
 

Concurrent Decomposition of Multiterminal BDDs1 

Ilya Levin1, Osnat Keren2, Vladimir Ostrovsky1, George Kolotov1  
1Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel, i.levin@computer.org 
2Bar Ilan University, Ramat Gan, Ramat Gan 52900, Israel, kereno@eng.biu.ac.il 

Abstract 
The paper deals with the problem of decomposition of logic functions and their implementation in a form of 
Multi Terminal Binary Decision Diagrams (MTBDD). The new logic decomposition method and the 
implementation style, called concurrent decomposition, introduced in the paper leads to a compact VLSI 
layout of locally interconnected logic elements. It is easily amenable to VLSI implementations of custom 
design in deep submicron technology, where control over interconnect wiring and its delay becomes of 
primary importance.  
The proposed decomposition method is based on the algebra of D -polynomials reviewed in the paper. The 
resulting decomposition is directly mapable onto special type of binary graph called Concurrent Multi 
Terminal BDD. The paper describes both the theoretical fundamentals of the decomposition algorithm and its 
certain implementation. Benchmark results are presented and analyzed. Guidelines for effective using of the 
proposed technique are provided. 

1. Introduction 
There have been several attempts to derive logic structures that could efficiently be implemented in VLSI 
technology. They all strive to derive a regular structure (array or lattice) of identical or similar elements that 
could be interconnected only by local (neighbor-to-neighbor) interconnections. Some of them are based on 
direct implementation of various BDD’s, with nodes being implemented as MUXes, while recognizing 
various symmetry properties of logic functions [1]. Others explore decomposition methods based on Reed-
Muller expansion and use of XORs [2, 3]. Most of these attempts are still impractical due to a large number 
of logic elements needed, or their area inefficiency. Often there is a need for duplication of binary variables 
during logic expansion and extraction of symmetric functions. Finally, current decomposition techniques 
remain strongly dependent on the ordering of variables during logic expansion making the resulting 
diagrams/structures too large. An in-depth analysis and extensive survey of logic decomposition methods 
can be found in [4].  
This paper deals with decomposition of multi-output logic functions for their efficient implementation in a 
form of Multiterminal Binary Decision Diagrams (MTBDDs). Partitioning of the shared BDD representation 
of multi-output functions was proposed in [5], where the authors suggested to partition the set of outputs of 
a multi-output function and to optimize the obtained functions separately.  
The present paper proposes a different approach. It introduces a so-called concurrent decomposition of 
multi-output functions, allowing the partitioning of not only the set of outputs of the function, but also the 
set of its implicants.   
The proposed approach may be considered as a new logic decomposition method and an implementation 
style, which can lead to a compact VLSI layout of locally interconnected logic elements. It is easily 
amenable to VLSI implementations of custom design using deep submicron technology, where control over 
interconnect wiring and its delay becomes of primary importance.  
The theoretical foundation of our decomposition method is based on algebra of D -polynomials [6, 7]. The 
result of the decomposition is a direct mapping of the logic function onto the MTBDD. 
The decomposition approach described in this paper aims at practical implementations of logic functions as 
VLSI structures. The main purposes of the proposed technique are to minimize the size of the resulting 
implementation while maintaining full routability and predictability of interconnect delay. Specifically, the 
problem discussed here can be stated as follows:  
Given a minimized sum-of-product representation of a multiple-output logic function, construct a network of 
concurrently functioning MTBDD with minimum number of nodes.  

                                                 
1 The work was supported by BSF under Grant 2002259 



 

The optimized MTBDD network, dominated by local interconnections, has to guarantee easy routability and 
facilitates a reliable prediction of interconnect delay. Since each node can be readily implemented as a 
simple logic element/gate, their minimization directly translates into minimum-area, compact layouts. Other 
criteria, such as performance, power, testability, etc., can be also considered.  
The main advantage of the approach proposed in this paper is the locality of interconnects, which is highly 
desirable in order to achieve the desired design convergence during the physical design phase. Unlike other 
methods, that lead to regular layouts in form of binary trees or lattices [1, 4], this method does not require 
repetition of input variables or extraction of symmetric or pseudo-symmetric functions.  
It should also be noted that, in practice, logic functions can rarely be presented in a form of a single 
expression. Usually it is more convenient to describe them as a system of hierarchical functions and 
concurrent logic statements. The method described here is able to work using such forms of representation 
of systems of logic functions. 
The paper is organized as follows. Section 2 introduces both Concurrent Multi Terminal BDDs 
(CMTBDDs) and D -polynomials. Section 3 deals with the proposed method of decomposition including its 
theoretical fundamentals and the decomposition algorithm. Section 4 presents experimental results. 
Conclusions are provided in Section 5.  

2. Concurrent Multiterminal BDDs and D -Polynomials 
The proposed decomposition approach is based on a concept of CMTBDD, which can be constructed by 
combining several CMTBDDs using the parallel and series operations: 
1)  Series connection: replacing one terminal node of an MTBDD with another MTBDD. 
2)  Parallel connection: connecting roots of two or more MTBDDs.  
Each node of CMTBDD, associated with a binary variable, has one input and two outputs. An input to a 
node is a product term generated along the path from the root of the tree to a given variable. Except for the 
root node, which has a trivial input of 1, each input α  to a node comes from the output of the node placed 
directly one level above it. A node associated with variable ix  adds one literal ( )i ix , or x  to the product 

termα . One output of the node represents product term ixα , the other ixα . 
Introducing the CMTBDD opens a way of handling systems of logic functions defined by their SOP with a 
large number of variables and, consequently, reducing the total number of nodes in the resulting MTBDD. 
CMTBDDs have there analytical interpretation as so-called D -polynomials [6]. We show below that the 
parallel and series connections of CMTBDDs can be interpreted as a product and substitution of D -
polynomials representing those CMTBDDs. This fact is used as a basic principle of the proposed 
decomposition approach. 

3.1. Representation of Logic Functions 

Consider an n-input, m-output completely specified Boolean function mn ZXF →: , where 
{ }*,,X 10∈  and { }10 ,Z ∈ . Let F be initially represented in minimized (prime and irredundant) sum-

of-product (SOP) form, where each output iZ ( )i , ,m= 1…  is written as a logical sum (OR) of product 

terms (implicants): 

( )i jj I i
Z α

∈
=∑     (1) 

( )iI  denotes an index set of implicants associated with the output iZ . Implicants can be shared between 
different outputs. Since the coefficients α are functions of input variables ( )nxxx ,,, …21 , we will also refer 
to them as theα -functions. 
Let iY  be the label associated with the output iZ . 0Y  will denote a dummy output function (or an empty 
operator which does not produce any output). 
Definition 1. D -polynomial is a polynomial defined over a set of operators iY   

00YYZD iii
α+= ∑   (2) 

while the coefficients iZ satisfying the conditions: 
a) 10 =∨α∪i iZ  (completeness), b) ji,ZZ ji ≠∀=⋅ 0 (orthogonality). 



 

Taking (1) into account, we have: 
( )( ) ( )j i ij ii j I i j I i

D Y Y Y Yα α α α
∈ ∈

= + = +∑ ∑ ∑0 0 0 0
, 

where ijα  denotes j th -implicant of function iZ .  

Example 1. The following is a D -polynomial: D x Y x x Y Yα= + +1 1 1 1 2 2 0 0  

Here, x , x xα α= =1 1 2 1 2 and 0 1 2x xα = . The corresponding MTBDD may be constructed in straightforward 

way and can be achieved by repeatedly applying the Shannon expansion to 1D . Notice that the simplicity of 

the above transformation is based of the following specific property of the 1D : for each application of the 
Shannon expansion, at least one input variable is present in all the implicants.   

In this work we are interested in a class of D -polynomials defined over a subset of variables iY  whose 
coefficients are implicants of a logic function. Such D -polynomials are used to represent logic functions. 
Coefficients iα are defined explicitly as the corresponding product terms of the function, while 0α  is 
defined implicitly as a complement of ∪ iα  (to satisfy the completeness condition).  

D -binomial is a special case of D -polynomial, with exactly two disjoint (orthogonal) 
implicants, 0011 YYD αα += . 

We distinguish between α -functions belonging to different D -polynomials by labeling them with a super-
script index associated with the corresponding polynomial; k

iα  will indicate that implicant iα  is associated 

with the D -polynomial kD  The same implicant can be associated with different polynomials, so that 
j

i
k
i αα =  for arbitrary values of k  and j . 

Conceptually, a D -polynomial iD  can be interpreted as follows. If i
1α evaluates to 1, then ji YD = . If all 

of the explicit functions i
1α are equal to 0, then 0YDi =  which means that no output is produced (or an 

empty operator is to be performed).  
Let us define a product of two D -polynomials.  
Definition 2. Let 

( ) ij ii I i
D Y Yα α

∈
= +∑ 1 1

1 0 0 , and
( ) kj kk I k

D Y Yα α
∈

= +∑ 2 2
2 0 0 .  The product of 

1D  

and 2D , denoted as 21 DD D is defined by: ( ){ }ij kl i kD D Y Yα α= ⋅∑ 1 2
1 2D D ,  

over each pair of terms from 1D  and 2D , including the implicit terms 0
1
0Yα and 0

2
0Yα . Here 21

klij αα ⋅ is a 

logic product (AND) of the corresponding α -functions and ji YY D  is a combination of the respective 

operators. In other words: when 21
klij αα ⋅ evaluates to 1, both iY and kY are computed concurrently.  

Lemma 1. An arbitrary D  -polynomial iD  can always be represented as follows: 

( )i i i j
i j j j ijj j

D Z Y Y Z Y Yα α= + = +∑ ∏0 0 0 0
 (3) 

where ij Z00 =α , and 0 0
j i

ij
α α=∏ . 

Proof. We will demonstrate that the product of ( )00YYZ j
ij

i
j α+  is equal to the D -polynomial with the same 

coefficients. First, notice that by definition all explicit functions are pairwise orthogonal, so that 
0=⋅ k

i
kj

i
j YZYZ , for kj ≠ . Furthermore, orthogonality of the functions and the completeness condition 

i
j

j
i αα =0  that must be satisfied by each D -binomial imply that ,Z k

i
i
j 0α⊂  for jk ≠ . Hence 

.ZZ i
j

k
i

i
j =⋅ 0α  Also, notice that the concatenation { }0YYj D  means that both operators jY  and 0Y  need to 

be performed simultaneously. Since 0Y  is a dummy operator, only jY has to be computed; 

hence { } jj YYY =0D . Finally, orthogonality and completeness conditions of α -functions imply 

that ,
j

j
i 10 =∪ α j

i
i

00 αα ⊂ , ,,& k
i

j
i

i …000 ααα ⊂  ,
j

j
i

i ∏⊂ 00 αα  so that ,
j

ij
i∏ = 00 αα  

Therefore, the subsequent multiplication of the consecutive terms of expression (3) yields 



 

{ } { } { } { }( ) ( )

( ) ( )

2
2 1 2

1 2 1 2 1 0 1 0 2 0 2 0 0 0 0 0 0 0
1

2
1 2

1 1 2 2 0 0 0 0 0
1

m
i i i i i i j

i i i j j i
j

m
i i i j

i i j j i
j

Z Z Y Y Z Y Y Z Y Y Y Y Y Y

Z Y Z Y Y Z Y Y

α α α α α α

α α α

−

=

−

=

⋅ + ⋅ + ⋅ + ⋅ + =

= + + ⋅ + =

∏

∏

D D D D

…

 

( ) ( )i i i m i i i i i i
m m i i i m m j jj

Z Y Z Y Z Y Y Z Y Z Y Z Y Y Z Y Yα α α α α= + + + + ⋅ ⋅ ⋅ = + + + + = +∑1 2
1 1 2 2 0 0 0 0 1 1 2 2 0 0 0 0… … …

QED. 
Theorem 1. An arbitrary D  -polynomial iD  can always be represented as a product of D -binomials: 

( )( ) ,∏∑ +=+=
ijI

i
ii

i
ij

i
i

i

jji YYYYZD 0000 ααα  (4) 

where ij
00 αα = , and i

j
j

i 00 αα =∏ . 

Proof. Let ( ) ( )1 1 0 0 1 1 0 0
m m m m

m j j k kD Y Y Y Yα α α α= + +D . After performing the multiplication we have: 

{ } { } { } ( )

( ) ( )

m m m m m m m m m m m m m m m m
m j k j k k j k j k j k j k j k

m m m m m m m m m m m
j k j k j k j k j k

D Y Y Y Y Y Y Y Y Y

Y Y Y Y

α α α α α α α α α α α α α α α α

α α α α α α α α α α α

= ⋅ + ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ + ⋅ =

⋅ + ⋅ + ⋅ + ⋅ = + +

1 1 1 1 1 0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0

1 1 1 1 1 1 1 0 0 0 1 1 1 0 0

D D D  

Based on this, every logic function i
jZ  of arbitrary D -polynomial iD  may be presented as a product of 

binomials as follows:  

( ) ( )( )∏∑ +=+=
iI

i
ii

i
ij

i
iiI

i
ij

i
j YYYYZ 0000 αααα  (5) 

Substituting (5) into (3) results in (4). QED. 
An important conclusion from this theorem is that the product of D -polynomials can be always presented 
as a product of the corresponding terminal binomials. Subsequently, the terminal binomials can be 
multiplied to obtain higher level D -polynomials. Obviously, there are several ways to group terminal 
binomials to form a D -polynomial. Different grouping of terminal binomials yields different CMTBDD’s, 
resulting in different implementations of Boolean functions. This fact forms the basis of our decomposition 
approach.  

3.2 Decomposition of D -polynomials 
We construct an MTBDD corresponding to a system of D -polynomials. Different groupings of the terminal 
binomials lead to different implementations of the logic function represented by this system. It defines a way 
to decompose the logic function by manipulating the system of D -polynomials representing the function.  
The starting point of our method is the specification of a logic function in the form of an implicant table. An 
initial system of D -polynomials can be easily derived from the implicant table by associating a single D -
binomial with each product term of the table. The function can then be represented as a product of the D -
binomials. 
Theorem 2. A multiple-output Boolean function can always be implemented as a product of D -
polynomials. 
Proof. Represent the implicant table of the logic function as a product of D -binomials and multiply the 
orthogonal binomials to create the constituent D -polynomials. QED. 
In other words, an MTBDD corresponding to the product of D -polynomial can be realized as a parallel 
connection of subtrees corresponding to the individual D -polynomials. 

4.  Concurrent Decomposition 
The theoretical basic of the proposed decomposition algorithm is the following theorem of non-trivial 
disjunctive decomposition. 

4.1. Non-trivial disjunctive decomposition 
Let ( )1, , , 1, ,i i ny f x x i m= =… … be a system of logic functions defined by its implicant table 

{ } { }1 1, , , , , .n mX x x Y y y= =… …  We deal with a problem of disjunctive decomposition of this system, i.e. 

we consider a problem of representing the system in the following form: ( ) ( )1 2i iy X Xϕ ψ= + , where 

1 2,X X X⊂ , ϕ  and ψ  are implicant tables. Notice, that such a decomposition always exists in the case 



 

when 1X X= or 2X X= . We call such decomposition trivial. The following Theorem 2 defines the 
condition of existence of a non-trivial decomposition  
Theorem 2. The non-trivial disjoint decomposition of the function ( )1, , , 1, ,i i ny f x x i m= =… …  exists if 

and only if the function may be presented as an implicant table where each row includes "don’t-cares" in 
each of a column belonging to one of the following sets of variables: 1\X X or 2\X X . 
Proof.  
Sufficiency. If the implicant table satisfies the theorem conditions, than it may be naturally partitioned into 
two subtables according to functions ( )1i iy Xϕ=   and ( )2iy Xψ= . 

Necessity. If the system is presented in a form ( ) ( )1 2i iy X Xϕ ψ= + , than each of output variables iy  is 

equal to 0 only when both of the functions are equal to 0. Thus, if ( )1 1i Xϕ = and ( )2 1Xψ = , than 1iy =  

on these same vectors  independently from values of ( )1i Xϕ and ( )2Xψ  and, consequently, independently 

from values of the variables from the set ( )1 2\ \X X X X , QED. 

4.2 Decomposition algorithm 
Based on Theorem 2, the proposed decomposition algorithm uses a parallel sharing of the set of product 
terms representing the ON-set of the function into a set of logic blocks. It is followed by a hierarchical 
decomposition of blocks into a common header and a set of block fragments. This is accomplished by 
extracting a set of common factors (so-called prefixes) from the subset of product terms of the original 
implicant table.  
A product term or a part of the product term, is called a prefix. A set of all prefixes defines a block header. 
A subset of product terms with a common prefix is called a block. The remaining set of product terms, not 
included in the block, is called a remainder. A set of product terms obtained by extracting a common prefix 
from all the members of the block will form a block fragment or tail.  
Header is a fragment (subset of rows and columns) of the implicant table composed of the prefix variables. 
The header is selected in such a way as to provide minimization of the resulting CMTBDD. We propose to 
select the header by taking into account high percentage of “non-don’t care” cells (density) of the 
corresponding fragment the implicant table.  
By construction, the block header is a logic function whose ON-set is a superset of the ON-sets of the logic 
functions associated with the individual blocks. It will be implemented as an MTBDD whose internal nodes 
are associated with the prefix variables. The terminal nodes of the tree represent the block fragments, each to 
be implemented as a separate MTBDD.  
The algorithm divides the initial function into a block and a remainder. The block is a sum of products of 
simpler sub-functions with prefix terms. The group of prefixes – the dense fragment chosen for the BDD 
implementation – forms the header of the block and is, indeed, implemented as a MTBDD, with the sub-
functions playing the role of the terminals. Each of the sub-functions and the remainder function can be 
repeatedly decomposed in the same way, until no further decomposition is possible.  
The main part of a particular iteration of the decomposition algorithm consists of choosing the prefixes for 
the block. The prefixes are chosen one by one. Each time a prefix is chosen, all the prefixes not orthogonal 
to it and belonging to different output functions are moved to the remainder. Non-orthogonal prefixes 
belonging to the same function as the prefix in the block are included in the block. This continues until no 
more suitable prefixes are present. Thereafter the iteration proceeds to enumerate the tails and constructs the 
block’s MTBDD. The non-trivial tails and remainder serve as inputs to the next iterations. The trivial tails 
are implemented immediately as separate BDDs and do not require additional iterations. Example 2 
illustrates the idea of the algorithm.  

Example 2. The exemplary implicant table is presented in Table 1.  

Table 1: The implicant table for Example 2 

# X0 X1 X2 X3 X4 F0 F1 F2 F3 
0 0 1 – 0 – 1 0 0 0 
1 0 1 – 1 – 0 1 1 0 
2 – – 1 – 0 0 0 1 1 
3 – – – – 1 0 0 0 1 
4 1 0 – 1 – 1 1 0 0 



 

 

 
MTBDD and CMTBDD for the example are presented in Figures 1a and 1b correspondingly.  

 
 
 
 
 
 
 
 
 
 
 
 
a      b 

Figure 1. MTBDD (a) and the CMTBDD (b) for the Example 2. 

Terminal nodes of MTBDDs in Figure 1 are marked by decimal numbers of corresponding outputs. A 
standard implementation of the exemplary MTBDD, as an ordered BDD, is presented in Figure 1a. 
Figure 1b shows an implementation based on the proposed decomposition approach, in a form of 
CMTBDD. The CMTBDD comprises two portions – the block (left) and the remainder (right). The 
portions are assembled by the newly introduced parallel connection of MTBDDs. Notice that according 
to the product operation introduced in Definition 2, sets of terminal nodes in the CMBDD and in the 
standard MTBDD are not the same. It is the result of the concatenation operation between the original 
terminal nodes. The concatenation is calculated as the OR function between corresponding output 
vectors (see Definition 2). For example, terminal node 7 in the MTBDD form (a) corresponds to two 
terminal nodes 3 and 6 in the CMTBDD form (b). Obviously, such cases reflect the non-disjoint  
property, as in cubes 1 and 2 from Table 1. 
The proposed approach, presented by Example 2, allows achieving significant improvement: indeed, the 
standard MTBDD has 17 non-terminal nodes (NTNs), while CMTBDD has only 8 NTNs. 

5. Experiments 

The experiments demonstrate that the proposed decomposition, when successful, greatly reduces the size 
of the MTBDD. Its success strongly depends on the density of the implicant table. Therefore, its 
effectiveness can be predicted quite reliably by making some preliminary study of the implicant table 
functions' representation. 
The goal of the conducted experiments was comparing the effectiveness of the straightforward 
implementation of the MTBDD with the proposed concurrent decomposition. 
In the experiments the implicant table representations of the standard combinatorial-circuit benchmarks 
(LGSYNTH93) were used.  
The results are shown in the Tables 2. The first lists the benchmarks for which the Concurrent 
decomposition is more effective than the MTBDD of the initial implicant table without decomposition. 
The second shows the failures. 
The columns in the tables are as follows. For each benchmark, the number of the input variables and the 
implicant table density are followed by the four columns of the results. The two additional columns show 
the improvement/degradation ratios: from MTBDD to CMTBDD. The ratios are given in percents. Both 
tables are sorted by the ascending the implicant table density. 



 

Table 2. Benchmarks results, where: |CMTBDD|<|MTBDD| (left); |CMTBDD|>|MTBDD| (right) 

Density Density
[%] [%]

ALU1 12 18 982 25 2.55 ADD6 12 52 504 731 145.04
B12 15 29 155 145 93.55 RADD 8 57 90 143 158.89

DK48 15 31 3428 58 1.69 CLIP 9 59 189 376 198.94
DK27 9 34 79 22 27.85 Z4 7 61 52 101 194.23
CON1 7 37 16 15 93.75 ROOT 8 65 72 134 186.11
ALU2 10 39 264 150 56.82 SQR6 6 67 63 85 134.92

DUKE2 22 40 1435 326 22.72 SQN 7 69 81 116 143.21
ALU3 10 42 278 151 54.32 MLP4 8 73 240 345 143.75

MISEX3
C 14 43 10875 705 6.48 SAO2 10 73 95 157 165.26

WIM 4 50 15 10 66.67 DIST 8 73 125 326 260.8
F51M 8 53 255 155 60.78 BW 5 80 25 58 232
DK17 10 57 160 55 34.38 RD53 5 90 15 53 353.33
APLA 10 64 128 85 66.41
INC 7 79 39 35 89.74

CMTBDD

CMTBDD 
/ MTBDD 

[%]

CMTBDD 
/MTBDD 

[%] Title |X| MTBDDTitle |X| MTBDD CMTBDD

 

The above results show that the density of the implicant table is a consistent indicator of the success of 
the decomposition. The successful cases are mostly in the low-density area (Density up to 45%) and the 
unsuccessful ones are mostly in the high-density area (density at least 60%). The middle functions 
(density within 40-60%) are divided more or less evenly between the successes and the failures. 
Moreover, there are several examples where the high-density functions are successfully decomposed, and 
no examples where the method failed to work on low-density functions. 
Parallel decomposition, on the other hand, relies upon extracting dense fragments from the given 
implicant table, and treating the sparse remainders and tails separately. Therefore, a sparse implicant 
table can be easily dealt with by splitting them into a network of concurrently working MTBDDs. With 
dense implicant tables, choosing suitable blocks is difficult, and arbitrary choices lead to ineffective 
implementations.  

6. Conclusions  
The proposed in the paper decomposition approach is based on parallel connecting of multi terminal 
BDDs. By introducing the parallel connecting we have achieved an implementation of logic functions in 
a form of a structure desirable for effective routing. This structure called Concurrent MTBDD has 
advantages in comparison with conventional MTBDDs both from the point of locality of interconnected 
logic elements and from the point of the number of required nodes of the resulting diagram. It is easily 
transformable to VLSI implementations using deep submicron technology, where control over 
interconnect wiring and its delay becomes of primary importance.  
The theoretical background of the proposed approach is algebra of D -polynomials and the Theorem of 
the existence of the non-trivial disjunctive decomposition. The theorem serves as a justification of the 
proposed decomposition algorithm. Efficiency of the algorithm is evaluated on a number of benchmarks. 
The experiments show that the main parameter that has to be taken into account when using the proposed 
approach is the density of the corresponding implicant table (the percent of “non-don’t-care” cells). The 
proposed technique is highly effective if the density is relatively low (up to 45%).  
Notice that the proposed technique broadens the plurality of multi-output functions that can be 
implemented in the form of MTBDD. Indeed, benchmarks with a huge number of implicants, which 
cannot be handled by traditional techniques due to high complexity of these functions, can be now 
successfully implemented in the form of the proposed CMTBDD since the suggested technique performs 
partitioning of such multi-output functions and implements them as a net of interconnected fragments. 
The authors believe that the proposed structure and decomposition approach will facilitate the layout 
design and make this approach amenable to various implementations. 

References 
[1] Akers, S.B: A Rectangular Logic Array, IEEE Trans. on Computers, Aug. 1972, pp. 848-857. 



 

[2] Perkowski, M. Chrzanowska-Jeske, and Y. Xu: Lattice Diagrams Using Reed-Muller Logic, Proc. RM'97 
Conference, Oxford Univ., U.K., Sept. 1997, pp. 85 – 102.  

[3] Song, N, M. Perkowski, M. Charzanowska-Jeske: A New Design Methodology for Two-Dimensional Logic 
Arrays, VLSI Design, Vol.3, 1995, pp.315-332. 

[4] Perkowski, M., S. Grygiel: A Survey on Function Decomposition, Version IV, 1995. Available on the web. 

[5] M. Matsuura, T. Sasao, J.T. Butler, and Y. Iguchi: Bi-partition of shared binary decision diagrams, IEICE 
Transactions on Fundamentals of Electronics, Vol.E85-A, No.12, Dec. 2002, pp. 2693-2700.  

[6] Levin, I., Levit, V.: Controlware for Learning with Mobile Robots. Computer Science Education", 1998, 8(3), 
181-196. 

[7] Levin I., Stankovic R., Karpovsky M., Astola J.: Construction of Planar BDDs by Using Linearization and 
Decomposition. Proceedings of Fourteenth International Workshop on Logic and Synthesis, Lake Arrowhead, 
California, 2005, pp. 132-139.  
 


