Cyber-physical systems. History, Challenges and Expectations

ILYA LEVIN TEL AVIV UNIVERSITY

5th Prague Embedded Systems Workshop

June 29 – 30, 2017 | Roztoky u Prahy, Czech Republic

Outline

Industrial revolutions CPS Predecessors Integrating Natural and Artificial Worlds CPS Interdisciplinarity ► CPS vs lot Two Examples of Line Seekers ► Conclusions

FROM INDUSTRIAL TO DIGITAL SOCIETY

CULTURE OF INDUSTRIAL SOCIETY

FROM INDUSTRIAL TO DIGITAL SOCIETY

Four industrial revolutions

1-st industrial revolution MECHANIZATION	2-st industrial revolution ELECTRIFICATION	3-st industrial revolution DIGITALISATION	4-st industrial revolution COGNIFICATION	
around 1750	around 1900	around 1970	around 2010	
		ţ,		
Mechanical production, using the power of water and steam	Centralized electric power infrastructure	Digital technology, enhancing systems' functioning	Everybody and everything is networked, "huge brain", Al	

everywhere

The 2nd industrial revolution networked the resources of power In the 4th industrial revolution will network the resources of intelligence

COGNIFIED WASHING MACHINE

Clothes tell the washing machines how they want to be washed

COGNIFIED TOYS

Toys more like pets

COGNIFIED NURSING

Patients with sensors that track their bio markers can generate personalized treatments

COGNIFIED REAL ESTATE

Matching buyers and sellers via Al

From teleautomation (1898) to CPS (2010)

CPS Predecessors

Nikola Tesla	Norbert Wiener	Charles Draper	Mark Weiser	Kevin Ashton	Helen Gill
Teleautomatics	Cybernetics	Embedded	Ubiquitous	ΙοΤ	CPS
1898	1948	1961	1988	1999	2010
	Input A Output	$\overline{0}$		ا م م	
	B				

Teleautomation

When wireless is perfectly applied the whole earth will be converted into a huge brain, which in fact it is, all things being particles of a real and rhythmic whole. We shall be able to communicate with one another instantly, irrespective of distance. Not only this, but through television and telephony we shall see and hear one another as perfectly as though we were face to face, despite intervening distances of thousands of miles; and the instruments through which we shall be able to do this will be amazingly simple compared with our present telephone. A man will be able to carry one in his vest pocket.

Nikola Tesla, 1898

Cyber Physical Systems

CPS are hybrid physical-engineered systems where:

- 1. Operations are integrated, monitored, and/or controlled by a computational core
- 2. Components are networked at every scale
- 3. Computing is embedded into every physical component, possibly even into materials
- 4. The computational core is an embedded system, demanding real-time response, and is often distributed

Two Worlds coming together

Physical World

- Natural
- Physical changes
- Real time
- Continuous
- Math: Calculus
- Closed system
- Controllable
- Predictable

Cyber-Physical World

Hyperconnected World of: Hybrid Systems Embedded Systems

Digital World

- Artificial
- Computations
- Computational time
- Discrete
- Math: State machine
- Open system
- Uncontrollable
- Unpredictable

Natural

Artificial

Cyber-physical systems ... and related terms: Internet of Things & Industry 4.0

Cyber-physical systems		0	R Interr		net of things	?
Shared			Distinct			
Vision	 large-scale distributed computing systems of systems Computation and "intelligence" is not decoupled from environment 		_	cientific mmunity	 Internet of Things driven from computer sciences, Internet technologies driven by EC Cyber-physical system driven from engineering aspects driven by the NSF 	
Core Technology	 Internet as large-scale network embedded systems (= intelligent components) 		Ph	ilosophy, focus	 Internet of Things focusing on openness and network - virtuality Cyber-physical system focusing on the physical system behind, often a closed-lose 	system

For all practical purposes:

- Today: more or less synonym
- Industry 4.0 as a special field of application

"The innovation and development of Cyber-Physical Systems will require computer scientists and network professionals to work with experts in various ...disciplines This, will revolutionize how universities educate engineers and scientists."

Rajkumar, Cyber-Physical Systems: the next computing revolution, 2010

Leading to interdisciplinary science and education

TWO EXAMPLES: Line Seeker-1997 vs. Line Seeker-2017

.

Fig. 2. The "line-seeker" device.

The robot is equipped with a light sensor and motors actuators The line-seeker follows the line by the sensor and a control algorithm

2. Firmware design

Line-seeker robot turns on its motor and moves from its present position to the destination according to the color under the sensor

The robot is equipped with GPS sensor and communicate with the cloud

- Line-seeker robot follows the line by using it's internal GPS sensor and a line-road map
- The line surface updates its configuration (map) to the Web
- 3. High level design

1. Line-seeker robot turns on its motor and moves from its present position to the destination according to the line's map.

 The line surface sends its configuration (map) to the Web.

Conclusions

CPS is the main design object of the 4-th Industrial Revolution CPS is the Hybrid System CPS is communicating system ► CPS is synonym of IoT Design is changing significantly From Firmware design to Cognified System design