TRANCHICAL MODEL OF THE INTERACTION OF MICROPROGRAMMED AUTOMATA

: Levin

rmatika i Vychislitel'naya Tekhnika, 21, No. 3, pp. 77-83, 1987

£ :31.3-181.48:512.56

i model of interaction of microprogrammed automata at the nodes of a hierarchical structure is suggested. The model allows minimizing in the constituent automata the number of inputs and outputs for communication signals; it is designed for iscompositional synthesis of automata based on PLA with internal memory.

In the synthesis of control devices based on PLA with a memory (PLAM), methods for mosition of microprogrammed automata (MPA) are needed that are adjusted to the specific the system base, including the rigid constraints imposed by the external parameters is imposed by the constituent automata. In the constituent automata and the external parameters of the constituent automata. It is not between in the external parameters of the constituent automata. This method is into account the specifics of PLAM as the core unit, but does not help accommodate that the external parameters in a network is much more than a communication automaton as measured by the number of input terminals, transituation automaton as single board PLA for each communication automaton is there-

In this paper we propose a hierarchical model of interaction of constituent automata of these shortcomings.

The constituent automata in the model are the nodes of a hierarchical structure. A with communication automata [1] is a two-layer hierarchical structure. In additional agreater number of control levels, it differs from the model of [1] in that it the possibility for each constituent automaton of the network to realize the function and output functions of the initial automaton as well as the functions of the relation of the constituent automaton of the next hierarchical layer.

will introduce definitions for the description of the hierarchical model of the

ie will say that the root automaton is the "boss" of the roots of its subtrees; the

The relation of subordination on the set of constituent automata is a partial order string. The fact that an automaton S^{1} is the "boss" of the automaton S^{1} - not necessarized immediate boss - is written as $S_{+} > S^{1}$.

Exautomaton S^m of the hierarchical circuit is called the "immediate boss" (IB) of interaction S^i , denoted $S^m = IB(S^i)$, if $S^m > S^i, S^n > S^i$ implies that either $S^n = S^m$ or S^i . The automaton S^i in that case is called the "immediate subordinate" (IS) of S^m . It is automata that are immediate subordinates of S^m will be denoted by S^m . $S^m = S^m =$

The least upper bound [2] S^k for the automata S^i and S^j will be called the "nearest matrixs" (NCB) of S^i and S^j : $S^k = MCB(S^i, S^j)$.

electring to this terminology, each automaton of the hierarchical network is a boss Allerton Press, Inc.

Table 1

_					21
N	No. a		(a _i , a _j)		Y(a,, a,)
1 2 3 4 5 6		1 6		Ī9Ā4 X1Ā2 Ā1Ā2X4 X2Ā3X4 X2X3 X2Ā3Ā4	y.ys y.ys ysys ysys y. y.ys
7 8 9 a2		22 a		x_1x_3 \bar{x}_3 \bar{x}_1	yı yıya yıya
10		a a		1	y _e
11 a. 12 13 14 15		a a a a		ieloty Tele Iele Lele Lely	9498 91 9196 919698 919698
16 17 18 19 20		a a a a a a a a a a a a a a a a a a a	\$\bar{x}_1 \bar{x}_2 \bar{x}_3 \\ \bar{x}_1 \bar{x}_2 \\ \bar{x}_1 \bar{x}_2 \\ \bar{x}_1 \bar{x}_2 \\ \bar{x}_2 \bar{x}_3 \bar{x}_1 \\ \bar{x}_1 \bar{x}_2 \\ \bar{x}_2 \bar{x}_3 \bar{x}_1 \\ \bar{x}_1 \bar{x}_2 \bar{x}_3 \bar{x}_1 \\ \bar{x}_2 \bar{x}_3 \bar{x}_1 \\ \bar{x}_1 \bar{x}_2 \bar{x}_2 \bar{x}_1 \\ \bar{x}_1 \bar{x}_2 \bar{x}_2 \bar{x}_1 \\ \bar{x}_2 \bar{x}_2 \bar{x}_2 \bar{x}_1 \\ \bar{x}_1 \bar{x}_2 \bar{x}_2 \bar{x}_2 \bar{x}_1 \\ \bar{x}_1 \bar{x}_2 \bar{x}_2 \bar{x}_1 \\ \bar{x}_1 \bar{x}_2 \bar{x}_2 \bar{x}_1 \\ \bar{x}_1 \bar{x}_2 \bar{x}_2 \bar{x}_2 \bar{x}_2 \\ \bar{x}_1 \bar{x}_2 \bar{x}_2 \bar{x}_2 \bar{x}_2 \\ \bar{x}_2 \bar{x}_2 \bar{x}_2 \bar{x}_2 \bar{x}_2 \\ \bar{x}_1 \bar{x}_2 \bar{x}_2 \bar{x}_2 \bar{x}_2 \\ \bar{x}_2 \bar{x}_2 \bar{x}_2 \bar{x}_2 \bar{x}_2 \\ \bar{x}_2 \bar{x}_2 \bar{x}_2 \bar{x}_2 \\ \bar{x}_2 \		949198 94 9192 9192
21		a2 a3 a6 a7 a9 a10 a10 a11 a11 a11 a11	x3x.128		95 9193 9244 91 9194 9194 919293 919293 919293
32	32 a ₇ a ₈			y ₁	
33 34	α,	a _e a ₁₁	•	\tilde{x}_i x_i	y _e
35 36	a	a ₆ a ₁₃ a ₁₄		x2 X2	<i>y</i> 1 <i>y</i> 5
37 38	a10	a ₁₅		$egin{array}{c} x_1 \ ar{x}_1 \end{array}$	ye YsVe
39 40 41	a ₁₁	a ₁ a ₂ a ₁₇		x2 x2x3 x2x4	ye Y1ya Yey7
42 43 44 45	a ₁₂	a ₃ a ₄ a ₅ a ₆		x2x3x7 x2x3x7 x2x3 x2x3 x2	919a 9a 91 919a
16 17 18 19 50	a ₁₃	a7 a7 a8 a9 a9	ījāste Late Ārts Krās Ārtsāe		9499910 94910 94910 94910
1	a14	a ₁	1		y ₁
2 3 4	a ₁₅	a ₁ a ₄ a ₇		X7X8 X7X8 X7	9498 9798 96
5	a16	au	JF.	1	y _s
6	a17	a12	4-01000	1	<i>969198</i>

Fig. 1. Network structure in the decomposition of MPA S.

Table 2 Constituent Automaton S1

	a,	X(a;.a;)	Q̂ (S¹)	Y(a(.a))	(S ¹)
a _s	b1 b2 a4 b1 b1 b1 b1 b1 b1 b1	**************************************	1111111111	\$6 \$1.67	$\begin{array}{l} P_{2}(S^{1}) = q_{31}q_{32}q_{33} \\ P_{3}(S^{1}) = q_{31}q_{31}q_{33} \\ P_{0}(S^{1}) = q_{31}\bar{q}_{31}\bar{q}_{33} \\ P_{7}(S^{1}) = q_{31}\bar{q}_{31}q_{32} \\ P_{10}(S^{1}) = \bar{q}_{31}\bar{q}_{32}q_{33} \\ P_{10}(S^{1}) = \bar{q}_{31}q_{32}q_{33} \\ P_{11}(S^{1}) = \bar{q}_{31}q_{32}q_{33} \\ P_{11}(S^{1}) = \bar{q}_{31}q_{31}q_{33} \\ P_{11}(S^{1}) = \bar{q}_{31}q_{31}q_{32} \\ P_{11}(S^{1}) = \bar{q}_{31}q_{31}q_{33} \\ P_{11}(S^{1}) = \bar{q}_{31}q_{31}q_{33} \end{array}$
ь,	a4 b1	=	$Q_{6}(S^{1}) = q_{11}$ $Q_{0}(S^{1}) = \bar{q}_{11}$	=	Ξ

supordinate at the same time. The exceptions are the automata of the last level, are all subordinates, and the automaton of the first level, which is only a boss.

the hierarchical network operates as follows.

ring the operation of a particular constituent automaton, all the automata in the The other automata of the network are in the state of "waiting for a response" waiting for a response" une boss automaton.

sen constituent automaton except for the root automaton and the leaf automata, is thed with its boss and its subordinates. When transferring control to a subordinate, tituent automaton goes into the state of waiting for its response. When transferentrol to a boss the automaton goes into the state of response waiting.

e can define the constituent automata of a hierarchical network in formal terms. description will be illustrated by the decomposition of MPA $S(A,X,Y,\delta,\lambda,a_1)$ (A - is the states, X - are the sets of input and output signals, δ , λ - are the transition Exput function, respectively, and a_1 - is the initial state); it is defined by Table

The set A of the states of MPA S a partition $\pi = \{A^1, \dots, A^U\}$ is given This the number of partition blocks). In the example $\pi = (A^1, A^2, A^3, A^4) = 6$, 1.2.3.7.8.9.10, which is the number of partition blocks. In the example $\pi = (A^1, A^2, A^3, A^4) = 6$, 1.2.3.7.8.9.10, which is the number of partition blocks. In the example $\pi = (A^1, A^2, A^3, A^4) = 6$, 1.2.3.7.8.9.10, which is the number of partition blocks. In the example $\pi = (A^1, A^2, A^3, A^4) = 6$, 1.2.3.7.8.9.10, which is the number of partition blocks. in Fig. 1.

The set \mathbb{B}^n of the states of a constituent MPA \mathbb{S}^n consists of the set \mathbb{A}^n of the and set a summer states of a constituent with a solid-law value of sequest waiting, and the set of the corresponding partition block, the state b_{ij} of request waiting, and the set The states of response waiting: $B^u = A^* \bigcup \{b_u\} \bigcup C^u$, where $C^u = \bigcup_{S^i \in IS(S^u)} c_u(S^i)$ is the state 3 during the operation of its subordinate MPA S¹. In this example: $B^1 = \{a_6, b_1\}$; $B^{3} = \{a_{5}, a_{11}, a_{12}, a_{14}, a_{15}, a_{16}, a_{17}, c_{3}(S^{1}), c_{3}(S^{2})\}; B^{4} = \{a_{4}, a_{13}, b_{4}\}.$ $\{a_1, a_2, a_3, a_7, a_8, a_9, a_{10}, b_2, c_2(S^4)\};$

Table 3 Constituent MPA S2

aı	$a_j = X(a_i, a_j)$		$\hat{Q}_{j}(S^{n})$	Y(a, a,)	2,(57)	
		Name of the				
a ₁	a ₂	3.74	_	<i>y</i> 195	N <u>222</u> 6	
	az	$x_1\bar{x_2}$	=	y14s		
	a ₃	X1.12.14	<u>-</u>	1/3/96	_	
	a ₃	X2X3X4		9394	<u> </u>	
	c2(S4)	x2X3	_	y ₁	$P_4(S^2) = q_{41}q_{42}$	
	b ₂	. X2. X3. X4		y194	$o_{3}(S^{2}) = q_{31}q_{32}q_{33}$	
a,	b,	X1X3		y ₁	$P_4(S^2) = q_{31}q_{32}\bar{q}_{33}$	
	a7			9196	1 8 (0-) -431433433	
	a7	\vec{x}_3 \vec{x}_1		9196	_	
_				9196		
a.	a _e	₹,	<u>=</u>	1 - 1		
-	by	<i>x</i> ,	•	ya	$P_{11}(S^2) = q_{21}\bar{q}_{32}q_{32}$	
				"	711(5-) - 43143343	
a _e	C2(S4)	r.	<u>==</u>	y ₁	0(57) - 0. 5	
	b2	X2 Ž2	<u> </u>	ys	$\begin{array}{l} P_{13}(S^2) = q_{41}\bar{q}_{42} \\ P_{14}(S^2) = q_{31}\bar{q}_{32}\bar{q}_{33} \end{array}$	
	-1			98	F14(0-) = 431433433	
a10	b2	x,	<u></u>	y.	$P_{15}(S^2) = \bar{q}_{31}q_{32}q_{33}$	
	b2	r _i r ₁	-	y3y6	$P_{16}(S^2) = \bar{q}_{31}q_{32}\bar{q}_{33}$	
_						
a,	c2(S4)	1		y _i	a (cm =	
43	c3(2.)	•		<i>y</i> 6	$P_4(S^2) = q_{41}q_{42}$	
b2	a ₁	_	$Q_1(S^2) = q_{21}q_{22}q_{23}q_{24}$	_	_	
0.50	az	-	$Q_2(S^2) = q_{21}q_{22}q_{23}q_{24}$	-	_	
	as	- 1	$Q_{1}(S^{2}) = q_{21}q_{22}\bar{q}_{23}q_{24}$	_	-	
	a,	_	$Q_{2}(S^{2}) = q_{21}q_{22}q_{23}q_{24}$	_	_	
	ate		$Q_{10}(S^2) = q_{21}\bar{q}_{22}q_{23}q_{24}$	-		
	a7		$Q_7(S^2) = q_{21}\bar{q}_{22}q_{23}\bar{q}_{24}$			
	as	_	$Q_3(S^2) = q_{21}\bar{q}_{22}\bar{q}_{23}q_{24}$	_	-	
	c2(S4)	_	$Q_{12}(S^2) = q_{21}\bar{q}_{22}\bar{q}_{23}\bar{q}_{24}$	1 - I	$P_{10}(S^2) = q_{41}\bar{q}_{42}$ $P_{4}(S^2) = q_{41}q_{42}$	
	C2(S4)	_	$Q_{1}(S^{2}) = \bar{q}_{21}q_{22}q_{23}q_{24}$		$P_4(S^2) = q_{41}q_{42}$	
	b2		$Q_0(S^2) = \bar{q}_{21}\bar{q}_{22}\bar{q}_{23}\bar{q}_{24}$	-		
: ₂ (S ⁴)	a ₇	<u> </u>	92192292			
4(0.)	ae		9n9n9n			
- 1	a ₂		911921923 911921923		_	
	b2		9n9n9n		$P_5(S^2) = q_{31}q_{32}q_{33}$	
	b. 1		911912923 911912923		$P_{\bullet}(S^2) = q_{31}q_{32}q_{33}$ $P_{\bullet}(S^2) = q_{31}q_{32}q_{33}$	
	62 C2(S4)		411412413 411412413	1 = 1	. 1(2-) - 421433433	
	-1(-)		411411411	1	57	

2. Put into correspondence to each block $A^{\mathbf{u}}$ of the partition τ a set of input variables \tilde{X}^{U} interrogated at the transitions from the states of this block: $X^{u} = \bigcup_{a_{i} \in A^{u}} X(a_{i})$.

The input variables of the constituent MPA S^U are the elements of the set X^U and the elements of the set $Q(S^u) = \{q_{u_1}, \dots, q_{u_n}\}$ of the additional variables sent to the input $S^u\colon X^u = X^u \cup Q(S^u)$. In the example: $X^1 = X^1 \cup Q(S^1) = \{x_3, x_4, x_5, x_6, x_7, x_8, q_{11}\}$, $X^2 = X^2 \cup Q(S^2) = \{x_1, x_2, x_3, x_4, q_{21}, q_{22}, q_{23}, q_{24}\}$. $X^3 = \{x_2, x_3, x_7, x_8, q_{31}, q_{32}, q_{33}\}$, $X^4 = \{x_3, x_4, x_5, x_6, x_7, q_{41}, q_{42}\}$.

3. For each block A^{u} of the partition π , we form a set \tilde{Y}^{u} of the output variables generated at the transitions from the states of this block: $Y^{u} = \bigcup_{a_i \in A^{u}} Y(a_i)$. The output variables ables of the constituent MPA S^{U} are the elements of the set \tilde{Y}^{U} and the elements of the set $P(S^{u})$ of the additional variables sent to the inputs of the automaton IB (S^{u}) and each of IS (s^u) :

$$Y^{u} = Y^{u} \cup P(S^{u}); P(S^{u}) = \bigcup_{S^{i} \in \mathbb{T}S \ (S^{u})} Q(S^{i}) \cup Q(\mathbb{T}B \ (S^{u})).$$

In the example:

 $Y^1 = Y^1 \cup Q(S^3); \quad Y^2 = Y^2 \cup Q(S^3) \cup Q(S^4);$ $Y^3 = Y^3 \cup Q(S^1) \cup Q(S^2); \quad Y^4 = Y^4 \cup Q(S^2).$

We define the functions of the transitions $\delta^{\rm U}$ and the outputs $\lambda^{\rm U}$ of the constituent automaton S^{u} . Suppose that in the initial MPA S there is a transition from a_i to a_i

多物發展者犯海軍最高等+ 以上軍軍發展委員官

Constituent MPA S³

a _t	aj	X(a _i , a _j)	$\hat{Q}_{j}(S^{2})$	$Y(a_i, a_j)$	P _j (S ²)
a ₁₅	c ₃ (S ²) c ₃ (S ¹) c ₃ (S ²)	X7X8 X7X8 X7	Ξ	yeys yrys ye	921929292 911
as	c ₃ (S ¹) c ₃ (S ²) c ₃ (S ²) c ₃ (S ²) c ₃ (S ²)	\$\bar{x}_7\bar{x}_2\bar{x}_3\\ \bar{x}_7\bar{x}_2\\ \bar{x}_7\bar{x}_2\\ \bar{x}_7\bar{x}_2\\ \bar{x}_7\bar{x}_2\bar{x}_3\\	= =	949798 94 9798 — 97	911 921922923 9219229292 9219229292 9219229292
a ₁₂	c ₃ (S ²) c ₃ (S ²) a ₅ c ₃ (S ¹)	x4x3X1 x4x3X1 x4X3 X4 X4	=	УтУв Ув Ут УтУв	92142242242 92142242242 — 911
a 11	c ₃ (S ²) c ₃ (S ²) a ₁₇	ž ₁ x ₂ ž ₆ x ₂ x ₆	Ξ	уе Утув Ув У т	42142242243 42142242243 —
a ₁₄	c3(S2)	1	-	y ₁	92192292292
a ₁₆	a _{ii}	-1	-	y ₈	, %
a ₁₇	a ₁₂	1	-	<i>y</i> 6 <i>Y</i> 7 <i>Y</i> 8	_
c3(S1)	c ₃ (S ²) c ₃ (S ²) c ₃ (S ²) c ₃ (S ²) c ₃ (S ²)		431432433 431432433 431432433 431432433 431432433 431432433 431432433		42142242242 421422422424 421422422424 4214224224 4214224224
c3(S2)	a ₁₅ a ₆ a ₁₂ a ₁₁ a ₁₄ a ₁₆ c ₁ c ₂	= = = = = = = = = = = = = = = = = = = =	431432433 431432433 431432433 431432433 431432433 431432433 431432433 431432433	1	

by the input signal X_n that results in the output signal Y_t : $\delta(a_i, X_h) = a_j$; $\lambda(a_i, X_h) = Y_t$, whose that $a_i \in A^u$. Four alternatives are possible:

 $a_i \in A^u$, then $\delta^u(a_i, X_h) = \delta(a_i, X_h) = a_i$; $\lambda^u(a_i, X_h) = \lambda(a_i, X_h) = Y_t$;

!-

10

1.

35

 $a_j \in A^k$ $(k \neq u)$, $S^k > S^u$, then in the automaton S^u : $\delta^u(a_i, X_h) = b_u$; $\lambda^u(a_i, X_h) = Y_i \cup P_j(S^u)$, where $Y_i \in P(S^u)$; in the automaton S^k : $\delta^k(c_k(S^u), Q_j(S^k)) = \delta(a_i, X_h) = a_j$, $\lambda^k(c_k(S^u), Q_j(S^k)) = Y_0$, where $Q_j(S^k)$ is supportion of additional input variables causing S^k to go to the state a_j . In all $Y_i > S^u > S^u$: $\delta^m(c_m(S^u), Q(S^m)) = b_m$, $\lambda^m(c_m(S^u), Q(S^m)) = P_j(S^m)$;

 $\begin{array}{ll} a_j \!\!\in\!\! A^k & (k \! \neq \! u), \; S^k \!\!<\!\! S^u. & \text{Then in the automaton } S^k \!\!:\! \delta^u(a_i, X_h) = \! c_u(S^k), \; \lambda^u(a_i, X_h) = \! Y_i \!\!\cup\!\! P_j(S^u). & \text{In the automaton } S^k \!\!:\! \delta^k(b_h, Q_j(S^k)) = \! Y_0 \!\!:\! \delta^k(b_h, Q_j(S^k)) = \! Y_0 \!\!:\! \delta^k(b_h, Q_j(S^k)) = \! Y_0 \!\!:\! \delta^m(b_m, Q(S^m)) = \! c_m(S^k), \\ \delta^k \!\!:\! \delta^k(b_h, Q_j(S^k)) = \! \delta_i(S^k) = \! \delta_i($

 $\begin{array}{lll} a_j \!\!\in\!\! A^k \; (k \!\neq\! u), \, S^k \; \text{and} \; S^U \; \; \text{do not lie on a common path to the root of the hierarchical} \\ \text{To. Let } S^r = \text{NIB}(S^k, S^U). \quad \text{Then, in the automaton} \; S^u \!\!: \; \delta^u(a_i, X_h) = b_u, \, \lambda^u(a_i, X_h) = Y_t \cup P_j(S^u). \quad \text{In} \\ \text{To. Let } S^r = \text{NIB}(S^k, S^U). \quad \text{Then, in the automaton} \; S^u \!\!: \; \delta^u(a_i, X_h) = b_u, \, \lambda^u(a_i, X_h) = Y_t \cup P_j(S^u). \quad \text{In} \\ \text{To. Let } S^h \!\!: \; \delta^k(b_h, Q_j(S^h)) = a_j, \, \lambda^k(b_h, Q_j(S^h)) = Y_0. \quad \text{In the automaton} \; S^r \!\!: \; \delta^r(c_r(S^u), \; Q_j(S^r)) = c_r(S^k), \\ \text{To. S}^u \!\!: \; \delta^q(c_q(S^u), O_j(S^q)) = b_q, \, \lambda^q(c_q(S^u), Q_j(S^q)) = P_j(S^q). \end{array}$

dides $\delta^u(b_u,Q_0^u)=b_u$, $\delta^u(c_u(S^k),Q_0^u)=c_u(S^k)$, $\lambda^u(b_u,Q_0^u)=\lambda^u(c_u(S^k),Q_0^u)=Y_0$, where λ^u_0 is the confine variables of the set U^U , all of whose terms are inverted.

number of additional input variables of the MPA Su is defined as follows:

to the number of outputs due to an increased number of communication signals.

the interaction model always produces implementations with the number of PLAM boards not greater than model of [1], which is a particular case of the model suggested paper.

The use of a hierarchical interaction model in MPA decomposition made it possible to following compared with model of [1]: 1) reduce the number of interacting automata network; 2) take into account the specifics of the connections of the automata and the number of communication variables by introducing a sequence in the connection was automata; and 3) expand the class of circuits implementing control automata

FERENCES

1. I. S. Levin, "A model of interaction of automata in the decomposition synthesis with memory," Upravlyayushchie Sistemy i Mashiny, no. 6, pp. 65-68, 1985.
2. G. Birkhoff and T. Barti, Modern Applied Algebra [Russian translation], Mir,

137 1986