

Designing of QCA Schemes by Boundary Functions

Vladimir Ostrovsky

Tel Aviv University,
Tel Aviv 69978, Israel

e-mail:
vladio@post.tau.ac.il

Ilya Levin
Tel Aviv University,

Tel Aviv 69978, Israel
e-mail:

i.levin@computer.org

Osnat Keren
Bar Ilan University,

Ramat Gan, Ramat Gan
52900, Israel,

e-mail:
kereno@eng.biu.ac.il

Abstract
A novel universal QCA gate is introduced and called a boundary comparator. This gate

implements a Boolean function in its boundary form, as a superposition of elementary boundary
functions or as threshold functions having weights equal to integer powers of 2. An array of the
boundary comparators is called Comparator based Programmable Array (CPA) and forms a
homogeneous regular structure programmable for implementing any logic function. The paper
describes a) presenting a Boolean function in its boundary form; b) structure of the boundary
comparator, and c) structure of the CPA. The proposed CPA is testable, reparable and debuggable.

1. Introduction
Progress in the manufacture of digital computational and control devices, their

microminiaturization, and the growing number of new applications, change the basic requirements to
such devices. An increase in complexity of a scheme implemented by a chip results in a rise of the
chip’s cost, mainly due to the fact that a wider chip area decreases the yield. In view of that, available
redundancy and simplicity of replacing any defective elements with the redundant elements have
important parts in the play. These same properties characterize the chip reparability i.e., its lifetime.
Another important parameter of the chip is its testability i.e., the suitability for revealing faults.
Testability characterizes suitability of the chip both for verification, and for concurrent checking or
off-line testing. Microminiaturization complicates the task of checking due to the following two
reasons. Firstly, internal poles of the chip are hardly accessible thus decreasing the amount of
information, which is required for making conclusions about its workability, presence or absence of
faults, and others. Secondly, it becomes more and more difficult to allocate structural elements in the
more complex chip. In turn, it hampers the testing, debugging and repairing of the chip. As the result,
the traditional optimization criterion steps aside and is presently replaced with criteria of structural
simplicity and testability of a scheme, which are more important for modern VLSI schemes.
The above considerations are fully applicable to quantum cellular automata (QCA). Moreover,
designing QCA schemes satisfying the above requirements will be hampered by the fact that the basic
element of the QCA is a three-input majority element. Most of the methods and software tools, which
are presently used for designing digital devices, deal with traditional additive forms of Boolean
functions: SOP and ESOP. Therefore, the methods of designing QCA, proposed in some papers [1- 4],
are based on transformation of such forms into QCA oriented forms. The aim of the transformations is
presenting a traditional scheme as a composition of predetermined logic blocks followed by their
replacement with specific scheme comprising majority and inventor elements. The structure of a
scheme synthesized in this manner is hardly connected with a functional description of that scheme,
which hampers its verification and testing. Such a scheme is problematic for modifying it when
debugging, it is also hard for reconfiguration and repairing.

In order to overcome the above-mentioned drawbacks, and to take into account specific properties
of the hardware at the early stage of functional description of the device to be designed, we propose a

principally novel approach in the present paper. We develop here an approach that is based on
representation of the scheme to be synthesized in a form of a superposition of specific threshold
functions. The specific of such a threshold function is in that weights of its inputs are different while
all being an integer power of 2. In order to distinguish such threshold functions we call them boundary
functions. Obviously, any Boolean function can be presented as a superposition of boundary functions.
Any superposition of boundary functions has a canonical implementation as a majority scheme with a
minimal number of invertors. Such an implementation possesses homogeneity, can be easily tested and
allows quite simple replacement of a defective element with a redundant one.

The material is presented in the following order. Section 2 comprises a description of basic
quantum elements and an overview of known methods for designing QCA. Section 3 describes
boundary functions and some of their properties. Section 4 relates to synthesis of quantum
comparators. Implementation of QCA in the form of a Comparator based Programmable Arrays (CPA)
is presented in Section 5. In the Conclusion, we discuss advantages and drawbacks of the proposed
method of design, as well as ways for optimizing the schemes to be synthesized.

2. Logic Synthesis by QCA
QCA cell contains four quantum dots and two mobile electrons. Due to Coulombic interactions, the
electron pair assumes one of the two configurations. These configurations are considered as digital
states. A majority gate is a primitive gate in QCA that implements the
function . The fundamental QCA logic primitives also include a QCA

wire and QCA inverter. This fact initiated a number of studies aimed to find an effective method for
synthesis of QCA based logic structures. Since the problem of the optimal majority based syntheses in
NP-complete [5] a number of heuristic approaches were developed [1- 4].
The majority gate is a particular case of threshold gates. A methodology for synthesis QCA schemes
by threshold logic functions was studied in [6]. The Authors proposed a comprehensive threshold
network synthesis methodology.

Another important direction in designing the QCA circuits is using regular homogeneous
structures. A number of studies were done in using PLA-like structures as a basis for the QCA design
[7, 8]. Owing to its highly regular structure, such a PLA structure can be easily fabricated using a
bottom-up self-assembly process. The implementation of the nano PLA can be supported by multiple
nanoelectronic devices under a crossbar based architecture.
In the present paper, we combine together a threshold function based synthesis and the homogeneous
array structure. We restrict the basic set of threshold functions by a specific class having weights equal
to integer powers of 2 and construct a universal gate comprising such functions, called a boundary
comparator. This comparator being arranged into array structure and called Comparator based
Programmable Array (CPA) forms a homogeneous regular structure that can be programmed for
implementation of any desired logic function.

3. Boundary Functions

Definition. Let a boundary function be such a threshold function, which has weights of its
arguments equal to an integer power of 2:

,
where n - the number of arguments of the function.

Let us use a symbol to indicate a boundary function:

 (1)

where are the arguments of the function, and a is the bound.
Let us assume that the order of arguments in the equation (1) defines their weight, that is:

.

If the arguments and their weights are known from a context, the list of arguments in the equation

(1) can be dropped and the function can be written down in its shortened form: .
By using the weights, each input vector is associated with a number. Clearly, different input vectors

have different numbers. Thus, the -dimensional cube is projected onto the closed

interval .

On this interval, the bound separates the set of input vectors where the function equals 1 from
the set of vectors where the function equals 0, as shown on Fig. 1.

Fig 1. Graphical representation of the boundary function

Any logic function may be defined by a set , of bounds or points on the axis,

where, . For example, let for the input vectors
associated with the integer values {3,4,5,6,10,11,12,13}. It is clear that the value of the function is

changed in the following three points: .
Let a function defined by a set of bounds be denoted as

or , or if the weights of variables are

known: . For example, .
The following equality holds,

 (2)

This equality allows expressing the value of an arbitrary function that is defined by its set of
bounds. For example:

 (3)

Both the logical product and the logical sum functions can be expressed as a single boundary
function each, as follows:

 (4)
Note, the SOP and the POS canonical representations of Boolean functions can be considered as

particular case of the boundary based representations.
Taking into account (4), formula (2) can be transformed to:

 (5)

In Section 5, we show that if each of arguments of the function is represented in dual-rail form
(both direct and negated values are available) the boundary functions form the universal or functionally
complete basis in the Boolean algebra.

4. Quantum comparator

Let us represent a boundary function where in a form of
superposition of three-input majority functions. In this section we address the bound by using its

binary representation, . We use a simple disjoint decomposition [9]
for this purpose. Notice, that any boundary function has the simple disjoint decomposition.

Let us present a bound a as a concatenation of two strings: . This presentation of

divides the ordered set of arguments into the two disjoint subsets and ,
. For example, let and .

Define as a concatenation of the numbers and : . Consequently:

and .
Theorem 1. Any boundary function has a simple disjoint decomposition:

 (6)

(Due to the limitations on the paper the size all theorems are presented without proofs.)

Example: .

Appling (6) for the particular example, when and
we have:

Consequence 1.1.

 (7)

Example:

Applying the formula (7) recursively we have:
Consequence 1.2.

If , then:

. (8)

Otherwise, the boundary function does not depend on .
Example:

The scheme of the comparator is built according to (8), and shown in Fig 2a. A similar solution was
proposed in [10]. However, in the present paper the solution is obtained analytically on the base of
properties of the boundary functions.

Our scheme of the comparator can be considered as a cascade of universal programmable blocks,
known as Maitra cascade [11]. According to that, one of inputs of the majority element of our scheme
(-input) has to be considered a control input, while two other inputs are information inputs. The

universal programmable block is programmed by its control inputs for implementation of one of two
possible functions: the AND and the OR . The Maitra cascades are well studied. At
the same time, in most of the studies the universal programmable block of the cascade has at least two
control inputs. Furthermore in such studies, the universal programmable block can be programmed for
implementation of non-monotonic functions, which are inappropriate for QCA-based logic design.

We will use the presented comparator as a basic element in QCA schemes. The graphical notation
of the element is presented in Fig. 2b.

 a) b)

Fig. 2. QCA comparator; (a) scheme; (b) graphical notation

5. Implementation of QCA by Comparator based Programmable
Arrays
We propose to arrange the set of our comparator blocks into a homogeneous structure –

Comparator based Programmable Array (CPA) shown in Fig. 3a.

 a) b)

Fig. 3. Comparator based QCA array: a) one-rail input variables; b) dual-rail input variables

We use the CPA as the base of the QCA synthesis. The CPA can be programmed for

implementation of a certain function defined by its bounds . For this aim, inverse values of
binary codes of bounds are stored on the comparator’s inputs. The scheme is constructed according to
(5). The set of elements and type of their connection is universal and independent of the function to be
implemented.
Moreover, the functional description of the scheme is directly connected with its structure. Notice, the
scheme has the universal set of test input vectors. The scheme can be efficiently checked
concurrently since all boundary functions are monotonic; for their values always correct:

. The scheme also allows a simple repair procedure. Some of faulty comparators
can be replaced with fault-free reserve comparators. Finally, the scheme does not contain negations of
input variables. If this limitation is relaxed, i. e., it is allowed to use both direct and inverse values of
input variables then the QCA scheme can be inverter free according to the following theorem.

Theorem 2.

, where . (9)

Since the least significant bit of equals 1, then, to obtain all other bits have to be negated.

Thus, it is possible to implement by using the negated values of input variables

and the bounds . The corresponding circuit is presented in Fig. 3.b. This scheme contains circuitry
enabling replacing faulty couples of boundary elements with a reserve couple. The reserve couple is
underlined by grey color. The replacement can be performed by using a mask M: each pair of
boundary elements corresponds a bit of the mask. If this bit is equal to 1, then a pair of boundary
elements is connected to the OR element forming the output vector; if this bit is equal to 0, then the
pair is disconnected.

Notice, that the number of comparators and, consequently, the QCA complexity depends of
weights of functions’ arguments or (which is the same) it depends on the order of arguments. For

example, if we change the order of arguments to in above discussed

function only two (instead of four) boundary points are required to specify the

function, that is, . The optimal ordering of variables can be
achieved by using correlation analysis [12] or other optimization methods.

6. Conclusions
We presented a novel universal quantum cellular automata gate - boundary comparator. We

introduced a Comparator based Programmable Array (CPA) that is based on this boundary comparator.
The CPA is a homogeneous regular structure that can be programmed for implementation of any
desired logic function.

We have developed theoretical fundamentals of the boundary functions used for representation of
logic functions by the boundary comparator. The boundary functions forms a functionally complete
system in the Boolean algebra. Each of logic function can be implemented by the boundary functions
and, consequently, by the boundary comparator. We demonstrated implementation of the QCA
schemes by the proposed CPA structures.

The main advantage of the proposed solution is its regularity, which, in turn, provides the
testability, a potential reconfigureability, reparability etc. The array homogeneous structure is also
desirable form manufacturing point of view.

We did not discuss methods for the optimal synthesis of CPA based QCA schemes. Obviously,
this issue is an important direction of the future study. Nevertheless, we believe that even without
optimization the proposed CPA structure will be useful in designing QCA logic circuits.

References
 [1] David Y. Feinstein and Mitchell A. Thornton.: ESOP Transformation to Majority Gates for
Quantum-dot Cellular Automata Logic Synthesis, Proceedings of the Workshop on Applications of the

Reed-Muller Expansion in Circuit Design and Representations and Methodology of Future Computing
Technology (RMW), May 16, 2007, pp. 43-50.

[2] Z. Huo, Q. Zhang, S. Haruehanroengra and W. Wang.: Logic optimization for majority gate-based
nanoelectronic circuits”, Proceedings of the IEEE International Symposium on Circuits and Systems.
2006, pp. 1307-1310.

[3] Rumi Zhang, Konrad Walus, Wei Wang, and Graham A. Jullien: A Method of Majority Logic
Reduction for Quantum Cellular Automata, IEEE Transaction on Nanotechnology, vol. 3, No. 4,
December, 2004, pp. 443- 450.

[4] Mariam Momenzadeh, Jing Huang, Mehdi B. Tahoori, Fabrizio Lombardi: Characterization, Test,
and Logic Synthesis of And-Or-Inverter (AOI) Gate Design for QCA Implementation, IEEE
Transaction on Computer-Aided Design of Integrated Circuits and System, vol. 24, No. 12, December
2005, pp. 1881- 1893.

[5] V. Varshavsky: Logic Design and Quantum Challenge, Workshop on Physics and Computer
Modeling of Devices Based on Low-dimensional Structures (PHYSICS'95), November 1995, pp. 134.

[6] Rui Zhang, P. Gupta, Zhong Lin, N. K. Jha: Threshold network synthesis and optimization and its
application to nanotechnologies, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 24, no. 1, Jan. 2005, pp. 107-118.

[7] Xiaobo Sharon Hu Michael Crocker Michael Niemier: Minjun Yan Gary Bernstein. PLAs in
Quantum-dot Cellular Automata, Proceedings of the 2006 Emerging VLSI Technologies and
Architectures (ISVLSI’06). March 2006, 6 pp.

[8] Wenjing Rao, Alex Orailoglu, Ramesh Karri: Fault Tolerant Approaches to Nanoelectronic
Programmable Logic Arrays, 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2007. DSN '07, pp. 216 –224.

[9] R. L. Ashenhurst. The decomposition of switching functions, Proc. of an Intl. Symposium on
Theory of Switching, April 2-5, 1957, Ann. Computation Lab. Harvard University, 1959, vol.29, pp.
74-116,.

[10] Heinz-Juergen Lohmann: Comparator circuit for two N-digit binary codes, United States Patent
4012714. Mar 15, 1977.

[11] G. Fantauzzi: NORNAND Maitra Cascades, IEEE Transactions on Computers Nov. 1968
Volume: C-17, Issue: 11, 1074 – 1080.

[12] M.G. Karpovsky: Finite Orthogonal Series in the Design of Digital Devices, New York, Wiley,
1976.

