
Reduction of the Number of Paths in Binary Decision
Diagrams by Linear Transformation of Variables

Osnat Keren
Bar Ilan University, Israel

kereno@macs.biu.ac.il

Ilya Levin,
Tel-Aviv University, Israel

ilia1@post.tau.ac.il

Radomir S. Stankovic
University of Nis, Serbia

rstankovic@bankerinter.net

Abstract
The paper deals with the problem of counting and minimizing the number of paths

in Binary Decision Diagrams. The suggested approach uses the linear transform of initial
variables and is based on a newly introduced weighted autocorrelation function. It is shown
that the total number of paths in BDD is the sum of values of a weighted autocorrelation
function. The efficiency of the proposed technique is illustrated on a number of benchmarks.

1 Introduction

Binary Decision Diagrams (BDD) and Multi Terminal Binary Decision Diagrams (MTBDD) are
forms of representing a Boolean function by an acyclic directed graph. This representation is
convenient for several applications like synthesis and formal verification. CAD tools for syn-
thesis and verification benefit when the size of the BDD and the number of paths are reduced.
Massive research has been done to reduce the memory size by static and dynamic algorithms for
reordering the BDD nodes and by replacing them by a linear combination of the input variables,
see for example [4] and references therein.

In [1], Dubrova and Miller showed that ”the number of nodes in a reduced ordered BDD is not
a monotonically increasing function of the number of implicants in a disjoint cover, represented
by the paths of this BDD”. Hence the criterion for minimizing the number of nodes in a BDD
doesn’t necessarily obtains a smaller number of paths.

Recently Fey and Drechsler [2] suggested a dynamic number of paths minimization procedure
by reordering of variables. The technique is based on nodes swapping and modified sifting with
the acceptance criterion formulated as the minimal number of paths. This approach reduces
the number of paths in the BDD for standard benchmarks functions. Another approach, based
on evolutionary algorithm for minimizing the number of paths was introduced in [3]. The
evolutionary algorithm requires a predefined set of parameters. A successful parameter setting
may give improvement over the modified sifting discussed in [2].

The present paper investigates two issues concerning the number of paths: a) analytical for-
mulation of the number of paths based on a newly introduced weighted autocorrelation function,
b) a deterministic procedure towards minimization of the number of paths in a BDD. Several
ways to count the number of paths in a BDD are described. The conventional way is an iterative
bottom up counting: the leaves of the binary tree are assigned with an initial weight and the
tree is folded up to its root while updating the weights. The number of paths is the weight of the
root node. In this way, the calculation is done per node and the number of paths increases per
level. In this paper, the number of paths is calculated recursively by starting from the bottom
of the binary tree with the maximal possible number of paths in the corresponding decision tree
and subtracting the number of redundant paths per level while folding the tree. The method
is based on the fact that the number of redundant paths at a level i is the value of the weighted
autocorrelation function of the i’th input variable.

The paper introduces a deterministic method for reducing the number of paths by replacing
the original input variables by their linear combination, the technique is known as lineariza-



tion. The linearized BDD of a given function f is defined by a linear transformation σ and
a the corresponding linearly transformed function fσ, where f(x) = fσ(σx). The linear trans-
formation σ can be described as a nonsingular matrix. When σ is a permutation matrix, the
linearization becomes reordering. Linearization based on the total autocorrelation function,
defined by Karpovsky in [5], reduces the implementation complexity of a circuit measured as
the number of two-input AND/OR circuits required. In [4] the linearization was employed to
reduce on average the number of nodes in a BDD. However, since the number of paths is a
linear function of the weighted autocorrelation function, the linearization (or even reordering by
the autocorrelation values) always reduces the number of paths.

The paper is organized as follows. The next Section 2 includes mathematical background.
In Section 3 we discuss methods for counting the number of paths and the relation between
the number of paths and the autocorrelation function. Section 4 formulates the linearization
problem and describes the paths minimization procedure. Experimental results on standard
benchmark functions are presented in Section 5. The conclusions summarizing the results are
presented in Section 6.

2 Preliminaries

Consider a multi-output logic function of n input variables and k outputs, f : GF (2n) → GF (2k).
The input pattern x is an element of GF (2n) and can be represented as a linearly combination of
the n input variables {xi}n−1

i=0 , where each xi is the binary vector corresponding to 2i in base 2.
The set of xi’s form a normal basis of GF (2n). For example, in GF (24) the element x = (1001)
is a linear combination of (1000) + (0001) = x3 + x0. Clearly, any set of n independent elements
of GF (2n) form a basis.

A MTBDD of a multi-output function is a directed acyclic graph with at most 2k terminal
nodes (leaves), each nonterminal node has an index to one base vector and has two outgoing
edges. The outputs can be considered as vectors in GF (2)k, in this case there are k BDDs that
may share nodes (called Shared BDDs (SBDD)). An ordered BDD (or a MTBDD) is a BDD
where the base vectors appear in some fixed order and once at each path. Given the order of
the base vectors, it is possible to reduce the number of nodes by a) eliminating nodes whose
outgoing edges point to the same subtree. b) sharing all equivalent subtrees. The Reduced
Ordered BDD is called ROBDD. When it is clear from the context we omit the prefix and hence
MTBDD, ROBDD, ROMTBDD, SBDD etc. are all referred as a BDD.

The size of a BDD is the number of nonterminal nodes and constant nodes. Usually the
normal base is used; the root of the tree is xn−1 and a node associated with xi descends from
xi+1. However it is possible to reduce the BDD size by reordering the base vectors [7] or by
replacing them with a different set of base vectors [4]. The later operation is called linearization.

For a given order of base vectors, the node reduction is done in steps starting from the
bottom of the binary tree. Each step, leaves that are rooted from the same node and carry the
same value are merged and the tree is folded. Folding a tree means eliminating the lower level
by increasing the alphabet size of the leaves. For example, consider the function f1(x2, x1, x0)
of three input variables and two outputs defined in Table 1. The folding of f1 is described in
Figure 1.

x2x1x0 f1(x2, x1, x0)
000 00 0
001 01 1
010 00 0
011 01 1
100 00 0
101 01 1
110 10 2
111 11 3

Table 1: Truth table of f1(x2, x1, x0)

The formal definition of folding is the following. Let vx stand for the decimal value of a
binary vector x. Denote by f i : GF (2)n−i → GF (2k2i

) ,0 < i < n, the folded function of level i,



Figure 1: The folding of f1(x2, x1, x0) by steps: a) Original BDD, b) BDD after folding with
respect to x0, c) After folding with respect to x0 and x1 , and d) BDD after folding with respect
to x0, x1 and x2.

and let f0 = f and (yn−1−i, . . . y1, y0) = (xn−1, . . . xi+1, xi), then

f i (yn−1−i, . . . y1, y0) =
∑

x∈GF (2)i

(2k)vxf(yn−1−i, . . . y1, y0, xi−1, . . . x1, x0)

Let u ∈ GF (2k) an output value of a multi-output function, the characteristic function of u
denoted by fu is a Boolean function from GF (2)n to GF (2),

fu(x) =
{

1 f(x) = u
0 otherwise

The autocorrelation function of fu is

Ru(τ) =
∑

x∈GF (2m)

fu(x)fu(x ⊕ τ).

Denote by δi the binary vector of the length n that represents the decimal value 2i in base two.
Ru(δ0) equals to the number of leaves rooted from the same node and carry the value u.

The w-weighted autocorrelation function, Rw(τ), is defined as

Rw(τ) =
∑

u∈GF (2k)

wuRu(τ) (1)

where {wu}u∈GF (2k) are the set of weights. The total autocorrelation function defined in [5] is
obtained from the weighted autocorrelation by assigning the value 1 to all the weights.

3 Relation between the number of paths and the autocor-
relation function

A planar BDD or a Binary Decision Tree (BDT) is derived from a complete binary decision
tree by eliminating nodes whose edges are pointing to the same subtrees, but without sharing
equivalent subtrees that are not rooted from the same node. It is well known that for a given
order of variables, the number of paths in a BDD is equal to the number of paths of the equivalent
planar BDD. Therefore the number of paths of a given BDD is the number of edges connected
to the terminal nodes of the equivalent planar BDD.

The number of paths in a planar BDD can be calculated recursively starting from the bottom
of the binary tree, by assigning weights to the leaves of the folded functions. Each output value
u ∈ GF (2k) of the original function f , is assigned with a weight c(0)

u = 1. The leaves of the BDD
of the folded function f i represent the output values u ∈ GF (2k)2

i

where the symbol u is a pair
of two symbols (um, ul) over GF (2k)2

i−1
. The leaves are assigned with weights c(i)

u where

c(i)
u =

{
c(i−1)
um + c(i−1)

ul um $= ul

c(i−1)
um um = ul

(2)



c(i)
u equals to the number of paths connected to the nonterminal nodes of the subtree that the

leaf u represents. Note that the number of distinct values of u’s of the folded function f at the
level i is at most 2n−i. At the upper level there is a single u, u = (f(2n − 1), . . . f(2), f(1), f(0))
and therefore the number of paths of a BDD is c(n).

For example, the path count of f1 described in Table 1 is the following,

level c − weights
0 c0 = c1 = c2 = c3 = 1

1 c10 = c1 + c0 = 2
c32 = c3 + c2 = 2

2 c1010 = c10 = 2,
c3210 = c32 + c10 = 4

3 c32101010 = c3210 + c1010 = 6

Thus, the BDD of f1 has six paths.
Let us discuss a different way to count the number of paths by using a weighted autocorrela-

tion function. The computation is done per level rather than per node. The proposed method to
reduce the number of paths by a linear transform of the input variables is based on representing
of the number of paths as a linear function of the weighted autocorrelation function.

Denote by N i
u the number of ones of the characteristic function f i

u of the folded function f i

at the level i and define Ci as the accumulated paths at the level i,

Ci =
∑

u∈GF (2k2i )

N i
uci

u.

Clearly
C0 =

∑

u∈GF (2k)

N0
uc0

u =
∑

u∈GF (2k)

N0
u = 2n.

The following Theorem 1 states that the number of accumulated paths at the level i depends
on the number of accumulated paths at the level i and the weighted autocorrelation of the folded
functions;

Theorem 1 Let Rc,i stands for the weighted autocorrelation of the folded function f i at the
level i with weights {ci

u} as defined in (2), then

Ci = Ci−1 − 0.5Rc,i−1(1) (3)

The accumulated number of paths at the level i is decreasing as i is increasing. From the
definition of the Ci’s it is clear that Nn = 1 and therefore,

Lemma 1 The number of paths of the BDD equals Cn.

Moreover,

Theorem 2 Let Rc,i stands for the weighted autocorrelation of the folded function f i at the
level i with weights {ci

u} as defined in (2). Then the number of paths in the corresponding BDD
equals to

Cn = 2n − 0.5
n−1∑

i=0

Rc,i(1). (4)

In other words, the number of paths is directly related to the autocorrelation function, and
the higher the weighted autocorrelations values at the corresponding δ0 are, the smaller the
number of paths.



4 Minimization of the number of paths

A linear transform enables implementation of f as a superposition of a linear transform function
σ followed by a non-linear part, fσ, such that f(x) = fσ(σ(x)). The linearization problem is to
find a non-singular matrix σ such that the number of paths is reduced. From Theorem 2, the
accumulated number of paths in the BDD corresponding to fσ is Cn = 2n − 0.5

∑n−1
i=0 Rc,i

fσ
(δ0),

therefore, the optimal σ has the property that the weighted sum of the autocorrelation functions
Rc,i

fσ
(δ0) of the folded linearized function f i

σ is maximal.
Let T = (tn−1, . . . t1, t0) = σ−1, the weighted autocorrelation of the linearized function is

Rc
fσ

(x) = Rc
f (σ−1x) = Rc

f (Tx).

Since
Rc

fσ
(1) = Rc

f (T δ0) = Rc
f (t0),

the optimization problem can be formulated as follows:

Construct a set of vectors τi ∈ GF (2n−i), i = 0, 1, . . . n − 1, for which
∑n−1

i=0 Rc,i
f (τi) is

maximal.

The computational complexity of obtaining the optimal σ is NP-complete, therefore a greedy
algorithm is to be used. The suggested algorithm is similar to the K-procedure presented at [4]
for reducing the number of nodes in a BDD. The suggested algorithm starts from the bottom of
the binary tree, and constructs a set of n base vectors. At each level, a vector τ that carries the
maximal weighted autocorrelation value is chosen, and the corresponding τ̂ is added to the set
instead of one of the original vectors. In other words, at the level i, a vector τ̂i = (τi, 0, 0 . . . 0),
τi ∈ GF (2n−i), may replace a base vector δk , k ≥ i if its weighted autocorrelation satisfies

Rw,i(τi) ≥ Rw,i(τ)

for all τ ∈ GF (2n−i).

The linearization procedure for reduction of the number of paths:

Set c0
u = 1 for all u ∈ GF (2k)

Set i = 0

a. For all τ ∈ GF (2n−i) calculate the weighted autocorrelation function Rc,i
f (τ).

b. Determine τ that maximizes the weighted autocorrelation function. In the case that there are more
than one τ , choose one randomly.

c. Replace the node variable at level i by τ and fold the BDD.

d. Update the set of weights according to Eq.(2).

e. Set i = i + 1 and repeat the procedure until i = n − 1 or Rf (τ) = 0 for all calculated τ ’s.

5 Simulation results

In this section, we illustrate the theoretical results on a number of small MCNC benchmark
functions. The corresponding software was developed by using standard packages in MatLab,
however, existing programming packages for handling large switching functions can be equally
applied without restrictions. The performance of various algorithms are compared in terms of
the number of paths in the corresponding BDDs.
The columns of Table 2 are as follows; orig is the number of path of the original BDD. ordered is
the number of path when ordering the input variables by increasing autocorrelation values. This
corresponds to the T with column vectors of the Hamming weight restricted to 1. Kproc stands
for the number of paths in the BDD linearized using the K-procedure, and weights is the number
of paths of the BDD linearized using the suggested algorithm with weighted autocorrelation.

In general, reordering of variables in a BDD almost always reduces the number of paths
compared to the original BDD, and the linearization almost always reduces the number of paths
compared to the reordered BDD. The linearization algorithms, i.e. the K-procedure and the
suggested algorithm with the weighted autocorrelation, are greedy, hence, for small number of
inputs, the accumulated weights are not dominant and therefore the differences between Kproc
and weights are negligible.



Table 2: Number of paths in BDDs of benchmark functions

Benchmark n k orig ordered Kproc weights
clip 9 5 454 468 204 204

9sym 9 1 220 220 58 58
dk27 9 9 86 47 47 47
sao2 10 4 237 95 88 89
alu2 10 8 581 407 407 407
alu3 10 8 707 478 478 487
dk17 10 11 377 106 107 107
apla 10 12 264 161 168 166
add6 12 7 4096 4096 729 729
alu1 12 8 1754 1468 1468 1387

misex3c 14 14 15288 8924 8945 8882

6 Conclusions

This paper deals with a technique for minimizing the number of paths in a BDD. We showed
that the number of paths of a BDD is a linear function of a weighted autocorrelation function.
Therefore, the number of paths can be reduced by the linearization with respect to the values of
the autocorrelation function. The minimization objective is to construct a new set of base vectors
having maximal weighted autocorrelation values. These vectors define the linear transform
matrix σ and a linearized BDD having minimal number of paths.

A greedy deterministic procedure was suggested for deriving the linear transform matrix σ
and the linearized function fσ. When σ is a permutation matrix, the linearization is equivalent
to reordering. The proposed method increases the number of possible ways to reorder elements
in the truth vector of f , compared to the reorderings induced by reordering of variables, and due
to that, may further reduce the number of paths in BDDs. In addition, the method is effective
also in the case of symmetric functions, where reordering of variables cannot be used. The
suggested approach shows significant reduction in the number of paths of the linearized BDD in
comparison to the number of paths in the original BDDs for standard benchmark functions.

References

[1] E. V. Dubrova D.M. Miller, On Disjoint Covers and ROBDD Size, IEEE Pacific Rim Con-
ference on Communications, Computers and Signal Processing, 1999, pp. 162-164.

[2] G. Fey and R. Drechsler, Minimizing the number of paths in BDDs, In Symposium on
Integrated Circuits and System Design 2002, pp. 359-364, 2002.

[3] M. Hilgemeier N. Drechsler and R. Drechsler, Minimizing the Number of One-Paths in BDDs
by an Evolutionary Algorithm, The Congress on Evolutionary Computation 2003,Vol.3, 2003,
pp. 1724- 1731.

[4] M.G. Karpovsky, R.S. Stankovic, J.T. Astola, Reduction of sizes of decision diagrams by
autocorrelation functions, IEEE Trans. on Computers, Vol. 52, No. 5, 2003, pp.592-606.

[5] M.G. Karpovsky, Finite orthogonal series in the design of digital devices, New York, Wiley,
1976.

[6] O. Keren and I. Levin, Linearization of the Logic Functions Defined in SOP Form, UROMI-
CRO SEAA / DSD 2005 Porto (Portugal) , 2005 .

[7] D. M. Miller, R. Drechsler and M. A. Thornton, Spectral Techniques in VLSI CAD, Kluwer
Academic Pub, 2001.

[8] S. Reda, A. Orailoglu and R. Drechsler, On the Relation between SAT and BDDs for Equiv-
alence Checking, International Symposium on Quality Electronic Design, March 2002


