
Automation and Remote Control, Vol. 63, No. 10, 2002, pp. 1637–1651. Translated from Avtomatika i Telemekhanika, No. 10, 2002, pp. 120–136.
Original Russian Text Copyright c© 2002 by Astaf’ef, Levin, Matrosova, Sinel’nikov.

TECHNICAL DIAGNOSIS

Self-Testing Automaton Networks:

Their Design in Programmable Logical Matrices

M. V. Astaf ’ef∗, I. S. Levin∗∗, A. Yu. Matrosova∗, and V. E. Sinel’nikov∗∗∗

∗Tomsk State University, Tomsk, Russia
∗∗Tel Aviv University, Tel Aviv, Israel,

∗∗∗Technology Education Center, Holon, Israel
Received March 16, 2000

Abstract—The design of self-testing synchronous automaton networks in a base of programm-
able logical matrices is studied. Self-testability of the network component is ensured by encod-
ing the automaton internal states by equilibrium codes and elongating the input state codes.
Therefore, the microprogram description of the operation of the component is transformed
into a positive monotonic system of disjunctive normal forms, i.e., design specification for the
component. Precisely monotonic disjunctive normal forms ensure the monotonic generation of
solitary constant faults in programmable logical matrices and input poles of the automaton
component at the component outputs and steady propagation of the aftereffects of a faults
from its emergence point in some component up to the network outputs. Therefore, testers can
be used only for external components, whose outputs are the network outputs, and only the
output of these components can be observed without regard for their internal states.

1. INTRODUCTION

A self-testing discrete device usually includes a functional part for implementing certain functions
and a control part (tester) for observing the outputs of the functional part. We use a synchronous
discrete device with memory as the functional part and self-testing testers identifying Berger or
equilibrium codes as the control part.

Network components are realized by programmable logical matrices (PLM) and D-triggers on
feedback lines. Self-testing testers are also realized in a PLM base.

The design of a self-testing synchronous automaton network is reduced to the design of self-
testing synchronous automaton—a network component. Solitary constant faults are admitted in
programmable logical matrices, poles of D-triggers, and input and output poles of a component.
Self-testability of a component is incorporated in its design.

We assume that the design specification is given in the form of a state transition graph (STG)—
the analog of the microprogram description [1]. The inputs and outputs of an automaton in the state
transition graph are coded. We shall encode the internal states of an automaton by equilibrium
codes and “elongate” the input states of a component, preserving the same number of conjunctions
in the design specification as in the STG description.

Self-testability of a component is incorporated by deriving a positive monotonic system of dis-
junctive normal forms (DNF) for the design specification in a PLM base. In the sequel, we refer
to a system as monotonic, tacitly assuming that it is positive. A monotonic system of disjunctive
normal forms can always be determined from the STG description.

We shall describe several useful properties of the components of an automaton network realizing
a monotonic system. These properties are helpful in designing self-testing automaton networks
with low cost on optional equipment.

0005-1179/02/6310-1637$27.00 c© 2002 MAIK “Nauka/Interperiodica”

1638 ASTAF’EF et al.

(1) A component, which realizes a monotonic system in programmable logical matrices and
D-triggers, monotonically develops the faults described above at its outputs. In other words, the
vector β of outputs of an operative device at a certain instant t and the vector βv of outputs (at the
same instant t) in the presence of a fault v are comparable [2]: β ≤ βv (1-monotonic development),
β ≥ βv (0-monotonic development).

(2) Every fault of the class preserves its monotonicity. In other words, β = βv for the pattern α
on which no fault is developed. On every test pattern α of the fault, the condition β < βv is satisfied
for 1-monotonic fault development and the condition βv < β for 0-monotonic fault development
(a fault cannot appear as a 1-monotonic fault on one test pattern α1 and as a 0-monotonic fault
on another test pattern α2).

(3) Certain faults may be undetectable in the operation range of a component during observation
of the outputs of the component. Their accumulation does not hide newly generated faults.

(4) A component is “transparent” to monotonic changes in input patterns. Therefore, a 1(0)-
monotonic change in the input pattern of an automaton component may result in a 1(0)-monotonic
change in its output pattern (not necessarily at the same instant), or has no influence on the
outputs of the automaton component. “Transparency” of a component is preserved in the presence
of undetectable faults in the component. This property is responsible for the monotonic propagation
of the aftereffects of a fault from the place of fault development to the circuit outputs.

These properties of a component are helpful in designing self-testing automaton networks, using
testers only at external components, whose outputs are the network outputs. Moreover, there is
no need to observe the internal states of these components; it suffices to connect a tester to the
component outputs, as described in [3] for special automata, i.e., automata that are defined by a
moderate-power output alphabet.

The set of input poles of an automaton network widens if the codes of input states are “elon-
gated.” It is not possible to avoid the extension of the space of input variables (the set of input poles)
in an arbitrary STG description [4]. At least one supplementary input variable is necessary [5].
The use of even (odd) codes [5] for the input states of an automaton considerably complicates
the DNF system—design specification of the component. In this case, the DNF system contains
conjunctions that cannot be joined by input variables, but contain all input variables.

Unlike in [5], we increase the number of supplementary input variables, retaining, as a rule,
the same crystal area that is required for realizing the STG description in a PLM base without
self-testability of the component. Here we mean the internal component, whose outputs are not the
outputs of the automaton network. The crystal area can be increased, if necessary, in realizing self-
testing external components (a) by transforming the output vectors of a component into equilibrium
or Berger codes and (b) by the use of testers for observing the outputs of external components.

The approach of [6] to designing self-testing automaton networks requires a tester in every
component of the network and observation of the state of the outputs and feedback lines of the
component. But this approach reduces the number of supplementary input variables of a compo-
nents compared to our method. The number of supplementary input variables can be reduced if
STG description is used to derive a DNF system such that conjunctions with different character-
istics cannot be joined and the system is not monotonic. Reducing the number of input variables,
we increase the cost of optional self-testing equipment in the network.

We assume that every automaton network can be transformed into a self-testing network. The
transformation consists of replacing the STG description of every component by a monotonic system
of normal disjunctive forms and subsequent realization of the system in a PLM base, and joining
testers to external component outputs that are the network outputs. Note that the input-output
sequence of a network must be corrected for the input component with regard for the supplementary
input variables introduced in the network component.

AUTOMATION AND REMOTE CONTROL Vol. 63 No. 10 2002

SELF-TESTING AUTOMATON NETWORKS 1639

2. DERIVATION OF A MONOTONIC DNF SYSTEM
FROM THE STG DESCRIPTION OF A SYNCHRONOUS AUTOMATON

Automaton components of a network are subdivided into external components, whose outputs
are the network outputs, and internal components, which are other components of the network.

Let us study the STG description of an automaton component (Table 1). Here x1, x2, and x3 are
input variables, q are preceding and succeeding internal states, and y1, . . . , y5 are output variables.

Instead of the STG description, we study the interval definition of an automaton component
describing the same operation as the STG description. For this, let us encode the internal states. For
designing a self-testing automaton component, we encode the state by equilibrium codes. Thus, we
obtain a list of intervals and their characteristics. The characteristics show the values of transition
functions and the outputs at an interval. The interval definition is a description of partial Boolean
functions realizing the behavior of the automaton component. Such a description for our example
is given Table 2, in which the second row of an interval is of the form

x1 x2 x3 z1 z2 z3 z4

− 0 − 1 0 0 0
,

and its characteristic is expressed by the vector

z1 z2 z3 z4 y1 y2 y3 y4 y5

1 0 0 0 0 0 0 1 0
.

Two conjunctions k1 and k2 are said to be orthogonal in a variable xi if xi is contained without
inversion in one conjunction and with inversion in the other. If this condition holds only for one

Table 1

x1 x2 x3 q q y1 y2 y3 y4 y5

0 − − 1 1 0 0 0 1 0
− 0 − 1 1 0 0 0 1 0
1 1 − 1 2 1 0 0 1 0
− − 0 2 2 0 0 1 1 0
− − 1 2 3 1 0 1 1 0
1 0 − 3 3 0 1 0 0 0
0 − − 3 4 1 1 0 0 0
− 1 − 3 4 1 1 0 0 0
− − 0 4 4 0 1 0 0 1
− − 1 4 1 1 1 0 0 1

Table 2
x1 x2 x3 z1 z2 z3 z4 z1 z2 z3 z4 y1 y2 y3 y4 y5

0 − − 1 0 0 0 1 0 0 0 0 0 0 1 0
− 0 − 1 0 0 0 1 0 0 0 0 0 0 1 0
1 1 − 1 0 0 0 0 1 0 0 1 0 0 1 0

− − 0 0 1 0 0 0 1 0 0 0 0 1 1 0
− − 1 0 1 0 0 0 0 1 0 1 0 1 1 0

1 0 − 0 0 1 0 0 0 1 0 0 1 0 0 0
0 − − 0 0 1 0 0 0 0 1 1 1 0 0 0
− 1 − 0 0 1 0 0 0 0 1 1 1 0 0 0

− − 0 0 0 0 1 0 0 0 1 0 1 0 0 1
− − 1 0 0 0 1 1 0 0 0 1 1 0 0 1

AUTOMATION AND REMOTE CONTROL Vol. 63 No. 10 2002

1640 ASTAF’EF et al.

Table 3

x1x2x3x4x5 z1z2z3z4 z1z2z3z4 y1y2y3y4y5

0 − − 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0
− 0 − 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0
1 1 − 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0

− − 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 0
− − 1 1 0 0 1 0 0 0 0 1 0 1 0 1 1 0

1 0 − 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0
0 − − 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0
− 1 − 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0

− − 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1
− − 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 1

variable, then the conjunctions k1 and k2 are said to be 1-orthogonal; if the condition holds for two
variables, then conjunctions are 2-orthogonal, etc.

If two conjunctions k1 and k2 are orthogonal in two variables xi and xj such that xi is contained
without inversion in one conjunction and the variables xj is contained with inversion in the same
conjunction, then the conjunctions k1 and k2 are said to be inversely 2-orthogonal.

For example, the conjunctions x2x3x4x5 and x2 x3x5 are inversely 2-orthogonal in x2 and x5.
The orthogonality of conjunctions of intervals defined by ternary vectors are defined similarly.

The list of intervals obtained from the STG description through equilibrium coding is partitioned
into subsets representing transitions from a given internal state qi via binary coding qi. In Table 2,
these subsets are separated from one another.

Let U denote the list of all intervals and let Ui be the list of subsets defining a transition from
the ith internal state.

Theorem 1. Intervals of different subsets are inversely 2-orthogonal.

The proof is implied by the construction of the set U , i.e., coding of states by equilibrium codes.
Intervals with different characteristics inside a set Ui are at least 1-orthogonal, because the

automaton is deterministic. To construct a monotonic DNF system, it is necessary that the intervals
with different characteristics be inversely 2-orthogonal. Inverse 2-orthogonality is attained by
introducing supplementary input variables, i.e., assigning supplementary input components to the
ternary vectors that define intervals. Let us describe such an assignment algorithm.

Algorithm 1. (1) Partition the sets Ui into sections Ui1, . . . , Uiτ1 according to their charac-
teristics. Intervals with identical characteristics form a section, i ∈ {1, . . . , |Q|}, where |Q| is the
number of different states of the automaton component.

(2) Assign different equilibrium codes (Boolean vectors) to different sections Ui1, 1 ∈ {1, . . . , τi}.
(3) Assign a suitable code to all intervals of the section Ui1.
(4) Repeat steps 1–3 for every subset Ui, minimizing the number of supplementary input vari-

ables required for representing by equilibrium codes. Let U∗ denote the set of intervals thus
obtained.

All intervals with different characteristics in Table 3 constructed for our example are inversely
2-orthogonal. Two supplementary input variables x4 and x5 were required for this purpose.

AUTOMATION AND REMOTE CONTROL Vol. 63 No. 10 2002

SELF-TESTING AUTOMATON NETWORKS 1641

Table 4

x1x2x3x4x5 z1z2z3z4 z1z2z3z4 y1y2y3y4y5

− − − − 1 1 −−− 1 0 0 0 0 0 0 1 0
1 1 − 1 − 1 −−− 0 1 0 0 1 0 0 1 0

− − − − 1 − 1 −− 0 1 0 0 0 0 1 1 0
− − 1 1 − − 1 −− 0 0 1 0 1 0 1 1 0

1 − − − 1 −− 1 − 0 0 1 0 0 1 0 0 0
− − − 1 − −− 1 − 0 0 0 1 1 1 0 0 0

− − − − 1 −−− 1 0 0 0 1 0 1 0 0 1
− − 1 1 − −−− 1 1 0 0 0 1 1 0 0 1

Theorem 2. Intervals with different characteristics in the set U∗ generated by algorithm 1 are
inversely 2-orthogonal.

The proof of the theorem is implied by the design of the algorithm.
Replacing every 0-component in ternary vectors representing the set U∗ by an indeterminate

symbol −, we obtain a list of monotonic intervals U∗∗ and their characteristics. Table 4 is con-
structed for our example.

Table 4 contains one row less than Table 3, because intervals with identical characteristics are
absorbed upon replacement of 0 by the indeterminate symbol −.

Theorem 3. The interval set U∗∗ preserves the behavior of an automaton component defined by
the STG description.

The proof of this and succeeding theorems are given in the Appendix.
The set U∗∗ of intervals and their characteristics form a monotonic system D—specification for

design in a PLM base. Intervals are realized by a matrix of conjunctions of programmable logical
matrices and the characteristics of intervals are realized by a matrix of disjunctions of programmable
logical matrices.

To use the description of the behavior of component by a monotonic system D instead of the
STG description of the component, we must correct input patterns for the interval set U∗ (Table 3.)

In the STG description, let us associate inputs with the sequence 000, 001, 111, 111, 101, 000 in
the initial state 1. Under the action of an input sequence, the automaton passes through the states
1112334. The corrected sequence (see Table 3) is of the form 00001, 00101, 11110, 11110, 10101,
00010. Precisely this sequence is fed to the component realizing the monotonic system D.

3. PROPERTIES OF A MONOTONIC SYSTEM OF DISJUNCTIVE NORMAL FORMS

Two patterns (vectors) αi and αj of values of the variables of the system D are said to congruent
if they satisfy the condition αi ≤ αj or αi ≥ αj [1].

A pattern αi is said to precede a pattern αj and is denoted by αi ≤ αj if every pair of like
components of these patterns satisfy the condition αti ≤ αtj , t = {1, . . . , n}, where n is the number
of variables in the system. For example, the patterns 010010 and 011011 are congruent, and the
pattern 010010 precedes the pattern 011011.

Let D(α) be a Boolean vector representing the values of the functions of the system D in the
input pattern (vector) α.

(1) If the system D is monotonic and αi ≤ αj , then D(αi) ≤ D(αj).

AUTOMATION AND REMOTE CONTROL Vol. 63 No. 10 2002

1642 ASTAF’EF et al.

Let us illustrate this by an example from Table 4. Let us associate the input variables of the
system D (see Table below) with vectors αi and αj.

αi =
x1 x2 x3 x4 x5 z1 z2 z3 z4

1 1 1 1 0 0 1 0 0
, αj =

x1 x2 x3 x4 x5 z1 z2 z3 z4

1 1 1 1 1 1 1 0 0
,

D(αi) =
z1 z2 z3 z4 y1 y2 y3 y4 y5

0 0 1 0 1 0 1 1 0
, D(αj) =

z1 z2 z3 z4 y1 y2 y3 y4 y5

0 1 1 0 1 0 1 1 0
,

αi ≤ αj , D(αi) ≤ D(αj).

Let D(αi) = βi and D(αj) = βj . Then the vectors βi and βj in the example are congruent and
βi ≤ βj (βi precedes βj).

The properties of the monotonic system D are the generalization of the properties of a monotonic
function.

Let α̃i be a sequence of input patterns. A sequence α̃i is said to precede a sequence α̃j and is
denoted by α̃i ≤ α̃j if the like elements of sequences obey the precedence relation such that every
element of the sequence α̃i precedes the corresponding element of the sequence α̃j . For example, if
{α̃i = 010, 110, 001} and {α̃j = 111, 110, 101}, then α̃i ≤ α̃j .

(2) If the system D is monotonic and α̃i ≤ α̃j , then D̃(α̃i) ≤ D̃(α̃j) and, consequently, β̃i ≤ β̃j .
Here D̃(α̃i) is the sequence β̃i consisting of vectors representing the values of the system D on

the vectors of the sequence α̃i. For example (Table 4), if

α̃=
x1 x2 x3 x4 x5 z1 z2 z3 z4

0 0 0 0 1 1 0 0 0
,

x1 x2 x3 x4 x5 z1 z2 z3 z4

0 0 1 0 1 1 0 0 0
,

x1 x2 x3 x4 x5 z1 z2 z3 z4

1 1 1 1 0 1 0 0 0
,

then

D̃(α̃)=
z1 z2 z3 z4 y1 y2 y3 y4 y5

1 0 0 0 0 0 0 1 0
,

z1 z2 z3 z4 y1 y2 y3 y4 y5

1 0 0 0 0 0 0 1 0
,

z1 z2 z3 z4 y1 y2 y3 y4 y5

0 1 0 0 1 0 0 1 0
.

The precedence relation is transitive, but not symmetric.
Let us consider two monotonic systems Dr and Ds. Let Ds be derived from Dr via extension of

the domain of unit values of the system Dr. The domain of unit values is extended by extending
the domain of unit values defining the corresponding system of functions.

In this case, we assume that Dr precedes Ds and is denoted by Dr ≤ Ds.
(3) If Dr ≤ Ds, then Dr(α) ≤ Ds(α).
(4) If Dr ≤ Ds, then D̃r(α̃) ≤ D̃s(α̃).
(5) If αi ≤ αj , then Dr(αi) ≤ Ds(αj).
(6) If α̃i ≤ α̃j , then D̃r(α̃i) ≤ D̃s(α̃j).
In the sequel, we use these properties to determine the properties of a monotonic system D in

a programmable logical matrix base.

4. PROPERTIES OF A MONOTONIC SYSTEM IN A PLM BASE

A monotonic set of intervals U∗∗ (Table 4) along with their characteristics is a monotonic
system D of disjunctive normal forms, whose conjunction do not contain any inversions. Every
disjunctive normal form of the system contains conjunctions in U∗∗, which are labelled by a unit
value of the corresponding component in the characteristics of intervals.

AUTOMATION AND REMOTE CONTROL Vol. 63 No. 10 2002

SELF-TESTING AUTOMATON NETWORKS 1643

d

1

d

p

z

p

z

1

y

1

y

m

x

1

x

n

K

Fig. 1. An internal component of a network.

x

1

x

2

x

3

x

4

x

5

z

1

z

2

z

3

z

4

z

1

z

2

z

3

z

4

y

1

y

2

y

3

y

4

y

5

Fig. 2. A realization in PLM base, Table 4.

Figure 1 shows an internal component of a network. Here x1, . . . , xn, z1, . . . , zp, and y1, . . . , ym
are input, internal, and output variables, and d1, . . . , dp are feedback delay implemented by D-
triggers. The combinational component K is realized by programmable logical matrices. Figure 2
shows a realization in PLM base for our example (Table 4).

AUTOMATION AND REMOTE CONTROL Vol. 63 No. 10 2002

1644 ASTAF’EF et al.

z

1

z

2

z

3

z

4

y

1

y

2

y

3

y

4

y

5

z

1

x

5

x

4

x

3

x

2

x

1

z

2

z

3

z

4

Fig. 3. Realization of Table 4 without decoders.

Since a system D realized by programmable logical matrices is monotonic, there is no need
for decoders at conjunction levels [7]. Exclusion of decoders doubles the number of variables in a
system D realized by programmable logical matrices. The system D in our example can be realized
without any decoder at the conjunction level (Fig. 3).

To realize an STG description (Table 1) without self-testability for the automaton component,
we require a pair of buses at conjunction level 2 for state codes and three pairs of buses for the
input patterns of the component, i.e., the total number of buses is 10. Nine buses at conjunction
levels are required to realize a monotonic system (Table 4).

Let us study solitary faults in programmable logical matrices, i.e., appearance of a connection
at a point where it should not occur and absence of a connection at a point where it must exist.

Along with the solitary faults in programmable logical matrices, we shall take account of solitary
constant faults at trigger poles and at the input and output poles of the automaton component.
Let V denote the set of all faults.

Let us consider the development of faults in the system D realized by programmable logical
matrices. Conjunctions of the system D (intervals of U∗∗) are realized at the level of conjunctions
of programmable logical matrices without decoders and the characteristics of conjunctions (intervals
in the set U∗∗) are realized at the level of disjunctions of programmable logical matrices (Fig. 3).

AUTOMATION AND REMOTE CONTROL Vol. 63 No. 10 2002

SELF-TESTING AUTOMATON NETWORKS 1645

y

m

d

1

d

p

z

p

z

1

x

n

x

1

y

1

T

y

s

y

m

+ 1

K

Fig. 4. General view of an external component.

Assertion 1. As a result of a fault of the set V :
(a) a letter in certain conjunctions of D vanishes, but the characteristics of these conjunctions

are preserved,
(b) a unit component is added to the characteristics of certain conjunctions,
(c) certain conjunctions of D vanish,
(d) the unit component in the characteristics of certain conjunctions vanishes, and
(e) an inversionless variable is added to some conjunction, but the characteristic of this con-

junction is preserved.

Let Dv denote a disjunctive normal form realized by programmable logical matrices in the
presence of a fault v ∈ V and let Da,b be the disjunctive normal form realized by programmable
logical matrices in the presence a fault of the type (a) or (b). The disjunctive normal forms Dc,d,e

are defined along similar lines.
Corollary 1.1. D ≤ Da,b.
Corollary 1.2. Dc,d,e ≤ D.
Corollary 1.3. Dv is a monotonic disjunctive normal form.
Corollary 1.4. Every combination of faults of U (multiple faults) generates a monotonic sys-

tem Dcri.

Assertion 2. Faults generated in the system D by the methods (a) and (b) are 1-monotonic on
any test pattern and the faults generated by the methods (c), (d), and (e) are 0-monotonic on any
test pattern of the circuit K.

Corollary 2.1. Every combination of faults (a multiple fault) generated by the methods (a) and
(b) is 1-monotonic on any test pattern of the scheme K.

Corollary 2.2. Every combination of faults (a multiple fault) generated by the methods (c), (d),
and (e) is 0-monotonic on any test pattern of the scheme K.

Note that the tester of the external automaton component only “observers” inputs, “not know-
ing” the changes in the internal states of the component (Fig. 4).

We now examine how a fault of the set V appears when the behavior of the component is under
observation.

AUTOMATION AND REMOTE CONTROL Vol. 63 No. 10 2002

1646 ASTAF’EF et al.

Note that the circuit realizing the component is provided with outputs such that the output
vectors of the automaton component can be encoded by Berger or equilibrium code. Introduction
of supplementary outputs “widens” the characteristics of the conjunctions of the system D without
changing the conjunctions. The system D remains monotonic.

An input sequence S of the automaton component generates an input sequence α̃ (for the
circuit K) in the space of input and internal variables. A fault v ∈ V is said to be undetectable
on a sequence S if the corresponding output sequence of the component is the same as the output
sequence of an operative component. Otherwise, the fault appears on the sequence S.

Theorem 4. If a fault is 1(0)-monotonically generated in the circuit K, it is 1(0)-monotonically
generated or undetectable at the outputs of the automaton component.

Corollary 4.1. Every combination of faults generated in D by the methods (a) and (b) may
appear 1-monotonically at the outputs in the operation domain of the automaton component or
may not appear in the operation domain.

Corollary 4.2. Every combination of faults generated in D by the methods (c), (d), and (e) may
appear 0-monotonically at the outputs in the operation domain of the automaton component or
may not appear in the operation domain.

Let us examine the case in which faults of the set V are not generated (not detectable) at the
outputs of the automatic component when they are 1(0)-monotonically generated at the outputs
of the circuit K. In practice, undetectable faults must be necessarily taken into account, because
their presence may change the nature of appearance of the succeeding detectable fault v ∈ V .

Let S be a sequence in the operation domain of the automaton component.
Let β̃ and β̃′ be congruent S output sequences of the circuit K in the absence and presence of

faults of the set V . Recall that every subset of the set V transforms the system D into a monotonic
system D′. Let β̃ and β̃′ be indistinguishable at the outputs of the automaton component. In this
case, no faults appear in the sequence S at the outputs of the automaton component.

If these conditions are satisfied for any sequence S in the operation domain of the component,
then a multiple fault of the set V is not detectable.

How does the automaton component respond to a solitary fault v ∈ V ?

Theorem 5. In the presence of undetectable faults of the set V , a 1(0)-monotonically generated
solitary fault at the outputs of the circuit K may appear as a 1(0)-monotonically generated fault at
the outputs of the automaton component or remain undetectable.

Every succeeding solitary fault v ∈ V appears after the operation domain of the automaton
component is full with preceding solitary faults and their multiple fault is undetectable at the
outputs of the automaton component.

Let α̃ be a sequence generated by S and let it be fed to the inputs of the circuit K. A sequence
S′ is obtained from the sequence S via 1(0)-monotonic transformation of its elements S ≤ S′

(S′ ≤ S). Let α̃′ be the input sequence of the circuit K generated by S′. Since individual elements
of the sequence satisfy the condition D(α) ≤ D(α′) (D(α′) ≤ D(α)), not only the values of input
variables in the sequence α̃′ generated by S′, but also the values of internal variables may change
1(0)-monotonically.

Theorem 6. A 1(0)-monotonic change in the input sequence S induces a 1(0)-monotonic change
in the output sequence of the automaton component even if the component contains undetectable
faults of the set V .

AUTOMATION AND REMOTE CONTROL Vol. 63 No. 10 2002

SELF-TESTING AUTOMATON NETWORKS 1647

The property of the component described by Theorem 6 is called the “transparency” of the
component. It is responsible for the monotonic propagation of the aftereffects of a fault from its
point of generation to the circuit outputs.

Using the transparency of the automaton component, including in the presence of undetectable
faults, we can design self-testing (synchronous) automaton networks with low cost of optional
equipment.

Theorem 7. The network N s defines the behavior of the network N .

5. TRANSFORMATION OF AN AUTOMATON NETWORK
INTO A SELF-TESTING NETWORK

Given a network N whose components are synchronous automata defined by STG description,
let us construct a self-testing network, connecting testers only to the outputs of external automaton
components. For this purpose, let us replace the STG description of every component by a suitable
monotonic system D. Let us provide supplementary outputs to external components so that Berger
or equilibrium codes can be used at the outputs of these components. External components are
also defined by monotonic systems. Every component is realized in a PLM base with D-triggers
on feedback lines. Let N s denote the network thus obtained.

In the previous section, we have shown that a component of an automaton network remains
transparent even if its contains undetectable faults. A detectable fault at the outputs of a compo-

Fig. 5. General view of a self-testing network.

AUTOMATION AND REMOTE CONTROL Vol. 63 No. 10 2002

1648 ASTAF’EF et al.

Table 5

I II III
n m s ` p Σ1 nd p Σ2

BBARA 4 2 10 60 4 8 4 5 13
BBSSE 7 7 16 56 4 11 4 6 17
BBTAS 2 2 6 24 3 5 2 4 8
BEECOUNT 3 4 7 28 3 6 3 5 11
CSE 7 7 16 91 4 11 5 6 18
DK14 3 5 7 56 3 6 3 5 11
DK15 3 5 4 32 2 5 3 4 10
DK16 2 3 27 108 5 7 2 7 11
DK27 1 2 7 14 3 4 1 5 7
DK512 1 3 15 30 4 5 1 6 8
DONFILE 2 1 24 96 5 7 2 7 11
KEYB 7 2 19 170 5 12 7 6 20
LION 2 1 4 11 2 4 2 4 8
LION9 2 1 9 25 4 4 2 5 9
MODULO12 1 1 12 24 4 5 1 6 8
S8 4 1 5 20 3 7 0 4 8
SAND 11 9 32 184 5 16 7 7 25
SHIFTREG 1 1 8 16 3 4 1 5 7
SSE 7 7 16 56 4 11 4 6 17
STYR 9 10 30 166 5 14 6 7 22
TAV.KIS 4 4 4 49 2 6 6 4 14
TBK.KIS 6 3 32 1569 5 11 8 7 21
TRAIN11.KIS 2 1 11 25 4 6 2 6 10
TRAIN4.KIS 2 1 4 14 2 4 2 4 8

nent may not be detectable at the outputs of the network. If a fault is detectable in a network, it
is necessarily detectable at the outputs of the component where it is generated.

A solitary fault appears in the network only after the operation domain of the network N s is full
with undetectable faults. A detectable fault appears at the outputs of the network in the operation
domain and is detected by testers.

Undetectable faults do not pile up in online self-checking testers [3]. In an online self-checking
system consisting of an automaton network and testers, a fault in one of the testers in the presence
of undetectable faults in the network, or a fault in the network if the tester is operative is admitted
at instant t.

Figure 5 shows a self-testing network. Supplementary input variables of the network components
are shown by dotted lines.

Table 5 listing the results of benchmark tests is subdivided into three sections. Section I shows
the characteristics of STG descriptions of automaton components. Here n is the number input
variables, m is the number of output variables, ` is the number of rows in the STG description,
and s is the number of (internal) states. Section II shows the characteristics of descriptions of
the same automata, whose states are encoded by minimal-length codes. Here p is the number
of internal variables required in state coding and Σ1 is the number of input poles of internal
variables of the automaton component that is not a self-testing component. Section III shows the
characteristics of descriptions of automaton components by monotonic systems. Here ns is the
number of supplementary input variables and Σ2 is the number of input poles of internal variables
of the corresponding monotonic system. As a rule, Σ2 is not greater than 2Σ1. Consequently,
the same crystal area is required to produce a self-testing automaton component as a component
without self-testing facility (exception is the TAV KIS circuit).

AUTOMATION AND REMOTE CONTROL Vol. 63 No. 10 2002

SELF-TESTING AUTOMATON NETWORKS 1649

6. CONCLUSIONS

An approach is developed to ensuring self-testability of a synchronous automaton network based
on the description of a component by a monotonic systems of disjunctive normal forms. Such a
description, on the one hand, requires the introduction of supplementary input variables for the
component and, on the other hand, aids in using the same crystal area for realizing self-testing
internal automaton components as for the conventional realization of these components. Moreover,
the use of a monotonic system as a design specification for an automaton component admits the
use of testers only at the outputs of external automaton components of the network.

APPENDIX

Proof of Theorem 3. The behavior of a component described by the list of intervals U , along
with their characteristics, derived from the state transition graph is the same as that described by
the state transition graph. The list U∗ defines a behavior that is different from that described by
the state transition graph in that the input symbols have elongated codes, i.e., overcoded input
symbols. We shall show that U∗∗ describes the same behavior as U∗.

Every input pattern that is generated by the state transition graph in the space of input and
internal variables belongs to the intervals of U∗ with the same characteristic, but not to any interval
with other characteristics. Extension of intervals through the replacement of 0-components by
the indeterminate symbol “−” preserves this property of patterns. Indeed, the pattern under
consideration is inversely 2-orthogonal to the intervals in U∗ with other characteristics and remains
1-orthogonal to them after extension. This completes the proof of the theorem.

Proof of Assertion 1. Situation (a) arises when a connection in the conjunction matrix vanishes.
Situation (e) arises when a connection at the conjunction level appears. Situation (d) arises when
a connection at the disjunction level vanishes. Situation (b) arises when a connection at the
disjunction level appears. A constant fault 0 at the input or output poles of the D-trigger appears
as a “constant 0” fault at the input of the conjunction level and, consequently, the conjunctions
containing this variable vanish from the set D, i.e., situation (c) arises.

A constant fault 1 at the input or output poles of the trigger appears as a “constant 1” fault at
the input of the conjunction level and, consequently, the character vanishes from all conjunctions
of D containing this character, i.e., situation (a) arises.

Similarly, a constant fault at the trigger poles appears as a constant fault at an input pole of
the automaton component.

When a constant fault 0 is developed at the output pole of the automaton component, the corre-
sponding unit component vanishes from the characteristics of conjunctions of D, i.e., situation (2)
arises. When a constant fault 1 is developed, the corresponding unit component appears in the
characteristics of conjunctions of D, i.e., situation (b) arises. This completes the proof.

Proof of Assertion 2. For any input pattern α of the circuit K, we have D(α) ≤ Da,b(α). If α
is a test pattern, then the fault is developed 1-monotonically. This completes the proof.

Proof of Theorem 4. Consider the faults generated by the methods (a) and (b). In this case,
D ≤ Da,b. Let α(t) be an element of the sequence α̃ fed to the circuit K at instant t. Then
D(α(t)) ≤ Da,b(α(t)). Therefore, additional units may appear at the outputs of the circuit K,
including feedback lines, in the presence of a fault, i.e., α(t+1) ≤ α∗(t+1) at the succeeding instant.
Here α∗(t+ 1) is obtained from α(t) in the presence of a fault of the type (a) or (b). Consequently,
the input sequence S of the automaton component in the presence of a fault generates a sequence
α̃∗ such that α̃ ≤ α̃∗. Therefore, D̃(α̃) ≤ D̃a,b(α̃∗) (property 6 of monotonic systems).

AUTOMATION AND REMOTE CONTROL Vol. 63 No. 10 2002

1650 ASTAF’EF et al.

If a fault is developed in the sequence S in the operation domain of the component, then it is
1-monotonically generated. It may not appear in the operation domain of the component.

Let us consider the faults generated by the methods (c), (d), and (e). In this case, Dc,d,e ≤ D,
Dc,d,e(α(t)) ≤ D(α(t)), α∗(t+ 1) ≤ α(t + 1), α̃∗ ≤ α̃. Therefore, D̃c,d,e(α̃∗) ≤ D̃(α̃).

If a fault is generated in the sequence S in the operation domain of the component, then it is
generated 0-monotonically. It may not be detectable at the operation domain. This completes the
proof of the theorem.

Proof of Theorem 5. Let us consider the input pattern α(t)′ of the circuit K that is generated
by the sequence S and a multiple undetectable fault. This sequence either differs from α(t) in the
absence of a fault, or it coincides with it. But in either case, its corresponding output patterns
β(t)′ and β(t) do not differ in output variables of the automaton component.

If a new solitary fault v ∈ V of the type (a) and (b) is generated at instant t, then D′(α′(t)) ≤
D′′(α′(t)), where D′′ is a monotonic system generated by D′ and an additional solitary fault and
D′ is a monotonic system generated by the undetectable fault. Consequently, α′(t+ 1) ≤ α′′(t+ 1),
where α′′(t+1) is the input pattern of the circuit K at instant t+1 in the presence of an additional
fault: D′(α′(t+ 1)) ≤ D′′(α′′(t+ 1)) (property 5 of monotonic systems).

An additional fault v ∈ V may be generated 1-monotonically at the outputs of the automaton
components or may not appear at all.

The fault v ∈ V of the type (c), (d), and (e) generated at instant t induces the situation
D′′(α′(t)) ≤ D′(α′(t)). Consequently, α′′(t + 1) ≤ α′(t + 1) and D′′(α′′(t + 1)) ≤ D′(α′(t + 1)).
The additional fault v ∈ V may be generated 0-monotonically at the outputs of the automaton
component or may not appear at all. This completes the proof of the theorem.

Proof of Theorem 6. Since α̃ ≤ α̃′ (α̃′ ≤ α̃), we have D̃(α̃) ≤ D̃(α̃′) (D̃(α̃′) ≤ D̃(α̃)). If
there are undetectable faults, then the circuit K realizes the monotonic system Dcri. Consequently,
D̃cri(α̃) ≤ D̃cri(α̃′) (D̃cri(α̃′) ≤ D̃cri(α̃)). This completes the proof of the theorem.

Proof of Theorem 7. Let us consider the complete state α of the network N at instant t. It
is the union of complete input states (states of inputs and feedback line) of the component. By a
complete state of a network, we mean the internal states that are encoded by equilibrium codes
(Table 2). Upon coding the states, we obtain the same description of the behavior of the component
as the description defined by the state transition graph.

Let us associate a state α with a state γ formed by the union of characteristics of interval sets U
generated by complete input states in α. The state γ defines the outputs of the automaton network
and network state at instant t + 1. In describing the automaton component by interval sets U∗

and then by U∗∗ (monotonic systems), we indeed elongate the input components of automaton
components in the vector α (by generating the vector α′), leaving the vector γ unchanged. In other
words, the same vector γ corresponds to the vectors α and α′.

Consequently, the behavior of the automaton network does not change upon replacement of the
STG descriptions of components by the sets U∗∗ (monotonic systems). This completes the proof.

REFERENCES

1. Baranov, S., Logic Synthesis for Control Automata, Dordrecht: Kluwer, 1994.

2. Yablonskii, S.V., Vvedenie v diskretnuyu matematiku (Introduction to Discrete Mathematics), Moscow:
Nauka, 1979.

3. Levin, I. and Karpovsky, M., Online Self-Checking of Microprogram Control Units, 4th IEEE Int. On-Line
Testing Workshop, Compendium of Papers, Capri, 1998, pp. 152–156.

AUTOMATION AND REMOTE CONTROL Vol. 63 No. 10 2002

SELF-TESTING AUTOMATON NETWORKS 1651

4. Busaba, F. and Lala, P., Combinational Circuit Design for Single and Unidirectional Multibit Error,
JETTA, 1994, no. 5, pp. 19–28.

5. Goessel, M. and Sogomonyan, E.S., Code Disjoint Self-Parity Combinational Circuits for Self-Testing,
Concurrent Fault Detection and Parity Scan Design, Proc. 12th IEEE VLSI Test Symp., 1994,
pp. 151–157.

6. Matrosova, A. and Ostanin, S., Self-Checking Synchronous FSM Network Design, 4th IEEE Int. On-Line
Testing Workshop, Compendium of Papers, Capri, 1998, pp. 162–166.

7. Moto-oka, T., Takaka, H., et al ., Computers on VLSI, Tokyo: Iwanami Shoteu, 1984. Translated under
the title Komp’yutery na SBIS, Moscow: Mir, 1988.

This paper was recommended for publication by P.P. Parkhomenko, a member of the Editorial
Board

AUTOMATION AND REMOTE CONTROL Vol. 63 No. 10 2002

