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An aspiration level adjustment rule is “realistic” if the aspiration level is (almost al-
ways) set to be an average of its previous value and the best average performance so far
encountered. It is “ambitious” if the aspiration level is set to exceed the maximal average
performance by some constant infinitely often. We analyze a case-based decision maker
with a realistic-but-ambitious aspiration level adjustment rule facing a multi-armed bandit
repeatedly. Though unaware of the payoff distributions corresponding to the arms of the
bandit, the decision maker will asymptotically choose only expected-utility maximizing
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1. INTRODUCTION

Case-based decision theory (CBDT) is an approach to decisions under 1
certainty that emphasizes the role of one’s past experiences in decision maki
Rather than assuming, as does classical expected utility theory (EUT), that t
decision maker (DM) behaves as if (s)he had a probability measure over sol
state space, with respect to which expected utility is maximized, CBDT uses ps¢
“cases” and a similarity function to determine their “relevance” to the decisiol
problem at hand.

It turns out that the mathematical formulation of CBDT calls for a “default
value,” which is also interpreted as the “aspiration level” of the decision make
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2 GILBOA AND SCHMEIDLER

Behaviorally it is defined as the level of utility beyond which the DM does not
appear to experiment with new alternatives; rather, if this level is attained, (s)h
is “satisficed” in the sense of March and Simon (1958).

Thus case-based decision makers are not as “rational” as expected utility one
They satisfice rather than optimize, they count on their experience rather tha
attempt to figure out what will be the outcomes of available choices, they follow
what appears to be the best alternative in the short run rather than plan for tt
long run, and they use whatever information they happened to acquire rathe
than intentionally experiment and learn from a growing experience.

There are many applications for which we find this boundedly rational image
of a decision maker quite plausible, at least in comparison with the way decisiol
makers are portrayed by EUT. Especially in novel situations, people often finc
it hard to specify the space of states-of-the-world in a satisfactory way, let alon
to form a prior over it. Many if not most of the decisions taken by governments,
for instance, are made in a complex environment which cannot be said to ha
been encountered before in precisely the same way. History repeats itself, b
typically with a twist.

Itis therefore not suprising that the rational commandments of EUT, appealin
as they are, are hard to follow. One does not have enough trials to figure out ¢
the possible eventualities, not to mention their frequencies. There is little poin
to invest in learning and experimentation, since the knowledge acquired will be
obsolete before it gets to be used; similarly, planning carefully for the long run
may prove a futile endeavor.

However, when the environment is more or less “fixed,” and the situation may
be modeled as a repeated choice problem, case-based decision makers do ap|
to be a little too nave and myopic. While we argue (in Gilboa and Schmeidler,
1995) that CBDT is not designed for these situations to begin with, we show
here that the “irrational” or “shortsighted” aspect of CBDT may disappear if one
has an appropriate rule for updating one’s aspiration level.

In this paper we propose two properties of aspiration-level adjustment rules
which we find descriptively plausible in general. We show that in the special cas
of a repeated choice problem, these properties also guarantee optimality. Tht
these properties can also be supported on normative grounds. While there ¢
many rules which may guarantee optimal choice in this special case, we hope
convince the reader that the rules discussed here are also fairly intuitive.

We assume that the aspiration-level adjustment rule is both “realistic” anc
“ambitious.” Here “realism” means that the aspiration level is set closer to the
best average performance. “Ambitiousness” can take one of two forms: it ma
simply imply that the initial aspiration level is high; alternatively, it may be
modeled as suggesting that the aspiration level is “pushed up” from time to time
We devote the next few paragraphs to explaining and motivating these propertie

We model “realism” by assuming an “adaptive” rule, which sets the new
aspiration level at some weighted average of the old one and the maximal avera
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performance so far encountered. Thus, if all the acts that were attempted in
past failed to perform up to expectations, the latter would have to be scaled dov
Conversely, if the aspiration level is exceeded by some acts’ performance, it
gradually increased. (As will be clear in what follows, the specific adjustmer
rule isimmaterial; itis crucial, however, thatitis gradually pushing the aspiratio
level toward the actual best average performéice.

While we do not provide an axiomatic derivation of this property, we would
like to motivate it from several distinct viewpoints. First, suppose that we rea
the aspiration level as an answer to the question, What can you reasonably hi
for in this problem? If a moderately rational decision maker is to provide the
answer, some adaptation of the aspiration level to actual performance see
inevitable. Second, the updating rule appears to be psychologically plausib
people seem to be able to adapt to circumstances. One may wish to distingu
between scaling-up and scaling-down, but the main point is that over the lot
run the aspiration level is adjusted. A third, related point is that it is in som
sense “optimal” to adjust the aspiration level: assume that you can choose
aspiration level for an individual (say, your child), where you care both abot
his/her “objective” performance and about his/her “subjective” happiness «
measured by the aspiration level (cognitively interpreted). When the aspirati
level is set too high, decreasing it avoids the subjective psychological cost
constant frustration, and the objective cost of discarding good choices; wher
is too low, increasing it avoids objectively sub-optimal choices.

The “ambitiousness” property may have two separate (though compatibl
meaningsstatic ambitiousness simply states that the initial aspiration level i
relatively high. How high “high enough” is will inevitably depend on the environ-
ment. At any rate, a high initial aspiration level reflects the fact that our decisio
maker is “aggressive” and entertains great expectations. Whether the decis
maker’s initial aspiration level is high enough will depend on a variety of psychc
logical, sociological, and perhaps also biological factors; while our “optimism’
assumption may not be universally true, it is not blatantly implausible eithe
(See Shepperd, Ouellette, and Fernandez (1996) for related empirical eviden:

The second meaning the “ambitiousness” assumption may takenamic
that is, that the decision maker never quite loses hope. Specifically, we w
assume that at certain decision periods, the aspiration level is set to exceed
best average performance by a certain constant. In order to make this compat
with realism, we will allow these decision periods to become more and mot
infrequent. (As a matter of fact, for the optimality result we will require that
the update periods have a limit frequency of zero.) That is, the longer one
memory is, the less one tends to increase the aspiration level in this somew
arbitrary manner. However, dynamic ambitiousness requires that these upd

1 See subsection 4.4 below for technical details.
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periods never end. Regardless of the memory’s length, a dynamically ambitiou
decision maker still sometimes stops to ask, Why can’t | do better than that?

As in the case of static ambitiousness, the claim of this assumption to descrif
tive validity can be qualified at best. Indeed, we are not trying to claim that all
decision makers are realistic-but-ambitious, just as we do not believe that a
people necessarily choose optimal acts in repeated problems. The main poi
is that the properties of realism and ambitiousness correspond to some gene
intuition, and they make sense beyond the special case in which a certain pro
lem is encountered over and over again. In this special case, however, they al
ensure optimal choice.

The “repeated problem” we discuss in this paper is akin to the “multi-armed
bandit problem” (See Gittins, 1979): our decision maker is repeatedly face
with finitely many options, each of which is guaranteed to yield an independen
realization of a certain random variable (with finite expectation and variance)
Our results are as follows: first assume that the decision maker is realistic an
statically ambitious. Then, given the distributions governing the various “arms,’
there exists a high enough initial aspiration level such that, with arbitrarily high
probability, the limit frequency of the expected-utility maximizing acts will be
1. Thus the initial aspiration level depends both on the given distributions ant
on the desired probability with which this frequency will indeed be 1.

Our second result assumes a decision maker who is realistic but dynamical
ambitious. We prove that for all given distributions and any initial aspiration
level, the limit frequency of the optimal acts will be 1 with probability 1. This
result is therefore stronger than the first, since it guaranteeslthatt always
the “best” acts will almost always be chosen and that the same “algorithm’
obtains optimality forall given distributions. Thus, dynamic ambitiousness is
“safer” than static ambitiousness. Roughly, it is more important not to lose hop
than to have great expectations.

The intuition behind both results can be explained easily in the deterministic
case. Suppose that every time an actis chosen, it yields the same outcome. For
firsttheorem, assume that the decision maker starts out with a very high aspiratic
level. Thus all options seem unsatisfactory, and the decision maker switche
from one to another, as prescribed by CBDT in case of negative utility values
Specifically, in this case the frequencies of choice are inversely proportional tt
the utility values. Hence, a high aspiration level prods the decision maker t
experiment with all options with similar frequencies. On the other hand, as time
goes by the aspiration level is updated toward the best average performance
far encountered. In the deterministic case, the “average performance” of an a
is simply its utility value. Thus, in the long run the aspiration level tends to
the maximal utility value; correspondingly, an act which achieves this value is
almost satisficing and will be chosen with a limit frequency of 1.

Next consider a dynamically ambitious decision maker in a similar setup.
Such a decision maker may have started out with “too low” an aspiration level
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thus (s)he may be choosing a suboptimal act, while the aspiration level is bei
adjustedupwardtoward the utility value of this act. However, if at some point the
aspiration level is set above this utility value, this act is no longer satisficing, ar
the decision maker will try a new one. In the long run all acts will be tried, anc
the aspiration level will be “realistically” adjusted toward the maximal utility
value. As opposed to the case of static ambitiousness, the aspiration level d
not converge to this value, since it is pushed above it from time to time. Ye
these periods are assumed to have zero limit frequency, and thus the optima
result holds.

The general cases of both results, in which the available acts yield stoche
tic payoffs, are naturally more involved, but the proofs follow the same basi
intuition.

We note here that both realism and ambitiousness are crucial for the optimal
results. If our decision maker is realistic but not ambitious, (s)he may well choos
a suboptimal act forever. In this case the choice is random in the following sen:
an act is randomly selected at the first stage, and then it is chosen forever. On
other hand, if (s)he is, say, statically ambitious but not realistic, then all choice
seem to him/her almost equally unsatisfactory; in this case one may show tt
the choice is close to random in the sense that all acts will have approximate
the same frequency of being chosen. (See Gilboa and Schmeidler (1993).)
contrast, the combination of the two guarantees that all acts will be experiment
with, but also that in the long run experimentation will give way to optimal choice

In a sense, our results may be viewed as explaining the evolution of optim
(expected-utility maximizing) choice: a case-based decision maker who is bo
realistic and ambitious will “learn” to be an expected-utility maximizer. These
results hold only in case the decision problem is repeated long enough in t
“same” form. But this is precisely the case in which EUT seems the most plaus
ble, i.e., when history is long enough to enable the decision maker to figure o
what are the states of the world, and to form a (frequentist) prior over them. FL
thermore, a case-based decision maker is more “open minded” than an expec
utility maximizer. While the latter may hawepriori beliefs whose support fails
to contain the true distribution, the former simply does not entertain prior belief
and thus cannot be wrong about them.

In the context of optimization problems, one may view our results as reinforc
ing a general principle by which global optimization may be obtained by loce
optimization coupled with the introduction of “noise.” The annealing algorithms
(Kirkpatrick et al. 1982) are probably the most explicit manifestation of this
principle. Genetic algorithms (Holland, 1975) are another example, in whic
the adaptive process leads to a local optimum of sorts, and the “cross-over” o
allows the algorithm to explore new horizons. Yet another example of the san
principle may be found in evolutionary models in game theory such as are give
by Foster and Young (1990), Kandetial., (1993), and Young (1993). In these
models, a myopic best-response rule may lead to equilibria which are Pare
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dominated (“local optima”), even in pure-coordination games. But the introduc-
tion of mutations provides the “noise” which guarantees (in such games) a hig
probability of a Pareto-dominating equilibrium (a “global optimum?”).

From this viewpoint, one may interpret our results as follows: the “realistic”
nature of the aspiration-level adjustment rules induces convergence to a “loc:
optimum,” namely, to a high frequency of choice of the “best” acts among those
that were tried often enough. The ambitiousness plays the role of the “noise
which prods the decision maker to choose seemingly suboptimal acts and, in tt
long run, to converge to a global optimum.

The annealing algorithms simulate physical phenomena; genetic algorithm
and evolutionary game theory models are inspired by biological metaphors
by contrast, our process is motivated by psychological intuition. As mentionec
above, we find this intuition valid beyond the specific model at hand.

The rest of this paper is organized as follows. Section 2 provides a brie
overview of CBDT, as well as its alternative interpretation as a dynamic choice
theory. It will hopefully serve to orient the reader and motivate the following
sections. Section 3 provides the formal model and the main results. Section
concludes with some comments and variations. All proofs are relegated to th
Appendix.

2. BACKGROUND

2.1.Case-Based Decision-Theory—An Overview full description of CBDT
is certainly beyond the scope of this paper. The reader is referred to Gilbo
and Schmeidler (1995) for detailed exposition, axiomatizations, variants, an
theoretical discussions of CBDT, as well as for comparisons of it to expecte
utility theory for decision under uncertainty. In this section we will provide only a
very sketchy outline of CBDT, which will hopefully suffice for the understanding
of the following sections.

The primitives of CBDT are:

P—a set of decisioproblems

A—a set of availablacts

R—a set of possiblessults(or outcomes)

The set ofcaseds defined to be

C=PxAxR

That is, a “case” is a triplép, a, r), wherep is the problem encounterealjs
the act chosen by the decision maker, atglthe result that was obtained in this
case. We will assume that at any given pointin time, a decision maker is equippe
with some memory, which is simply some subset of cases, and which will be
interpreted as the set of problems the decision maker can remember.
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CBDT postulates two main theoretical terms—-“utility” and “similarity.” As
in the classical decision theory, the utility measures the desirability of the resul
and is thus a function

u: R— M.

The notion of “similarity” is new and corresponds in many ways to that of
“subjective probability” in expected utility theory. Similarity measures the exten
to which one decision problem is similar to another; that is, it is a function

s: Px P —J0,1].

Finally, we may describe the decision rule that is the heart of CBDT: Suppo:
that a decision maker, characterized by the utilignd the similaritys, is faced
with a decision problenp, while his/lher memory is1 C C. Then every possible
acta € Ais evaluated by the functional

U@= Y s(p,qu),

(g,a,r) eM

and the decision maker will, according to CBDT, choose a maximizér. of

A few comments are in order. First, notice that for two distinct actse A,

U (a) andU (b) are summations ovatisjoint sets of cases. Furthermore, for
some acts this summation may be over an empty set, in which case its value
defined to be zero. This value is going to play a major role in the theory: or
may think of it as the decision maker’s “aspiration level.” To be precise, this i
the “default” (utility) value the decision maker seems to be attaching to an a
that was never tried in the past (i.e., for which there are no cases in memory).
certain acts obtain high&f-value than zero, the decision maker is “satisficed”
and will continue to choose among them without trying new actsvaittibut
trying to maximize uOnce all the acts that were tried in the past turned out tc
be unsatisfactory—that is, to have negativealues—then the decision maker
will choose a new act (assuming such exists), where the choice among these
be arbitrary.

In the formulation above, the aspiration level is implicitly assumed to be zerc
where the utility functionis correspondingly normalized. Since this paper focust
on the process by which the aspiration level is updated, it will be convenient 1
explicitly mention it. LetH be the aspiration level, and redefine the functional
U as

U@ =Upm@= Y s(p.u(r)—H].
(q,a,r)eM
wherea € A.
One of the main features of CBDT is that it does not require the DM fc
“engage” in hypothetical reasoning: as opposed to expected utility thoery, whe
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the very definition of an “act” involves hypothetical statements such as “If state
w occurs then | get,” in CBDT all the DM is required to “know” is the history

of cases whiclactually happenednd the utility he/shactually experienced
(The terms “engage” and “know” above are within quotation marks since one
may choose a purely behavioral interpretation of the theory, according to whicl
the DM does not have to “know” or to reason about anything.)

Without details we mention here that the decision rule of CBDT, together with
the theoretical terms “utility” and “similarity,” may be axiomatically derived
from preferences, in a way which parallels the axiomatic derivations of “utility”
and “probability,” combined with the expected utility formula, in models such as
Savage’s (1954). (See Gilboa and Schmeidler, 1995, for one such axiom syste
as well as additional discussions.)

The notion of a “case” will sometimes be interpreted in a broader fashion. Fo
instance, a case in a decision maker's memory need not necessarily have be
experienced by the same DM. It may well be a “story” told by someone else
Furthermore, it need not be a real case—it may be a hypothetical one, reflectir
the DM’s knowledge (or belief) about what would have occurred as a result of ¢
possible choice.

Finally, let us briefly mention two variants of the basic CBDT model:

—Averaged similarityHere one uses a functional similartbabove, with
the sole difference that for each acte A, the similarity coefficients(p, q)
are normalized to sum up to 1. We denote this functional bormalizing the
aspiration level to be zero, it is defined by

V@= Y s(pqumn,

(@,a,r)eM
where

s(p. Q)
Z(q’,a,r)eM S( p’ q/)

S(p,q) =

whenever the latter is well-defined (and zero otherwise).

—Act similarity. According to this model, acts may also be similar to each
other, and the evaluation of an aotlepends not only on its own performance in
the past, but also on that of similar acts. Thus, the similarity function is definec
over problem-act pairs such that an aés evaluated by

U'@=U,y@= > s((p.a. @ bu(r)

(q,b,r)eM

(again, assumingl = 0).
In Gilboa and Schmeidler (1995) we axiomatize the first variant. The secon
is axiomatized in Gilboa and Schmeidler (1994).
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2.2.A Dynamic Theory of Choice As explained above, CBDT attempts to deal
with decision problems under uncertainty, for which very little information is
available. Thus, the decision maker's memory plays a major role in attemptir
to forecast the outcomes of various acts. Yet the same mathematical model n
be interpreted in a different way, as proposed in Gilboa and Schmeidler (199:
rather than serving as a source of information, one’s memory may enter on
utility directly. According to this interpretation, an act’s desirability, whether
under certainty or uncertainty, intrinsically depends on the previous cases
which it was chosen.

Thus the functioru has a slightly different interpretation: rather than the
“utility” of an outcome, which is to be maximized by a supposedly rational
decison maker, it is merely some derivative (with respect to time) of the utility
U, which is by definition a memory-dependent aggregate. Thussihegative,
the desirability of an actis lower the more it has been chosen. This may be taker
model boredom-averse, or change-seeking decision makers. Conversely, shc
u be positive, an act is more desirable the more it has been experienced,
exhibiting choice patterns which are consistent with habit formation. (See Gilbc
and Schmeidler, 1993, for details.)

For the purpose of the present paper it will be useful to bear both interpr
tations in mind, since the optimality rule (CBDT combined with realism anc
ambitiousness) is motivated by some hybrid of the two. We discuss this point
Section 4.

3. MODEL AND RESULTS

Let A=1{1,2,...,n} be asetohcts(n > 1). Fori € Aletthere be given
a distributionF on % (endowed with the Borer-algebra), to be interpreted
as the (conditional) distribution of the utility yielded by a&t whenever it is
chosen. We assume thigt has finite expectation and variance, denqgtgd@nd
oi, respectively.

The underlying state space will be a subset of

S =MMx Ax MmN,
whereN denotes the natural numbers. A state= ((Hq, a;, X1), (Ho, as, X»),
...) € S will be interpreted as follows: for atl > 1, at period, the aspiration
level isH; at the beginning of the period, an acts chosen, and it yields a payoff
of x;. It will be convenient to define, for evety> 1, the projection functions

Hi, X%: S —> N and a S— A

with the obvious meaning.
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Next we define a functio: § x A x N — 2N to be the set of periods, up
to a given time, at which a given act was chosen, according to a given state. Th
is,

Cl,i,t)y={j <t]|a =i}.

We will similarly be interested in the number of times a certain act was chosen
Therefore, define a functioh: S x A x N — N U {0} by

K(w,i,t) = #C(w, i, ).

We are mostly interested in the relative frequencies of the decision maker’
choices. It will be convenient to define a functién  x A x N — [0, 1] to
measure relative frequency up to a given time, i.e.,

K(w,i, 1)

f(w,i,t) = n

Dropping the time index will refer to the limit:
fw,i) = tIim f(w,i,t).

Finally, we will further abuse this notation by extending it to subseté.dbr
D € Awe define

f(w, D,t):Zf(a),i,t)

ieD
and

f(w, D) = t|im f(w, D,1).

We now turn to define the CBDT functionals. lldt S x A x N — % be
defined by

Uih= > [X©) - H@)].

jeC(w.i,t)
We will also use the notation

U(w,i,t)

V(w,i,t) = oD

(Thus, V(w,i,t) is well-defined” meansK (w, i, t) is positive.”) Since the
values of botlJ andV depend on the aspiration leudy, it will prove convenient
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to have a separate notation for the absolute average utility of each act. We den

Zj eClw,i,t) Xi (o)

X(@.1,t) = K(w,i, 1)

Note thatX(w, i, t) is well-defined wheneve¥ (w, i, t) is and
X(,i,t) = V(,i,1) + Hi(w).

We now wish to express the fact that the decision maker considered s a
maximizer. We do this by restricting the state space as follows: d&€fire

by
S = {we S| &(w) € argmng(w,i,t), vt > 1}.
le

Similarly, we further restrict the state space to reflect the fact that the aspirati
level is updated in an adaptive manner. First definet for2 andw € &, the
relative and absolute maximal average performance to be, respectively,

V(w,t) = max{V(w,i,t) |i € A, K(w,i,t) > 0}
and
X(w, t) = max{Y(a), i,t)|i € A K(w,i,t) > 0}.
Next, for a giver € (0, 1) andH; € % define the state space to be

Hi(w) = Hy, andvt > 2 }

Q=Q(a, H) = {‘0 € Sl’ Hi(w) = aHi_1(w) + (1 — o) X(w, 1)

EndowS, with theo -algebra generated by the Bosellgebra on (each copy
of) i and 2* on (each copy ofAA. Let = = X (a, H) be the induced-algebra
on Q. Finally, we turn to define the underlying probability measure. Gi&en
andx, a probability measurP on X is consistent witl{F; ) if for everyt > 1
andi € A, the conditional distribution af; that it induces, givea, =i, is F,
and, furthermorey; is independent (according 1) of the random variables
Hq, a1, X4, ..., Hi—1, &_1, X%_1, Ht. Notice that distinct measures an which
are consistent witliF; ); ca, can disagree only regarding the choice of anaact
where argmaxa U (w, i, t) is not a singleton.

We can finally formulate our first result:

THEOREM1. Lettherebegiven A={1,...,n}, (F)icaasabovex € (0, 1)
ande > 0. There exists ble N such that for all H > Hy and every measure P
on (2 («, Hy), X (a, H1)) which is consistent withF)ica,

P({weQHf(w,argmgmi):l}) >1—¢.
le
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Thus the theorem guarantees that, if we focus on those siashich there
is a limit choice frequency for the set of expected utility maximizers, and it is
1, this set is measurable and has arbitrarily high probability provided the initial
aspiration level is high enough.

Note that Theorem 1 cannot guarantee an aspiration level which is uniforml;
large enough for all given distribution$);ca. Indeed, it is obvious that any
initial aspiration level may turn out to be too low. By contrast, our second re-
sult guarantees optimality for all given distributions, regardless of the initial
aspiration level and with probability 1. The assumption which drives this much
stronger conclusion is that the aspiration level is “pushed up” every so often
That s, that at a certain set of periods, which is infinite but sparse (i.e., has aze
limit frequency), the aspiration level is not adjusted by averaging its previous
value and the best-average-performance value; rather, at these periods it is !
to be at some level above the best-average-performance value, regardless of
previous aspiration level.

Formally, we define a new probability space as follows. Let there be giver
H; € % anda € (0, 1) as above. Assume thaty, € N andh > 0 are given.

Na is interpreted as the set of periods at which the decision maker is ambitiou:
The numbeh should be thought of as the aspiration-level increase. Define

Q = Q(, Hi, Na, h)
Hi(w) = Hy, andvt > 2
Hi(0) = X(w,t) +h ift e Na
=193 H =aHa)
+ 1L —a)X(w,t) ift g Na

Next, definex = X («, Hi1, Na, h) to be the corresponding-algebra. Simi-
larly, a measurd® on T is defined to b&onsistent with(F; )i 4 as above.

We can now state:

THEOREM2. Lettherebegiven A= {1,...,n},(F)icaasabovex € (0, 1),

H; € %, Na € N,and h> 0.If N, isinfinite but sparsghen for every measure
P on(Q(«x, Hy, Na, h), 2 (a, Hi, Na, h)) which is consistent withiF );ca,

P ({w € Q| 3f(w, argm/rilx#i) = 1}) =1.
le

4. DISCUSSION

4.1. As briefly mentioned above, the adjustment rule is a hybrid of sorts: ou
decision makers choose acts Bymaximization; however, when it comes to
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adjusting their aspiration levels, they use the maximalalue. This apparent
inconsistency calls for an explanation.

Recall that, as described in Section 2 above, memory affects one’s decisic
in two ways: first, as a source of information, which is especially crucial fol
decisions under uncertainty; second, as a primary effect in a dynamic choi
situation. Memory helps one to reason about the world, but also changes on
tastes.

Thus, there are two fundamental questions to which memory is key: firs
“What do | want to do now?” and second, “What do | think of this act?” In
answering the first question, memory plays a dual role: as a source of informati
and as a factor affecting preferences; in answering the second, memory ol
serves as a source of information. Correspondingly, we would like to sugge
thatU offers an answer to the first, whik answers the second.

Consider the following example: every day our decision maker has to choose
restaurant; this is a repeated choice, which may be thought of as decision un
certainty or under uncertainty. The restaurant chosen will keraaximizer,
allowing such behavior patterns as habit formation and boredom aversion. Ho
ever, suppose our decision maker has a guest and is asked by him/her whic
the best restaurant in town, namely, which restaurant should one go to if o
has only one day to spend there (with no memory). Then, according to this i
terpretation, the decision maker will recommend-anaximizing, rather than a
U-maximizing act. Asked why (s)he is not choosing this restaurant him/hersel
the decision maker may say, “Oh, | was there just yesterday.” Having visite
it recently, itsU value may have decreased (if our decision maker is change
seeking); however, the very fact it was recently chosen need not change its
value.

The optimality rule discussed in his paper is therefore not as inconsiste
as it may appear at first glance: our decision maker&Jangaximizers in their
choices. This means that memory enters their decision considerations not only
a source of information. With a high aspiration level, this also allows them to kee
switching among the alternative acts and to continue “trying” acts whose pa
average performance happened to be poor. On the other hand, asking themsel
“What can | reasonably hope for?” or “What would | recommend to someon
who hasn't tried any of the options?” they base their answev anaximizing
acts. As we have shown, adjusting their aspiration level based on the maxin
V value also colors past experiences differently. In the long run, the dissatisfa
tion with V-maximizing acts decreases, and thus their relative frequency ten
to 1.

4.2. Some readers will probably not be convinced by the above arguments
certainly makes sense to consider two simpler alternatives, namely thal&,”
which prescribes that decisions will be made so as to maxibiiaad that the
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aspiration level will be adjusted accordingUoas well, and the corresponding
“V-rule.” It is worth mentioning, however, that neither of these rules seems tc
guarantee optimal choice in the long rtin.

4.3. The discussion in this paper focuses on finitely many alternatives. Indee
with infinitely many alternatives CBDT, combined with a high aspiration level,
does not make much sense in its original formulation. Furthermore, it certainly
does not guarantee optimality: since every act has a default value (of the aspir
tion level), the decision maker will keep trying new (and arbitrarily chosen) acts
indefinitely.

However, it is rarely the case that infinitely many acts are available with-
out having some additional structure. For instance, prices and quantities me
be modeled as continua, but then they are endowed with a natural metrizab
topology. These cases are naturally modeled as CBDT with act similarity. (Se
subsection 2.1 above.) For instance, having set a price at $20, a seller may ha
some idea about the outcomes that are likely to result from a price of $20.01
Since these two acts are “similar,” the past experience with one of them entel
the evaluation of another.

Thus, given a metric topological space of acts and a similarity function (which
is, say, monotonic in the metric), and assuming continuity, ohe would expect
a similar optimality result to hold.

4.4. It almost goes without saying that our results do not hinge on the specifi
aspiration-level adjustment rule. First, the aspiration level need not be adjuste
at every period, nor do the adjustment periods have to be deterministically se
All that is required is that there will be infinitely many of them with a high
enough probability. Similarly, the “realistic” adjustment need not be done by &
weighted average (with fixed weights). Generally, for Theorem 1 it is requirec
only that (i) the adjustment process will guarantee convergence, i.e., that for a
a,beRNande > 0, if X(w,t) € (a,b) forallt > T, for someT,, then there

will exist T, such that for almost atl > T, Hi(w) € (a— ¢, b+ ¢); and (ii) the
adjustment will not be too fast, i.e., that for & € % and allT, > 1 there

will be a numberHy such that for allH; > Hy and allt < Ty, H; > R. For
Theorem 2, one needs the convergence property and an increase in aspirat
level over an infinite but sparse set of periods. Neithaor the seN need be

2 Using the ‘U-rule,” the aspiration level need not converge. (As a matter fact, it is not obvious
what is the “right” way to define the aspiration level adjustment rule in this case.) Usingvthe “
rule,” the decision maker may never retry certain alternatives which happened to have particularly lo
realizations in the first few periods. (We omit the simple examples.)
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deterministic or exogneously given. Both may depend of the gtair past acts,
and on their results. It is essential, however, that for almosst,ailis bounded
away from zero (and not too large) and ti\atis infinite but sparse. Finally, one
may assume that in the “ambitious” periods, the aspiration is set so as to exce
(by h) its own previous value, rather than the maximal average performanc
level.

4.5. Note that when the aspiration level is updated in our model Ya¢ue of
past experiences is also updated. That is, outcomes which have been obtaine
the past are re-evaluated according to the newly defined aspiration level. Tk
we implicitly assume that the decision makers can “reflect” upon the outcom:
themselves, sometimes realizing that they were not as unsatisfacotry as tt
seemed at the time.

Alternatively, one may assume that only the utility value of past experiences
retained in memory and that the original evaluation of an outcome will be foreve
used to judge the act which led to it. However, our first result does not hold i
this case, since a very high initial aspiration level may make an expected-utili
maximizing act have a very low value, to the extent that it may never be chosen
again.

While one may argue for the psychological plausibility of the alterantive
assumption, it seems that it is “more rational” to re-evaluate outcomes bas
on an adjusted aspiration level, rather than compare each outcome to a poss
differentaspiration level. Atany rate, the second result holds under the alternati
assumption as well: having infinitely many periods in which the expected utilit)
of any act is a negative number bounded away from zero guarantees that all e
will be chosen infinitely often with probability 1.

APPENDIX: PROOFS

1.Proof of Theorem. A few words on the strategy of the proof are probably
in order. The general idea is very similar to the deterministic case described
the Introduction: let the initial aspiration level be high enough so that each act
chosen a large enough number of times, and then notice that the aspiration le
tends to the maximal expected utility. In the deterministic case, each act shot
be chosen at least once in order to get its average performamcpial to its
expectation. In the stochastic case, more choices are needed, and a law of I
numbers will be invoked for a similar conclusion. Thus the initial aspiration leve
should be high enough to guarantee that each of the acts is chosen enough ti
to get the average close to the expectation.

If the supports of the given distributiorf§ were bounded, one could find
high enough aspiration levels such that all possible realizations of all possik
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choices seem similarly unsatisfactory. This would guarantee that, as long &
the aspiration level is beyond a certain bound, all acts are chosen with simile
frequencies, and therefore all of them will be chosen enough times for the lav
of large numbers to apply. However, these distributions need not have a bounds
support. They are known only to have a finite variance. Thus the proof is slightly
more involved, as we explain below.

Let us first assume w.l.0.g. (without loss of generality) that for soraen,

1= o =" = [y > Ur41 > Ur42 > - > Un.

Furthermore, we assume thrak n w.l.o.g. (the theorem is trivially true other-
wise). Next denote

| =argmaxui ={1,2,...,r}
ieA

and

M1 = My
—3

The numbes is so chosen that, if the average valuessactose to the corre-
sponding expectations, then the maximal average value is obtained by a ma>
mizer of the expectation.

We now turn to find the number of times which is needed to guarantee, witt
high enough probability, that the averages are, indeethse to the expectations.
Givene > 0 as in the theorem aride A, let K; > 1 be such that: for every
k > K; and every sequence of i.i.d. random variabtés X?, . .., Xk, each with
distributionF;,

Pr(

where Pr is the measure induced by the distributipnNotice that suctK;
exists by the strong law of large numbers (See, for instance, Halmos, 1950). L«
K = maXca Kj.

We now turn to the construction of the initial aspiration level. As explained
above, we would like to be able to assume thatRHg have bounded supports,
in order to guarantee that each act is chosen at keashes. We will therefore
find an event with a high enough probability, on which the random variaples
are, indeed, bounded.

We start by finding, for each € A, boundsh;, b € % such that, for any
random variableX; distributed byF;, o

)

1&
szi]_ﬂi

=1

< 8) > (1— )t

Pr(g <X < H) > (1— 8)1/(4nK)’
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where Pr is some probability measure which agrees WittNotice that such
bounds exist sincE; has a finite variance. W.l.0.g. assume alsolthat u; + 26
foralli € A. Next define

b = minb and b= maxb;.
ieA — ieA

The critical lower bound on the aspiration level (for the “experimentation
period, in which every act is chosen at leKstimes) is chosen to be

R=2b—h.
Let us define, for every > 1, the event
Br={weQ|Vt<T, b<x(w) <b}.

Notice that, since the given measures consistent with(Fj)jca, P(Bt) >
(1 — )T Hence, provided that is not too large,Br will have a high
enough probability. In order to show thtneed not be too large to get enough
(= K) observations of each act, we first show thatBynand with sufficiently
high aspiration level, the firSE choices are more or less “evenly” distributed
among the acts:

CLAIM 1. Letthere be given B n,andw € Br. Assume thatforall T,
Hi(w) > R.Thenforallij e Aandalln<t <T,

K(w,i,t) < 2K(w, |, t).

Proof Assume the contrary, and ligtbe the minimal timé such thah <
t <Tand

K(a),i,to) > 2K(a), j,to)

for somei, j € A. Notice thatk (w, a, n) = 1 for alla € A, and hencéy > n.
It follows from minimality of tp thata,_1(w) = i, i.e., thati was the last act
chosen.

Consider the following bounds on thévalues of the two acts:

U(w.i,to—1) < K(w,i,to— 1)(b— Hy_1(w))
and
U, j,to— 1) = K(o, j, to — 1)(b — Hyg-1(w)).
The optimality ofi at stagdy — 1 implies

Uw,i,to—1) >U(w, j,to— 1);
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hence
K(,i.to— 1)(b— Hy_1(®)) = K(@, j, to — 1)(b — Hy_1(w)).
Recalling thatH;,_;(w) > R > b > b, this is equivalent to

K(w, j,to—1) . b— Hy, 1()
K((l), i7 tO - l) - Q - Hto—l(a)) ’

By minimality of to we know that
K, jto—1 1

K(w,i,to—1) 2
We therefore obtain
b— Hy_1(w) <2(b— Hy-1(w)),
which implies
Hip-1(w) <2b—b=R,
a contradiction.

We now seflp = 2nK and will prove that—as long as the aspiration level is
kept aboveR—after Ty stages, each act will be chosen at ldasimes on the
eventBy,. Formally,

CLAaM 2. Let there be givem € By, and assume that fttw) > R for all
t < To. Thenforie A,

K(w,i, Tp) > K.

Proof If K(w,i, Tp) < K for somei € A, then by Claim 1K (w, j, To) <
2K for all j € A. Then we get

To=)Y K, ]}, To) <2nK =T,

jeA
which is impossible.

We finally turn to choose the required level for the initial aspiration level.
Choose a value

1\ P
Ho = Ho(e) >l_3+2<;) (b—b)

and let us assume for the rest of the proof tHat> Hy. We verify that this
bound is sufficiently high in the following:
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CLaiM 3. Let there be givew € By, and assume that H> Ho. Then for
allt < T, Hi(w) > R.

Proof Foralll<t < Ty,

Hi(w) > aHi—1(w) + (1 —a)b

or
Hi(w) — b > a(Hi_1(w) — b).
Hence
1\™ _ _
He(@) —b = a'(Hy — b) > 20! (—) (B—b) > 25— b)
o
and

Hi(w) >2b—b=R

Combining the above, we conclude that, féf > Hg, K(w, i, Tg) > K for
allw € Br,andalli € A. Furthermore, fora measuRe consistent with{F; )ica,

P(BTO) > (1_ 8)T0/(4nK) — (1_ 8)1/2.

We now define the event on which the limit frequency of the expected-utility
maximizing acts is 1: leB C By, be defined by

B:{a)EBTO

vt >To, VieA,
[ X(w,i,t) — pi| <8

By the choice oK and the independence assumption, we concluddttiat]
Br,) > (1 — ¢)2, whenceP(B) > (1— ¢).

The proof of the theorem will therefore be complete if we prove the following

CLAIM 4. Assumethat H> Hpandlet P be ameasure € (o, Hy1), X (a, Hy))
which is consistent witliF )ica. Then for P-almost allw in B,

If(w, 1) =1
(Recall that 1= arg maxca ui.)

Proof. Givenw € B and¢ > 0, we wish to show that, unleasis in a certain
P-null event (to be specified later), there exisfE & T (w, &) such that for all
t>T,

flw,1,t) > 1—&.
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It is sufficient to find aT = T (w, &) such that for somee |, forallt > T,
and forallj & 1,

Ko, j,t)  f(o, ], 1) _ &
K(w,i,t) f(w,i,t) ~ nl—¢&)

We remind the reader that for alb> Tp and alla € A we have
[ X(w,a,1) — pa| < 8.
Also, sinceHr, (w) > R > g4, forallt > To we have
Hi(w) > w1 — 6 = prq1 + 26.

That is, the aspiration level will be adjusted toward the average performanc
of one of the expected-utility maximizing acts and will be bounded away from
the expected utility and from the average performance value of suboptimal act

We will need a uniform bound oHl (w). To this end, note that for all € A
andt < To, X(w, a,t) < R, by definition of the seBy,. Fort > Ty, the same
inequality holds sinc& (v, a, t) < pna+8 < by < R. SinceH., 1(w) is a convex
combination ofH; (w) andX(w, t) = maxea X(w, a,1t) < R, we conclude that
forallt > 1, Hi11(w) < max{H;(w), R}. By induction, it follows that for all
t >1H(w) < Hs.

Let O(w) € A be the set of acts which are chosen infinitely oftew at hat
is,

O(w):{aeA| K(a),a,t)t—>oo}.

We would first like to establish the fact that some expected-utility maximizing
acts are indeed chosen infinitely often. Formally,

C,am 4.1. O(w)N | # o.

Proof LetT > To be such that for all > T, a(w) € O(w). Assume the
contrary, i.e., thaD(w) N | = @. (In particular,a (w) ¢ | forallt > T.) For

allt > T > Ty we also know that
X(w, j,t) < H(w) — 8
forall j ¢ |.Hence, forj ¢ I,

Uw, j,t) = K(o, j,HV (o, |, 1)
= K(, j,t) [ X(w, |, 1) = Hi(@)] < =6K(w, |, 1).
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This implies that (w, j,t) ————— —o0. Thus, for allj € O(w)\I,

K(w,j,t)—>o00
U(w, j,t) —— —o0.
t—o0

Onthe other hand, consider some | € (O(w))®. LetL satisfyL > K(w, i, t)
forallt > 1. Then

U(w,i,t) = K(w,i,H)V(w,i,1)
= K(o,i,t) [ X(»,i,t) = Hi(®)] > L(b— Hy).

Itis therefore impossible that only memberd 6fvould beU -maximizers from
someT on.

We now assume that for al € O(w), X(w, a,t) — ua. By the strong
t

law of large numbers, this is the case foralE B aparﬁ?om aP-null set.
Choose; > 0 such that

£5
< —_—
6n(l—¢§)

and letT; > T be such thatforall > T; and alli € O(w) N I,

¢

[X(@.1,t) — | <.
For allt > T; we also conclude that
X, t) —pa| < ¢

(where, as aboveX(w, t) = maxea X(w, a, t)). It follows that the aspiration
level, Hy 1 (w), which is adjusted to be some average of its previous Vél(e)
and X(w, t), will also converge tqu;. To be precise, there i§ > T; such that
forallt > T,
|H () — pal < 2¢.

We wish to show that there exist§w, &) such that for alt > T(w, &), all

i € O(w)Nl,andallj ¢ | the following holds:
K@it _ &

It will be helpful to start with:

ClaM 4.2, Forallt > Ty, alli e O(w)Nnl,andall j & I,if a;(w) = |,
then

£

K(C!), J,t) < m

K(w,i,t).
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Proof Letthere be given, i, andj as above. Observe that

U(w,i,t) = K(w,i,t)V(w,i,1t)
= K(w,i,t) [ X(@,i,1) — Hi(®)] = =3K(,i,1)¢,

while

U, j,t) = K, j,DV (@, j,1)
= K(o, j,t) [ X(0, j.1) = H(®)] < —K(o, ], 1)s.

The fact thaty (w) = j implies thatU (w, j,t) > U(w,i,t). Hence
—K(w, J,)8 = =3K(w,i,1)¢
or
K(w, j,t) < i—gK(a),i,t).

However, the choice of (as smaller thags/én(1l — &)) implies that

3 §

< —.
§ 2n(1-§)
We have thus established that

§

K(C{), J,t) < m

K(w,i, 1)
for anyt at whichj is chosen (i.eq (w) = j).

We proceed as follows: I8, > T, be such that for all > T3, & (w) € O(w).
Let T4 > T3 be large enough so that for &l T4, a € O(w) andc ¢ O(w),

Kw,c,t) <

3
ni—%) K(w, a,t).

Finally, letTs > T4 be suchthatforalh € O(w), K(w, a, Ts) > K(w, a, Ty).
We now have

C,aM 4.3. Forallt > Ts,alli e O(w)yNnl,andall j &I,

K(w, j,t) < K(w,i,1t).

§
nl-4§
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Proof. Letthere be given, i, andj as above. Iff € O(w), the choice ofT,
concludes the proof. Assume, then, that O(w). Then, by choice ofs, j has
been chosen sinck. That is,
T'={s|T.<s<t a) =j}#0.

Let s be the last time at whiclj was chosen before time i.e.,s = maij‘.
Note that

K(w, j,t) =K(w, j,s+1)
and
Kw,i,t) > K(w,i,s+1).

Hence it suffices to show that

K, j,s+1 <

n(l_s)K(a),i,S—i- 1.

By Claim 4.2 we know that

. & .
K(Cl), J,S) S mK(Co,LS).

Sinces > T, > Tp, K(w, |, s) > K > 1. Thisimpliegé/2n(1-&))K (w, i, S) >
1. Next, observe that

< 7§ K(w,i 3)4_7‘5 K(w,1,s)
= 2n(l-¢) n(1-¢& 7

_ 3 . & .

= r](]__é)K(a),l,s)— n(l_S)K(a),I,S—l-l).

This concludes the proof of Claim 4.3.

Thus Ts may serve as the requiréilw, £). As a matter of fact, our claim
regardingTs is slightly stronger than that we need to prove regardin@, £).
The latter should have the inequality of Claim 4.3 satisfied@me i€ |, while
the former satisfies it foall i € O(w) N |, and Claim 4.1 guarantees that this
set indeed contains some |.

At any rate, Claim 4.3 completes the proof of Claim 4, which, in turn, com-
pletes the proof of the theoremm
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2. Proof of Theoren2. The general idea of the proof, as well as the proof
itself, is quite simple: as long as the aspiration level is close to the averag
performance of an expected-utility maximizing act, the proof mimics that of
Theorem 1. The problem is that the decision maker may “lock in” on suboptima
acts, which may be almost-satisficing or even satisficing, and not try the optime
acts frequently enough. However, the fact that the decision maker is “ambitious
infinitely often (in the sense of setting the aspiration level beyond the maxima
average performance) guarantees that this will not be the case. Thus, the fact tt
N, is infinite ensures that every act will be chosen infinitely often. On the other
hand, the fact that it is sparse implies that these periods of “ambitiousness” wi
not change the limit frequencies obtained in the proof of Theorem 1.

Inthe formal proof it will prove convenient to take the following steps: we will
restrict our attention to the event at which all acts, which are chosen infinitely
often, have a limit average performance equal to their expectation. On this evel
we will show that the expected-utility maximizers among those acts have a limi
choice frequency of 1. Finally, we will show that all acts are chosen infinitely
often, whence the result follows.

We adopt some notation from the proof of Theorem 1. In particular, assum
that for some < n,

Ml:l“LZ:”‘ZV“r>l‘vr+12,ur+22”'2p,n,

and denote
| =argmaxu; ={1,2,...,r}.
ieA
We will also use
O(w) = {ae Al K(w, a,t)—>oo}
t—o0
and the new notation

| (w) =argmaxX{u; | i € O(w)}.

We would like to focus on the event
B= {a) eQ|Vie O(a)),Y(a),i,t)—Wi}.
t—o0

SinceAis finite, the strong law of large numbers guarantees®{&) = 1 for
any consisten®. Thus it suffices to show that for evetye B, f (w, |) = 1. We
do this in two steps: we show first thatw, | (w)) = 1, and then thatt(w) = 1.

Ciam 1. Forallw € B, 3f (o, | (0)) = 1.
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Proof. Let there be givew € B, and denotex = w; for somei e | (w).
Given the proof of Claim 4 in Theorem 1, it suffices to show that for egeryO,
|H; (@) — | < ¢ holds for allt ¢ Ng whereNg C N is sparse.

Let ¢ > 0 be given, and assume w.l.o.g. that< § = (u — w;)/3 for all
i €1 (w)andthatt < h. LetT; be suchthatforall > T, and alli € O(w),

[X(w,i,t) — pui| < ¢l2.

LetT, > T, be suchthatforall > T,,i € O(w), andj ¢ O(w), X(w, i,t) >
X(w, j,1). Thus,fort > T, ift & Na, H; () is adjusted “towardX (w, t) which
equalsX(w, i, t) for somei € O(w), where the latter is close to. Since for
t € Na, Hi(w) is settoX(w, t) + h, there existd; > T, such that for alt > Ts,

|Hi (@) — ul < 2h.

We now wish to choose a numbky such that any sequence bfperiods
following T3, at which H;(w) is adjusted “realistically,” i.e., as an average of
H,_1(w) andX(w, t), will guarantee that it ends up-close toy.

Letk > log,(¢/4h). Define

NA@kz{teN’ t=t+t where }

t1 e Naand 0<t, <k

Note that fort > T3, if t ¢ Na @K, i.e., ift is at leask periods after the most
recent “ambitous” update, we have

[Hi(w) — | < ¢.

SettingNg = (Na @ k) U {1, ..., T2} (and noting that it is sparse) completes
the proof.

ClAamM 2. Forallw e B, | (w) = 1.

Proof. It suffices to show tha©(w) = A for all € B. Assume, to the
contrary, that for some € B, j € AandL > 1, K(w, j,t) < L forallt > 1.
Leti € O(w). For anyt € Na,

U(w,i,t) = K(w,i,H)V(w,i,1)
= K(o,i,t) [ X(»,1,1) — Hi(®)] < —hK(w,i,1).

Let T, > T3 be such that for all > T4, a;(w) # j. Recall that for alt > Ty,
Hi(w) < u + 2h. Considett € N such that > T4. Then

U, |, 1) = Ko, [,V (o, j, 1)
= K(, j,t) [ X(, |, 1) = Hi(®)] > —LC,
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whereC = u + 2h — X(w, j, T3). That is,U (w, j,t) is bounded from below.
Since for a large enoughe Na, U (w, i, t) is arbitrarily small for ali € O(w),
we obtain a contradiction 1d-maximization. Thus we conclude thaiw) = A.
This concludes the proof of the claim and the theorem.
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