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An aspiration level adjustment rule is “realistic” if the aspiration level is (almost al-
ways) set to be an average of its previous value and the best average performance so far
encountered. It is “ambitious” if the aspiration level is set to exceed the maximal average
performance by some constant infinitely often. We analyze a case-based decision maker
with a realistic-but-ambitious aspiration level adjustment rule facing a multi-armed bandit
repeatedly. Though unaware of the payoff distributions corresponding to the arms of the
bandit, the decision maker will asymptotically choose only expected-utility maximizing
acts.Journal of Economic LiteratureClassification Numbers: C6, C61, D7, D72, D8, D81,
D83. © 1996 Academic Press, Inc.

1. INTRODUCTION

Case-based decision theory (CBDT) is an approach to decisions under un-
certainty that emphasizes the role of one’s past experiences in decision making.
Rather than assuming, as does classical expected utility theory (EUT), that the
decision maker (DM) behaves as if (s)he had a probability measure over some
state space, with respect to which expected utility is maximized, CBDT uses past
“cases” and a similarity function to determine their “relevance” to the decision
problem at hand.

It turns out that the mathematical formulation of CBDT calls for a “default
value,” which is also interpreted as the “aspiration level” of the decision maker.

∗ We are grateful to Ehud Kalai, Jean-Marc Tallon, Nicolas Vieille, and two anonymous referees
for stimulating conversations and comments. The first author gratefully acknowledges partial financial
support from the Alfred P. Sloan Foundation.

1
0899-8256/96 $18.00

Copyright © 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.



2 GILBOA AND SCHMEIDLER

Behaviorally it is defined as the level of utility beyond which the DM does not
appear to experiment with new alternatives; rather, if this level is attained, (s)he
is “satisficed” in the sense of March and Simon (1958).

Thus case-based decision makers are not as “rational” as expected utility ones.
They satisfice rather than optimize, they count on their experience rather than
attempt to figure out what will be the outcomes of available choices, they follow
what appears to be the best alternative in the short run rather than plan for the
long run, and they use whatever information they happened to acquire rather
than intentionally experiment and learn from a growing experience.

There are many applications for which we find this boundedly rational image
of a decision maker quite plausible, at least in comparison with the way decision
makers are portrayed by EUT. Especially in novel situations, people often find
it hard to specify the space of states-of-the-world in a satisfactory way, let alone
to form a prior over it. Many if not most of the decisions taken by governments,
for instance, are made in a complex environment which cannot be said to have
been encountered before in precisely the same way. History repeats itself, but
typically with a twist.

It is therefore not suprising that the rational commandments of EUT, appealing
as they are, are hard to follow. One does not have enough trials to figure out all
the possible eventualities, not to mention their frequencies. There is little point
to invest in learning and experimentation, since the knowledge acquired will be
obsolete before it gets to be used; similarly, planning carefully for the long run
may prove a futile endeavor.

However, when the environment is more or less “fixed,” and the situation may
be modeled as a repeated choice problem, case-based decision makers do appear
to be a little too na¨ıve and myopic. While we argue (in Gilboa and Schmeidler,
1995) that CBDT is not designed for these situations to begin with, we show
here that the “irrational” or “shortsighted” aspect of CBDT may disappear if one
has an appropriate rule for updating one’s aspiration level.

In this paper we propose two properties of aspiration-level adjustment rules,
which we find descriptively plausible in general. We show that in the special case
of a repeated choice problem, these properties also guarantee optimality. Thus,
these properties can also be supported on normative grounds. While there are
many rules which may guarantee optimal choice in this special case, we hope to
convince the reader that the rules discussed here are also fairly intuitive.

We assume that the aspiration-level adjustment rule is both “realistic” and
“ambitious.” Here “realism” means that the aspiration level is set closer to the
best average performance. “Ambitiousness” can take one of two forms: it may
simply imply that the initial aspiration level is high; alternatively, it may be
modeled as suggesting that the aspiration level is “pushed up” from time to time.
We devote the next few paragraphs to explaining and motivating these properties.

We model “realism” by assuming an “adaptive” rule, which sets the new
aspiration level at some weighted average of the old one and the maximal average
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performance so far encountered. Thus, if all the acts that were attempted in the
past failed to perform up to expectations, the latter would have to be scaled down.
Conversely, if the aspiration level is exceeded by some acts’ performance, it is
gradually increased. (As will be clear in what follows, the specific adjustment
rule is immaterial; it is crucial, however, that it is gradually pushing the aspiration
level toward the actual best average performance.1)

While we do not provide an axiomatic derivation of this property, we would
like to motivate it from several distinct viewpoints. First, suppose that we read
the aspiration level as an answer to the question, What can you reasonably hope
for in this problem? If a moderately rational decision maker is to provide the
answer, some adaptation of the aspiration level to actual performance seems
inevitable. Second, the updating rule appears to be psychologically plausible:
people seem to be able to adapt to circumstances. One may wish to distinguish
between scaling-up and scaling-down, but the main point is that over the long
run the aspiration level is adjusted. A third, related point is that it is in some
sense “optimal” to adjust the aspiration level: assume that you can choose an
aspiration level for an individual (say, your child), where you care both about
his/her “objective” performance and about his/her “subjective” happiness as
measured by the aspiration level (cognitively interpreted). When the aspiration
level is set too high, decreasing it avoids the subjective psychological cost of
constant frustration, and the objective cost of discarding good choices; when it
is too low, increasing it avoids objectively sub-optimal choices.

The “ambitiousness” property may have two separate (though compatible)
meanings:static ambitiousness simply states that the initial aspiration level is
relatively high. How high “high enough” is will inevitably depend on the environ-
ment. At any rate, a high initial aspiration level reflects the fact that our decision
maker is “aggressive” and entertains great expectations. Whether the decision
maker’s initial aspiration level is high enough will depend on a variety of psycho-
logical, sociological, and perhaps also biological factors; while our “optimism”
assumption may not be universally true, it is not blatantly implausible either.
(See Shepperd, Ouellette, and Fernandez (1996) for related empirical evidence.)

The second meaning the “ambitiousness” assumption may take isdynamic,
that is, that the decision maker never quite loses hope. Specifically, we will
assume that at certain decision periods, the aspiration level is set to exceed the
best average performance by a certain constant. In order to make this compatible
with realism, we will allow these decision periods to become more and more
infrequent. (As a matter of fact, for the optimality result we will require that
the update periods have a limit frequency of zero.) That is, the longer one’s
memory is, the less one tends to increase the aspiration level in this somewhat
arbitrary manner. However, dynamic ambitiousness requires that these update

1 See subsection 4.4 below for technical details.
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periods never end. Regardless of the memory’s length, a dynamically ambitious
decision maker still sometimes stops to ask, Why can’t I do better than that?

As in the case of static ambitiousness, the claim of this assumption to descrip-
tive validity can be qualified at best. Indeed, we are not trying to claim that all
decision makers are realistic-but-ambitious, just as we do not believe that all
people necessarily choose optimal acts in repeated problems. The main point
is that the properties of realism and ambitiousness correspond to some general
intuition, and they make sense beyond the special case in which a certain prob-
lem is encountered over and over again. In this special case, however, they also
ensure optimal choice.

The “repeated problem” we discuss in this paper is akin to the “multi-armed
bandit problem” (See Gittins, 1979): our decision maker is repeatedly faced
with finitely many options, each of which is guaranteed to yield an independent
realization of a certain random variable (with finite expectation and variance).
Our results are as follows: first assume that the decision maker is realistic and
statically ambitious. Then, given the distributions governing the various “arms,”
there exists a high enough initial aspiration level such that, with arbitrarily high
probability, the limit frequency of the expected-utility maximizing acts will be
1. Thus the initial aspiration level depends both on the given distributions and
on the desired probability with which this frequency will indeed be 1.

Our second result assumes a decision maker who is realistic but dynamically
ambitious. We prove that for all given distributions and any initial aspiration
level, the limit frequency of the optimal acts will be 1 with probability 1. This
result is therefore stronger than the first, since it guarantees thatalmost always
the “best” acts will almost always be chosen and that the same “algorithm”
obtains optimality forall given distributions. Thus, dynamic ambitiousness is
“safer” than static ambitiousness. Roughly, it is more important not to lose hope
than to have great expectations.

The intuition behind both results can be explained easily in the deterministic
case. Suppose that every time an act is chosen, it yields the same outcome. For the
first theorem, assume that the decision maker starts out with a very high aspiration
level. Thus all options seem unsatisfactory, and the decision maker switches
from one to another, as prescribed by CBDT in case of negative utility values.
Specifically, in this case the frequencies of choice are inversely proportional to
the utility values. Hence, a high aspiration level prods the decision maker to
experiment with all options with similar frequencies. On the other hand, as time
goes by the aspiration level is updated toward the best average performance so
far encountered. In the deterministic case, the “average performance” of an act
is simply its utility value. Thus, in the long run the aspiration level tends to
the maximal utility value; correspondingly, an act which achieves this value is
almost satisficing and will be chosen with a limit frequency of 1.

Next consider a dynamically ambitious decision maker in a similar setup.
Such a decision maker may have started out with “too low” an aspiration level;
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thus (s)he may be choosing a suboptimal act, while the aspiration level is being
adjustedupwardtoward the utility value of this act. However, if at some point the
aspiration level is set above this utility value, this act is no longer satisficing, and
the decision maker will try a new one. In the long run all acts will be tried, and
the aspiration level will be “realistically” adjusted toward the maximal utility
value. As opposed to the case of static ambitiousness, the aspiration level does
not converge to this value, since it is pushed above it from time to time. Yet,
these periods are assumed to have zero limit frequency, and thus the optimality
result holds.

The general cases of both results, in which the available acts yield stochas-
tic payoffs, are naturally more involved, but the proofs follow the same basic
intuition.

We note here that both realism and ambitiousness are crucial for the optimality
results. If our decision maker is realistic but not ambitious, (s)he may well choose
a suboptimal act forever. In this case the choice is random in the following sense:
an act is randomly selected at the first stage, and then it is chosen forever. On the
other hand, if (s)he is, say, statically ambitious but not realistic, then all choices
seem to him/her almost equally unsatisfactory; in this case one may show that
the choice is close to random in the sense that all acts will have approximately
the same frequency of being chosen. (See Gilboa and Schmeidler (1993).) By
contrast, the combination of the two guarantees that all acts will be experimented
with, but also that in the long run experimentation will give way to optimal choice.

In a sense, our results may be viewed as explaining the evolution of optimal
(expected-utility maximizing) choice: a case-based decision maker who is both
realistic and ambitious will “learn” to be an expected-utility maximizer. These
results hold only in case the decision problem is repeated long enough in the
“same” form. But this is precisely the case in which EUT seems the most plausi-
ble, i.e., when history is long enough to enable the decision maker to figure out
what are the states of the world, and to form a (frequentist) prior over them. Fur-
thermore, a case-based decision maker is more “open minded” than an expected
utility maximizer. While the latter may havea priori beliefs whose support fails
to contain the true distribution, the former simply does not entertain prior beliefs
and thus cannot be wrong about them.

In the context of optimization problems, one may view our results as reinforc-
ing a general principle by which global optimization may be obtained by local
optimization coupled with the introduction of “noise.” The annealing algorithms
(Kirkpatrick et al. 1982) are probably the most explicit manifestation of this
principle. Genetic algorithms (Holland, 1975) are another example, in which
the adaptive process leads to a local optimum of sorts, and the “cross-over” one
allows the algorithm to explore new horizons. Yet another example of the same
principle may be found in evolutionary models in game theory such as are given
by Foster and Young (1990), Kandoriet al., (1993), and Young (1993). In these
models, a myopic best-response rule may lead to equilibria which are Pareto
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dominated (“local optima”), even in pure-coordination games. But the introduc-
tion of mutations provides the “noise” which guarantees (in such games) a high
probability of a Pareto-dominating equilibrium (a “global optimum”).

From this viewpoint, one may interpret our results as follows: the “realistic”
nature of the aspiration-level adjustment rules induces convergence to a “local
optimum,” namely, to a high frequency of choice of the “best” acts among those
that were tried often enough. The ambitiousness plays the role of the “noise,”
which prods the decision maker to choose seemingly suboptimal acts and, in the
long run, to converge to a global optimum.

The annealing algorithms simulate physical phenomena; genetic algorithms
and evolutionary game theory models are inspired by biological metaphors;
by contrast, our process is motivated by psychological intuition. As mentioned
above, we find this intuition valid beyond the specific model at hand.

The rest of this paper is organized as follows. Section 2 provides a brief
overview of CBDT, as well as its alternative interpretation as a dynamic choice
theory. It will hopefully serve to orient the reader and motivate the following
sections. Section 3 provides the formal model and the main results. Section 4
concludes with some comments and variations. All proofs are relegated to the
Appendix.

2. BACKGROUND

2.1.Case-Based Decision-Theory—An Overview. A full description of CBDT
is certainly beyond the scope of this paper. The reader is referred to Gilboa
and Schmeidler (1995) for detailed exposition, axiomatizations, variants, and
theoretical discussions of CBDT, as well as for comparisons of it to expected
utility theory for decision under uncertainty. In this section we will provide only a
very sketchy outline of CBDT, which will hopefully suffice for the understanding
of the following sections.

The primitives of CBDT are:
P—a set of decisionproblems
A—a set of availableacts
R—a set of possibleresults(or outcomes)
The set ofcasesis defined to be

C = P × A × R.

That is, a “case” is a triple(p, a, r ), wherep is the problem encountered,a is
the act chosen by the decision maker, andr is the result that was obtained in this
case. We will assume that at any given point in time, a decision maker is equipped
with some memoryM , which is simply some subset of cases, and which will be
interpreted as the set of problems the decision maker can remember.
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CBDT postulates two main theoretical terms—“utility” and “similarity.” As
in the classical decision theory, the utility measures the desirability of the results
and is thus a function

u: R → <.

The notion of “similarity” is new and corresponds in many ways to that of
“subjective probability” in expected utility theory. Similarity measures the extent
to which one decision problem is similar to another; that is, it is a function

s: P × P → [0, 1].

Finally, we may describe the decision rule that is the heart of CBDT: Suppose
that a decision maker, characterized by the utilityu and the similaritys, is faced
with a decision problemp, while his/her memory isM ⊆ C. Then every possible
acta ∈ A is evaluated by the functional

U (a) =
∑

(q,a,r )∈M

s(p, q)u(r ),

and the decision maker will, according to CBDT, choose a maximizer ofU .
A few comments are in order. First, notice that for two distinct actsa, b ∈ A,

U (a) andU (b) are summations overdisjoint sets of cases. Furthermore, for
some acts this summation may be over an empty set, in which case its value is
defined to be zero. This value is going to play a major role in the theory: one
may think of it as the decision maker’s “aspiration level.” To be precise, this is
the “default” (utility) value the decision maker seems to be attaching to an act
that was never tried in the past (i.e., for which there are no cases in memory). If
certain acts obtain higherU -value than zero, the decision maker is “satisficed”
and will continue to choose among them without trying new acts andwithout
trying to maximize u. Once all the acts that were tried in the past turned out to
be unsatisfactory—that is, to have negativeU values—then the decision maker
will choose a new act (assuming such exists), where the choice among these will
be arbitrary.

In the formulation above, the aspiration level is implicitly assumed to be zero,
where the utility function is correspondingly normalized. Since this paper focuses
on the process by which the aspiration level is updated, it will be convenient to
explicitly mention it. LetH be the aspiration level, and redefine the functional
U as

U (a) = Up,M(a) =
∑

(q,a,r )∈M

s(p, q)[u(r ) − H ],

wherea ∈ A.
One of the main features of CBDT is that it does not require the DM to

“engage” in hypothetical reasoning: as opposed to expected utility thoery, where



8 GILBOA AND SCHMEIDLER

the very definition of an “act” involves hypothetical statements such as “If state
ω occurs then I getr ,” in CBDT all the DM is required to “know” is the history
of cases whichactually happenedand the utility he/sheactually experienced.
(The terms “engage” and “know” above are within quotation marks since one
may choose a purely behavioral interpretation of the theory, according to which
the DM does not have to “know” or to reason about anything.)

Without details we mention here that the decision rule of CBDT, together with
the theoretical terms “utility” and “similarity,” may be axiomatically derived
from preferences, in a way which parallels the axiomatic derivations of “utility”
and “probability,” combined with the expected utility formula, in models such as
Savage’s (1954). (See Gilboa and Schmeidler, 1995, for one such axiom system,
as well as additional discussions.)

The notion of a “case” will sometimes be interpreted in a broader fashion. For
instance, a case in a decision maker’s memory need not necessarily have been
experienced by the same DM. It may well be a “story” told by someone else.
Furthermore, it need not be a real case—it may be a hypothetical one, reflecting
the DM’s knowledge (or belief) about what would have occurred as a result of a
possible choice.

Finally, let us briefly mention two variants of the basic CBDT model:
—Averaged similarity. Here one uses a functional similar toU above, with

the sole difference that for each acta ∈ A, the similarity coefficientss(p, q)

are normalized to sum up to 1. We denote this functional byV . Normalizing the
aspiration level to be zero, it is defined by

V(a) =
∑

(q,a,r )∈M

s′(p, q)u(r ),

where

s′(p, q) = s(p, q)∑
(q′,a,r )∈M s(p, q′)

whenever the latter is well-defined (and zero otherwise).
—Act similarity. According to this model, acts may also be similar to each

other, and the evaluation of an acta depends not only on its own performance in
the past, but also on that of similar acts. Thus, the similarity function is defined
over problem-act pairs such that an acta is evaluated by

U ′(a) = U ′
p,M(a) =

∑
(q,b,r )∈M

s((p, a), (q, b))u(r )

(again, assumingH = 0).
In Gilboa and Schmeidler (1995) we axiomatize the first variant. The second

is axiomatized in Gilboa and Schmeidler (1994).
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2.2.A Dynamic Theory of Choice. As explained above, CBDT attempts to deal
with decision problems under uncertainty, for which very little information is
available. Thus, the decision maker’s memory plays a major role in attempting
to forecast the outcomes of various acts. Yet the same mathematical model may
be interpreted in a different way, as proposed in Gilboa and Schmeidler (1993):
rather than serving as a source of information, one’s memory may enter one’s
utility directly. According to this interpretation, an act’s desirability, whether
under certainty or uncertainty, intrinsically depends on the previous cases in
which it was chosen.

Thus the functionu has a slightly different interpretation: rather than the
“utility” of an outcome, which is to be maximized by a supposedly rational
decison maker, it is merely some derivative (with respect to time) of the utility
U , which is by definition a memory-dependent aggregate. Thus, ifu is negative,
the desirability of an act is lower the more it has been chosen. This may be taken to
model boredom-averse, or change-seeking decision makers. Conversely, should
u be positive, an act is more desirable the more it has been experienced, thus
exhibiting choice patterns which are consistent with habit formation. (See Gilboa
and Schmeidler, 1993, for details.)

For the purpose of the present paper it will be useful to bear both interpre-
tations in mind, since the optimality rule (CBDT combined with realism and
ambitiousness) is motivated by some hybrid of the two. We discuss this point in
Section 4.

3. MODEL AND RESULTS

Let A = {1, 2, . . . , n} be a set ofacts(n ≥ 1). For i ∈ A let there be given
a distributionFi on < (endowed with the Borelσ -algebra), to be interpreted
as the (conditional) distribution of the utility yielded by acti ’s whenever it is
chosen. We assume thatFi has finite expectation and variance, denotedµi and
σi , respectively.

The underlying state space will be a subset of

S0 = (< × A × <)N,

whereN denotes the natural numbers. A stateω = ((H1, a1, x1), (H2, a2, x2),

. . .) ∈ S0 will be interpreted as follows: for allt ≥ 1, at periodt , the aspiration
level isHt at the beginning of the period, an actat is chosen, and it yields a payoff
of xt . It will be convenient to define, for everyt ≥ 1, the projection functions

Ht , xt : S0 → < and at : S0 → A

with the obvious meaning.
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Next we define a functionC: S0 × A × N → 2N to be the set of periods, up
to a given time, at which a given act was chosen, according to a given state. That
is,

C(ω, i, t) = {
j < t | aj (ω) = i

}
.

We will similarly be interested in the number of times a certain act was chosen.
Therefore, define a functionK : S0 × A × N → N ∪ {0} by

K (ω, i, t) = #C(ω, i, t).

We are mostly interested in the relative frequencies of the decision maker’s
choices. It will be convenient to define a functionf : S0 × A × N → [0, 1] to
measure relative frequency up to a given time, i.e.,

f (ω, i, t) = K (ω, i, t)

t
.

Dropping the time index will refer to the limit:

f (ω, i ) = lim
t→∞

f (ω, i, t).

Finally, we will further abuse this notation by extending it to subsets ofA: for
D ⊆ A we define

f (ω, D, t) =
∑
i ∈D

f (ω, i, t)

and

f (ω, D) = lim
t→∞

f (ω, D, t).

We now turn to define the CBDT functionals. LetU : S0 × A × N → < be
defined by

U (ω, i, t) =
∑

j ∈C(ω,i,t)

[
xj (ω) − Ht(ω)

]
.

We will also use the notation

V(ω, i, t) = U (ω, i, t)

K (ω, i, t)
.

(Thus, “V(ω, i, t) is well-defined” means “K (ω, i, t) is positive.”) Since the
values of bothU andV depend on the aspiration levelHt , it will prove convenient
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to have a separate notation for the absolute average utility of each act. We denote

X(ω, i, t) =
∑

j ∈C(ω,i,t) xj (ω)

K (ω, i, t)
.

Note thatX(ω, i, t) is well-defined wheneverV(ω, i, t) is and

X(ω, i, t) = V(ω, i, t) + Ht(ω).

We now wish to express the fact that the decision maker considered is aU -
maximizer. We do this by restricting the state space as follows: defineS1 ⊆ S0

by

S1 =
{
ω ∈ S0 | at(ω) ∈ arg max

i ∈A
U (ω, i, t), ∀t ≥ 1

}
.

Similarly, we further restrict the state space to reflect the fact that the aspiration
level is updated in an adaptive manner. First define, fort ≥ 2 andω ∈ S0, the
relative and absolute maximal average performance to be, respectively,

V(ω, t) = max{V(ω, i, t) | i ∈ A, K (ω, i, t) > 0}
and

X(ω, t) = max
{
X(ω, i, t) | i ∈ A, K (ω, i, t) > 0

}
.

Next, for a givenα ∈ (0, 1) andH1 ∈ < define the state space to be

Ä = Ä(α, H1) =
{
ω ∈ S1

∣∣∣∣ H1(ω) = H1, and∀t ≥ 2
Ht(ω) = αHt−1(ω) + (1 − α)X(ω, t)

}
.

EndowS0 with theσ -algebra generated by the Borelσ -algebra on (each copy
of) < and 2A on (each copy of)A. Let 6 = 6(α, H1) be the inducedσ -algebra
on Ä. Finally, we turn to define the underlying probability measure. GivenÄ

and6, a probability measureP on6 isconsistent with(Fi )i ∈A if for everyt ≥ 1
andi ∈ A, the conditional distribution ofxt that it induces, givenat = i , is Fi ,
and, furthermore,xt is independent (according toP) of the random variables
H1, a1, x1, . . . , Ht−1, at−1, xt−1, Ht . Notice that distinct measures on6, which
are consistent with(Fi )i ∈A, can disagree only regarding the choice of an actat

where arg maxi ∈A U (ω, i, t) is not a singleton.
We can finally formulate our first result:

THEOREM1. Let there be given A= {1, . . . , n}, (Fi )i ∈A as above, α ∈ (0, 1)

andε > 0. There exists H0 ∈ < such that for all H1 ≥ H0 and every measure P
on (Ä(α, H1), 6(α, H1)) which is consistent with(Fi )i ∈A,

P

({
ω ∈ Ä | ∃ f (ω, arg max

i ∈A
µi ) = 1

})
≥ 1 − ε.
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Thus the theorem guarantees that, if we focus on those statesω at which there
is a limit choice frequency for the set of expected utility maximizers, and it is
1, this set is measurable and has arbitrarily high probability provided the initial
aspiration level is high enough.

Note that Theorem 1 cannot guarantee an aspiration level which is uniformly
large enough for all given distributions(Fi )i ∈A. Indeed, it is obvious that any
initial aspiration level may turn out to be too low. By contrast, our second re-
sult guarantees optimality for all given distributions, regardless of the initial
aspiration level and with probability 1. The assumption which drives this much
stronger conclusion is that the aspiration level is “pushed up” every so often.
That is, that at a certain set of periods, which is infinite but sparse (i.e., has a zero
limit frequency), the aspiration level is not adjusted by averaging its previous
value and the best-average-performance value; rather, at these periods it is set
to be at some level above the best-average-performance value, regardless of the
previous aspiration level.

Formally, we define a new probability space as follows. Let there be given
H1 ∈ < andα ∈ (0, 1) as above. Assume thatNA ⊆ N andh > 0 are given.
NA is interpreted as the set of periods at which the decision maker is ambitious.
The numberh should be thought of as the aspiration-level increase. Define

Ä = Ä(α, H1, NA, h)

=

ω ∈ S1

∣∣∣∣∣∣∣∣
H1(ω) = H1, and∀t ≥ 2
Ht(ω) = X(ω, t) + h if t ∈ NA

Ht(ω) = αHt−1(ω)

+ (1 − α)X(ω, t) if t 6∈ NA

 .

Next, define6 = 6(α, H1, NA, h) to be the correspondingσ -algebra. Simi-
larly, a measureP on6 is defined to beconsistent with(Fi )i ∈A as above.

We can now state:

THEOREM2. Let there be given A= {1, . . . , n}, (Fi )i ∈A as above,α ∈ (0, 1),
H1 ∈ <, NA ⊆ N, and h> 0. If NA is infinite but sparse, then for every measure
P on(Ä(α, H1, NA, h), 6(α, H1, NA, h)) which is consistent with(Fi )i ∈A,

P

({
ω ∈ Ä | ∃ f (ω, arg max

i ∈A
µi ) = 1

})
= 1.

4. DISCUSSION

4.1. As briefly mentioned above, the adjustment rule is a hybrid of sorts: our
decision makers choose acts byU -maximization; however, when it comes to
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adjusting their aspiration levels, they use the maximalV value. This apparent
inconsistency calls for an explanation.

Recall that, as described in Section 2 above, memory affects one’s decisions
in two ways: first, as a source of information, which is especially crucial for
decisions under uncertainty; second, as a primary effect in a dynamic choice
situation. Memory helps one to reason about the world, but also changes one’s
tastes.

Thus, there are two fundamental questions to which memory is key: first,
“What do I want to do now?” and second, “What do I think of this act?” In
answering the first question, memory plays a dual role: as a source of information
and as a factor affecting preferences; in answering the second, memory only
serves as a source of information. Correspondingly, we would like to suggest
thatU offers an answer to the first, whileV answers the second.

Consider the following example: every day our decision maker has to choose a
restaurant; this is a repeated choice, which may be thought of as decision under
certainty or under uncertainty. The restaurant chosen will be aU -maximizer,
allowing such behavior patterns as habit formation and boredom aversion. How-
ever, suppose our decision maker has a guest and is asked by him/her which is
the best restaurant in town, namely, which restaurant should one go to if one
has only one day to spend there (with no memory). Then, according to this in-
terpretation, the decision maker will recommend aV-maximizing, rather than a
U -maximizing act. Asked why (s)he is not choosing this restaurant him/herself,
the decision maker may say, “Oh, I was there just yesterday.” Having visited
it recently, itsU value may have decreased (if our decision maker is change-
seeking); however, the very fact it was recently chosen need not change itsV
value.

The optimality rule discussed in his paper is therefore not as inconsistent
as it may appear at first glance: our decision makers areU -maximizers in their
choices. This means that memory enters their decision considerations not only as
a source of information. With a high aspiration level, this also allows them to keep
switching among the alternative acts and to continue “trying” acts whose past
average performance happened to be poor. On the other hand, asking themselves,
“What can I reasonably hope for?” or “What would I recommend to someone
who hasn’t tried any of the options?” they base their answer onV-maximizing
acts. As we have shown, adjusting their aspiration level based on the maximal
V value also colors past experiences differently. In the long run, the dissatisfac-
tion with V-maximizing acts decreases, and thus their relative frequency tends
to 1.

4.2. Some readers will probably not be convinced by the above arguments. It
certainly makes sense to consider two simpler alternatives, namely the “U -rule,”
which prescribes that decisions will be made so as to maximizeU and that the
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aspiration level will be adjusted according toU as well, and the corresponding
“ V-rule.” It is worth mentioning, however, that neither of these rules seems to
guarantee optimal choice in the long run.2

4.3. The discussion in this paper focuses on finitely many alternatives. Indeed,
with infinitely many alternatives CBDT, combined with a high aspiration level,
does not make much sense in its original formulation. Furthermore, it certainly
does not guarantee optimality: since every act has a default value (of the aspira-
tion level), the decision maker will keep trying new (and arbitrarily chosen) acts
indefinitely.

However, it is rarely the case that infinitely many acts are available with-
out having some additional structure. For instance, prices and quantities may
be modeled as continua, but then they are endowed with a natural metrizable
topology. These cases are naturally modeled as CBDT with act similarity. (See
subsection 2.1 above.) For instance, having set a price at $20, a seller may have
some idea about the outcomes that are likely to result from a price of $20.01.
Since these two acts are “similar,” the past experience with one of them enters
the evaluation of another.

Thus, given a metric topological space of acts and a similarity function (which
is, say, monotonic in the metric), and assuming continuity ofu, one would expect
a similar optimality result to hold.

4.4. It almost goes without saying that our results do not hinge on the specific
aspiration-level adjustment rule. First, the aspiration level need not be adjusted
at every period, nor do the adjustment periods have to be deterministically set.
All that is required is that there will be infinitely many of them with a high
enough probability. Similarly, the “realistic” adjustment need not be done by a
weighted average (with fixed weights). Generally, for Theorem 1 it is required
only that (i) the adjustment process will guarantee convergence, i.e., that for all
a, b ∈ < andε > 0, if X(ω, t) ∈ (a, b) for all t ≥ T1 for someT1, then there
will exist T2 such that for almost allt ≥ T2, Ht(ω) ∈ (a − ε, b + ε); and (ii) the
adjustment will not be too fast, i.e., that for allR ∈ < and all T0 ≥ 1 there
will be a numberH0 such that for allH1 > H0 and all t ≤ T0, Ht > R. For
Theorem 2, one needs the convergence property and an increase in aspiration
level over an infinite but sparse set of periods. Neitherh nor the setNA need be

2 Using the “U -rule,” the aspiration level need not converge. (As a matter fact, it is not obvious
what is the “right” way to define the aspiration level adjustment rule in this case.) Using the “V-
rule,” the decision maker may never retry certain alternatives which happened to have particularly low
realizations in the first few periods. (We omit the simple examples.)
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deterministic or exogneously given. Both may depend of the stateω, on past acts,
and on their results. It is essential, however, that for almost allω, h is bounded
away from zero (and not too large) and thatNA is infinite but sparse. Finally, one
may assume that in the “ambitious” periods, the aspiration is set so as to exceed
(by h) its own previous value, rather than the maximal average performance
level.

4.5. Note that when the aspiration level is updated in our model, theu value of
past experiences is also updated. That is, outcomes which have been obtained in
the past are re-evaluated according to the newly defined aspiration level. Thus
we implicitly assume that the decision makers can “reflect” upon the outcomes
themselves, sometimes realizing that they were not as unsatisfacotry as they
seemed at the time.

Alternatively, one may assume that only the utility value of past experiences is
retained in memory and that the original evaluation of an outcome will be forever
used to judge the act which led to it. However, our first result does not hold in
this case, since a very high initial aspiration level may make an expected-utility
maximizing act have a very lowU value, to the extent that it may never be chosen
again.

While one may argue for the psychological plausibility of the alterantive
assumption, it seems that it is “more rational” to re-evaluate outcomes based
on an adjusted aspiration level, rather than compare each outcome to a possibly
different aspiration level. At any rate, the second result holds under the alternative
assumption as well: having infinitely many periods in which the expected utility
of any act is a negative number bounded away from zero guarantees that all acts
will be chosen infinitely often with probability 1.

APPENDIX: PROOFS

1.Proof of Theorem1. A few words on the strategy of the proof are probably
in order. The general idea is very similar to the deterministic case described in
the Introduction: let the initial aspiration level be high enough so that each act is
chosen a large enough number of times, and then notice that the aspiration level
tends to the maximal expected utility. In the deterministic case, each act should
be chosen at least once in order to get its average performanceX equal to its
expectation. In the stochastic case, more choices are needed, and a law of large
numbers will be invoked for a similar conclusion. Thus the initial aspiration level
should be high enough to guarantee that each of the acts is chosen enough times
to get the average close to the expectation.

If the supports of the given distributionsFi were bounded, one could find
high enough aspiration levels such that all possible realizations of all possible
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choices seem similarly unsatisfactory. This would guarantee that, as long as
the aspiration level is beyond a certain bound, all acts are chosen with similar
frequencies, and therefore all of them will be chosen enough times for the law
of large numbers to apply. However, these distributions need not have a bounded
support. They are known only to have a finite variance. Thus the proof is slightly
more involved, as we explain below.

Let us first assume w.l.o.g. (without loss of generality) that for somer ≤ n,

µ1 = µ2 = · · · = µr > µr +1 ≥ µr +2 ≥ · · · ≥ µn.

Furthermore, we assume thatr < n w.l.o.g. (the theorem is trivially true other-
wise). Next denote

I = arg max
i ∈A

µi = {1, 2, . . . , r }

and

δ = µ1 − µr +1

3
.

The numberδ is so chosen that, if the average values areδ-close to the corre-
sponding expectations, then the maximal average value is obtained by a maxi-
mizer of the expectation.

We now turn to find the number of times which is needed to guarantee, with
high enough probability, that the averages are, indeed,δ-close to the expectations.
Given ε > 0 as in the theorem andi ∈ A, let Ki ≥ 1 be such that: for every
k ≥ Ki and every sequence of i.i.d. random variablesX1

i , X2
i , . . . , Xk

i , each with
distributionFi ,

Pr

(∣∣∣∣∣1

k

k∑
j =1

X j
i − µi

∣∣∣∣∣ ≤ δ

)
≥ (1 − ε)1/2n,

where Pr is the measure induced by the distributionFi . Notice that suchKi

exists by the strong law of large numbers (See, for instance, Halmos, 1950). Let
K = maxi ∈A Ki .

We now turn to the construction of the initial aspiration level. As explained
above, we would like to be able to assume that theFi ’s have bounded supports,
in order to guarantee that each act is chosen at leastK times. We will therefore
find an event with a high enough probability, on which the random variablesxt

are, indeed, bounded.
We start by finding, for eachi ∈ A, boundsbi , bi ∈ < such that, for any

random variableXi distributed byFi ,

Pr(bi ≤ Xi ≤ bi ) ≥ (1 − ε)1/(4nK),
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where Pr is some probability measure which agrees withFi . Notice that such
bounds exist sinceFi has a finite variance. W.l.o.g. assume also thatbi > µi +2δ

for all i ∈ A. Next define

b = min
i ∈A

bi and b = max
i ∈A

bi .

The critical lower bound on the aspiration level (for the “experimentation”
period, in which every act is chosen at leastK times) is chosen to be

R = 2b − b.

Let us define, for everyT ≥ 1, the event

BT = {
ω ∈ Ä | ∀t ≤ T, b ≤ xt(ω) ≤ b

}
.

Notice that, since the given measureP is consistent with(Fi )i ∈A, P(BT ) ≥
(1 − ε)T /(4nK). Hence, provided thatT is not too large,BT will have a high
enough probability. In order to show thatT need not be too large to get enough
(≥ K ) observations of each act, we first show that, onBT and with sufficiently
high aspiration level, the firstT choices are more or less “evenly” distributed
among the acts:

CLAIM 1. Let there be given T≥ n, andω ∈ BT . Assume that for all t≤ T ,
Ht(ω) > R. Then for all i, j ∈ A and all n≤ t ≤ T ,

K (ω, i, t) ≤ 2K (ω, j, t).

Proof. Assume the contrary, and lett0 be the minimal timet such thatn ≤
t ≤ T and

K (ω, i, t0) > 2K (ω, j, t0)

for somei, j ∈ A. Notice thatK (ω, a, n) = 1 for all a ∈ A, and hencet0 > n.
It follows from minimality of t0 that at0−1(ω) = i , i.e., thati was the last act
chosen.

Consider the following bounds on theU values of the two acts:

U (ω, i, t0 − 1) ≤ K (ω, i, t0 − 1)(b − Ht0−1(ω))

and

U (ω, j, t0 − 1) ≥ K (ω, j, t0 − 1)(b − Ht0−1(ω)).

The optimality ofi at staget0 − 1 implies

U (ω, i, t0 − 1) ≥ U (ω, j, t0 − 1);
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hence

K (ω, i, t0 − 1)(b − Ht0−1(ω)) ≥ K (ω, j, t0 − 1)(b − Ht0−1(ω)).

Recalling thatHt0−1(ω) > R ≥ b ≥ b, this is equivalent to

K (ω, j, t0 − 1)

K (ω, i, t0 − 1)
≥ b − Ht0−1(ω)

b − Ht0−1(ω)
.

By minimality of t0 we know that

K (ω, j, t0 − 1)

K (ω, i, t0 − 1)
= 1

2
.

We therefore obtain

b − Ht0−1(ω) ≤ 2
(
b − Ht0−1(ω)

)
,

which implies

Ht0−1(ω) ≤ 2b − b = R,

a contradiction.

We now setT0 = 2nK and will prove that—as long as the aspiration level is
kept aboveR—afterT0 stages, each act will be chosen at leastK times on the
eventBT0. Formally,

CLAIM 2. Let there be givenω ∈ BT0 and assume that Ht(ω) > R for all
t ≤ T0. Then for i∈ A,

K (ω, i, T0) ≥ K .

Proof. If K (ω, i, T0) < K for somei ∈ A, then by Claim 1,K (ω, j, T0) <

2K for all j ∈ A. Then we get

T0 =
∑
j ∈A

K (ω, j, T0) < 2nK = T0,

which is impossible.

We finally turn to choose the required level for the initial aspiration level.
Choose a value

H0 = H0(ε) > b + 2

(
1

α

)T0

(b − b)

and let us assume for the rest of the proof thatH1 ≥ H0. We verify that this
bound is sufficiently high in the following:
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CLAIM 3. Let there be givenω ∈ BT0 and assume that H1 ≥ H0. Then for
all t ≤ T0, Ht(ω) > R.

Proof. For all 1< t ≤ T0,

Ht(ω) ≥ αHt−1(ω) + (1 − α)b

or

Ht(ω) − b ≥ α(Ht−1(ω) − b).

Hence

Ht(ω) − b ≥ αt(H1 − b) > 2αt

(
1

α

)T0

(b − b) ≥ 2(b̄ − b)

and

Ht(ω) > 2b − b = R.

Combining the above, we conclude that, forH1 ≥ H0, K (ω, i, T0) ≥ K for
all ω ∈ BT0 and alli ∈ A. Furthermore, for a measureP, consistent with(Fi )i ∈A,

P(BT0) ≥ (1 − ε)T0/(4nK) = (1 − ε)1/2.

We now define the event on which the limit frequency of the expected-utility
maximizing acts is 1: letB ⊆ BT0 be defined by

B =
{
ω ∈ BT0

∣∣∣∣ ∀t ≥ T0, ∀i ∈ A,∣∣X(ω, i, t) − µi

∣∣ < δ

}
.

By the choice ofK and the independence assumption, we conclude thatP(B |
BT0) ≥ (1 − ε)1/2, whenceP(B) ≥ (1 − ε).

The proof of the theorem will therefore be complete if we prove the following:

CLAIM 4. Assume that H1 ≥ H0 and let P be a measure on(Ä(α, H1), 6(α, H1))

which is consistent with(Fi )i ∈A. Then, for P-almost allω in B,

∃ f (ω, I ) = 1.

(Recall that I= arg maxi ∈A µi .)

Proof. Givenω ∈ B andξ > 0, we wish to show that, unlessω is in a certain
P-null event (to be specified later), there exists aT = T(ω, ξ) such that for all
t ≥ T ,

f (ω, I , t) ≥ 1 − ξ.
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It is sufficient to find aT = T(ω, ξ) such that for somei ∈ I , for all t ≥ T ,
and for all j 6∈ I ,

K (ω, j, t)

K (ω, i, t)
= f (ω, j, t)

f (ω, i, t)
≤ ξ

n(1 − ξ)
.

We remind the reader that for allt ≥ T0 and alla ∈ A we have∣∣X(ω, a, t) − µa

∣∣ ≤ δ.

Also, sinceHT0(ω) > R > µ1, for all t ≥ T0 we have

Ht(ω) > µ1 − δ = µr +1 + 2δ.

That is, the aspiration level will be adjusted toward the average performance
of one of the expected-utility maximizing acts and will be bounded away from
the expected utility and from the average performance value of suboptimal acts.

We will need a uniform bound onHt(ω). To this end, note that for alla ∈ A
andt ≤ T0, X(ω, a, t) < R, by definition of the setBT0. For t ≥ T0, the same
inequality holds sinceX(ω, a, t) < µa+δ < ba ≤ R. SinceHt+1(ω) is a convex
combination ofHt(ω) andX(ω, t) = maxa∈A X(ω, a, t) < R, we conclude that
for all t ≥ 1, Ht+1(ω) ≤ max{Ht(ω), R}. By induction, it follows that for all
t ≥ 1 Ht(ω) ≤ H1.

Let O(ω) ⊆ A be the set of acts which are chosen infinitely often atω. That
is,

O(ω) =
{

a ∈ A | K (ω, a, t) −−−→
t→∞

∞
}

.

We would first like to establish the fact that some expected-utility maximizing
acts are indeed chosen infinitely often. Formally,

CLAIM 4.1. O(ω) ∩ I 6= ∅.

Proof. Let T̃ ≥ T0 be such that for allt ≥ T̃ , at(ω) ∈ O(ω). Assume the
contrary, i.e., thatO(ω) ∩ I = ∅. (In particular,at(ω) 6∈ I for all t ≥ T̃ .) For
all t ≥ T̃ ≥ T0 we also know that

X(ω, j, t) < Ht(ω) − δ

for all j 6∈ I . Hence, forj 6∈ I ,

U (ω, j, t) = K (ω, j, t)V(ω, j, t)

= K (ω, j, t)
[

X(ω, j, t) − Ht(ω)
]

< −δK (ω, j, t).
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This implies thatU (ω, j, t) −−−−−−→
K (ω, j,t)→∞

−∞. Thus, for all j ∈ O(ω)\I ,

U (ω, j, t) −−−→
t→∞

−∞.

On the other hand, consider somei ∈ I ⊆ (O(ω))c. Let L satisfyL > K (ω, i, t)
for all t ≥ 1. Then

U (ω, i, t) = K (ω, i, t)V(ω, i, t)

= K (ω, i, t)
[

X(ω, i, t) − Ht(ω)
]

> L(b − H1).

It is therefore impossible that only members ofI c would beU -maximizers from
someT̃ on.

We now assume that for alla ∈ O(ω), X(ω, a, t) −−−→
t→∞

µa. By the strong

law of large numbers, this is the case for allω ∈ B apart from aP-null set.
Chooseζ > 0 such that

ζ <
ξδ

6n(1 − ξ)

and letT1 ≥ T0 be such that for allt ≥ T1 and alli ∈ O(ω) ∩ I ,∣∣X(ω, i, t) − µ1

∣∣ < ζ.

For all t ≥ T1 we also conclude that∣∣X(ω, t) − µ1

∣∣ < ζ

(where, as above,X(ω, t) = maxa∈A X(ω, a, t)). It follows that the aspiration
level, Ht+1(ω), which is adjusted to be some average of its previous valueHt(ω)

andX(ω, t), will also converge toµ1. To be precise, there isT2 ≥ T1 such that
for all t ≥ T2,

|Ht(ω) − µ1| < 2ζ.

We wish to show that there existsT(ω, ξ) such that for allt ≥ T(ω, ξ), all
i ∈ O(ω) ∩ I , and all j 6∈ I the following holds:

K (ω, j, t)

K (ω, i, t)
≤ ξ

n(1 − ξ)
.

It will be helpful to start with:

CLAIM 4.2. For all t ≥ T2, all i ∈ O(ω) ∩ I , and all j 6∈ I , if at(ω) = j ,
then

K (ω, j, t) <
ξ

2n(1 − ξ)
K (ω, i, t).
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Proof. Let there be givent , i , and j as above. Observe that

U (ω, i, t) = K (ω, i, t)V(ω, i, t)

= K (ω, i, t)
[

X(ω, i, t) − Ht(ω)
] ≥ −3K (ω, i, t)ζ,

while

U (ω, j, t) = K (ω, j, t)V(ω, j, t)

= K (ω, j, t)
[

X(ω, j, t) − Ht(ω)
] ≤ −K (ω, j, t)δ.

The fact thatat(ω) = j implies thatU (ω, j, t) ≥ U (ω, i, t). Hence

−K (ω, j, t)δ ≥ −3K (ω, i, t)ζ

or

K (ω, j, t) ≤ 3ζ

δ
K (ω, i, t).

However, the choice ofζ (as smaller thanξδ/6n(1 − ξ)) implies that

3ζ

δ
<

ξ

2n(1 − ξ)
.

We have thus established that

K (ω, j, t) <
ξ

2n(1 − ξ)
K (ω, i, t)

for anyt at which j is chosen (i.e.,at(ω) = j ).

We proceed as follows: letT3 ≥ T2 be such that for allt ≥ T3, at(ω) ∈ O(ω).
Let T4 ≥ T3 be large enough so that for allt ≥ T4, a ∈ O(ω) andc 6∈ O(ω),

K (ω, c, t) ≤ ξ

n(1 − ξ)
K (ω, a, t).

Finally, letT5 > T4 be such that for alla ∈ O(ω), K (ω, a, T5) > K (ω, a, T2).
We now have

CLAIM 4.3. For all t ≥ T5, all i ∈ O(ω) ∩ I , and all j 6∈ I ,

K (ω, j, t) ≤ ξ

n(1 − ξ)
K (ω, i, t).
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Proof. Let there be givent , i , and j as above. Ifj 6∈ O(ω), the choice ofT4

concludes the proof. Assume, then, thatj ∈ O(ω). Then, by choice ofT5, j has
been chosen sinceT2. That is,

Tt
j ≡ {s | T2 ≤ s < t, as(ω) = j } 6= ∅.

Let s be the last time at whichj was chosen before timet , i.e., s = maxTt
j .

Note that

K (ω, j, t) = K (ω, j, s + 1)

and

K (ω, i, t) ≥ K (ω, i, s + 1).

Hence it suffices to show that

K (ω, j, s + 1) ≤ ξ

n(1 − ξ)
K (ω, i, s + 1).

By Claim 4.2 we know that

K (ω, j, s) ≤ ξ

2n(1 − ξ)
K (ω, i, s).

Sinces ≥ T2 ≥ T0, K (ω, j, s) ≥ K ≥ 1. This implies(ξ /2n(1−ξ))K (ω, i, s) ≥
1. Next, observe that

K (ω, j, s + 1) = K (ω, j, s) + 1 ≤ ξ

2n(1 − ξ)
K (ω, i, s) + 1

≤ ξ

2n(1 − ξ)
K (ω, i, s) + ξ

2n(1 − ξ)
K (ω, i, s)

= ξ

n(1 − ξ)
K (ω, i, s) = ξ

n(1 − ξ)
K (ω, i, s + 1).

This concludes the proof of Claim 4.3.

Thus T5 may serve as the requiredT(ω, ξ). As a matter of fact, our claim
regardingT5 is slightly stronger than that we need to prove regardingT(ω, ξ).
The latter should have the inequality of Claim 4.3 satisfied forsome i∈ I , while
the former satisfies it forall i ∈ O(ω) ∩ I , and Claim 4.1 guarantees that this
set indeed contains somei ∈ I .

At any rate, Claim 4.3 completes the proof of Claim 4, which, in turn, com-
pletes the proof of the theorem.
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2. Proof of Theorem2. The general idea of the proof, as well as the proof
itself, is quite simple: as long as the aspiration level is close to the average
performance of an expected-utility maximizing act, the proof mimics that of
Theorem 1. The problem is that the decision maker may “lock in” on suboptimal
acts, which may be almost-satisficing or even satisficing, and not try the optimal
acts frequently enough. However, the fact that the decision maker is “ambitious”
infinitely often (in the sense of setting the aspiration level beyond the maximal
average performance) guarantees that this will not be the case. Thus, the fact that
NA is infinite ensures that every act will be chosen infinitely often. On the other
hand, the fact that it is sparse implies that these periods of “ambitiousness” will
not change the limit frequencies obtained in the proof of Theorem 1.

In the formal proof it will prove convenient to take the following steps: we will
restrict our attention to the event at which all acts, which are chosen infinitely
often, have a limit average performance equal to their expectation. On this event
we will show that the expected-utility maximizers among those acts have a limit
choice frequency of 1. Finally, we will show that all acts are chosen infinitely
often, whence the result follows.

We adopt some notation from the proof of Theorem 1. In particular, assume
that for somer < n,

µ1 = µ2 = · · · = µr > µr +1 ≥ µr +2 ≥ · · · ≥ µn,

and denote

I = arg max
i ∈A

µi = {1, 2, . . . , r }.

We will also use

O(ω) =
{

a ∈ A | K (ω, a, t) −−−→
t→∞

∞
}

and the new notation

I (ω) = arg max{µi | i ∈ O(ω)} .

We would like to focus on the event

B =
{
ω ∈ Ä | ∀i ∈ O(ω), X(ω, i, t) −−−→

t→∞
µi

}
.

SinceA is finite, the strong law of large numbers guarantees thatP(B) = 1 for
any consistentP. Thus it suffices to show that for everyω ∈ B, f (ω, I ) = 1. We
do this in two steps: we show first thatf (ω, I (ω)) = 1, and then thatI (ω) = I .

CLAIM 1. For all ω ∈ B, ∃ f (ω, I (ω)) = 1.
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Proof. Let there be givenω ∈ B, and denoteµ = µi for somei ∈ I (ω).
Given the proof of Claim 4 in Theorem 1, it suffices to show that for everyζ > 0,
|Ht(ω) − µ| < ζ holds for allt 6∈ N0 whereN0 ⊂ N is sparse.

Let ζ > 0 be given, and assume w.l.o.g. thatζ < δ = (µ − µi )/3 for all
i 6∈ I (ω) and thatζ < h. Let T1 be such that for allt ≥ T1 and alli ∈ O(ω),∣∣X(ω, i, t) − µi

∣∣ < ζ /2.

Let T2 ≥ T1 be such that for allt ≥ T2, i ∈ O(ω), and j 6∈ O(ω), X(ω, i, t) >

X(ω, j, t). Thus, fort ≥ T2, if t 6∈ NA, Ht(ω) is adjusted “toward”X(ω, t)which
equalsX(ω, i, t) for somei ∈ O(ω), where the latter is close toµ. Since for
t ∈ NA, Ht(ω) is set toX(ω, t)+h, there existsT3 ≥ T2 such that for allt ≥ T3,

|Ht(ω) − µ| < 2h.

We now wish to choose a numberk, such that any sequence ofk periods
following T3, at which Ht(ω) is adjusted “realistically,” i.e., as an average of
Ht−1(ω) andX(ω, t), will guarantee that it ends upζ -close toµ.

Let k > logα(ζ /4h). Define

NA ⊕ k =
{

t ∈ N

∣∣∣∣ t = t1 + t2 where
t1 ∈ NA and 0≤ t2 ≤ k

}
.

Note that fort ≥ T3, if t 6∈ NA ⊕ k, i.e., if t is at leastk periods after the most
recent “ambitous” update, we have

|Ht(ω) − µ| < ζ.

SettingN0 = (NA ⊕ k) ∪ {1, . . . , T2} (and noting that it is sparse) completes
the proof.

CLAIM 2. For all ω ∈ B, I (ω) = I .

Proof. It suffices to show thatO(ω) = A for all ω ∈ B. Assume, to the
contrary, that for someω ∈ B, j ∈ A andL ≥ 1, K (ω, j, t) ≤ L for all t ≥ 1.
Let i ∈ O(ω). For anyt ∈ NA,

U (ω, i, t) = K (ω, i, t)V(ω, i, t)

= K (ω, i, t)
[

X(ω, i, t) − Ht(ω)
]

< −hK(ω, i, t).

Let T4 ≥ T3 be such that for allt ≥ T4, at(ω) 6= j . Recall that for allt ≥ T4,
Ht(ω) < µ + 2h. Considert ∈ NA such thatt ≥ T4. Then

U (ω, j, t) = K (ω, j, t)V(ω, j, t)

= K (ω, j, t)
[

X(ω, j, t) − Ht(ω)
]

> −LC,
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whereC = µ + 2h − X(ω, j, T3). That is,U (ω, j, t) is bounded from below.
Since for a large enought ∈ NA, U (ω, i, t) is arbitrarily small for alli ∈ O(ω),
we obtain a contradiction toU -maximization. Thus we conclude thatO(ω) = A.
This concludes the proof of the claim and the theorem.
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