Outline

• Logic functions vs. System of Logic functions
• Preliminaries
• Generalised ITE (GITE) operator
• EvP and ExP
• Partition algebra of EvP
• Boolean algebra of ExP
• Dichotomy property
• Decomposition
• Conclusions
I. Single Logic function

II. Two-block Partition of Boolean Cube
I. n Logic functions

II. n-block Partition of Boolean Cube
Two Domains

- Boolean Algebra of output vectors
- Partitions Algebra of input vectors
Partitions

Definition.
A partition on a set \(C \) is a collection of disjoint subsets of \(C \) whose set union is \(C \), i.e. \(\pi = \{ B_\alpha \} \) such that:
\[
B_\alpha \cap B_\beta = \emptyset \ (\alpha \neq \beta) \text{ and } \bigcup \{ B_\alpha \} = C.
\]

Example: \(S = \{1,2,3,4,5,6,7,8\} \)
\[
\pi_1 = \{\{1\},\{2\},\{3,4,7\},\{5,6,8\}\} = \{1; 2; \overline{3,4,7}; \overline{5,6,8}\}
\]
Partitions

A product $\pi_{prd} = \pi_1 \cdot \pi_2$ of partitions π_1 and π_2 is a partition comprising intersections of blocks π_1 and π_2:

\[s \equiv t(\pi_1 \cdot \pi_2) \text{ iff } s \equiv t(\pi_2) \& s \equiv t(\pi_1). \]

A sum $(\pi_1 + \pi_2)$ of the partitions π_1 and π_2 defined as follows:

\[s \equiv t(\pi_1 + \pi_2) \text{ iff a chain } s_0, s_1, \ldots, s_n \text{ exists in } C \text{ such as: } s = s_0, s_1, \ldots, s_n = t, \text{ for which either } s_i \equiv s_{i+1}(\pi_1) \text{ or } s_i \equiv s_{i+1}(\pi_2), \quad 0 \leq i \geq n - 1. \]
Algebra of Partitions

The algebraic structure of partitions is known as a lattice. This lattice has both Zero (the smallest partition π^0) and One (the biggest partition π^1) elements defined as follows:

$\pi^0 = \left\{ \overline{s_1; \ldots; s_m} \right\}$;

$\pi^1 = \left\{ \overline{s_1, \ldots, s_m} \right\}$.
Algebraic Decision Diagrams (ADD)

✓ Multi Output Functions as ADD

✓ Different forms of representation of ADDs

✓ Operations: Apply and If-Then-Else operation

✓ Used for: matrix multiplication, shortest path algorithms, and numerical linear algebra.
An ADD is a function:

\[f : \{0,1\}^n \rightarrow S \]

where \(S \) is the finite carrier of the algebraic structure.

ADD is a form for representation of Multi Output Functions (MOF).
 Algebraic Decision Diagram

✓ ADDs representations
 • MTBDD
 • Matrix

✓ ADD operations
 • Apply
 • If-Then-Else (ITE)
Apply operation

\[Apply(f, g, op) = f \ op \ g \]

\[
\begin{pmatrix}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
\end{pmatrix}; \quad
\begin{pmatrix}
4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 \\
2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 \\
\end{pmatrix}
\]

\[Apply(f, g, +) = \begin{pmatrix}
5 & 5 & 4 & 4 \\
5 & 5 & 4 & 4 \\
2 & 2 & 3 & 3 \\
2 & 2 & 3 & 3 \\
\end{pmatrix} \]
If-Then-Else (ITE) operation

\[\text{ITE}(f, g, h) = f \cdot g + \overline{f} \cdot h \]

\[f = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}; \quad g = \begin{pmatrix} 3 & 3 & 3 & 3 \\ 3 & 3 & 3 & 3 \\ 3 & 3 & 3 & 3 \end{pmatrix}; \quad h = \begin{pmatrix} 4 & 4 & 4 & 4 \\ 4 & 4 & 4 & 4 \\ 2 & 2 & 2 & 2 \end{pmatrix} \]

\[\text{ITE}(f, g, h) = \begin{pmatrix} 3 & 3 & 4 & 4 \\ 3 & 3 & 4 & 4 \\ 2 & 2 & 3 & 3 \\ 2 & 2 & 3 & 3 \end{pmatrix} \]

The ITE comprises a Boolean function operation as a “binary condition” being a two-block partition of the Boolean space.
ITE vs. GITE

ITE - two-block partition on the Boolean cube

GITE - n-block partition on the Boolean cube
Generalised ITE operation

Definition. Generalized ITE (GITE) is

\[GITE(\pi, Y) \]

where: \(\pi = \{B_1; \ldots; B_m\} \) is a partition on the Boolean space;

\[Y = \{Y_1, \ldots, Y_m\} \] — a set of operators - binary vectors.

\(Y_i \) \((i = 1, \ldots, m)\) corresponds to a certain block \(B_i\) of the partition \(\pi\).

Thus, GITE consists of a partition portion (Evolution Part) and an operator portion (Execution Part).
Multi Output Function as GITE

Definition

A Multi-Output Function (MOF) is a mapping \(f : \{0,1\}^n \rightarrow Y \), which is \(GITE(\pi,Y) \) defined on two sets:

\(a) \) the partitions \(\pi \) and

\(b) \) the set \(Y \) of operators.
Polynomial representation of GITE

Example: $D = B_1 Y_1 + B_2 Y_2 + B_0 Y_0$

$B_1 = x_1; B_2 = \overline{x_1 x_2}; B_0 = B_1 + B_2$
\[D = AB(11) + A\overline{B}(10) + \overline{A}B(01) + \overline{A}\overline{B}(00) \]
GITE algebra is a product of two algebras
The GITE algebra is a product of two algebras:

• the algebra of partitions on the Evolution Part

• the Boolean algebra on the Execution Part
Partitions Algebra of GITE Evolution Part
GITE Apply operation

Definition: GITE Apply operation

\[
\text{Apply}(D_a, D_b, op) = D_a op D_b = GITE\left(\pi_a \cdot \pi_b; Y_{a1} op Y_{b1}, Y_{a1} op Y_{b2}, \ldots, Y_{am} op Y_{bm}\right),
\]

GITE Apply operation is performed by multiplying partitions \(\pi\) and by pair-wise \(op\) operation on operators \(Y\).
Definition. Apply operation on GITE-polynomial we call *Product* of GITE-polynomials and define as follows:

Let
\[D_1 = \sum_{i=1}^{m} Y_i + B_0^1 Y_0, \quad D_2 = \sum_{k=1}^{l} Y_k + B_0^2 Y_0. \]

Then
\[D_1 \circ D_2 = \text{Apply}(D_1, D_2, \text{op}) = \sum \left(B_{ij}^1 \cdot B_{kl}^2 \right) \{ Y_{i \cdot \text{op} Y_k} \}, \]

for each pair of terms from \(D_1 \) and \(D_2 \),

\[B_{ij}^1 \cdot B_{kl}^2 \] is a logic product (AND) of \(B \)-functions;

\[Y_{i \cdot \text{op} Y_k} \] is the Apply operation between \(Y_i \) and \(Y_k \).
GITE Apply operation

The Apply operation between \(D_1 = GITE(\pi_1; Y_{11}, \ldots, Y_{1m}) \) and \(D_2 = GITE(\pi_2; Y_{21}, \ldots, Y_{2m}) \):

\[
D_{op} = Apply(D_1, D_2) = D_1 \circ D_2 = GITE(\pi_1 \cdot \pi_2; Y_{11} \circ Y_{21}, \ldots, Y_{1m} \circ Y_{2m}).
\]
Factorization of GITE expressions

The product of GITE partitions corresponds to the Apply operation,

The sum of GITE partitions corresponds to factorization of GITEs.

Define the factorization of GITEs as follows:

\[D = D_i \text{ op } D_j = \text{GITE} \left(\pi_i + \pi_j; D_1, \ldots, D_f \right), \]

where \(f \) is a number of blocks in \(\left(\pi_i + \pi_j \right) \)

\(D_1, \ldots, D_f \) stand for GITEs representing remaining functions.
Example

Let \(D_1 = x \ Y + \bar{x} \ Y \ Y + \bar{x} \ x \ Y \ Y \), \(D_2 = \bar{x} \ Y + x \ \bar{x} \ Y \ Y + x \ x \ Y \ Y \).

\[D_1 \circ D_2 = GITE \left(\pi; Y, Y, Y \right) \circ GITE \left(\pi; Y, Y, Y \right) = \]

\[= GATE \left(\pi + \pi; D, D \right) \; ; \]

\[D_1 \circ D_2 = D_3 \left(D, D \right) = x D + \bar{x} D \; ; \]

where:

\[D = Y \circ \left(\bar{x} Y + x Y \right) \; , \]

\[D = \left(\bar{x} Y + x Y \right) \circ Y \; . \]
Let D_1, D_2, D_3 be:

\[
D_1 = GITE\left(\pi_1; Y_{11}, Y_{12}\right), D_2 = GITE\left(\pi_2; Y_{21}, \ldots, Y_{2m}\right), \quad D_3 = GITE\left(\pi_3; Y_{31}, \ldots, Y_{3m}\right)
\]

After substitution: $Y_{11} \leftarrow D_2 \quad Y_{12} \leftarrow D_3$, we have:

\[
D_1 = GITE\left(\pi_1; D_2, D_3\right)
\]
Boolean algebra of GITE Execution Part
Boolean algebra of GITE Execution Part

\[X + Y \]
Boolean algebra of GITE Execution Part

Example 1: \(X + Y = (\overline{X} \& \overline{Y}) \)

\(\overline{X} \& \overline{Y} \)
Example 2

Boolean algebra of GITE Execution Part

A

X

000

001

Y

000

011

A

B

000

011

B

001

011

=
Example 2

\[
\bar{X} \quad Y
\]

\[
\begin{align*}
&111 \\
&110 \\
&000 \\
&011
\end{align*}
\]

\[
= \\
\begin{align*}
&000 \\
&011 \\
&000 \\
&010
\end{align*}
\]
Example 2: \(X + \overline{X} \& Y = X + Y \)
Decomposition

- Beginning from the initial implicant table to construct a network consisting of a number of component GITE
- Minimise component independently
- Each of the components have to be dichotomic
Dichotomic Fragment

We say that a set of product terms forms a *dichotomic* fragment, if the set is straightforwardly mappable into an MTBDD.

The dichotomic property guarantees that there exists a Shannon expansion that will not bring additional product terms to the initial GITE.

The dichotomic property means that the paths of the MTBDD are in one-to-one correspondence with product terms of the GITE.
Dichotomy Property

We study cases where GITE is represented by a MTBDD. Our hypothesis is that the GITE can be more efficiently represented by a set of dichotomic fragments.

The whole GITE would be considered a set of sub-GITE, functionally equal to the initial GITE.

Any GITE can be decomposed into a network of dichotomic fragments connected by the Apply and the Substitution operations.
The proposed decomposition algorithm is based on grouping of the set of cubes representing the function to a set of blocks.

The algorithm is algebraic decomposition method.

Function F is represented as:

\[F = D \circ Q + R \]

where D, Q and R, are the divisor, quotient and remainder.
Algebraic Decomposition Method

Decomposition is performed simultaneously on the set of functions that are represented as a single GITE - polynomial. Our algebraic decomposition has the form:

$$D = \text{GITE} \left(\pi_h, D_1, \ldots D_j \right) \circ R.$$

Where: divisor π_h is a block header, quotient $\left(D_1, \ldots D_j \right)$, D_i, $i = 1, \ldots, j$, is a block fragment, Reminder R consists of the remaining cubes that were not included in the block. The partition π_h together with the GITE-polynomials D_i form a block.
Decomposition
Two algorithms have been developed and studied: a “density” algorithm and a “dichotomy” algorithm.

Both algorithms use one and the same general decomposition method.

The general method is the partitioning of the set of cubes into a number of components. This partitioning is performed recursively.

On each step of the recursive procedure, the corresponding component is partitioned into two subsets: a common header and a remainder.

Each common header is implemented as a conventional MTBDD.

The main concern of the general decomposition method is searching for optimal “common headers”, for obtaining optimal resulting MTBDD.
Dichotomy Oriented Decomposition

Begin

stack <= PLA

PLA <= stack

stack <= 0 (PLA)

stack <= 1 (PLA)

Shannon expansion

Stack

1

0

Column without

1

0

End

Decomposition

Saturday, 27 August 2011
Density

Block density corresponds to a number of literals in the block’s cubes normalised by the maximal possible number of literal in this block. The success of the decomposition strongly depends on the density.
Experimental Results - Low Density

| Title | $|X|$ | D% | Nmon | Nnet | ratio |
|--------|-----|----|------|------|-------|
| ALU1 | 12 | 18 | 982 | 25 | 0.02 |
| B12 | 15 | 29 | 155 | 145 | 0.93 |
| DK48 | 15 | 31 | 3428 | 58 | 0.02 |
| DK27 | 9 | 34 | 79 | 22 | 0.28 |
| CON1 | 7 | 37 | 16 | 15 | 0.94 |
| ALU2 | 10 | 39 | 264 | 150 | 0.57 |
| DUKE2 | 22 | 40 | 1435 | 326 | 0.23 |
| ALU3 | 10 | 42 | 278 | 151 | 0.54 |
| MISEX3C| 14 | 43 | 10875| 705 | 0.06 |
| WIM | 4 | 50 | 15 | 10 | 0.67 |
| F51M | 8 | 53 | 255 | 155 | 0.61 |
| DK17 | 10 | 57 | 160 | 55 | 0.34 |
| APLA | 10 | 64 | 128 | 85 | 0.66 |
| INC | 7 | 79 | 39 | 35 | 0.9 |
Experimental Results - High Density

| Title | |X| | D% | Nmon | Nnet | ratio |
|--------|---|---|----|-----|------|------|
| ADD6 | 12 | 52 | 504 | 731 | 1.45 |
| RADD | 8 | 57 | 90 | 143 | 1.59 |
| CLIP | 9 | 59 | 189 | 376 | 1.99 |
| Z4 | 7 | 61 | 52 | 101 | 1.94 |
| ROOT | 8 | 65 | 72 | 134 | 1.86 |
| SQR6 | 6 | 67 | 63 | 85 | 1.35 |
| SQN | 7 | 69 | 81 | 116 | 1.43 |
| MLP4 | 8 | 73 | 240 | 345 | 1.44 |
| SAO2 | 10 | 73 | 95 | 157 | 1.65 |
| DIST | 8 | 73 | 125 | 326 | 2.61 |
| BW | 5 | 80 | 25 | 58 | 2.32 |
| RD53 | 5 | 90 | 15 | 53 | 3.53 |

Saturday, 27 August 2011
Conclusions

- Generalised ITE (GITE) operation is introduced
- Multi output functions can be expressed by the GITE
- GITE comprises Evolution Part (EvP) and Execution Part (ExP)
- GITE algebra is a product of two algebras: Partition algebra of ExP and Boolean algebra of EvP
- The problem of GITE decomposition is formulated
- Mutual effect of the algebras are used as a base of the decomposition algorithm