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Abstract 
A novel universal QCA gate is introduced and called a boundary comparator. This gate 

implements a Boolean function in its boundary form, as a superposition of elementary boundary 
functions or as threshold functions having weights equal to integer powers of 2. An array of the 
boundary comparators is called Comparator based Programmable Array (CPA) and forms a 
homogeneous regular structure programmable for implementing any logic function. The paper 
describes a) presenting a Boolean function in its boundary form; b) structure of the boundary 
comparator, and c) structure of the CPA. The proposed CPA is testable, reparable and debuggable. 

1. Introduction 
Progress in the manufacture of digital computational and control devices, their 

microminiaturization, and the growing number of new applications, change the basic requirements to 
such devices. An increase in complexity of a scheme implemented by a chip results in a rise of the 
chip’s cost, mainly due to the fact that a wider chip area decreases the yield. In view of that, available 
redundancy and simplicity of replacing any defective elements with the redundant elements have 
important parts in the play. These same properties characterize the chip reparability i.e., its lifetime. 
Another important parameter of the chip is its testability i.e., the suitability for revealing faults. 
Testability characterizes suitability of the chip both for verification, and for concurrent checking or 
off-line testing. Microminiaturization complicates the task of checking due to the following two 
reasons. Firstly, internal poles of the chip are hardly accessible thus decreasing the amount of 
information, which is required for making conclusions about its workability, presence or absence of 
faults, and others. Secondly, it becomes more and more difficult to allocate structural elements in the 
more complex chip. In turn, it hampers the testing, debugging and repairing of the chip. As the result, 
the traditional optimization criterion steps aside and is presently replaced with criteria of structural 
simplicity and testability of a scheme, which are more important for modern VLSI schemes.   
The above considerations are fully applicable to quantum cellular automata (QCA). Moreover, 
designing QCA schemes satisfying the above requirements will be hampered by the fact that the basic 
element of the QCA is a three-input majority element. Most of the methods and software tools, which 
are presently used for designing digital devices, deal with traditional additive forms of Boolean 
functions: SOP and ESOP. Therefore, the methods of designing QCA, proposed in some papers [1- 4], 
are based on transformation of such forms into QCA oriented forms. The aim of the transformations is 
presenting a traditional scheme as a composition of predetermined logic blocks followed by their 
replacement with specific scheme comprising majority and inventor elements. The structure of a 
scheme synthesized in this manner is hardly connected with a functional description of that scheme, 
which hampers its verification and testing. Such a scheme is problematic for modifying it when 
debugging, it is also hard for reconfiguration and repairing. 

In order to overcome the above-mentioned drawbacks, and to take into account specific properties 
of the hardware at the early stage of functional description of the device to be designed, we propose a 



 

principally novel approach in the present paper. We develop here an approach that is based on 
representation of the scheme to be synthesized in a form of a superposition of specific threshold 
functions. The specific of such a threshold function is in that weights of its inputs are different while 
all being an integer power of 2. In order to distinguish such threshold functions we call them boundary 
functions. Obviously, any Boolean function can be presented as a superposition of boundary functions. 
Any superposition of boundary functions has a canonical implementation as a majority scheme with a 
minimal number of invertors. Such an implementation possesses homogeneity, can be easily tested and 
allows quite simple replacement of a defective element with a redundant one. 

The material is presented in the following order. Section 2 comprises a description of basic 
quantum elements and an overview of known methods for designing QCA. Section 3 describes 
boundary functions and some of their properties. Section 4 relates to synthesis of quantum 
comparators. Implementation of QCA in the form of a Comparator based Programmable Arrays (CPA) 
is presented in Section 5. In the Conclusion, we discuss advantages and drawbacks of the proposed 
method of design, as well as ways for optimizing the schemes to be synthesized. 

2. Logic Synthesis by QCA 
QCA cell contains four quantum dots and two mobile electrons. Due to Coulombic interactions, the 
electron pair assumes one of the two configurations. These configurations are considered as digital 
states. A majority gate is a primitive gate in QCA that implements the 
function . The fundamental QCA logic primitives also include a QCA 

wire and QCA inverter. This fact initiated a number of studies aimed to find an effective method for 
synthesis of QCA based logic structures. Since the problem of the optimal majority based syntheses in 
NP-complete [5] a number of heuristic approaches were developed [1- 4].    
The majority gate is a particular case of threshold gates. A methodology for synthesis QCA schemes 
by threshold logic functions was studied in [6]. The Authors proposed a comprehensive threshold 
network synthesis methodology.  

Another important direction in designing the QCA circuits is using regular homogeneous 
structures. A number of studies were done in using PLA-like structures as a basis for the QCA design 
[7, 8]. Owing to its highly regular structure, such a PLA structure can be easily fabricated using a 
bottom-up self-assembly process. The implementation of the nano PLA can be supported by multiple 
nanoelectronic devices under a crossbar based architecture. 
In the present paper, we combine together a threshold function based synthesis and the homogeneous 
array structure. We restrict the basic set of threshold functions by a specific class having weights equal 
to integer powers of 2 and construct a universal gate comprising such functions, called a boundary 
comparator. This comparator being arranged into array structure and called Comparator based 
Programmable Array (CPA) forms a homogeneous regular structure that can be programmed for 
implementation of any desired logic function.  

3. Boundary Functions 

Definition. Let a boundary function be such a threshold function, which has weights  of its 
arguments equal to an integer power of 2:  

, 
where n  -  the number of arguments of  the function. 

Let us use a symbol to indicate a boundary function:  

                                              (1) 

where   are the arguments of the function, and a is the bound. 
Let us assume that the order of arguments in the equation (1) defines their weight, that is: 



 

. 

If the arguments and their weights are known from a context, the list of arguments in the equation 

(1) can be dropped and the function can be written down in its shortened form: . 
By using the weights, each input vector is associated with a number. Clearly, different input vectors 

have different numbers.  Thus, the -dimensional cube is projected onto the closed 

interval .  

On this interval, the bound   separates the set of input vectors where the function equals 1 from 
the set of vectors where the function equals 0, as shown on Fig. 1. 

 
Fig 1. Graphical representation of the boundary function 

Any logic function may be defined by a set  , of bounds or points on the axis, 

where, . For example, let  for the input vectors 
associated with the integer values {3,4,5,6,10,11,12,13}. It is clear that the value of the function is 

changed in the following three points: . 
Let a function defined by a set of bounds  be denoted as 

or , or if the weights of variables are 

known: . For example, .  
The following equality holds,  

  (2) 

This equality allows expressing the value of an arbitrary function that is defined by its set of 
bounds. For example: 

   (3) 

Both the logical product and the logical sum functions can be expressed as a single boundary 
function each, as follows:  

     (4) 
Note, the SOP and the POS canonical representations of Boolean functions can be considered as 

particular case of the boundary based representations.  
Taking into account (4), formula (2) can be transformed to: 



 

  (5) 

In Section 5, we show that if each of arguments of the function is represented in dual-rail form 
(both direct and negated values are available) the boundary functions form the universal or functionally 
complete basis in the Boolean algebra.  

4. Quantum comparator 

Let us represent a boundary function where  in a form of 
superposition of three-input majority functions. In this section we address the bound by using its 

binary representation, . We use a simple disjoint decomposition [9] 
for this purpose. Notice, that any boundary function has the simple disjoint decomposition. 

Let us present a bound a as a concatenation of two strings: . This presentation of 

divides the ordered set  of arguments into the two disjoint subsets and , 
. For example, let  and . 

Define  as a concatenation of the numbers and : . Consequently: 

and . 
Theorem 1. Any boundary function has a simple disjoint decomposition: 

      (6) 

 
(Due to the limitations on the paper the size all theorems are presented without proofs.) 

Example: . 

Appling (6) for the particular example, when  and 
we have: 

Consequence 1.1. 
 

     (7) 

Example:  

Applying the formula (7) recursively we have: 
Consequence 1.2. 

If , then: 

.  (8) 

Otherwise, the boundary function does not depend on . 
Example:  

 

The scheme of the comparator is built according to (8), and shown in Fig 2a. A similar solution was 
proposed in [10]. However, in the present paper the solution is obtained analytically on the base of 
properties of the boundary functions.  

Our scheme of the comparator can be considered as a cascade of universal programmable blocks, 
known as Maitra cascade [11]. According to that, one of inputs of the majority element of our scheme 
( -input) has to be considered a control input, while two other inputs are information inputs. The 



 

universal programmable block is programmed by its control inputs for implementation of one of two 
possible functions: the AND and the OR . The Maitra cascades are well studied. At 
the same time, in most of the studies the universal programmable block of the cascade has at least two 
control inputs.  Furthermore in such studies, the universal programmable block can be programmed for 
implementation of non-monotonic functions, which are inappropriate for QCA-based logic design.  

We will use the presented comparator as a basic element in QCA schemes. The graphical notation 
of the element is presented in Fig. 2b. 

 
                                         a)                                                                b) 

Fig. 2. QCA comparator; (a) scheme; (b) graphical notation 

5. Implementation of QCA by Comparator based Programmable 
Arrays 
We propose to arrange the set of our comparator blocks into a homogeneous structure – 

Comparator based Programmable Array (CPA) shown in Fig. 3a. 

 
 

                                  a)                                                      b) 

Fig. 3. Comparator based QCA array: a) one-rail input variables; b) dual-rail input variables 

 



 

We use the CPA as the base of the QCA synthesis. The CPA can be programmed for 

implementation of a certain function defined by its bounds . For this aim, inverse values of 
binary codes of bounds are stored on the comparator’s inputs. The scheme is constructed according to 
(5). The set of elements and type of their connection is universal and independent of the function to be 
implemented.  
Moreover, the functional description of the scheme is directly connected with its structure. Notice, the 
scheme has the universal set of  test input vectors. The scheme can be efficiently checked 
concurrently since all boundary functions are monotonic; for their values always correct: 

. The scheme also allows a simple repair procedure. Some of faulty comparators 
can be replaced with fault-free reserve comparators.  Finally, the scheme does not contain negations of 
input variables. If this limitation is relaxed, i. e., it is allowed to use both direct and inverse values of 
input variables then the QCA scheme can be inverter free according to the following theorem. 

Theorem 2.  

,  where .    (9) 

Since the least significant bit of  equals 1, then, to obtain all other bits have to be negated. 

Thus, it is possible to implement by using the negated values of input variables 

and the bounds . The corresponding circuit is presented in Fig. 3.b. This scheme contains circuitry 
enabling replacing faulty couples of boundary elements with a reserve couple. The reserve couple is 
underlined by grey color. The replacement can be performed by using a mask M: each pair of 
boundary elements corresponds a bit of the mask. If this bit is equal to 1, then a pair of boundary 
elements is connected to the OR element forming the output vector; if this bit is equal to 0, then the 
pair is disconnected. 

Notice, that the number of comparators and, consequently, the QCA complexity depends of 
weights of functions’ arguments or (which is the same) it depends on the order of arguments. For 

example, if we change the order of arguments to in above discussed 

function only two (instead of four) boundary points are required to specify the 

function, that is, . The optimal ordering of variables can be 
achieved by using correlation analysis [12] or other optimization methods.  

6. Conclusions 
We presented a novel universal quantum cellular automata gate - boundary comparator. We 

introduced a Comparator based Programmable Array (CPA) that is based on this boundary comparator. 
The CPA is a homogeneous regular structure that can be programmed for implementation of any 
desired logic function.  

We have developed theoretical fundamentals of the boundary functions used for representation of 
logic functions by the boundary comparator. The boundary functions forms a functionally complete 
system in the Boolean algebra. Each of logic function can be implemented by the boundary functions 
and, consequently, by the boundary comparator. We demonstrated implementation of the QCA 
schemes by the proposed CPA structures.   

The main advantage of the proposed solution is its regularity, which, in turn, provides the 
testability, a potential reconfigureability, reparability etc. The array homogeneous structure is also 
desirable form manufacturing point of view. 

We did not discuss methods for the optimal synthesis of CPA based QCA schemes. Obviously, 
this issue is an important direction of the future study. Nevertheless, we believe that even without 
optimization the proposed CPA structure will be useful in designing QCA logic circuits. 
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