
Non-redundant Scheme for Arbitrary Error
Detection in Combinational Circuits

Osnat Keren, Ilya Levin and Mark Karpovsky

Abstract— The paper deals with synthesis technique for de-
signing circuits with on-line errors detection. We present a new
technique of designing a concurrently checking functional circuit
by partitioning the circuit into two independent sub-circuits.
The technique does not require any redundant coding variables.
Instead, we propose to utilize some input variables. These
variables are transferred directly into the checker providing
the self-checking property for arbitrary errors (not necessarily
unidirectional). A method for constructing the overall system
is presented. Benchmark results are presented and show the
efficiency of the proposed approach.

Index Terms— Concurrent error detection, on-line checking,
combinational circuits, partitioning

I. INTRODUCTION

Progress in the microelectronics industry leads to increase of
complexity of VLSI schemes and components. The number of
transistors in the VLSI schemes has already reached millions,
and in some cases has risen even higher. Shrinkage of a
device size and reduction of power supply levels, as well
as the increase in operating speed has resulted in reduced
noise margins [17]. The failures phenomena, together with the
need for higher reliability of complex digital systems, are of
special interest. As the microelectronics industry moves toward
deep sub-micron technologies, systems designers have become
increasingly concerned about the reliability of future devices
that will have propagation delays shorter than the duration
of transient pulses induced by radiation attacks. They are
also concerned about smaller transistors, which will be more
sensitive to the effects of electromagnetic noise, neutron and
alpha particles, which may cause transient faults, even in fully
tested and approved circuits [1]. Most of faults that occur in
VLSI circuits and systems are transient/intermit in nature. The
self-checking property allows both the transient and permanent
faults to be detected, thus preventing data contamination.

Systematic error-detecting coding is one of the most effec-
tive instruments for concurrent error detection. This type of
coding often utilize separate codes, since such codes allow
preserving informational bits of the binary words to be coded,
while complementing the binary words by check bits. The
coded binary words form a set A of codeword. The set
A can be defined either by a list of the codewords, or by
a specific property distinguishing the codewords from non-
codewords. In order to ensure that the codewords differ from
non-codewords, each non-codeword, formed at an output of
a scheme instead of a codeword a due to a specific type of
fault, should either not to belong to the set A, or to be equal
to the correct word in A. Models of distortion of codewords
are usually built taking into account characterizing features of

the stream of faults and of the scheme under checking. As it
is accepted in relevant papers, we will consider that faults are
manifested by pins signals of ”0” or ”1” on input or output
contacts of logical elements forming the scheme to be checked.
The faults can be temporary or permanent. It is traditionally
accepted that a time interval between occurrences of two
adjacent faults is sufficient for coping with the earliest fault.
Therefore, only a single fault can present simultaneously in a
scheme under checking. This fact is usually considered when
building models of acceptable distortions of output codewords.
Most of relevant publications use the following two models of
distortions.

The first model is based on an assumption that a system
of functions, which reflects conversion of information in a
scheme under check, is monotonous. For example, schemes
that do not comprise inverters satisfy the mentioned assump-
tion. In such schemes, any single fault may only result in
so-called unidirectional faults of output code words [6]. The
Berger code [2], and sometimes the Smith code [15] are used
for detecting unidirectional errors. A number of algorithms are
known [4], [5], [14], [9], which allow converting an arbitrary
scheme in such a manner that the Berger code could be used
for its checking. To this end, the scheme can be modified
in such a way, that only its input variables become negated
[4]. The works [5], [14] propose algorithms of converting the
scheme under check by duplication of some of its elements.
The paper [9] describes a combination of several approaches.

The second model is based on an assumption that a number
of distorted bits in a codeword is not greater than a prede-
termined threshold t. The paper [12], based on a study of a
large number of benchmarks, shows that in most of the cases a
single fault results in errors in two or less bits of a codeword.

The majority of the known concurrent checking schemes
assumes that a set of output codewords of the functional
circuit to be checked is complete, i.e., any binary vector is
a codeword. However, it is often reasonable to construct a so-
called context-oriented concurrent checking scheme, where:
a) the number of possible codewords, is much smaller than
2k , where k is the width of the output vector, and b)
the set of possible codewords is known in advance. The
context-orientation has some advantages in comparison with
the universal orientation. Namely, it allows utilizing the redun-
dancy of the circuit’s output codewords, which is an intrinsic
feature of such circuits. One of the ways of utilizing the
redundancy is by dividing the functional circuit into a number
of separate independent sub-circuits. Each of these sub-circuits
implements its own subset of output signals. Since the sub-
circuits have no common elements, any single fault may result

in errors only in a subset of the output signals.
The context-orientation was studied in [7]. A so-called

Sum-of-minterms (SOM) checker was proposed. The SOM
checker tests whether an output word belongs to the set of
possible code-words of the circuit to be checked. In [8], the
authors developed a specific architecture for checking occur-
rence of unidirectional errors in sequential circuits without
introducing any redundant coding variables. Instead of the
encoding they proposed a match-detector based self-checking
architecture. This architecture uses signals of logic products
of the functional unit for providing the self-checking property.
Signals of these products form additional inputs of the checker.
Partitioning a functional circuit for mutually checking com-
ponents was proposed in [10] as another way for exploring
the context-orientation. The authors examined a two-block
partition, minimizing the number of encoded variables in a
concurrent checking scheme that detects any arbitrary errors.

In the present paper, the idea of a circuit’s partitioning
for the context-oriented concurrent checking is studied from
a different point of view. As in [8], we don’t use any
redundant coding for the output vectors. Instead, we propose
to transfer the input variables (and not the products) into the
checker. Actually, these input variables are used instead of
the conditional coding variables. A method for constructing a
system that provides the self-checking property for arbitrary
errors is the main contribution of the paper. We show that the
partitioning of the initial circuit into independent sub-circuits
followed by choosing the optimized set of input variables is
efficient for detecting both unidirectional and arbitrary errors.

The paper is organized as follows: Section II includes basic
definitions, and recalls related work on on-line testing for ar-
bitrary errors. Section III presents the suggested structure, and
Section IV contains experimental results. Section V concludes
the paper.

II. PRELIMINARIES

A. Context-oriented coding

Consider a functional unit that has m inputs and k out-
puts. The logic unit can be represented as a multi-output
function Y = f(X) where X = (xm−1, . . . , x0) and Y =
(yk−1, . . . , y0). In this paper, the binary output vectors are
referred to as information words. Assume that the logic unit
can produce only M distinct information words out of the 2k

possible combinations, that is, M < 2k.
In order to detect a single fault in the system, conventional

methods encode the information words by adding redundancy
bits. Namely, each information word Yi = (y(i)

k−1, . . . , y
(i)
0) is

encoded to a codeword Zi = (z(i)
n−1, . . . , z

(i)
0) of length n ≥ k.

The set of codewords {Zi}M
i=1 forms a code.

Definition 1: A code is called systematic , if there are k

fixed positions {js}k−1
s=0 such that z

(i)
js

= y
(i)
s for all 1 ≤ i ≤ M

and 0 ≤ s < k. The remaining r = n − k position carry the
redundancy.

Clearly, systematic codes are preferable since they allow
extracting an information word Yi out of a codeword Zi with-
out additional processing. For faults that cause unidirectional
errors, the commonly used codes are the systematic Berger

code, [2], which adds r = �log2(k + 1)� redundancy bits, and
the non-systematic w− out− of −n code, [3], for which the
M information words are mapped to binary vectors of length
n and of Hamming weight w, where, M ≤ (

n
w

)
. The context-

oriented systematic Smith code [15] allows, in some cases, to
reduce the number of redundancy bits.

The assumption that a fault causes unidirectional errors
allows to implement the functional unit as a single circuit.
However, in cases where a fault may cause any type error
(not necessarily unidirectional), the fault may not be detected
in functional units that are implemented as a single circuit. In
order to detect an arbitrary fault the functional unit should be
implemented by at least two independent circuits [11].

Coding schemes for such a case, were discussed in [5], [11],
[13], [16]. In this paper we assume that the functional unit
is implemented as two independent circuits. Without loss of
generality, we assume that the first circuit realizes the first n1

bits of Z, that is, c1 = (zn1−1, . . . , z0), and the second circuit
realizes the remaining n2 = n−n1 bits, c2 = (zn−1, . . . , zn1).
The overall system is fault-secure in respect to a single fault
in one of the circuits, if either, a fault maps a codeword on
itself, or it maps a codeword to a non codeword [6]. In [11]
it was shown, that iff

c2 = f1(c1), and, c1 = f2(c2), (1)

then the functional unit is fault secure in respect to arbitrary
errors in one of the two circuits.

B. SOM checker for context-oriented codes

In [7] the authors introduced a Sum Of Minterms (SOM)
checker for a context-oriented code in respect to unidirectional
errors. The SOM checker is based on dividing the set of M
codewords into two disjoint sets, Π0 and Π1. The checker con-
sists of two independent circuits, each implements a function

Ri = ∨Zj∈Πi
m(Zj) , i = 0, 1,

where m(Zj) is a minterm of the variables z0, . . . zn−1 that
corresponds the codeword Zj . In normal operation (i.e when
there is no fault in the system), the output of the checker
is (R0R1) ∈ {(01), (10)}; Whereas, at the presence of a
single fault in one of the circuits, the output of the checker is
(R0R1) ∈ {(00), (11)}. Inherently, the SOM checker is fault
secure but it is not self testing [7]. The structure of the overall
system is shown in Figure 1. Experimental results show that
for M < 2k/3, the system in [7] has smaller implementation
cost than a solution based on duplication of the functional unit
combined with a dual-rail checker.

Figure 2, shows a structure of a system that is based on [7],
and that can detect any type of single fault in one of its circuits.
The system combines a functional unit that is implemented as
two independent circuits with a SOM checker. The functional
unit produces context-oriented systematic codewords having
n1 = k1 and n2 = k2 + r, where k1 + k2 = k.

III. SUGGESTED SCHEME - REDUNDANCY FREE SOLUTION

A. Fault detection by routing the inputs to a SOP checker

In this paper we suggest a new approach for detecting
an arbitrary single fault. Instead of encoding an information

Fig. 1. On-line checking scheme for unidirectional errors

Fig. 2. On-line checking scheme for arbitrary errors

word Yi into a codeword Zi by adding r redundancy bits, we
suggest to use the information bits as they are (uncoded), and
rout the x’s as inputs to the checker. We will show that this
solution is simpler and has a lower implementation cost than
the duplication based solutions.

The suggested structure is shown in Figure 3. The functional
unit is implemented as two independent circuits. The first
circuit realizes k1 bits of Y, that is, c1 = (yjk1−1 , . . . , yj0);
The second circuit realizes the remaining k2 = k − k1 bits,
that is, c2 = (yjk−1 , . . . , yjk1

). The output of the functional
unit is denoted by Ŷ = (c2, c1). Obviously, there is a one-
to-one mapping between Yi and Ŷi. The input variables X
together with the Ŷ enter a (Sum Of Products) SOP checker.

As in [11], a partition of the information bits {yj}k−1
j=0 into

two sets is done with the aim to minimize the number of y’s
in c1 that completely specify the information words; Namely,

Y = f̂(yjk1−1 , . . . , yj0) = f̂(c1). (2)

The remaining information bits (if any) form c2. Consequently,
the circuit that realizes c2 is fault secure. Note that this par-
tition may be not the optimal in terms of the implementation
cost, but it is simple to construct and implement.

Definition 2 (Distance): The distance between two words
Ŷi = (c(i)

2 , c
(i)
1) and Ŷj = (c(j)

2 , c
(j)
1) is

d(Ŷi, Ŷj) = |{k|c(i)
k �= c

(j)
k), k = 1, 2}|.

Fig. 3. Proposed structure: non redundant functional unit with SOP checker

Fig. 4. K-map for the functional unit in Example 1

Definition 3 (Minimum distance): The minimum distance
between the words in the set Y = {Ŷi}M

i=1 is

dmin = minŶi,Ŷj∈Y, i �=jd(Ŷi, Ŷj).
Clearly, any fault in the circuit that realizes c1 is detectable

if and only if all the codewords are of distance two from each
other. Nevertheless, in some cases, it is not possible to find a
partition that leads to a dmin that equals two. The following
example illustrates such a case.

Example 1: Consider a functional unit that has five inputs
X = (x4, . . . x0) and five outputs Y = (y4, . . . y0). Assume
that the system produces only M = 6 information words
{Yi}6

i=1 out of the possible 25 combinations, and,

Y1 = (01011) , Y2 = (00001)
Y3 = (00101) , Y4 = (10111)
Y5 = (11010) , Y6 = (11111).

The functionality of the system is given in Figure 4 in a
Karnaugh-like map; the labels on the columns correspond to
the input variables (x4, x3, x2), and the rows to (x1, x0).

The partition c1 = (y4, y3, y2) and c2 = (y1, y0) fulfills Eq.
2. The distance between Ŷ1 and Ŷ2 is

d((010, 11), (000, 01)) = 2.

The distance between Ŷ1 and Ŷ4 is

d((010, 11), (101, 11)) = 1.

Thus, the minimum distance between the set of words is one.
Consequently, there may be faults in the circuit that realizes c1

that may no be detected. Note that since k = 5 it is not possible
to find a partition that leads to a dmin that equals two. Hence,
it is not possible to detect a fault in the circuit that realizes c1

unless ’side-information’ is given to the checker.

B. SOP checker construction

In this subsection we present a checker that is based on
products rather on minterms. We assume that the functional
unit is implemented as two independent circuits, and that the
partition to c1 and c2 fulfills Eq. 2. The inputs to the checker
are X and Ŷ .

Definition 4 (Characteristic function): Let Y = {Ŷi}M
i=1 be

the set of M words produced by the functional unit. The
characteristic function gi(X) of Yi, in respect to Y, is

gi(X) =

⎧⎨
⎩

1 f(X) = Yi

0 f(X) = Yj and d(Ŷi, Ŷj) = 1
φ otherwise

(3)

Fig. 5. K-maps for Example 2: characteristic functions of Y2 and Y3.

Fig. 6. K-maps for Example 2: characteristic functions of Y1, Y4 and Y6.

where φ stands for don’t care.
Example 2: The codeword Ŷ2 in Ex. 1, is of distance one

from the word Ŷ3, and it is of distance two from all the
remaining words. The Karnaugh-like map given in Figure 5
shows the combination of X’s that produce Y2 and Y3. The
empty bins in the map correspond to the input combinations
for which the characteristic functions g2(X) and g3(X) are
not specified. Clearly, the simplest expressions for the charac-
teristic functions are g2(X) = x′

3 and g3(X) = x3.
Note that the characteristic functions are not necessarily

orthogonal (disjoint). That is,
∑

X gi(X)gj(X) ≥ 0. See for
example the characteristic functions g1(X) and g6(X) that are
shown in Figure 6. Although the characteristic functions are
not orthogonal, they can be used to detect a single fault by a
SOP checker as states in Theorem 1 below.

A SOP checker is based on dividing the set Y of into two
non-empty and disjoint sets, Π0 and Π1. The SOP checker
consists of two independent circuits. Each circuit implements
the function

Ri = ∨Ŷj∈Πi
mj(Y)gj(X) , i = 0, 1,

where mj is the minterm in the variables y0, . . . yk−1 that
represents the word Ŷj . Indeed mj can be written as a product
of two minterms mj,1 and mj,2 that represent the sub-words
c
(j)
1 and c

(j)
2 which compose the word Ŷj ,

mj(Y) = mj,1(c1)mj,2(c2).

We now show that the overall system is fault secure in
respect to any single fault that may occur in one of the four
independent circuits: the two circuits of the functional unit and
the two circuits that realize the checker.

Theorem 1: In a fault free circuit, the output of the checker
is (R0R1) ∈ {(01), (10)}. In the presence of a single fault
in one of the two circuits of the functional unit, the output is
(R0R1) ∈ {(00), (11)}.

Proof: Without loss of generality, assume that the input
to the system is X = a, f(a) = Ya, and Ya ∈ Π1. Consider
three cases:

• There is no fault in the system. Then,

mj(Ya)gj(a) =
{

1 j = a
0 otherwise

.

Thus, R0 = 0 and R1 = 1, and therefore, R0 = R′
1.

• There is a single fault in the circuit that realizes c1.

Then, instead of the word Ŷa = (c(a)
2 , c

(a)
1) = (α, β),

the functional unit may produce the word (α, γ) where
β �= γ.
If there exists a word Ŷb ∈ Y such that c

(b)
2 = α and

c
(b)
1 = γ, then the characteristic functions of Ŷa and Ŷb

satisfy ga(a) = 1 and gb(a) = 0. Therefore,

mj,2(α)mj,1(γ)gj(a) =

⎧⎨
⎩

1 · 0 · 1 = 0 j = a
1 · 1 · 0 = 0 j = b
0 · 0 · φ = 0 otherwise

.

Thus, the output of the checker will be R0 = R1 = 0.
• There is a single fault in the circuit that realizes c2.

Then, instead of the word Ŷa = (c(a)
2 , c

(a)
1) = (α, β),

the functional unit may produce the word (γ, β) where
α �= γ. Since c1 uniquely specifies an information word,
there exist no word of the form (γ, β). Hence

mj,2(γ)mj,1(β)gj(a) = 0

for all j, and the output of the checker will be R0 =
R1 = 0.

C. Characteristic functions construction

In this subsection we present a greedy procedure for gener-
ating the characteristic function. The computational complex-
ity of the procedure is smaller than mN2 where m is the
number of input variables and N is the number of products
(cubes) that specify the functional unit.

Let G = {0, 1, ∗}, and, p ∈ G. Let a be a Boolean variable.
We define ap as

ap =

⎧⎨
⎩

a if p = 1
ā if p = 0
1 if p = ∗

.

Definition 5 (cube): A cube P = (pm−1, . . . , p0) ∈ Gm,
of order r is a coset comprising the 2r assignments of
X = (xm−1, . . . , x0) ∈ {0, 1}m, for which the corresponding
Boolean product fP (X) = Πm−1

i=0 xpi

i equals ”1”. The value of
r equals to the number of ∗’s in p.

The intersection between two cubes Pi and Pj comprises
the elements in the intersection of the cosets, or equivalently,
the assignments of X for which fPi

(X) · fPj
(X) = 1. Two

cubes are called disjoint if their intersection is empty.
Let Fi denote the set of cubes {P (i)

j }Ni
j=1 that are associated

with the information word Yi. Each element X in the union
of the cosets defined by Fi satisfies: f(X) = Yi. Clearly,
Fi ∩ Fj = Φ for i �= j.

TABLE I

SOP CHECKER CONSTRUCTION PROCEDURE

For each information word Yi, 1 ≤ i ≤ M,
A = ∪s|d(Ŷi,Ŷs)=1Fs.

If A = Φ then Ŷi is of distance two from all other words, thus,
F̂i = {(∗, ∗, · · · ∗)}.

Else construct the set F̂i :

F̂i = Φ.

For each cube P
(i)
j in Fi, 1 ≤ j ≤ Ni,

P = P
(i)
j .

for 1 ≤ w ≤ m,
tempP = P,
tempPw = ∗,
if tempP ∩ A = Φ, then P = tempP.

end
F̂i = F̂i ∪ P.

end
end

end

Let hi(X) be the Boolean function defined by Fi, that is,

hi(X) = ∨jfP
(i)
j

(X).

The characteristic function gi(X) covers hi(X),

gi(X) ≥ hi(X).

The procedure presented in Table I shows how to construct
from each Fi a new set of cubes F̂i, that are of larger order
than the original cubes. The set F̂i defines a characteristic
function that has a smaller number of literals than the function
defined by Fi. For each information word Yi, the procedure
goes over all the cubes P = (pm−1, . . . , p0) = P

(i)
j ∈ Fi.

The procedure changes the symbol pw, 0 ≤ w ≤ m − 1, to
∗ if after the change the modified cube P and the set A =
∪s|d(Ŷi,Ŷs)=1Fs remain disjoint, that is P ∩ A = Φ.

Example 3: The set of cubes associated with the informa-
tion words in Example 1 is the following:

F1 = {(001 ∗ 0), (1 ∗ 001)},
F2 = {(10000), (00 ∗ 11), (10110)},
F3 = {(11 ∗ 00)},
F4 = {(00000)},
F6 = {(1111∗), (01000), (0 ∗ 101)}.

All the remaining combinations are associated with the infor-
mation word Y5 :

F5 =
{

(011 ∗ 0), (0 ∗ 001), (1010∗), (1 ∗ 101), (10 ∗ 11),
(∗ ∗ 010), (01 ∗ 1∗), ∗101∗)

}
.

The new set of cubes which defines the characteristic functions
is:

F̂1 = {(∗01 ∗ 0), (∗ ∗ 0 ∗ 1)},
F̂2 = {(∗0 ∗ ∗∗)},
F̂3 = {(∗1 ∗ ∗∗)},
F̂4 = {(∗00 ∗ 0)},
F̂5 = {(∗ ∗ ∗ ∗ ∗)},
F̂6 = {(∗1 ∗ 1∗), (∗1 ∗ ∗0), (∗ ∗ 1 ∗ 1)}.

Note that the the word Ŷ5 is of distance two from all the
other words. Thus, its corresponding A is empty and the cube

F̂5 equals to (∗ ∗ ∗ ∗ ∗). That is, the characteristic function
associated with Y5 is g5(X) = 1.

Let F be the set that comprises all the cubes:

F = ∪M
i=1Fi.

Denote by |F | the number of products in F ,

|F | =
M∑
i=1

Ni.

Let W (P) be the number of literals in the product that
corresponds to the cube P = (pm−1, . . . , p0),

W (P) = |{w|pw �= ∗, 0 ≤ w < m}|.
We define the density of F as

D(F) =
∑

P∈F W (P)
m|F | .

In Example 3, the density of the original set is D(F) = 73/(5∗
18) = 81%, while the density of the encoded set is D(F̂) =
16/(5 ∗ 9) = 36%. Although the density is not a measure of
the implementation’s complexity, it can be used as an indicator
to the simplification that the suggested approach can provide.

IV. EXPERIMENTAL RESULTS

In this section we present results obtained from experiments
with a number of industrial benchmarks provided by different
high-tech companies. The results of the experiments are pre-
sented in Tables II and III.

Table II compares the suggested structure with duplication
based solutions and with strict encoding (i.e. coding the
information using �log2(M)� bits). The comparison is done
in terms of the density measure. The first column of the Table
contains the benchmark name; columns 2, 3, 4 contain the
number of inputs m, the number of codewords M, and the
number of information bits k. The number of information
bits (k1, k2) implemented as c1 and c2 are written in the 5’th
column. The number r of x’s that are actually routed to the
SOP checker are written in the 6’st column. The density of
the original set D(F) that indicates the complexity of the
duplication and the strict encoding, is given in column 7. The
density of the encoded set D(F̂) is given in column 8. The last
row of the table refers to normalized values of the parameters.
The CPU time of the encoding procedure was measure on
Intel-Centrino, 1.2Ghz, 0.99GB RAM, and is given in the 9’th
column.

On average, the suggested encoding scheme improves the
density by a factor of 0.54 and about 66% of the AND matrix
of the PLA that specifiys the characteristic functions contains
don’t care values.

Table III shows the complexity of the overall system in
terms of the number of Look-Up-Tables (LUT s). We used
SPARTAN3 xcs200ft256 and LeonardoSpectrum. The number
of LUTs required for implementation of the functional unit as
one circuit is written in the second column of the table; the
number of LUTs required to implement the functional unit
as two independent circuits is written in the third column.

TABLE II

DENSITY

m M k (k1, k2) r D(F) D(F̂) sec
s27 7 6 4 (3,1) 6 81 38 0.078
s298 17 332 20 (16,4) 13 98 44 3.078
s386 13 23 13 (11,2) 13 67 27 0.047
s420 35 36 18 (18,0) 17 55 42 0.000
s510 25 73 13 (9,4) 25 27 18 0.063
s832 23 70 24 (22,2) 22 39 30 0.563
s1494 14 168 25 (21,4) 13 64 37 0.297
total 1 0.5476

TABLE III

NUMBER OF LUTS IN THE OVERALL SYSTEM

single circuit suggested ref. [11] strict enc.
circuit c1 and c2 scheme + SOM ch. + SOM ch.

s27 12 (7,5) 22 25 27
s298 2410 (2312,253) 3937 5310 5733
s386 63 (56,10) 163 188 194
s420 104 (104,133) 341 430 383
s510 81 (70,11) 303 401 389
s832 346 (345,4) 725 921 1032
s1494 674 (545,135) 1322 1720 1832
total 1 1.08 1.85 2.44 2.60

Columns 4, 5, and 6 show the number of LUTs required
for the implementation of the overall system, that is, the
functional unit circuits plus a SOM (or SOP) checker. The 4’th
column corresponds to the proposed scheme, the 5’th column
corresponds to the coding scheme presented in [11] combined
with a SOM checker, and the 6’th column corresponds to
a system based on the strict encoding. The table clearly
demonstrates the efficiency of the suggested structure. On
average, the presented scheme allows detection of any arbitrary
fault by increasing the implementation cost by 85%. This is
better than the conventional method of duplication or strict
encoding, or the method presented in [11].

V. CONCLUSIONS

The known approaches for designing independently checked
circuits are all based on introducing a significant redundant
portion into the original scheme. These known methods use
various strategies of coding to optimize the final hardware
solution according to different criteria. In our paper we avoid
the necessity to introduce any additional redundancy into
the initial scheme to be checked. Instead, we propose using
already existing variables to achieve the required effect of
detecting a single fault that may cause arbitrary errors (not
necessarily unidirectional). These existing variables are the
input variables of the functional circuit. In our case, some of
the input variables are used as additional inputs entered into
a checker, in addition to the original output variables.

We have formulated theoretical fundamentals of the pro-
posed design method. Based on the fundamentals, we have
solved a problem of selecting the optimized set of input
variables to be added to the output vector.

The proposed approach has been implemented and inves-
tigated. Experimental results, obtained using a number of

standard benchmarks, indicate a significant improvement in
detection of arbitrary errors, in comparison with the conven-
tional methods and in terms of the required hardware overhead.

ACKNOWLEDGMENT

The authors would like to thank Vladimir Ostrovsky and
Benni Abramov for their support and assistance with this
project.

REFERENCES

[1] Alidina M. et al., ”Precomputation-based Sequential Logic Optimization
for Low Power,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 2, pp.426-436, Dec. 1994.

[2] J. M. Berger, ”A Note on Error Detection Codes for Asymmetric
Channels,” Information and Control, vol. 4, pp. 68-73, Mar. 1961.

[3] C. V. Freiman, ”Optimal error detection codes for completely asymmetric
binary channels,” Information and Control , vol. 5, pp. 64 - 71, 1962.

[4] N.K. Jha and S.J. Wang, ”Design and Synthesis of Self-Checking VLSI
Circuits,” IEEE Transaction CAD, vol. 12, no. 6, pp. 878-887, Jun. 1993.

[5] Kaushik De., Chitra Natarajan, Devi Nair, Prithviraj Banerjee, ”RSYN: A
System for Automated Synthesis of Reliable Multilevel Circuits,” IEEE
Transaction on Very Large Integration (VLSI) Systems,vol. 2, no. 2, pp.
186-195, June 1994.

[6] P. Lala, Self-checking and Fault-Tolerant Digital Design, Morgan Kauf-
mann Publishers, San-Francisco / San-Diego / New-York/ Boston/ Lon-
don/ Sydney/ Tokyo, 2000.

[7] I. Levin, M. Karpovsky, ”On-line Self-Checking of Microprogram Control
Units”, The 4-th IEEE International On-line Testing Workshop, Capri,
pp. 153 - 159, 1998.

[8] I. Levin and V. Sinelnikov, ” Self-checking of FPGA based Control
Units,” Proc. of 9th Great Lakes Symposium on VLSI, Ann Arbor,
Michigan, IEEE press, pp. 292-295, 1999.

[9] C. Metra, S. Francescantonio, M. Omana, ”Automatic Modification of
Sequential Circuits for Self-Checking Implementation,” Proc. of the 18th
IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems (DFT’03), pp.417 - 424, 2003.

[10] V. Ostrovsky and I. Levin, ”Implementation of Concurrent Checking
Circuits by Independent Sub-circuits,” Proceedings of 20th IEEE In-
ternational Symposium on Defect and Fault Tolerance in VLSI Systems
(DFT’05), pp. 343-351, 2005.

[11] V. Ostrovsky, I. Levin, O. Keren, B. Abramov, ”Designing Concurrent
Checking Circuits by using Partitioning,” accepted for publication in the
International Journal of Highly Reliable Electronic System Design on
Aug-2007.

[12] I. Pomeranz and S.M. Reddy, ”Recovery During Concurrent On-Line
Testing of Identical Circuits,” Proceedings of the 20th IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05), pp.
475-483, Oct. 2005.

[13] V.V. Saposhnikov, A. Morosov, Vl.V. Saposhnikov, M. Gossel, ”Design
of Self-Checking Unidirectional Combinational Circuits with Low Area
Overhead,” Proceeding of the 2nd IEEE International On-line Testing
Workshop, pp. 56-67, Jul. 1996.

[14] V.V. Saposhnikov, A. Morosov, Vl.V. Saposhnikov, M. Gossel, ”A
New Design Method for Self-Checking Unidirectional Combinational
Circuits,” Journal of Electronic Testing: Theory and Applications, vol.
12, pp. 41-53, Feb. 1998.

[15] J. E. Smith , ”On separable unordered codes,” IEEE Transaction on
Computers, vol. 33, no. 8, pp. 741-743, Aug. 1984.

[16] E.S. Sogomonyan, ”Design of Built-in Self-Checking Monitoring Cir-
cuits for Combinational Devices,” Automation and Remote Control, vol.
35, no. 2, pp. 280-289, 1974.

[17] L. Znghel, M. Nicolaidis, I. Alzaher-Noufal, ”Self-Checking circuits
versus realistic faults in very deep submicron,” 18th IEEE VLSI Test
Symposium (VTS 2000), pp. 55-63, May 2000.

