
2001, I. Levin, V. Ostrovsky

FSM based Checker for Sequential Circuits

Ilya Levin and Vladimir Ostrovsky
Tel Aviv University
ilia1@post.tau.ac.il

Abstract
This paper presents a method for logic synthesis of
Totally Self-checking Checkers for sequential
circuits in a form of a Finite State Machine. This
approach allows sufficient reduction of both the
number of redundant bits of the sequential circuit,
and the number of inputs of the checker.

1. Introduction

Major difficulties in designing of self-checking
devices are related to complexity of decoding (i.e.
verification that a given output vector is a
codeword). Output vectors of devices are usually
encoded by a code detecting unidirectional errors
[1]. Implementing of checkers as combinational
circuits is an acceptable practice since any error
has to be detected immediately when occurs, while
the presence of a memory seems to increase a fault
latency. In this paper, we try to revise this
stereotype. We develop a method for synthesis of a
checker for sequential circuits (SCs) in a form of
circuit with a memory without any increasing of
the fault latency but with a sufficient reduction of
both the number of redundant bits of the SCs and
the number of checker’s inputs.
Our approach is based on a fact that SC being in a
particular state is able to produce a limited subset
of code words, and not a whole set as it is assumed
in the traditional checking scheme. This subset
consists of output vectors that can be produced on
all transitions from the present particular state. It
allows implementing the checker in a form of
Finite State Machine (FSM), states of which are in
a one-to-one correspondence with states of the SC.
Such a constructed checker enables checking

exactly those output vectors that can be produced on
transitions from the present state of the SC.
Usually, only small part of output variables
(sufficient variables) can take both “one” and “zero”
values on transitions from a certain state. Most of
the output variables (insufficient variables) are equal
to zero on each of transitions from this state.
Based on the above-mentioned properties, we
propose: 1) separate coding each of a subset of SC
output vectors and thus reducing of the number of
redundant bits; 2) utilizing the same checker’s inputs
for introducing of different outputs of the SC thus
reducing the number of the checker’s inputs.

2. Self-checking scheme

The proposed scheme of the self-checking SC
consists of: 1) an initial SC, 2) an output compressor
that transforms SC’s outputs into the checker’s
inputs and 3) an FSM based checker
We will illustrate the proposed approach by an
example of designing a checker for SC defined by its
State Transition Graph (STG) shown in Table 1. In
this table: am and a s are a present and a next state
correspondingly, X am ,a s() - transition function, i.e. a
Boolean function which is equal to one when SC
makes the transition from state am to state a s. Y am ,a s()
– output vector generated on the transition of the SC
from am to a s.

2. 1. Outputs compressor

Define the outputs compressor for the initial SC. Let

 Y am() = ym1 ,K , ymFm
{ } is a set of output variables on

all transitions from state am. In our
example: Y a1() = y2,y 3, y4{ } ;

2001, I. Levin, V. Ostrovsky

Y a2()= y1,y 5{ } ; Y a3()= y1,y 5, y6{ } ;

Y a4() = y6,y 7{ } ; Y a5()= y4 ,y 7{ } .

yn ∈ Y is replaced with the zg ∈ Z so that if the
SC is in state am then zg = yn. For our example
output compression Y → Z is defined as
follows: z1 = ϕ y1,y 2(); z2 = ϕ y3,y 5, y7(); z3 =
ϕ y4 ,y 6() , where ϕ - is a function 1− out − of − n .
Tab.1.STG of theSC

am as X am ,a s() Y am, as()
a1 a2 x1x2 0110000

a4 x1x2x3 0001000

a1 x1x2 x3 0010000

a3 x1 0100000

a2 a4 1 1000100

a3 a1 x4x1 1000010

a4 x1 1000100

a4 x4 1000100

a4 a5 x2 0000011

a1 x2 0000000

a5 a1 1 0001001

2. 2. FSM based checker

Define the FSM based checker.
1. Set B of states of the checker is in the one-to-
one correspondence with the set of states of the
initial SC. In our example: B= b1, b2,b 3,b4, b5{ } .

2. Set I of input variables of the checker consists
of: 1) set Z; 2) a set of the unordered coding [2]
variables R and 3) an additional variable z0 that
takes the value “one” when all insufficient output
variables of a present state are equal to zero.

I = Z ∪R ∪z0. In our example: I = z1, z2 ,z3 , r , z0{ } . z0

is implemented by the output compressor as
follows: z0 = B1z0

1 +K+ BMz0
M, where Bm is a

product of state variables corresponding to state
bm ; z0

m =1, if all insufficient output variables of a
state am take a value “zero”. For
example: z0

1 = y7 +y5 +y6 +y7 .
3. A set of output variables of the FSM checker
forms an error vector signal E = e1, e2{ } .

4. Transition of the checker from state bm to state
bs occurs according to input vector I bm ,b s() , with
producing an output vector E bm , b s() .
The STG of the checker is shown in Table 2.

Tab. 2. STG of the FSM based checker

bm b s Z bm , bs() R bm ,b s() E bm ,b s()
b1 b2 z1z2z3z0 r 01

b4 z1 z2z3z0 r 01

b1 z1 z2 z3z0 r 10

b3 z1z2 z3z0 r 10

b2 b4 z1z2z0 r 01

b3 b1 z1z2z3z0 r 01

b4 z1z2z3z0 r 10

b4 b5 z4z2z0 r 01

b1 z4 z2z0 r 10

b5 b1 z4 z2z0 r 01

We assume that on transitions that are not mentioned
in the table, output vector E bm ,b s() is equal to 00.
In our example the total number of inputs for the
proposed FSM based checker is equal to 5 while the
traditional checker has 10 inputs.

3. Conclusion

We have proposed a novel technique for synthesis of
self-checking checkers for sequential circuits. The
proposed technique is based on an architecture
comprising the outputs compressor and the FSM
based checker. Unordered coding in this case
requires a small number of coding bits. A specific
way of output’s compression allows reducing the
number of checker’s inputs.

4. References

1. P. Lala. Self-checking and Fault-Tolerant Digital Design.
Morgan Kaufmann Publishers, 2000.
2. J. Smith, “On Separable Unordered Codes”, IEEE
Transaction on Computers, Vol. C-33, No. 8, August 1984.

