model of a fully integrated, complex
scheme, form an excellent ground for studying complex
hardware solutions.

We consider the teaching of designing an m-out-of-n
checker. The following two hardware schemes are proposed
to students, one after another:

1. Checker based on a sorting matrix,
2. Smith's Checker
We demonstrate a method of building and studying

45

©EDA Publishing/EWME2012 ISBN: 978-2-35500-019-5

EWME, 9-11 May, 2012 - Grenoble, France EWME, 9-11 May, 2012 - Grenoble, France

Checkers using spreadsheet modeling.
The paper is organized as follows. Section II is devoted to

building a Checker on the basis of an elementary Sorter
scheme. Section III describes the structure of a cellular
Sorter and the method of modeling the Sorter. Section IV
describes how a Smith’s Checker can be built on the basis of
the cellular one, and how it can be modeled. Conclusions are
given in the final Section.

II. HARDWARE IMPLEMENTATION OF SORTING

The initial task is formulated as follows: for a given binary
vector B, a combinational scheme is synthesized,
transforming the vector into a sorted vector S in which all 1's
are positioned in its left portion. Such a scheme allows for
determining a variety of vector characteristics. For instance,
it can easily be seen whether an initial vector is equal-
weighted simply by checking the value of the central binary
positions in the resulting sorted vector.

A. Basic Sorter
There is an elegant hardware solution for the task

formulated above. This solution is based on using an
elementary 2x2 Sorter (2 inputs - 2 outputs) and comprises
of logical OR and AND elements. As can be seen from
Fig.1, the elementary Sorter transforms a binary pair in such
a manner, that 1's are always shifted to the left.

Fig. 1 elementary 2 bit Sorter

B. Sorting Matrix
To sort a binary vector of arbitrary length n, the natural

choice is to use a matrix of interconnected elementary
Sorters. The most naive implementation is shown in Fig. 2
below. Starting from the bottom layer, Sorters in each layer
are shifted with respect to Sorters of the previous layer. In
such a manner, connection between binary positions is
achieved and the sorting is performed at the n-th layer.

Fig. 2 8x8 Sorter made of interconnected 2x2 Sorters

C. Sorting Matrix in Spreadsheet
A simulation of an 8x8 Sorter is possible using

spreadsheets. The sorting matrix spreadsheet is built as
follows:

1. The first (bottom) layer comprises the initial vector B.
2. Each Functional layer consists of elementary Sorters.

Outputs of lower layers are connected to inputs of upper
layers.

TABLE I
Excel Spreadsheet Sorter Simulation

S 1 1 1 0 0 0 0 0

8 1 1 1 0 0 0 0 0

7 1 1 1 0 0 0 0 0

6 1 1 1 0 0 0 0 0

5 1 1 0 1 0 0 0 0

4 1 0 1 0 1 0 0 0

3 1 0 0 1 0 1 0 0

2 1 0 0 0 1 0 1 0

1 0 1 0 0 1 0 1 0

B 0 1 0 0 1 0 1 0

III. CELLULAR CHECKER

Based on the idea of an elementary Sorter, a scheme for a
m-out-of-n cellular Checker (a Checker that only returns no-
error when there are m 1's in a vector of n bits) can be built.
The cellular Checker is an assembly of elementary Sorters.
Specifically, the basis for building a 4-out-of-8 cellular
Checker is using a 4x4 Sorter (4 inputs - 4 outputs). The 4x4
Sorter scheme comprises a number of elementary 2x2
Sorters, interconnected, so that at the output the scheme
generates the desired sorted binary vector. The complete
scheme for a 4x4 Sorter is shown in Fig. 3. (The scheme is
taken form [4]).

Each binary position in the final sorted vector S
corresponds to a logical function (For instance: M(4,1),
M(4,2), M(4,3), M(4,4) in Fig. 3).

Fig. 3 4x4 Sorter

These logical functions are both symmetrical and
monotonous. Let us denote these functions M(i,n). Careful
observation of each binary position in the sorted vector
raises the following formulation:

46

©EDA Publishing/EWME2012 ISBN: 978-2-35500-019-5

EWME, 9-11 May, 2012 - Grenoble, France EWME, 9-11 May, 2012 - Grenoble, France

M(i,n) is equal to one 1, when its n-positional code
comprises no less than i ones.

The output vector consists of M(1,n),..,M(n,n). Analysis of
the scheme by analysis of each binary position in the output
vector is useful for an informal yet in depth understanding of
the scheme operation. For example, it is easy to see that the
binary position M(n,n) will be equal to 1 only when the
whole input vector consists of ones, and that M(1,n)will be
equal to 0 only given a 0 input vector.

We will use the obtained functions at the next stage of
building the 4-out-of-8 Checker. At the output of a 4-out-of-
8 Checker, there are two outputs, which take opposite binary
values when a code combination is fed to the input, and
equal binary values when a non-code combination is fed to
the input.

The main task of designing the Checker is implementing
two functions Z1 and Z2, with behavior corresponding to the
described outputs. These functions are implemented using
4x4 Sorters marked MA, MB. For implementation of the
Checker these functions are expressed as follows:

Z1 and Z2 are implemented as combinations of the output

for Sorters MA and MB. Indeed, all possible combinations for
MA and MB corresponding to a 4-out-of-8 code are listed in
the logical equations shown above.

Fig. 4 m-out-of-n Checker

Each binary position of the last layer corresponds to a
monotonic symmetric function. A monotonic symmetrical
function M(8,k) is equal to 0, when the number of ones in the
code is less than k. Each of the binary positions (k=1,2,..) of
the last cascade corresponds to a monotonic function M(8,k).
Due to that, the rightmost binary position is equal to 1 if the
code is equal to 2n-1, and the last position on the left is equal
to 0 when the code is equal to 0. In general, it is easy to see
that the Checker somehow shifts the 1's to the bottom. This
is the principle of binary sorting.

It should be noted that the described sorting matrix
performs so-called structural sorting, while the classical
programmed sorting operates according to the algorithm of
bubble-sort.

IV. SMITH'S CHECKER

The sorting matrix is only an intermediate solution and
almost cannot be used as is in practical design solutions. The
scheme of Smith's Checker, which is much more practical,
can also be built on the basis of a sorting matrix. The Smith's
Checker uses the matrix structure in which the border right
and left layers are interconnected according to special rules.
These rules allow, having the m-out-of-n code at the input,
obtaining the code 010101… at the output of the matrix. A
simple assembly of AND-OR elements allows determining
correctness of the code in the form of a two-bit word.

In order to understand the structure and the principles of
the scheme’s operation, we suggest to our students that they
convert the spreadsheet matrix into the Smith’s Checker [4].
The figure below (Fig. 5) is presented for that purpose. Upon
building a spreadsheet model of the Smith’s Checker, we
may suggested to the students to simulate it's operation on
different input vectors.

The spreadsheet model of the Checker not only allows
students to see whether the scheme works properly, but also
gives them the possibility to observe how the code passes
through layers in the Checker. It allows to deeply
understanding the principles working within a Checker in
operation.

Fig. 5 Smith's Checker

CONCLUSIONS
We presented a spreadsheet model of a basic Sorter. This

Sorter was shown to posses certain properties, making it
ideal for designing a Checker. This model was shown to
express the basic principle of inductive reasoning - building
a complex construct out of very simple basic structures. The
simple manner in which a Sorter can be used for the design
and understanding of Checkers makes it a good candidate for
advanced logic design courses, where an interactive and
easily programmable interface can be a powerful tool. Using
the spreadsheet model of a Sorter, students can design a
Checker and truly touch on its inner workings.

REFERENCES
[1] Levin, I. (1993). Matrix model of logical simulator within spreadsheet,
Int. J. Elect. Engineering. Educ., 30(3), pp. 216-223.
[2] Levin I., (1994). Behavioral simulation of an arithmetic unit using the
spreadsheet, Int. J. Electrical Eng. Educ., 31, pp. 334-341.
[3] Levin I., and Talis V. (2004). Using Spreadsheets for Teaching
Principles of On-line Checking Logic Circuits. Spreadsheets in Education,
Vol. 1, No. 3, 131-141.
[4] Lala P., (2001). Self-checking and fault-tolerant digital design. Morgan
Kaufmann Publisher.

47

	ewme12-9.pdf
	For all projects, with or without a motherboard, each student is expected to demonstrate the following learning outcomes (based on [9]) in order to successfully fulfill the course requirements and receive a passing grade,

	ewme12-10.pdf
	I. Introduction
	II. Description Of The Environment
	III. Cause-Effect High-Level Diagnosis
	IV. Effect-Cause High-Level Diagnosis
	V. Teaching Scenarios
	(1) Investigating the trade-off between network complexity and diagnostic resolution (Tasks 1-3). Different ways can be used for partitioning the given gate-level circuit into modules where the modules can contain higher or lower numbers of gates. In case of bigger modules, the complexity of the high-level fault dictionary will reduce because of the less number of modules in the network. However, the increased number of module inputs or the increased number of defects in bigger modules will make the effect-cause reasoning more difficult.

	VI. Experiences And Experimental Results
	VII. Conclusions
	Acknowledgement
	References

 HistoryItem_V1
 TrimAndShift

 Sélection : toutes les pages
 Rognage : format fixe 8.268 x 11.693 pouces / 210.0 x 297.0 mm
 Retrait : non spécifié
 Normaliser (option avancée) : 'original'

 52

 D:20120424100747
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 449
 310
 None
 Right
 8.5039
 -5.6693

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 170.0787
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0
 Quite Imposing Plus 3
 1

 96
 148
 147
 148

 1

 HistoryItem_V1
 Nup

 Rogner la partie inutilisée des signatures : oui
 Autoriser la mise à l'échelle des pages : non
 Marges et traits de coupe : non spécifié
 Fond de page de la signature : Page 1 to 1 of file /C/recup/num/bas de page.pdf
 Montage : 1 rangées vers le bas, 1 colonnes en travers
 Aligner : centre

 0.0000
 10.0000
 20.0000
 0
 Corners
 0.3000
 ToFit
 0
 0
 1
 1
 0.9800
 0
 0
 1
 0.0000
 0

 D:20120424102224
 /C/recup/num/bas de page.pdf
 0
 1
 0
 Background

 Tall
 423
 269
 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 1
 2
 0
 0
 0

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0
 Quite Imposing Plus 3
 1

 1

 HistoryItem_V1
 AddNumbers

 Sélection : À partir de la page 1 à la page 148
 Police : Helvetica 10.0 points
 Origine : pied centre
 Décalage : 0.00 points horizontalement, 28.35 points verticalement
 Texte du préfixe : ''
 Texte du suffixe : ''
 Utiliser la couleur de repérage : non

 1
 1

 BC

 1
 1
 H
 1
 0
 282
 205

 0
 1
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 10.0000

 Both
 1
 SubDoc
 148

 CurrentAVDoc

 [Date:%Y/%m/%d]
 0.0000
 28.3465

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0
 Quite Imposing Plus 3
 1

 0
 148
 147
 148

 1

 HistoryList_V1
 qi2base

