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Abstract

This is a survey of some of the recent decision-theoretic literature involving
beliefs that cannot be quantified by a Bayesian prior. We discuss historical,
philosophical, and axiomatic foundations of the Bayesian model, as well as of
several alternative models recently proposed. The definition and comparison
of ambiguity aversion and the updating of non-Bayesian beliefs are briefly dis-
cussed. Finally, several applications are mentioned to illustrate the way that
ambiguity (or “Knightian uncertainty”) can change the way we think about
economic problems.

1 Introduction

1.1 Varying probability estimates

John and Lisa are offered additional insurance against the risk of a heart disease. They

would like to know the probability of developing such a disease over the next ten years.

The happy couple shares some key medical parameters: they are 70 years old, smoke,

and never had a blood pressure problem. A few tests show that both have a total

cholesterol level of 310 mg/dL, with HDL-C (good cholesterol) of 45 mg/dL, and that

their systolic blood pressure is 130. Googling “heart disease risk calculator”, they find

several sites that allow them to calculate their risk. The results (May 2010) are:
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John Lisa

Mayo Clinic 25% 11%

National Cholesterol Education Program 27% 21%

American Heart Association 25% 11%

Medical College of Wisconsin 53% 27%

University of Maryland Heart Center 50% 27%

As we can see from the table, the estimates vary substantially: the highest for

John is 100% higher than the lowest, whereas for Lisa the ratio is 5:2. Opinion

diverge in these examples, even though there are based on many causally independent

observations that allow the use of statistical techniques such as logistic regression.

However, in many important economic questions, such as the extent of global warming,

there are very few past events to rely on. Further, many events, such as revolutions

and financial crises, cannot be assumed independent of past observations. Thus, it

appears that for many events of interest one cannot define an objective, agreed-upon

probability.

1.2 Does rationality necessitate probability?

Since the mid-20th century, economic theory is dominated by the Bayesian paradigm,

which holds that any source of uncertainty can and should be quantified probabilis-

tically.1 According to this view, John and Lisa should have well-defined probabilities

that they will develop a heart disease within the next ten years, as should Mary for the

temperature distribution anywhere on the globe five years hence. But where should

John, Lisa, or Mary get these probabilities from? If they are to consult experts, they

will typically obtain different estimates. Which experts are they to believe? Should

they compute an average of the experts’ estimates, and, if so, how much weight should

each expert have in this average?

The standard line of reasoning of the Bayesian approach is that, in the absence

of objective probabilities, the decision maker (DM, for short) should have her own,

subjective probabilities, and that these probabilities should guide her decisions. More-

over, the remarkable axiomatic derivations of the Bayesian approach (culminating in

Savage, 1954), show that axioms that appear very compelling necessitate that the DM

1As Cyert and DeGroot (1974) write on p. 524 “To the Bayesian, all uncertainty can be represented
by probability distributions.”
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behave as if she maximized expected utility relative to a certain probability measure,

which is interpreted as her subjective probability. Thus, the axiomatic foundations

basically say, “Even if you don’t know what the probabilities are, you should better

adopt some probabilities and make decisions in accordance with them, as this is the

only way to satisfy the axioms.”

There is a heated debate regarding the claim that rationality necessitates Bayesian

beliefs. Knight (1921) and Keynes (1921, 1937) argued that not all sources of uncer-

tainty can be probabilistically quantified. Knight suggested to distinguish between

“risk”, referring to situations described by known or calculable probabilities, and “un-

certainty”, where probabilities are neither given nor computable. Keynes (1937) wrote,

“By ‘uncertain’ knowledge, let me explain, I do not mean merely to

distinguish what is known for certain from what is only probable. The

game of roulette is not subject, in this sense, to uncertainty ... The sense

in which I am using the term is that in which the prospect of a European

war is uncertain, or the price of copper and the rate of interest twenty years

hence ... About these matters there is no scientific basis on which to form

any calculable probability whatever. We simply do not know.”

Gilboa, Postlewaite, and Schmeidler (2008, 2009, 2010) argue that the axiomatic

foundations of the Bayesian approach are not as compelling as they seem, and that it

may be irrational to follow this approach. In a nutshell, their argument is that the

Bayesian approach is limited because of its inability to express ignorance: it requires

that the agent express beliefs whenever asked, without being allowed to say “I don’t

know”. Such an agent may provide arbitrary answers, which are likely to violate

the axioms, or adopt a single probability and provide answers based on it. But such

a choice would be arbitrary, and therefore a poor candidate for a rational mode of

behavior.

Axiomatic derivations such as Savage’s may convince the DM that she ought to

have a probability, but they do not tell her which probability it makes sense to adopt.

If there are no additional guiding principles, an agent who picks a probability measure

arbitrarily should ask herself, is it so rational to make weighty decisions based on

my arbitrarily-chosen beliefs? If there are good reasons to support my beliefs, others

should agree with me, and then the probabilities would be objective. If, however, the

probabilities are subjective, and others have different probabilities, what makes me so
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committed to mine? Wouldn’t it be more rational to admit that these beliefs were

arbitrarily chosen, and that, in fact, I don’t know the probabilities in question?

1.3 Outline

The rest of this paper is organized as follows. Section 2 discusses the history and

background of the Bayesian approach. It highlights the fact that this approach has

probably never been adopted with such religious zeal as it has within economic theory

over the past 60 years. Section 3 describes several alternatives to the standard Bayesian

model. It surveys only a few of these, attempting to show that much of the foundations

and machinery of the standard model need not be discarded in order to deal with

uncertainty. Section 4 surveys the notion of ambiguity aversion. The updating of non-

Bayesian beliefs is discussed in Section 5. Section 6 briefly describes some applications

of non-Bayesian models. The applications mentioned here are but a few examples

of a growing literature. They serve to illustrate how non-Bayesian models may lead

to different qualitative predictions than Bayesian ones. A few general comments are

provided in Section 7.

2 History and background

2.1 Early pioneers

Decision theory was born as a twin brother of probability theory through the works

of a few scholars in the 16th and 17th century, originally motivated by the study of

games of chance. Among them the works of Christiaan Huygens (1629-1695) and Blaise

Pascal (1623-1662) are particularly relevant. We begin with Pascal, whose footsteps

Huygens followed.

Pascal (1670) Since its very early days, probability had two different interpreta-

tions: first, it captures the notion of chance, referring to relative frequencies of occur-

rences in experiments that are repeated under the same conditions. This includes the

various games of chance that provided the motivation for the early development of the

theory. Second, probability can capture the notion of degree of belief, even when no

randomness is assumed, and when nothing remotely similar to a repeated experiment

can be imagined.
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It is this second interpretation that, over time, evolved into the Bayesian approach

in both decision and probability theory. In this regard, Pascal is perhaps the most

important pioneer of probability theory. Though he made early key contributions to

the probabilistic modeling of games of chance, it is his famous wager that is mostly

relevant here. Roughly at the same time that Descartes and Leibniz were attempting

to prove that God existed, Pascal changed the question from the proof of existence to

the argument that it is worthwhile to believe in God, an option that he identified with

the choice of a pious form of life based on the precepts of the Christian religion.2 In

so doing, he applied the mathematical machinery developed for objective probabilities

in games of chance to the subjective question of God’s existence, where no repeated

experiment interpretation is possible. This led him to informally introduce several

major ideas of modern decision theory, including the decision matrix, the notion of

dominant strategies, subjective probability, expected utility maximization, and non-

unique probability.3

Thus, the subjective interpretation of probabilities and their application as a tool

to quantify beliefs showed up on the scene more or less as soon as did the objective

interpretation and the application to games of chance. Further, as soon as the notion

of subjective probability came on stage, it was accompanied by the possibility that this

probability might not be known (see Shafer, 1986, for related remarks on Bernoulli,

1713, who introduced the law of large numbers).

Huygens (1657) In the wake of the early probability discussions of Fermat and

Pascal, Huygens (1657) first clearly proposed expected values to evaluate games of

fortune.4 Unlike Pascal’s grand theological stand, Huygens only dealt with games of

fortune (“cards, dice, wagers, lotteries, etc.” as reported in the 1714 English version).

Nevertheless, he was well aware of the intellectual depth of his subject.

Huygens’ arguments are a bit obscure (at least for the modern reader; see Daston,

1995). His essay has, however, a few remarkable features from our perspective. First,

he does not present the expected value criterion as an axiom; rather, he justifies its

relevance by starting frommore basic principles. For this reason his essay is articulated

2According to Pascal a pious life would ultimately induce faith. Importantly, Pascal did not
assume that one can simply choose one’s beliefs.

3Pascal did not finish his Pensées, which appeared in print in 1670, eight years after his death.
The text that was left is notoriously hard to read since he only sketches his thoughts (here we use
the 1910 English edition of W. F. Trotter). Our rendering of his argument crucially relies on Hacking
(1975)’s interpretation (see Hacking, 1975, pp. 63-72, and Gilboa, 2009, pp. 38-40).

4See Ore (1960).
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in a sequence of mathematical propositions that establish the expected value criterion

for more and more complicated games. Huygens’s propositions can be thus viewed as

the very first decision-theoretic representation theorems, in which the relevance of a

decision criterion is not viewed as self-evident, but needs to be justified through logical

arguments based on first principles.

A second remarkable feature of Huygens’ essay is the basic principle, his “postu-

lat” in the English version, which he based his analysis upon. We may call it the

principle of equivalent games, in which he assumes that the values of games of chances

should be derived through the value of equivalent fair games. Ramsey’s assumption of

the existence of bets with equally likely outcomes (that he calls “ethically neutral”)

is an instance of this principle, as well as de Finetti’s assumption of the existence

of partitions of equally likely events. More recently, the central role that certainty

equivalents play in many axiomatic derivations can be viewed as a later instance of

Huygens’ comparative principle of studying uncertain alternatives by means of bench-

mark alternatives with suitably simple structures.

Hacking (1975) makes some further observations on the relevance of Huygens’ book

for the history of subjective probability. We refer the interested reader to his book,

with a warning on the difficulty of interpreting some of Huygens’ arguments.

2.2 Subjective probabilities and the axiomatic approach

Modern decision theory, and in particular the way it models uncertainty, is the result of

the pioneering contributions of a truly impressive array of scholars. Some of the finest

minds of the first half of last century contributed to the formal modeling of human be-

havior. Among them, especially remarkable are the works of Frank Plumpton Ramsey

(1903-1930) with his early insights on the relations between utilities and subjective

probabilities, John von Neumann (1901-1957) and Oskar Morgenstern (1902-1977)

with their classic axiomatization of expected utility presented in the 1947 edition of

their famous game theory book, Bruno de Finetti (1906-1985) with his seminal con-

tributions to subjective probability, and Leonard J. Savage (1917-1971), who — in an

unparalleled conceptual and mathematical tour de force — integrated von Neumann-

Morgenstern’s derivation of expected utility with de Finetti’s subjective probability.

For our purposes the contributions of de Finetti, Ramsey, and Savage are especially

relevant since they shaped modern Bayesian thought and, through it, the modeling of

uncertainty in economics. Next we briefly review their landmark contributions.
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Ramsey (1926a) Amain motivation of Ramsey (1926a) was Keynes (1921)’s logical

approach to probability theory, in which the degrees of beliefs in different proposition

were connected by necessary/objective relations, called probability relations. Skeptical

regarding the existence of such relations, Ramsey argued that degrees of belief should

be viewed and studied as subjective entities. To this end, he promoted the behavioral

definition of subjective probability as willingness to bet, and claimed that if subjective

probabilities, so defined, do not follow standard probability calculus, the individual will

make incoherent decisions. These are two central ideas in the methodology of decision

theory, which in about the same years were also advocated by Bruno de Finetti.

Specifically, the first tenet of Ramsey’s approach is that the only sensible way to

measure degrees of beliefs is not through introspection, but by considering them as

a basis of action. The second main tenet is that the rules of standard probability

calculus correspond to consistent betting behavior. By consistent betting behavior

he meant behavior that was not subject to so-called “Dutch books”. Both ideas

also appear in de Finetti (1931), and they are in line with the preaching of the logical

positivist, culminating in the Received View, first stated by Rudolf Carnap in the 1920s

(see Carnap, 1923, and Suppe, 1977). de Finetti explicitly adopted the doctrine of

Operationalism (see, e.g., the last chapter of his 1937 article), and saw the elicitation of

subjective probabilities through betting behavior as methodologically akin to Vilfredo

Pareto’s ordinal utility theory based on the elicitation of indifference curves rather than

on some psychological entities that could not measured (when data are assumed to be

only a weak order over alternatives). Ramsey was motivated by similar methodological

concerns, in a Pragmatist perspective,5 and viewed this approach as akin to what was

done in the physical sciences (see, Section 3 of his article).

de Finetti (1931) Bruno de Finetti, one of the greatest probabilists of the twen-

tieth century, was a key figure in the development of the Bayesian approach. To the

best of our knowledge, he was the first to promote the Bayesian approach as an all-

encompassing method of reasoning about uncertainty, and he did so with a religious

zeal. (See Cifarelli and Regazzini, 1996). His two main papers in this regard are

probably de Finetti (1931, 1937). In both papers he forcefully emphasized the two

key ideas on subjective probabilities that we just discussed in relation with Ramsey’s

work.

In his 1931 article in Fundamenta Mathematicae (p. 320-324), de Finetti first

5Operationalism started with Bridgman (1927), after Ramsey’s articles of 1926.
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introduced the notion of a qualitative probability, which is a binary relation over events

interpreted as “at least as likely as”. He viewed this relation as a primitive and did

not explicitly relate it to betting behavior. (The connection was made explicit later

on by Savage, 1954.)

The novelty of de Finetti (1931) was both methodological and scientific. Method-

ologically, it is one of very first articles that adopted the axiomatic method based on

a binary relation % and its numerical representation derived from suitable axioms on

%.6 Scientifically, he provided the first result that axiomatized subjective probability,
thereby establishing one of the two pillars which Savage’s great synthesis relied upon.7

Savage (1954) de Finetti’s derivation of subjective probability was conceptually

complementary with von Neumann and Morgenstern’s (vNM, 1947) derivation of ex-

pected utility maximization under risk, which assumed known numerical probability

measures. The integration of de Finetti’s subjective probability with vNM’s expected

utility was achieved by Savage’s (1954) book, which derived subjective expected util-

ity maximization when neither probabilities nor utilities were given. For a description

and interpretation of Savage’s result, the reader is referred to Fishburn (1970), Kreps

(1988), Gilboa (2009), Wakker (2010), and others.

2.3 Ellsberg paradox

The classic Bayesian theory culminating in Savage’s opus represents beliefs probabilis-

tically, but it does not capture the degree of confidence that DMs have in their own

probabilistic assessments, a degree that depends on the quality of the information that

DMs use in forming these assessments. The classic theory focused on how to measure

beliefs, without providing a way to assess the quality of such measurements.

Ellsberg (1961) provided two stark thought experiments that showed how this

limitation may lead many people to violate Savage’s otherwise extremely compelling

axioms, and to express preferences that are incompatible with any (single, additive)

probability measure. Ellsberg argued that a situation in which probabilities are not

known, which he referred to as ambiguity,8 induces different decisions than situations

6Frisch (1926) was the first article we are aware of that adopted a similar approach in economic
theory.

7See, e.g., chapter 8 of Kreps, 1988.
8Today, the terms “ambiguity”, “uncertainty” (as opposed to “risk”), and “Knightian uncertainty”

are used interchangeably to describe the case of unknown probabilities.
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of risk, namely, uncertainty with known probabilities. Specifically, one of Ellsberg’s

experiments involves two urns, I and II, with 100 balls in each. The DM is told that

(i) in both urns balls are either white or black;

(ii) in urn I there are 50 black and 50 white balls.

No information is given on the proportion of white and black balls in urn II. The

DM has to choose both an urn and a color. A ball will be drawn at random from the

urn that the DM named, and she will receive a prize if it is of the color stated.

The vast majority of decision makers are indifferent between betting on either color

within each urn. However, not all are indifferent between the two urns. Specifically,

many prefer either of the bets on the known urn (I) to either of the bets on the

unknown urn (II). Clearly, no probability measure can justify such betting behavior.

Ellsberg’s experiments revealed the phenomenon of uncertainty aversion, or ambi-

guity aversion: people tend to prefer situations with known probabilities to unknown

ones, to the extent that these can be compared. Clearly, one can have the oppo-

site phenomenon, of uncertainty/ambiguity liking, when people exhibit the opposite

preferences. While gambling is an important exception, it is commonly assumed that

people who are not uncertainty neutral tend to be uncertainty averse, in a way that

parallels the common assumptions about attitudes toward risk.

Ellsberg’s experiments are extremely elegant and they pinpoint precisely which of

Savage’s axioms is violated by DMs who are not indifferent between betting on the

two urns.9 But the elegance of these experiments is also misleading. Since they deal

with balls and urns, and the information about the colors is completely symmetric,

it is very tempting to adopt a probabilistic belief that would reflect this symmetry.

Specifically, one may reason about the urn with unknown composition, “The number

of red balls in it can be any number between 0 and 100. My information is completely

symmetric, and there is no reason to believe that there are more red balls than black

balls or vice versa. Hence, if I were to adopt a prior probability over the composition

of the urn, from [0:100] to [100:0], I should choose a symmetric prior. That is, the

probability that there are 3 red balls should be equal to the probability that there are

97 red balls, and so forth. In this case, the probability that a red ball is drawn out

of the urn is precisely 50%, and I should no longer express preferences for the known

9See Gilboa (2009) and Wakker (2010) for the analysis.
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probabilities.” Relatedly, one may also use the unknown urn to generate a bet with

objective probability of 50%: use an external chance device, which is known to be fair,

and decide between betting on red or on black based on this device. If the DM has

symmetric beliefs about the composition of the urn, she can thereby generate a bet

that is equivalent to the bet on the urn with the known composition.

Based on such arguments, theorists often feel that there is no problem with sub-

jective probabilities, at least as far as normative theories of choice are concerned. But

this conclusion is wrong. In most real life examples there are no symmetries that allow

the generation of risky bets. For example, suppose that Mary does not know what

is the probability of the globe warming up by 4 degrees within the next ten years.

She cannot assume that this probability is 50%, based on Laplace’s Principle of Indif-

ference (or “Principle of Insufficient Reason”, Laplace, 1814). The two eventualities,

“average temperature increases by 4 degrees or more” and “average temperature does

not increase by 4 degrees” are not symmetric. Moreover, if Mary replaces 4 degrees

by 5 degrees, she will obtain two similar events, but she cannot generally assign a

50%-50% probability to any pair of complementary events. Nor will a uniform distri-

bution over the temperature scale be a rational method of assigning probabilities.10

The fundamental difficulty is that in most real life problems there is too much infor-

mation to apply the Principle of Indifference, yet too little information to single out

a unique probability measure.11 Global warming and stock market crashes, wars and

elections, business ventures and career paths face us with uncertainty that is neither

readily quantified nor easily dismissed by symmetry considerations.

2.4 Other disciplines

The Bayesian approach has proved useful in statistics, machine learning, philosophy

of science, and other fields. In none of these fellow disciplines has it achieved the

10Bertrand’s (1907) early critique of the principle of indifference was made in the context of a
continuous space. See also Gilboa (2009) and Gilboa, Postlewaite, and Schmeidler (2009).
11It is not entirely clear how one can justify the Principle of Indifference even in cases of ignorance.

For example, Kass andWasserman (1996) p. 1347 discuss the partition paradox and lack of parametric
invariance, two closely related issues that arise with Laplace’s Principle. Similar remarks from a
Macroeconomics perspective can be found in Kocherlakota (2007) p. 357.
Based on a result by Henri Poincaré, Machina (2004) suggests a justification of the Laplace’s

Principle using a sequence of fine partitions of the state stace. This type of reasoning seems to
underlie most convincing examples of random devices, such as tossing coins, spinning roulette wheels,
and the like. It is tempting to suggest that this is the only compelling justification of the Principle
of Indifference, and that this principle should not be invoked unless such a justification exists.
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status of orthodoxy that it enjoys within economic theory. It is a respectable approach,

providing fundamental insights and relishing conceptual coherence. It is worth pointing

out, however, that in these disciplines the Bayesian approach is one among many. More

importantly, in all of these disciplines the Bayesian approach is applied to a restricted

state space, such as a space of parameters, whereas in economics it is often expected to

apply also to a grand state space, whose elements describe anything that can possibly

be of interest.

Consider statistics first. The statistical inference problem is defined by a set of

distributions, or data generating processes, out of which a subset of distributions has

to be chosen. In parametric problems, the set of distributions is assumed to be known

up to the specification of finitely many parameters. Classical statistics does not allow

the specification of prior beliefs over these parameters. By contrast, Bayesian statistics

demands that such beliefs be specified. Thus the Bayesian approach offers a richer

language, within which the statistician can represent prior knowledge and intuition.

Further, the Bayesian prior, updated to a posterior based on sampling, behaves in a

much more coherent way than the techniques of classical statistics. (See, for example,

Welch, 1939, also described in DeGroot, 1975, pp. 400-401.)

The main disadvantage of the Bayesian approach to statistics is its subjectivity:

since the prior beliefs of the parameters is up to the statistician to choose, they will

differ from one statistician to another. Admittedly, classical statistics cannot claim

to be fully objective either, because the very formulation of the problem as well as

the choice of statistics, tests, and significance levels leave room for the statistician’s

discretion. Yet, these are typically considered necessary evils, with objectivity re-

maining an accepted goal, whereas the Bayesian approach embraces subjective inputs

unabashedly.12 On the bright side, if a Bayesian statistician selects a sufficiently “dif-

fused” or “uninformative” prior, she hopes not to rule out the true parameters a priori,

and thereby to allow learning of objective truths in the long run, despite the initial

reliance on subjective judgments.13

The Bayesian approach has a similar status in the related fields of computer science

and machine learning.14 On the one hand, it appears to be the most conceptually

12See Lewis (1980) and chapter 4 of van Frassen (1989) (and the references therein) for a discussion
of the relations between “objectivity” and subjective probabilities from a philosophical standpoint.
13Kass and Wasserman (1996), Bayarri and Berger (2004), and Berger (2004) discuss uninformative

priors and related “objective” issues in Bayesian statistics (according to Efron, 1986, some of these
issues explain the relatively limited use of Bayesian methods in applied statistics).
14See Pearl (1986) and the ensuing literature on Bayesian networks.
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coherent model of inference. On the other, its conclusions depend on a priori biases.

For example, the analysis of algorithms’ complexity is typically conducted based on

their worst case. The Bayesian alternative is often dismissed because of its dependence

on the assumptions about the underlying distribution.

It is important to emphasize that in statistics and in computer science the state

space, which is the subject of prior and posterior beliefs, tends to be a restricted space

that does not grow with the data. For example, it can comprise of all combinations

of values of finitely many parameters, which are held fixed throughout the sampling

procedure. By contrast, the standard approach in economic theory suggests that the

state of the world resolves all uncertainty, and thus describes everything that might

be of relevance to the problem at hand, from the beginning of time until eternity. As a

result, the state space that is often assumed in economics is much larger than in other

disciplines. Importantly, it increases with the size of the data.

When one considers a restricted set of parameters, one may argue that the prior

probability over this set is derived from past observations of similar problems, each

with its own parameters, taken out of the same set. But when the grand state space

is considered, and all past repetitions of the problem are already included in the

description of each state, the prior probability should be specified on a rather large

state space before any data were observed. With no observations at all, and a very

large state space, the selection of a prior probability seems highly arbitrary.

In applications of the Bayesian approach in statistics, computer science, and ma-

chine learning, it is typically assumed that the basic structure of the process is known,

and only a bounded number of parameters need to be learnt. Many non-parametric

methods allow an infinitely dimensional parameter space, but one that does not grow

with the number of observations. This approach is sufficient for many statistical

inference and learning problems in which independent repetitions are allowed. But

economics is often interested in events that do not repeat. Applying the Bayesian

approach to these is harder to justify.

We are not fully aware of the origins of the application of the Bayesian approach

to the grand state space. It is well known that de Finetti was a devout Bayesian.

Savage, who followed his footsteps, was apparently much less religious in his Bayesian

beliefs. Yet, he argued that a state of the world should “resolve all uncertainty” and,

with a healthy degree of self-criticism, urged the reader to imagine that she had but

one decision to be taken in her lifetime, and this is her choice of her strategy before

being born. Harsanyi (1967, 1968) made a fundamental contribution to economics
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by showing how players’ types should be viewed as part of the state of the world,

and assumed that all unborn players start with a common prior over the grand state

space that is thus generated. Aumann (1974, 1976, 1987) pushed this line further by

assuming that all acts and all beliefs are fully specified in each and every state, while

retaining the assumption that all players have a prior, and moreover, the same prior

over the resulting state space.

Somewhere along recent history, with path-breaking contributions by de Finetti,

Savage, Harsanyi, and Aumann, economic theory found itself with a state space that

is much larger than anything that statisticians or computer scientists have in mind

when they generate a prior probability. Surprisingly, the economic theory approach is

even more idealized that the Bayesian approach in the philosophy of science. There is

nothing wrong in formulating the grand state space as a canonical model within which

claims can be embedded. But the assumption that one can have a prior probability

over this space, or that this is the only rational way to think about it is questionable.

2.5 Summary

Since the mid-20th century economic theory has adopted a rather unique commitment

to the Bayesian approach. By and large, the Bayesian approach is assumed to be the

only rational way to describe knowledge and beliefs, and this holds irrespective of the

state space under consideration. Importantly, economic theory clings to Bayesianism

also when dealing with problems of unique nature, where nothing is known about the

structure of the data generating process. Research in recent decades plainly shows that

the Bayesian approach can be extremely fruitful even when applied to such unique

problems. But it is also possible that the commitment to the Bayesian approach

beclouds interesting findings and new insights.

The preceding discussion highlights our view that there is nothing irrational about

violating the Bayesian doctrine in certain problems. As opposed to models of bounded

rationality, psychological biases, or behavioral economics, the focus of this survey

are models in which DMs may sometimes admit that they do not know what the

probabilities they face are. Being able to admit ignorance is not a mistake. It is, we

claim, more rational than to pretend that one knows what cannot be known.

Bounded rationality and behavioral economics models often focus on descriptive

interpretations. At times, they would take a conditionally-normative approach, asking

normative questions given certain constraints on the rationality of some individuals.
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Such models are important and useful. However, the models discussed here are dif-

ferent in that they are fully compatible with normative interpretations. When central

bank executives consider monetary policies, and when leaders of a country make deci-

sions about military actions, they will not make a mistake if they do not form Bayesian

probabilities. On the contrary, they will be well advised to take into account those

uncertainties that cannot be quantified.

3 Alternative models

3.1 The Anscombe-Aumann setup

Anscombe and Aumann (1963) developed a version of the subjective expected utility

model of Savage that turned out to be especially well suited for subsequent extensions

of the basic Bayesian decision model. For this reason, in this sub-section we present

this important setup.

The basic feature of the Anscombe-Aumann (AA, for short) model is that acts

map states into lotteries, that is, acts’ consequences involve exogenous probabilities a

la von Neumann-Morgenstern. This feature is important both conceptually and math-

ematically. We now turn to introduce the setting formally, in the version presented by

Fishburn (1970).

The set of simple probabilities ∆ (X) on some underlying space X of alternatives

is the space of consequences considered by the AA model.15 There is a space of states

of the world S endowed with an event algebra Σ. The objects of choice are acts,

which map states into lotteries. We denote by F the collection of all simple acts

f : S → ∆ (X), that is, acts that are finitely valued and Σ-measurable.16

A key feature of ∆ (X) is its convexity, which makes it possible to combine acts.

Specifically, given any α ∈ [0, 1], set

(αf + (1− α) g) (s) = αf (s) + (1− α) g (s) , ∀s ∈ S. (1)

The mixed act αf + (1− α) g delivers in each state s the compound lottery αf (s) +

(1− α) g (s). In other words, ex post, after the realization of state s, the DM obtains

a risky outcome governed by the lottery αf (s) + (1− α) g (s).17

15Throughout the section we use interchangeably the terms lotteries and simple probabilities.
16Simple acts have the form f =

Pn
i=1 pi1Ei , where {Ei}ni=1 ⊆ Σ is a partition of S and {pi}

n
i=1 ⊆

∆ (X) is a collection of lotteries.
17For this reason, mixing acts in this way is sometimes called “ex post randomization.” For recent
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The possibility of mixing acts is a key dividend of the assumption that ∆ (X) is

the consequence space, which gives the AA setting a vector structure that the Savage

setting did not have. The derivation of the subjective expected utility representation

in the AA setting is based on this vector structure.

Risk preference The DM has a primitive preference % on F . In turn, this prefer-
ence induces a preference %∆ on lotteries by setting, for all p, q ∈ ∆ (X),

p %∆ q ⇔ f % g,

where f and g are the constant acts such that f (s) = p and g (s) = q for all s ∈ S.

Constant acts are not affected by state uncertainty, only by the risk due to the

lotteries’ exogenous probabilities. For this reason, %∆ can be seen as the risk pref-

erence of the DM. This is an important conceptual implication of having ∆ (X) as

the consequence space. This richer consequence space mathematically delivers a most

useful vector structure, while from a decision theoretic standpoint it enriches the set-

ting with a risk preference that allows to consider the DMs’ risk behavior separately.

Differently put, the AA consequence space can be viewed as derived from an under-

lying consequence space X a la Savage, enriched by a lottery structure that allows to

calibrate risk preferences.

Alternatively, one may view AA’s model as an improved version of de Finetti’s

(1931, 1937) axiomatic derivation of expected value maximization with subjective

probabilities. de Finetti assumed additivity or linearity in payoffs. This is a problem-

atic assumption if payoffs are monetary, but it is more palatable if payoffs are prob-

abilities of receiving a fixed desirable outcome. Replacing the payoffs in de Finetti’s

model by probabilities of outcomes, one obtains a model akin to AA’s.

In a sense, the AA model is a hybrid between vNM’s and Savage’s. Mathematically

it is akin to the former, as it starts with a vNM theorem on a particular mixture space,

and imposes additional axioms to derive subjective probabilities. Conceptually, it is

closer to Savage’s model, as it derives probabilities from preferences. Many view this

derivation as conceptually less satisfactory than Savage’s, because the latter does not

assume probabilities, or any numbers for that matter, to be part of the data. Anscombe

and Aumann, however, viewed the use of objective probabilities as a merit, because

models with ex ante randomization, see Epstein, Marinacci, and Seo (2007), Ergin and Sarver (2009),
Seo (2009), and Saito (2010).
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they believed that people think in terms of subjective probabilities after they have

internalized the concept of objective probability. Be that as it may, there is no doubt

that the AA model has become the main testbed for new models of decision under

uncertainty.18

Axioms We now make a few assumptions on the primitive preference %. The first
one is a standard weak order axiom.

AA.1 WEAK ORDER: % on F is complete and transitive.

The next axiom is a monotonicity assumption: if state by state an act f delivers

a weakly better (risky) consequence than an act g, then f should be weakly preferred

to g. It is a basic rationality axiom.

AA.2 MONOTONICITY: for any f, g ∈ F , if f (s) %∆ g (s) for each s ∈ S, then

f % g.

Next we have an independence axiom, which is peculiar to the AA setting since it

relies on its vector structure.

AA.3 INDEPENDENCE: for any three acts f, g, h ∈ F and any 0 < α < 1, we have

f Â g ⇒ αf + (1− α)h Â αg + (1− α)h. (2)

According to this axiom, the DM’s preference over two acts f and g is not affected

by mixing them with a common act h. In the special case when all these acts are

constant, axiom AA.3 reduces to von Neumann-Morgenstern’s original independence

axiom on lotteries.

We close with standard Archimedean and nontriviality assumptions.19

AA.4 ARCHIMEDEAN: let f , g, and h be any three acts in F such that f Â g Â h.

Then, there are α, β ∈ (0, 1) such that αf + (1− α)h Â g Â βf + (1− β)h.

AA.5 NONDEGENERACY: there are f, g ∈ F such that f Â g.

18See Ghirardato, Maccheroni, Marinacci, and Siniscalchi (2003) for a subjective underpinning of
the AA setup.
19See Gilboa (2009) for some more details on them.
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We can now state the AA subjective expected utility theorem.

Theorem 1 Let % be a preference defined on F. The following conditions are equiv-
alent:

(i) % satisfies axioms AA.1-AA.5;

(ii) there exists a non-constant function u : X → R and a probability measure P :

Σ→ [0, 1] such that, for all f, g ∈ F, f % g if and only ifZ
S

⎛⎝ X
x∈supp f(s)

u(x)f (s)

⎞⎠ dP (s) ≥
Z
S

⎛⎝ X
x∈supp g(s)

u(x)g (s)

⎞⎠ dP (s) . (3)

Moreover, P is unique and u is cardinally unique.20

The preference functional V : F → R in (3) has the form

V (f) =

Z
S

⎛⎝ X
x∈supp f(s)

u(x)f (s)

⎞⎠ dP (s) (4)

and consists of two parts. The inner partX
x∈supp f(s)

u(x)f (s) (5)

is the expected utility of the lottery f (s) that act f delivers when state s obtains. It

is easy to see that this expected utility represents the DM’s risk preference %∆. The

outer part Z
S

⎛⎝ X
x∈supp f(s)

u(x)f (s)

⎞⎠ dP (s)

averages all expected utilities (5) according to the probability P , which quantifies the

DM’s beliefs over the state space.

The classical models of Savage and Anscombe-Aumann were considered the gold

standard of decision under uncertainty, despite the challenge posed by Ellsberg’s ex-

periments. In the 1980s, however, several alternatives were proposed, most notably

models based on probabilities that are not necessarily additive, or on sets of probabil-

ities. We now turn to review these contributions and some of the current research in

the area.
20Throughout the paper, cardinally unique means unique up to positive affine transformations.
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3.2 Choquet expected utility

The first general-purpose, axiomatically-based non-Bayesian decision model was the

Choquet Expected Utility (CEU) model proposed by David Schmeidler in 1982, which

appeared as Schmeidler (1989). Schmeidler’s starting point was that the Bayesian

model is a straightjacket that does not allow the DM to express her own degree of

confidence in her beliefs. Schmeidler gave the example of two coins, one that has

been tested extensively and is known to be fair, and the other about which nothing

is known. He noted that a Bayesian would probably have 50%-50% beliefs regarding

the result of the toss of either coin, but that these beliefs differ: in one case, the DM

practically knows that each side of the coin has probability of 50% of coming up. In

the other case, the numbers 50%-50% are obtained with a shrug of one’s shoulders,

relying on symmetry of ignorance rather than symmetry of information.21 Observe

that Schmeidler’s two-coin example is very close to Ellsberg’s two-urn experiment.

However, Schmeidler was not motivated by the desire to explain Ellsberg’s results;

rather, he considered the standard theory and found it counter-intuitive.

Schmeidler (1989) suggested to model probabilities by set functions that are not

necessarily additive. For example, if H (T ) designates the event “the unknown coin

falls with H (T ) up”, and ν is the measure of credence, we may have

ν(H) + ν(T ) < ν(H ∪ T )

Thus, the “probability” of events, as measured by our willingness to bet on them,

may not satisfy the standard axioms of probability theory. Schmeidler referred to

them as non-additive probabilities, and required that they be positive and monotone

with respect to set inclusion. Such mathematical entities are also known by the term

capacities. Formally, given an event algebra Σ of state space S, a set function ν : Σ→
[0, 1] is a capacity if

(i) ν(∅) = 0 and ν(S) = 1;

(ii) E ⊆ E0 implies ν(E) ≤ ν(E0).

Dempster (1967) and Shafer (1976) also suggested a theory of belief in which the

degree of belief in an event did not obey additivity. They focused on the representation

21See Fischhoff and Bruine De Bruin (1999) for experimental evidence on how people use 50%-50%
statements in this sense.
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of uncertainty by belief functions. There is a vast literature that followed, often referred

to as “imprecise probabilities” (see Walley, 1991). Most of this literature, however,

does not address the question of decision making. By contrast, Schmeidler had decision

theory in mind, and he sought a notion of integration that would generalize standard

expectation when the capacity ν happens to be additive. Such a notion of integration

was suggested by Choquet (1953).

To understand the gist of the Choquet integral,22 suppose that Σ is a σ-algebra

(e.g., the power set 2S) and consider a positive and bounded Σ-measurable function

φ : S → R. The Choquet integral of φ with respect to a capacity ν is given by:Z
φdν =

Z ∞

0

ν ({s ∈ S : φ (s) ≥ t}) dt, (6)

where on the right-hand side we have a Riemann integral. To see why the Riemann

integral is well defined, observe that the sets Et = {s ∈ S : φ (s) ≥ t} define a chain
that is decreasing in t (in the sense of set inclusion), and, since a capacity, is monotone,

ν (Et) is a decreasing function of t. For more detailed explanation of the Choquet

integral the reader is referred to Gilboa (2009).

Schmeidler (1989) axiomatized Choquet expected utility in the AA setup. The

key innovation relative to the AA axioms AA.1-AA.4 was to restrict the Independence

axiom AA.3 to comonotonic acts, that is, acts f, g ∈ F for which it is never the case

that both f (s) Â f (s0) and g (s) ≺ g (s0) for some states of the world s and s0. This

is the preference version of comonotonicity.

S.3 COMONOTONIC INDEPENDENCE: for any pairwise comonotonic acts f, g, h ∈
F and any 0 < α < 1,

f Â g ⇒ αf + (1− α)h Â αg + (1− α)h. (7)

According to this axiom, the DM’s preference between two comonotonic acts f and

g is not affected by mixing them with another act h that is comonotonic with both.

The intuition behind this axiom can best be explained by observing that the classical

independence axiom may not be very compelling in the presence of uncertainty. For

example, assume that there are two states of the world, and two vNM lotteries P Â Q.

Let f = (P,Q) and g = (Q,P ). Suppose that, due to ignorance about the state of the

22We refer the interested reader to Denneberg (1994) and to Marinacci and Montrucchio (2004) for
detailed expositions of Choquet integration.
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world, the DM is driven to express indifference, f ∼ g. By AA’s independence, for

every h we will observe
1

2
f +

1

2
h ∼ 1

2
g +

1

2
h

However, for h = g this implies that 1
2
f + 1

2
g ∼ g, despite the fact that the act 1

2
f + 1

2
g

is risky while g is uncertain.

In this example, g can serve as a hedge against the uncertainty inherent in f ,

but it clearly cannot hedge against itself. The standard independence axiom is too

demanding, because it does not distinguish between mixing operations αf + (1− α)h

that reduce uncertainty (via hedging) and mixing operations that do not. Restricting

the independence axiom to pairwise comonotonic acts neutralizes this asymmetric

effect of hedging.

Using the Comonotonic Independence axiom S.3, Schmeidler (1989) was able to

prove the following representation theorem, which generalizes the subjective expected

utility representation established by Theorem 1 by allowing for possibly non-additive

probabilities. The proof of the result is based on some results on Choquet integration

established in Schmeidler (1986).

Theorem 2 Let % be a preference defined on F. The following conditions are equiv-
alent:

(i) % satisfies axioms AA.1, AA.2, S.3 (Comonotonic Independence), AA.4, and

AA.5;

(ii) there exists a non-constant function u : X → R and a capacity ν : Σ → [0, 1]

such that, for all f, g ∈ F, f % g if and only if

Z
S

⎛⎝ X
x∈supp f(s)

u(x)f (s)

⎞⎠ dν (s) ≥
Z
S

⎛⎝ X
x∈supp g(s)

u(x)g (s)

⎞⎠ dν (s) . (8)

Moreover, ν is unique and u is cardinally unique.

Gilboa (1987), Wakker (1989a, 1989b), and Nakamura (1990) established purely

subjective versions of Schmeidler’s representation result.23 Sarin and Wakker (1992)

23Nakamura and Wakker’s papers use versions of the so-called tradeoff method (see Kobberling
and Wakker, 2003, for a detailed study of this method and its use in the establishment of axiomatic
foundations for choice models).
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showed that the existence of a suitable rich collection of unambiguous events sub-

stantially streamlines the derivation of Schmeidler’s representation through a simple

cumulative dominance condition.

3.3 Maxmin expected utility

Schmeidler’s model is a generalization of Anscombe-Aumann’s in a way that allows us

to cope with uncertainty, or ambiguity. The capacity in the model can be interpreted as

a lower bound on probabilities. Specifically, let ∆ (Σ) be the collection of all finitely

additive probability measures P : Σ → [0, 1] and define the core of ν to be, as in

cooperative game theory,

core (ν) = {P ∈ ∆ (Σ) : P (E) ≥ ν (E) for all E ∈ Σ} .

If core(ν) 6= ∅, we may think of ν(E) as the lower bound on P (E), and then ν is a

concise way to represent a set of probabilities, presumably those that are considered

possible. The lower envelope of a set of probabilities is also the common interpretation

of belief functions (Dempster, 1967, and Shafer, 1976).

Schmeidler (1986) has shown that if ν is convex in the sense that

ν(E) + ν(E0) ≤ ν(E ∪E0) + ν(E ∩E0), ∀E,E0 ∈ Σ,

(Shapley, 1972) then Z
S

φdv = min
P∈core(ν)

Z
S

φdP (9)

for every Σ-measurable bounded function φ : S → R (see also Rosenmueller, 1971

and 1972). Thus, when the capacity ν happens to be convex (e.g., a belief function

a la Dempster-Shafer), Choquet integration has a simple and intuitive interpretation:

a DM who evaluated an act f by the Choquet integral of its utility profile u ◦ f can
be viewed as if she entertained a set of possible probabilities, core(ν), and evaluated

each act by its minimal expected utility, over all probabilities in the set.

There is a simple behavioral condition that characterizes CEU preferences with

convex ν. To introduce it, denote by B0 (Σ) the vector space of all simple functions

φ : S → R and consider the Choquet functional I : B0 (Σ)→ R given by I (φ) =
R
φdv.

This functional is easily seen to be concave when (9) holds. Actually, according to a

classic result of Choquet (1953), I is concave if and only if its capacity ν is convex.24

24See Marinacci and Montrucchio (2004) p. 73. They show on p. 78 that (9) can be derived from
this result of Choquet through a suitable application of the Hahn-Banach Theorem.
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This concavity property suggests the following convexity axiom, due to Schmeidler

(1989), which models a negative attitude toward ambiguity.

S.6 UNCERTAINTY AVERSION: for any f, g ∈ F and any 0 < α < 1, we have

f ∼ g ⇒ αf + (1− α)g % f .

Thus, uncertainty aversion states that mixing, through randomization, between

equivalent acts can only make the DM better off. For example, in Ellsberg’s example

it is natural to expect that DMs prefer to hedge against ambiguity by mixing acts IIB

and IIW , that is,

αIIB + (1− α) IIW % IIB ∼ IIW, ∀α ∈ [0, 1] .

This mixing can be thus viewed as a form of hedging against ambiguity that the DM

can choose.25

Theorem 3 In Theorem 2, % satisfies axiom S.6 if and only if the capacity ν in (8)

is convex.

Theorem 3 (Schmeidler, 1989) shows that convex capacities characterize ambiguity

averse Choquet expected utility DMs (in the sense of axiom S.6). Since most DMs

are arguably ambiguity averse, this is an important result in Choquet expected utility

theory. Moreover, relating this theory to maximization of the worst-case expected

utility over a set of probabilities has several advantages. First, it obviates the need

to understand the unfamiliar concept of Choquet integration. Second, it provides

a rather intuitive, if extreme, cognitive account of the decision process: as in clas-

sical statistics, the DM entertains several probability measures as potential beliefs.

Each such “belief” induces an expected utility index for each act. Thus, each act has

many expected utility values. In the absence of second-order beliefs, the cautious DM

chooses the worst-case expected utility as summarizing the act’s desirability. Wakker

(1990, 1991) established several important behavioral properties and characterizations

of concave/convex capacities in the CEU model.

25Klibanoff (2001a, 2001b) studied in detail the relations between randomization and ambiguity
aversion.
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Gilboa and Schmeidler (1989) This account of Choquet expected utility maxi-

mization also relates to the maxmin criterion of Wald (1950; see also Milnor, 1954).

However, there are many natural sets of probabilities that are not the core of any

capacity. Assume, for example, that there are three states of the world, S = {1, 2, 3}.
Assume that the DM is told that, if state 1 is not the case, then the (conditional)

probability of state 2 is at least 2/3. If this is all the information available to her,

she knows only that state 2 is at least twice as likely than state 3. Hence the set of

probability vectors P = (p1, p2, p3) that reflects the DM’s knowledge consists of all

vectors such that

p2 ≥ 2p3
It is easy to verify that this set is not the core of a capacity. Similarly, one may

consider a DM who has a certain probability measure P in mind, but allows for the

possibility of error in its specification. Such a DM may consider a set of probabilities

C = {Q ∈ ∆ (Σ) : kP −Qk < ε}

for some norm k·k and ε > 0, and this set is not the core of any capacity (such sets

were used in Nishimura and Ozaki, 2007).

It therefore makes sense to generalize Choquet expected utility with convex capaci-

ties to the maxmin rule, where the minimum is taken over general sets of probabilities.

Decision rules of this type have been suggested first by Hurwicz (1951), under the name

of Generalized Bayes-minimax principle, and then by Smith (1961), Levi (1974, 1980),

and Gärdenfors and Sahlin (1982). Recently, related ideas appeared in mathematical

finance (see Artzner, Delbaen, Eber, and Heath, 1997, 1999).

Gilboa and Schmeidler (1989) provided an axiomatic model of maxmin expected

utility maximization (“MMEU”, also referred to as “MEU”). This model is also for-

mulated in the AA framework and, like the Choquet expected utility model, is based

on a suitable weakening of the Independence axiom AA.3. Schmeidler’s Comonotonic

Independence axiom restricted AA.3 to the case that all acts are pairwise comonotonic.

This rules out obvious cases of hedging, but it may allow for more subtle ways in which

expected utility can be “smoothed out” across states of the world.26 A more modest
26For example, assume that there are three states of the world, and two acts offer the following

expected utility profiles: f = (0, 10, 20) and g = (4, 10, 14). Assume that the DM is indifferent
between f and g, that is, that she is willing to give up 1 unit of expected utility in state 3 in order to
transfer 5 units from state 3 to state 1. Comonotonic independence would imply that the DM should
also be indifferent between f and g when they are mixed with any other act comonotonic with both,
such as f itself. However, while f clearly doesn’t offer a hedge against itself, mixing f with g can be
viewed as reducing the volatility of the latter, resulting in a mix that is strictly better than f and g.
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requirement restricts the independence condition to the case in which the act h is

constant:

GS.3 C-INDEPENDENCE: for all acts f, g ∈ F and all lottery acts p,

f % g ⇒ αf + (1− α)p % αg + (1− α)p, ∀α ∈ [0, 1] .

C-Independence is essentially weaker than Comonotonic Independence S.3 because

lottery (constant) acts are comonotonic with all other acts.27 The axiom is arguably

easier to accept because the mixture with a lottery act can be viewed as a change of

the unit of measurement. Indeed, this axiom may be viewed as the preference version

of the following property of real-valued functionals: a functional I : B0 (Σ) → R is
said to be translation invariant if

I (αφ+ k) = αI (φ) + I (k) , ∀α ∈ R,

given any φ ∈ B0 (Σ) and any constant function k.28

Gilboa and Schmeidler thus used a weaker version of the independence axiom,

but they also imposed the uncertainty aversion axiom S.6. Both axioms GS.3 (C-

Independence) and S.6 (Uncertainty Aversion) follow from the Independence axiom

AA.3. Thus, the following representation result, due to Gilboa and Schmeidler (1989),

generalizes Theorem 1 by allowing for possibly nonsingleton sets of probabilities.

Theorem 4 Let % be a preference defined on F. The following conditions are equiv-
alent:

(i) % satisfies axioms AA.1, AA.2, GS.3 (C-Independence), AA.4, AA.5, and S.6

(Uncertainty Aversion);

(ii) there exists a non-constant function u : X → R and a convex and compact set
C ⊆ ∆ (Σ) of probability measures such that, for all f, g ∈ F,

f % g ⇔ min
P∈C

Z
S

⎛⎝ X
x∈supp f(s)

u(x)f (s)

⎞⎠ dP (s) ≥ min
P∈C

Z
S

⎛⎝ X
x∈supp f(s)

u(x)g (s)

⎞⎠ dP (s) ,

(10)
27Schmeidler required that all three acts be pairwise comonotonic, whereas C-Independence does

not restrict attention to comonotonic pairs (f, g). Thus, C-Independence is not, strictly speaking,
weaker than Comonotonic Independence. However, in the presence of Schmeidler’s other axioms,
Comonotonic Independence is equivalent to the version in which f and g are not required to be
comonotonic.
28See Ghirardato, Klibanoff, and Marinacci (1998) for details.
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Moreover, C is unique and u is cardinally unique.

The set C is a singleton if and only if % satisfies the Independence axiom AA.3.

A slightly more interesting result actually holds, which shows that maxmin expected

utility DMs reduce to subjective expected utility ones when their choices do not involve

any hedging against ambiguity.29

Proposition 5 In Theorem 4, C is a singleton if and only if, for all f, g ∈ F,

f ∼ g ⇒ 1

2
f +

1

2
g ∼ g.

When C is not a singleton, the model can express more complex states of knowl-

edge, reflected by various sets C of probabilities. For applications in economic theory,

the richness of the maxmin model seems to be important. In particular, one may con-

sider any model in economic theory and enrich it by adding some uncertainty about

several of its parameters. By contrast, in order to formulate Choquet expected utility,

one needs to explicitly consider the state space and the capacity defined on it. Often,

this exercise may be intractable.

By contrast, for some practical applications such as in medical decision making,

the richness of the maxmin model may prove a hindrance. Wakker (2010) presents

the theory of decision making under risk and under ambiguity geared for such appli-

cations. He focuses on capacities as a way to capture ambiguity, rather than on sets

of probabilities.30

The maxmin model allows for more degrees of freedom than the CEU model, but it

does not generalize it. In fact, the overlap of the two models is described in Theorem

3 and occurs when the uncertainty averse axiom S.6 holds. But, whereas uncertainty

aversion — through axiom S.6 — is built into the decision rule of the maxmin model,

Choquet expected utility can express attitudes of uncertainty liking. This observation

in part motivated the search by Ghirardato, Maccheroni, and Marinacci (2004) of a

class of preferences that may not satisfy S.6 and is able to encompass both CEU and

MMEU preferences. We review this contribution below.

29See Ghirardato, Maccheroni, and Marinacci (2004) for details.
30Wakker (2010) also introduces the gain-loss asymmetry that is one of the hallmarks of Prospect

Theory (Kahneman and Tversky, 1979). The combination of gain-loss asymmtry with rank-dependent
expected utility (Quiggin, 1982, Yaari, 1987) resulted in Cumulative Prospect Theory (CPT, Tversky
and Kahneman, 1992). When CPT is interpreted as dealing with ambiguity, it is equivalent to
Choquet expected utility with the additional refinement of distinguishing gains from losses.
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Finally, Casadesus-Masanell, Klibanoff, and Ozdenoren (2000), Ghirardato, Mac-

cheroni, Marinacci, and Siniscalchi (2003), and Alon and Schmeidler (2010) established

purely subjective versions of Gilboa and Schmeidler’s representation result.31

Countably additive priors Theorem 4 considers the set ∆ (Σ) of all finitely addi-

tive probabilities. In applications, however, it is often important to consider countably

additive probabilities, which have very convenient analytical properties that many im-

portant results in probability theory crucially rely upon.

The behavioral condition that underlies countably additive priors is Monotone

Continuity, introduced by Arrow (1970) to characterize countable additivity of the

subjective probability P in Savage’s model.

MC MONOTONE CONTINUITY: If f, g ∈ F , x ∈ X, {En}n≥1 ∈ Σ with E1 ⊇
E2 ⊇ ... and

T
n≥1En = ∅, then f Â g implies that there exists n0 ≥ 1 such that

xEn0f Â g.

Marinacci (2002a) and Chateauneuf, Maccheroni, Marinacci, and Tallon (2005)

showed that this condition keeps characterizing countable additivity in the MMEU

model. Next we state a version of their results, a countably additive counterpart of

Theorem 4. Here Q ¿ P means that Q is absolutely continuous with respect to P ,

i.e., P (E) = 0 implies Q (E) = 0 for all E ∈ Σ.

Theorem 6 In Theorem 4, % satisfies Axiom MC if and only if all probabilities in

C are countably additive. In this case, there exists P ∈ C such that Q ¿ P for all

Q ∈ C.

Besides the countable additivity of priors, axiom MC also delivers the existence

of a “control” prior P ∈ C relative to which all other priors Q ∈ C are absolutely

continuous.32

In decision theory the use of countably additive priors has been often debated, most

forcefully by de Finetti and Savage themselves, who argued that it is a purely techni-

cal property that, if anything, actually impairs the analysis (e.g., over countable state

31For a critical review of the maxmin and other non-Bayesian models, see Al-Najjar and Weinstein
(2009) (see Mukerji , 2009, and Siniscalchi, 2009b, for a discussion).
32As Chateauneuf et al. (2005) show, this control prior exists because, under Axiom MC, the set

C is weakly compact, a stronger compactness condtion than the weak∗-compactness that C features
in Theorem 4. Their results have been generalized to variational preferences by Maccheroni et al.
(2006).
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spaces it is not possible to define uniform priors that are countably additive). How-

ever, Arrow’s characterization of countably additive priors in Savage’s model through

Monotone Continuity and its MMEU version in Theorem 6 show that behaviorally this

technically most useful property requires a relatively small extra baggage compared

to the basic axioms of the finitely additive case.33

Equivalent priors A minimal consistency requirement among priors in C is that

they agree on what is possible or impossible. Formally, this is the case if any two

priors P and P 0 in C are equivalent, i.e., if they are mutually absolutely continuous

(P (E) = 0 if and only if P 0 (E) = 0 for all E ∈ Σ). Epstein and Marinacci (2007)

provide a behavioral condition that ensures this minimal consistency among priors,

which is especially important in dynamic problems that involve priors’ updating.

Interestingly, this condition turns out to be a translation in a choice under un-

certainty setup of a classic axiom introduced by Kreps (1979) in his seminal work on

menu choices. Given any two consequences x and y, let

x ∨ y =
(

x if x % y

y otherwise

and given any two acts f and g, define the act f ∨ g by (f ∨ g) (s) = f (s) ∨ g (s) for
each s ∈ S.

GK GENERALIZED KREPS: For all f, f 0, g ∈ F , f ∼ f ∨ f 0 ⇒ f ∨ g ∼ (f ∨ g)∨ f 0.

In every state, the act f ∨ f 0 gives the better of the two outcomes associated with
f and f 0. Thus we say that f ∨f 0 weakly improves f in ‘the direction’ f 0. GK requires
that if an improvement of f in direction f 0 has no value, then the same must be true

for an improvement in direction f 0 of any act (here f ∨ g) that improves f . The

next result of Epstein and Marinacci (2007) shows that for maxmin preferences this

seemingly innocuous axiom is equivalent to the mutual absolute continuity of priors.

Theorem 7 In Theorem 4, % satisfies Axiom GK if and only if the probabilities in

C are equivalent.
33In this regard, Arrow (1970) wrote that “the assumption of Monotone Continuity seems, I believe

correctly, to be the harmless simplification almost inevitable in the formalization of any real-life
problem.” See Kopylov (2010) for a recent version of Savage’s model under Monotone Continuity.
In many applications, countable additivity of the measure(s) necessitates the restriction of the

algebra of events to be a proper subset of 2S . Ignoring many events as “non-measurable” may appear
as sweeping the continuity problem under the measurability rug. However, this approach may be
more natural if one does not start with the state space S as primitive, but derives it as the semantic
model of a syntactic system, where propositions are primitive.
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3.4 Unanimity preferences

Another way to deal with ambiguity is to relax the completeness of preferences. Indeed,

because of the poor information that underlies ambiguity, the DM may not be able to

rank some pairs of acts. If so, one of the most basic assumptions in decision theory,

namely, that preferences are complete, may be relaxed because of ambiguity.

This is the approach proposed by Truman Bewley. Incomplete preferences were

already studied by Aumann (1962), interpreted as a DM’s inability to decide between

some pairs of alternatives. Building on Aumann’s work, Bewley presented in 1986

a model of incomplete preferences in the context of uncertainty, which appeared as

Bewley (2002). In his model the Weak Order Axiom AA.1 is replaced by two weaker

assumptions.

B.1a PARTIAL ORDER: % on F is reflexive and transitive.

Hence, % is no longer required to be complete. The DM, however, knows her tastes:
the only reason for incompleteness is ignorance about probabilities. For this reason,

Bewley assumes the next weak form of completeness, which only applies to lottery

acts.

B.1b C-COMPLETENESS: for every lottery acts p, q ∈ ∆ (X), p % q or q % p.

In other words, B.1 requires the risk preference %∆ to be complete. Using these

two axioms, Gilboa, Maccheroni, Marinacci, and Schmeidler (2010) established the

following general form of Bewley’s representation theorem.34

Theorem 8 Let % be a preference defined on F. The following conditions are equiv-
alent:

(i) % satisfies axioms B.1, and AA.2-AA.5;

(ii) there exists a non-constant function u : X → R and a convex and compact set
C ⊆ ∆ (Σ) of probability measures such that, for all f, g ∈ F,

f % g ⇔
Z
S

⎛⎝ X
x∈supp f(s)

u(x)f (s)

⎞⎠ dP (s) ≥
Z
S

⎛⎝ X
x∈supp f(s)

u(x)g (s)

⎞⎠ dP (s) , ∀P ∈ C.

(11)

34A caveat: the unanimity rule (11) is slightly different from Bewley’s, who represents strict pref-
erence by unanimity of strict inequalities. This is generally not equivalent to representation of weak
preference by unanimity of weak inequalities.
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Moreover, C is unique and u is cardinally unique.

In this representation a set of probability measures C arises, interpreted as the

probabilistic models that are compatible with the DM’s information. Two acts f and

g are comparable only when their expected utilities with respect to the probabilities

in C unanimously rank one act over the other. If this is not the case — that is, if the

probabilities in C do not agree in ranking of the two acts— the DM is unable to rank

the two acts.

When preferences are incomplete, the model does not always specify what the DM

will do. In particular, acts are not evaluated by a numerical index V that represents

preferences and that makes it possible to formulate the optimization problems that

most economic applications feature. To complete the model, one needs to add some

assumptions about choices in case preferences do not have a maximum. One possibility

is to assume that there exists a status quo, namely, an alternative that remains the

default choice unless it is dethroned by another alternative that is unanimously better.

This might be a rather reasonable descriptive model, especially of organizations, but

it is considered by many to be less than rational. Recently, Ortoleva (2010) reconsid-

ered Bewley’s inertia insight from a different angle by showing, within a full-fledged

axiomatic model, how status quo biases may lead to incomplete preferences.

Another approach suggests to complete preferences based on the same set of prob-

abilities C. Gilboa et al. (2010) offer a model involving two preference relations,

and show that certain axioms, stated on each relation separately as well as relating

the two, are equivalent to a joint representation of the two relations by the same set

of probabilities C: one by the unanimity rule, and the other — by the maxmin rule.

Their results provide a bridge between the two classic representations (10) and (11), as

well as a possible account by which maxmin behavior might emerge from incomplete

preferences.

3.4.1 Unanimity, scenarios, and uncertainty aversion

Ghirardato, Maccheroni, and Marinacci (GMM, 2004) used some insights from Bew-

ley’s unanimity representation to remove the Uncertainty Aversion axiom S.6 in the

derivation of Gilboa and Schmeidler (1989) and, in this way, to propose a class of

preferences that encompasses both Choquet and maxmin preferences. To this end,

they consider the following definition.
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Definition 9 A preference % on F is said to be invariant biseparable if it satisfies

axioms AA.1, AA.2, GS.3 (C-Independence), AA.4, and AA.5.

Invariant biseparable (IB) preferences thus satisfy all AA axioms, except for the

Independence axiom AA.3, which is replaced by the C-Independence axiom GS.3 of

Gilboa and Schmeidler (1989).35 Thanks to this key weakening, invariant biseparable

preferences include as special cases both CEU and MMEU preferences: the former

constitute the special case when the Comonotonic Independence Axiom S.3 holds,

while the latter — when the Uncertainty Aversion axiom S.6 holds.

The main tool that GMM use to study IB preferences is an auxiliary relation %∗

on F . Specifically, given any two acts f, g ∈ F , act f is said to be unambiguously
(weakly) preferred to g, written f %∗ g, if

αf + (1− α)h % αg + (1− α)h

for all α ∈ [0, 1] and all h ∈ F . In words, f %∗ g holds when the DM does not

find any possibility of hedging against or speculating on the ambiguity that she may

perceive in comparing f and g. GMM argue that this DM’s choice pattern reveals

that ambiguity does not affect her preference between f and g, and this motivates the

“unambiguously preferred” terminology.

The unambiguous preference relation is, in general, incomplete. This incomplete-

ness is due to ambiguity

Lemma 10 The following statements hold:

(i) If f %∗ g, then f % g.

(ii) %∗ satisfies axioms B.1, AA.2, and AA.3

(iii) %∗ is the maximal restriction of % satisfying the Independence axiom AA.3.36

By (i) and (ii), the unambiguous preference %∗ is a restriction of the primitive
preference relation % that satisfies reflexivity, transitivity, monotonicity, and indepen-
dence. By (iii), it is the maximal such restriction that satisfies independence.37

The next result proves, along the lines of the Bewley-type representation (11), that

the unambiguous preference can be represented by a set of priors.
35The name biseparable originates in Ghirardato and Marinacci (2001, 2002), which we will discuss

later.
36That is, if %0⊆% and %0 satisfies independence, then %0⊆%∗.
37This latter feature of %∗ relates this notion to an earlier one by Nehring (2001), as GMM discuss.
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Proposition 11 Let % be an IB preference on F. Then, there exists a function

u : X → R and a convex and compact set C ⊆ ∆ (Σ) of probability measures such

that, for all f, g ∈ F,

f %∗ g ⇔
Z
S

u (f) dP (s) ≥
Z
S

u (g) (s) dP (s) , ∀P ∈ C. (12)

In words, f is unambiguously weakly preferred to g if and only if every probability

P ∈ C assigns a weakly higher expected utility to f . It is natural to interpret each prior

P ∈ C as a “possible scenario” that the DM envisions, so that unambiguous preference

corresponds to preference in every scenario. GMM thus argue that C represents the

(subjective) perception of ambiguity of the DM, and that the DM perceives ambiguity

in a decision problem if C is not a singleton.

The relation %∗ thus makes it possible to elicit a set of priors C for a general IB

preference %. When % is a MMEU preference, C is the set of priors of the maxmin

representation (10). When % is a CEU preference that satisfies axiom S.6, C is the

core of the representing capacity ν.38

More generally, GMM prove a representation theorem for IB preferences based on

the set C, which generalizes Theorems 2 and 4. To this end, given any act f consider

its expected utility profile
©R

S
u (f) dP (s) : P ∈ C

ª
under C. Write f ³ g if two acts

f and g feature isotonic profiles, that is,Z
S

u (f (s)) dP 0 (s) ≥
Z
S

u (f (s)) dP 00 (s)⇔
Z
S

u (g (s)) dP 0 (s) ≥
Z
S

u (g (s)) dP 00 (s) , ∀P 0, P 00 ∈ C.

Intuitively, in this case the DMperceives a similar ambiguity in both acts. For example,

p ³ q for all lottery acts, which are unambiguous.

It is easy to see that ³ is an equivalence relation. Denote by [f ] the relative

equivalence class determined by an act f , and by Fp³ the quotient space of F that

consists of these equivalence classes.

Theorem 12 Let % be an IB preference on F. Then, there exists a function u :

X → R, a convex and compact set C ⊆ ∆ (Σ) of probability measures, and a function

a : Fp³ → [0, 1] such that % is represented by the preference functional V : F → R
given by

V (f) = a ([f ])min
P∈C

Z
S

u (f (s)) dP (s) + (1− a ([f ]))max
P∈C

Z
S

u (f (s)) dP (s) , (13)

38GMM also show the form that C takes for some CEU preferences that do not satisfy S.6.
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where u and C represent %∗ in the sense of (12).
Moreover, C is unique, u is cardinally unique, and a is unique on Fp³ (with the

exclusion of the equivalence class [p] of lottery acts).

In this representation, the revealed perception of ambiguity, embodied by the set

C, is separated from the DM’s reaction to it, modelled by the function a. Both C

and a are derived endogenously within the model. When a is constant equal to 1,

we get back to the maxmin representation. Otherwise, we have a more general choice

criterion that may well exhibit ambiguity loving (the polar case is, clearly, when a is

a constant equal to 0).

Giraud (2005) and Amarante (2009) studied invariant biseparable preferences, with

novel important insights. Amarante established an alternative characterization of IB

preferences through the two stage form

V (f) =

Z
∆

µZ
S

u (f (s)) dP (s)

¶
dν (P )

where ν is a capacity over the set of measures ∆ = ∆ (Σ) on S. In a statistical decision

theory vein, the capacity ν quantifies DM’s beliefs over the possible models P . Giraud

thoroughly studies a similar representation, motivated by the desire to incorporate

probabilistic information in a choice under ambiguity framework.

Finally, Siniscalchi (2006a) investigates an interesting class of invariant biseparable

preferences that satisfy a local no-hedging condition that gives preferences a piecewise

structure that makes them SEU on each component (see Castagnoli, Maccheroni, and

Marinacci, 2003, for a related representation).

a-MEU Preferences In the special case when the function a is constant the repre-

sentation (13) reduces to

V (f) = amin
P∈C

Z
S

u (f (s)) dP (s) + (1− a)max
P∈C

Z
S

u (f (s)) dP (s) . (14)

This is the a-MEU criterion that Jaffray (1989) suggested to combine Hurwicz (1951)’s

criterion (see also Arrow and Hurwicz, 1972) with a maxmin approach. Intuitively,

a ∈ [0, 1] measures the degree of the individual’s pessimism, where a = 1 yields the
maxmin expected utility model, and a = 0 — its dual, the maxmax expected utility

model. However, this apparently natural idea turned out to be surprisingly tricky to

formally pin down. GMM provided a specific axiom that reduces the IB representation
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to (14), where C represent %∗ in the sense of (12). Because of this latter clause, when
a ∈ (0, 1) it is not possible to take any pair u and C as a given and assume that the

DMs’ preferences are represented by the corresponding a-MEU criterion (14). In a

nutshell, the issue is the uniqueness properties of C in (14), which are problematic

when a ∈ (0, 1). We refer the reader to GMM and to Eichberger, Grant, and Kelsey

(2008) and to Eichberger, Grant, Kelsey, and Koshevoy (2011) for more on this issue.

(The latter paper shows that for finite state spaces the a-MEU axiomatized as a very

special case of (13) by GMM only allows for α = 0 or α = 1).

3.5 Smooth preferences

The MMEU model discussed above is often viewed as rather extreme: if, indeed, a

set of probability measures C is stipulated, and each act f is mapped to a range of

expected utility values,
©R

S
u(f)dp | p ∈ C

ª
, why should such an f be evaluated by

the minimal value in this interval? This worst-case scenario approach seems almost

paranoid: why should the DM assume that nature39 will choose a probability as if

to spite the DM? Isn’t it more plausible to allow for other ways that summarize the

interval by a single number?

The extreme nature of the maxmin model is not evident from the axiomatic deriva-

tion of the model. Indeed, this model is derived from Anscombe-Aumann’s by relaxing

their independence axiom in two ways: first, by restricting it to mixing with a con-

stant act (h above) and, second, by assuming uncertainty aversion. These weaker

axioms do not seem to reflect the apparently-paranoid attitude of the maxmin princi-

ple. A question then arises, how do these axioms give rise to such extreme uncertainty

attitude?

In this context it is important to recall that the axiomatic derivation mentioned

above is in the revealed preferences tradition, characterizing behavior that could be

represented in a certain mathematical formula. An individual who satisfies the axioms

can be thought of as if she entertained a set C of priors and maximized the minimal

expected utility with respect to this set. Yet, this set of priors need not necessarily

reflect the individual’s knowledge. Rather, information and personal taste jointly

determine the set C. Smaller sets may reflect both better information and a less

averse uncertainty attitude. For example, an individual who bets on a flip of a coin and

39Relations betwenn ambiguity and games against nature are discussed in Hart, Modica, and
Schmeidler (1994), Maccheroni, Marinacci, and Rustichini (2006a, 2006b), and Ozdenoren and Peck
(2008).
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follows the expected utility axioms with respect to a probability p = 0.5 of “Head” may

actually know that the probability p is 0.5, or she may have no clue about p but chooses

the model p = 0.5 because she is insensitive to her ignorance about the true data

generating process. Thus, information and attitude to uncertainty are inextricably

intertwined in the set C. More generally, it is possible that the individual has objective

information that the probability is in a set D, but behaves according to the maxmin

expected utility rule with respect to a set C ⊂ D, reflecting her uncertainty attitude.

This intuition has motivated the model of Gajdos, Hayashi, Tallon, and Vergnaud

(2008) that axiomatically established the inclusion C ⊂ D (some related ideas can be

found in Wang, 2003a, and Giraud, 2005).

If, however, the set of priors C is interpreted cognitively a la Wald, that is, as the

set of probabilities that are consistent with objectively available information, one may

consider alternatives to the maxmin rule that, under this Waldean interpretation, has

an extreme nature. One approach to address this issue is to assume that the DM has

a prior probability over the possible probability distributions in C. Thus, if ∆ (Σ)

is the space of all “first order” probability distributions (viewed as data generating

processes), and μ is a “second order” prior probability over them, one can use μ to

have an averaging of sorts over all expected utility values of an act f .

Clearly, the expectation of expectations is an expectation. Thus, if one uses μ to

compute the expectation of the expected utility, there will exist a probability p̂ on S,

given by

p̂ =

Z
∆(Σ)

pdμ

such that for every act f (and every utility function u)Z
∆(Σ)

µZ
S

u(f)dp

¶
dμ =

Z
S

u(f)dp̂

In this case, the new model cannot explain any new phenomena, as it reduces

to the standard Bayesian model. However, if the DM uses a non-linear function to

evaluate expected utility values, one may explain non-neutral attitudes to uncertainty.

Specifically, assume that

ϕ : R→ R

is an increasing function, and an act f is evaluated by

V (f) =

Z
∆(Σ)

ϕ

µZ
S

u(f)dp

¶
dμ.
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In this representation, μ is read as representing information (about the probability

model p), whereas ϕ reflects attitude towards ambiguity, with a concave ϕ corre-

sponding to ambiguity aversion, similarly to the way that concave utility represents

risk aversion in the classical model of expected utility under risk. In this way we have

a separation between ambiguity perception, an information feature modelled by μ and

its support, and ambiguity attitude, a taste trait modelled by ϕ and its shape.

This decision rule has been axiomatized by Klibanoff, Marinacci, and Mukerji

(2005). It has become to be known as the smooth model of ambiguity because, under

mild assumptions, V is a smooth functional, whereas the Choquet expected utility and

the maxmin expected utility functionals are typically not everywhere differentiable

(over the space of acts).

The notion of second order probabilities is rather old and deserves a separate

survey.40 This idea is at the heart of Bayesian statistics, where Bayes’s rule is retained

and a probability over probabilities over a state space is equivalent to a probability over

the same space. Within decision theory, Segal (1987) already suggested that Ellsberg’s

paradox can be explained by second-order probabilities, provided that we allow the

decision maker to violate the principle of reduction of compound lotteries. Specifically,

Segal’s model assumed that the second-order probabilities are used to aggregate first-

order expectations via Quiggin’s (1982) anticipated utility. Other related models have

been proposed by Nau (2001, 2006, 2010), Chew and Sagi (2008), Ergin and Gul (2009),

and Seo (2009). Halevy and Feltkamp (2005) proposed another approach according to

which the decision maker does not err in the computation of probabilities, but uses a

mis-specified model, treating a one-shot choice as if it were repeated.

As compared to Choquet expected utility maximization, the smooth preferences

model, like the maxmin model, has the advantage of having a simple and intelligible

cognitive interpretation. As opposed to both Choquet and maxmin expected utility

models, smooth preferences have the disadvantage of imposing non-trivial epistemo-

logical demands on the DM: the smooth model requires the specification of a prior

over probability models, that is, of a probability μ over a much larger space, ∆ (Σ),

something that may be informationally and observationally demanding.

That said, beyond the above mentioned separation, the smooth preferences model

enjoys an additional advantage of tractability. If S is finite, one may choose μ to

40Bayes (1763) himself writes in his Proposition 10 that “the chance that the probability of the
event lies somewhere between ... ” (at the beginning of his essay, in Definition 6 Bayes says that “By
chance I mean the same as probability”).
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be a uniform prior over ∆ (Σ) and specify a simple functional form for ϕ, to get a

simple model in which uncertainty/ambiguity attitudes can be analyzed in a way that

parallels the treatment of risk attitudes in the classical literature. Specifically, assume

that

ϕ(x) = − 1
α
e−αx

for α > 0. In this case, the DM can be said to have a constant ambiguity aversion

α; when α → 0, the DM’s preferences converge to Bayesian preferences with prior

p̂, whereas when α → ∞, preferences converge to MMEU preferences relative to the
support of μ. (See Klibanoff, Marinacci, and Mukerji, 2005, for details.) Thus, the

smooth ambiguity aversion model can be viewed as an extension of the maxmin model,

in its Waldean interpretation.

3.6 Variational preferences

Maccheroni, Marinacci, and Rustichini (MMR, 2006a) suggested and axiomatized an

extension of the maxmin model in order to better understand the theoretical founda-

tions of the works of Hansen and Sargent on model uncertainty in macroeconomics

(see the surveys Hansen, 2007, and Hansen and Sargent, 2008). These works consider

agents who take into account the possibility that their (probabilistic) model Q may

not be the correct one, but only an approximation thereof. For this reason, they rank

acts f according to the following choice criterion

V (f) = min
P∈∆(Σ)

½Z
S

u (f (s)) dP (s) + θR (PkQ)
¾
, (15)

where θ > 0, and R (·kQ) : ∆ (Σ)→ [0,∞] is the relative entropy with respect to Q.
Preferences% onF represented by criterion (15) are calledmultiplier preferences by

Hansen and Sargent. The relative entropy R (PkQ) measures the relative likelihood
of the alternative models P with respect to the reference model Q. The positive

parameter θ reflects the weight that agents are giving to the possibility that Q might

not be the correct model (as θ becomes larger, agents focus more on Q as the correct

model, giving less importance to the alternatives P ).

Model uncertainty, which motivated the study of multiplier preferences, is clearly

akin to the problem of ambiguity, underlying maxmin preferences. Yet, neither class of

preferences is nested in the other. A priori, it was not clear what are the commonalities

between these models and how they can be theoretically justified. To address this
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issue, MMR introduced and axiomatized a novel class of preferences that includes

both multiplier and maxmin preferences as special cases.

Specifically, observe that the maxmin criterion (10) can be written as

V (f) = min
P∈∆(Σ)

½Z
S

u (f (s)) dP (s) + δC (P )

¾
, (16)

where δC : ∆→ [0,∞] is the indicator function of C given by

δC (P ) =

½
0 if P ∈ C,
∞ otherwise.

Like the relative entropy, the indicator function is a convex function defined on the

simplex ∆ (Σ). This suggests the following general representation

V (f) = min
P∈∆(Σ)

½Z
u (f (s)) dP (s) + c (P )

¾
, (17)

where c : ∆ (Σ) → [0,∞] is a convex function on the simplex. MMR call variational
the preferences % on F represented by (17). Multiplier and maxmin preferences are

the special cases of variational preferences where c is, respectively, the relative entropy

θR (·kq) and the indicator function δC .

MMR establish a behavioral foundation for the representation (17), which in turn

offers a common behavioral foundation for multiplier and maxmin preferences. Their

axiomatization is based on a relaxation of the C-Independence GS.3 of Gilboa and

Schmeidler. To understand it, consider the following equivalent form of GS.3 (C-

Independence).

Lemma 13 A binary relation % on F satisfies axiom GS.3 (C-Independence) if and

only if, for all f, g ∈ F, p, q ∈ ∆ (X), and α, β ∈ (0, 1], we have:

αf + (1− α)p % αg + (1− α)p⇒ βf + (1− β)q % βg + (1− β)q.

Lemma 13 (MMR p. 1454) shows that axiom GS.3 actually involves two types

of independence: independence relative to mixing with constants and independence

relative to the weights used in such mixing. The next axiom, due to MMR, retains

the first form of independence, but not the second one.

MMR.3 WEAK C-INDEPENDENCE: If f, g ∈ F , p, q ∈ ∆ (X), and α ∈ (0, 1),

αf + (1− α)p % αg + (1− α)p⇒ αf + (1− α)q % αg + (1− α)q.
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Axiom MMR.3 is therefore the special case of axiom GS.3 (C-Independence) in

which the mixing coefficients α and β are required to be equal. In other words, axiom

MMR.3 is a very weak independence axiom that requires independence only with

respect to mixing with lottery acts, provided the mixing weights are kept constant.

This is a significant weakening of axiom GS.3 (C-Independence). One might won-

der, why would the DM follow MMR.3 but not GS.3 in its full strength. To see this,

consider the re-statement of axiom GS.3 in Lemma 13 in the case that the weights

α and β are very different, say α is close to 1 and β is close to 0. Intuitively, acts

αf + (1 − α)p and αg + (1 − α)p can then involve far more uncertainty than acts

βf + (1 − β)q and βg + (1 − β)q, which are almost constant acts. As a result, we

expect that, at least in some situations, the ranking between the genuinely uncertain

acts αf + (1 − α)p and αg + (1 − α)p can well differ from that between the almost

constant acts βf + (1 − β)q and βg + (1 − β)q. By contrast, Axiom MMR.3 is not

susceptible to this critique: since only the same coefficient α is used in both sides of

the implication, the axiom does not involve acts that differ in their overall uncertainty,

as it were.

The representation result of MMR is especially sharp when the utility function u

is unbounded (above or below), that is, when its image u (X) = {u (x) : x ∈ X} is
an unbounded set. In an AA setup this follows from the following assumption (see

Kopylov, 2001).

AA.7 UNBOUDEDNESS: There exist x Â y in X such that for all α ∈ (0, 1) there
exists z ∈ X satisfying either y Â αz + (1− α)x or αz + (1− α) y Â x.

We can now state the representation result of MMR, which generalizes Theorem

4 by allowing for general functions c : ∆ (Σ) → [0,∞]. Here xf denotes the certainty
equivalent of act f ; i.e., f ∼ xf .

Theorem 14 Let % be a binary relation on F. The following conditions are equiva-
lent:

(i) % satisfies conditions AA.1, AA.2, MMR.3, AA.4, AA.5, S.6, and AA.7;

(ii) there exists an affine function u : X → R, with u (X) unbounded, and a grounded,41

convex, and lower semicontinuous function c : ∆ (Σ)→ [0,∞] such that, for all
41The function c : ∆ (Σ)→ [0,∞] is grounded if its infimum value is zero.
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f, g ∈ F

f % g ⇔ min
P∈∆(Σ)

µZ
S

u (f (s)) dP (s) + c (P )

¶
≥ min

p∈∆(Σ)

µZ
u (g (s)) dP (s) + c (P )

¶
.

(18)

For each u there is a unique c : ∆ (Σ)→ [0,∞] satisfying (18), given by

c (p) = sup
f∈F

µ
u (xf)−

Z
S

u (f (s)) dP (s)

¶
. (19)

MMR show how the function c can be viewed as an index of ambiguity aversion, as

we will discuss later in Section 4. Alternatively, they observe that the function c can

be interpreted as the cost of an adversarial opponent of selecting the prior P . In any

case, formula (19) allows to determine the index c from behavioral (e.g., experimental)

data in that it only requires to elicit u and the certainty equivalents xf .

Behaviorally, maxmin preferences are the special class of variational preferences

that satisfy the C-Independence axiom GS.3. For multiplier preferences, however,

MMR did not provide the behavioral assumption that characterize them among varia-

tional preferences. This question left open by MMRwas answered by Strzalecki (2010),

who found the sought-after behavioral conditions. They turned out to be closely re-

lated to some of Savage’s axioms. Strzalecki’s findings thus completed the integration

of multiplier preferences within the framework of choice under ambiguity.

The weakening of C-Independence in MMR.3 has a natural variation in which

independence is restricted to a particular lottery act, but not to a particular weight α.

Specifically, one may require that, for the worst possible outcome x∗ (if such exists),

αf + (1− α)x∗ % αg + (1− α)x∗ ⇔ βf + (1− β)x∗ % βg + (1− β)x∗

for every two acts f, g ∈ F and every α, β ∈ (0, 1],
This condition has been used by Chateauneuf and Faro (2009), alongside other

conditions, to derive the following representation: there exists a so-called confidence

function ϕ on ∆ (Σ), and a confidence threshold α, such that acts are evaluated ac-

cording to

V (f) = min
{P∈∆(Σ)|ϕ(P )≥α}

∙
1

ϕ(P )

Z
S

u(f (s))dP (s)

¸
This decision rule suggests that the DM has a degree of confidence ϕ(P ) in each

possible prior P . The expected utility associated with a prior P is multiplied by the
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inverse of the confidence in P , so that a low confidence level is less likely to determine

the minimum confidence-weighted expected utility of f .

The intersection of the classes of variational preferences with confidence preferences

is the maxmin model, satisfying C-Independence in its full force.42 See also Ghirardato,

Maccheroni, and Marinacci (2005) for other characterizations of C-Independence.

3.6.1 Beyond independence: uncertainty averse preferences

All the choice models that we reviewed so far feature some violation of the Inde-

pendence axiom AA.3, which is the main behavioral assumption questioned in the

literature on choice under ambiguity in a AA setup. In order to better understand

this class of models, Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2008)

recently established a common representation that unifies and classifies them. Since

a notion of minimal independence among uncertain acts is, at best, elusive both at a

theoretical and empirical level, this common representation does not use any indepen-

dence condition on uncertain acts, however weak it may appear.

Cerreia-Vioglio et al. (2008) thus studied uncertainty averse preferences, that is,

complete and transitive preferences that are monotone and convex, without any inde-

pendence requirement on uncertain acts. This general class of preferences includes as

special cases variational preferences, confidence preferences, as well as smooth prefer-

ences with a concave ϕ.

Though no independence assumption is made on uncertain acts, to calibrate risk

preferences Cerreia-Vioglio et al. assumed standard independence on lottery acts.

CMMM.3 RISK INDEPENDENCE: If p, q, r ∈ ∆ (X) and α ∈ (0, 1), p ∼ q ⇒ αp +

(1− α) r ∼ αq + (1− α) r.

Along with the other axioms, CMMM.3 implies that the risk preference%∆ satisfies

the von Neumann-Morgenstern axioms. In the representation result of Cerreia-Vioglio

et al. (2008) functions of the form G : R×∆ (Σ)→ (−∞,∞] play a key role. Denote
by G (R×∆ (Σ)) the class of these functions such that:

(i) G is quasiconvex on R×∆ (Σ),

(ii) G (·, P ) is increasing for all P ∈ ∆ (Σ),

42This is so because one axiom relates preferences between mixtures with different coefficients α, β
and the other — between mixtures with different constant acts x∗, p.
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(iii) infP∈∆(Σ)G (t, P ) = t for all t ∈ T .

We can now state a version of their main representation theorem.

Theorem 15 Let % be a binary relation on F. The following conditions are equiva-
lent:

(i) % satisfies axioms AA.1, AA.2, CMMM.3, AA.4, AA.5, S.6, AA.7;

(ii) there exists a non-constant affine u : X → R, with u (X) = R, and a lower
semicontinuous G : R×∆ (Σ) → (−∞,∞] that belongs to G (R×∆ (Σ)) such
that, for all f and g in F,

f % g ⇔ min
P∈∆(Σ)

G

µZ
u (f) dP, P

¶
≥ min

P∈∆(Σ)
G

µZ
u (g) dP, P

¶
. (20)

The function u is cardinally unique and, given u, the function G in (20) is given

by

G (t, P ) = sup
f∈F

½
u (xf) :

Z
u (f) dP ≤ t

¾
∀ (t, p) ∈ R×∆ (Σ) . (21)

In this representation DMs can be viewed as if they considered, through the term

G
¡R

u (f) dP, P
¢
, all possible probabilities P and the associated expected utilitiesR

u (f) dP of act f . They then behave as if they summarized all these evaluations by

taking their minimum. The quasiconvexity of G and the cautious attitude reflected

by the minimum in (20) derive from the convexity of preferences. Their monotonicity,

instead, is reflected by the monotonicity of G in its first argument.

The representation (20) features both probabilities and expected utilities, even

though no independence assumption whatsoever is made on uncertain acts. In other

words, this representation establishes a general connection between the language of

preferences and the language of probabilities and utilities, in keeping with the tradition

of the representation theorems in choice under uncertainty.

Cerreia-Vioglio et al. (2008) show that G can be interpreted as index of uncertainty

aversion, in the sense of Section 4 below. Moreover, (21) shows that this index can be

elicited from choice behavior.

Variational preferences correspond to additively separable functions G, i.e., these

preferences are characterized by

G (t, P ) = t+ c (P )
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where c : ∆ (Σ) → [0,∞] is a convex function. In this case (20) reduces to the

variational representation (18).

Smooth preferences with concave φ correspond to the uncertainty aversion index

given by

G (t, P ) = t+ min
ν∈Γ(P )

It (ν k μ) (22)

where It (· k μ) is a suitable statistical distance function that generalizes the classic
relative entropy, and Γ (P ) is the set of all second-order probabilities ν that are ab-

solutely continuous with respect to μ and that have P as their reduced, first-order,

probability measure on S.

3.7 Other classes of preferences

The scope of this paper does not allow us to do justice to the variety of decision

models that have been suggested in the literature to deal with uncertainty in a non-

probabilistic way, let alone the otherwise growing literature in decision theory.43 Here

we only mention a few additional approaches to the problem of ambiguity.

As mentioned above, Segal (1987, 1990) suggested a risk-based approach to uncer-

tainty, founded on the idea that people do not reduce compound lotteries. Recently,

Halevy (2007) provided some experimental evidence on the link between lack of re-

duction of compound lotteries and ambiguity, and Seo (2009) carried out an in depth

theoretical analysis of this issue. Since failure to reduce compound lotteries is often

regarded as a mistake, this source of ambiguity has a stronger positive flavor than the

absence of information, which is our main focus.

Stinchcombe (2003), Olszewski (2007), and Ahn (2008) model ambiguity through

sets of lotteries, capturing exogenous or objective ambiguity. (See also Jaffray, 1988,

who suggested related ideas). Preferences are defined over these sets, with single-

ton and nonsingleton ones modelling risky and ambiguous alternatives, respectively.

For example, these sets can be ranked either according to the criterion V (A) =¡R
A
φ ◦ udμ

¢
/μ (A) where φ and μ model ambiguity attitudes (Ahn, 2008) or the crite-

rion V (A) = αminl∈A U (l)+(1− α)maxl∈A U (l) where α models ambiguity attitudes

(Olszewski, 2007). Viero (2009) combines this approach with the Anscombe-Aumann

model.
43Other sub-fields include choices from menus, decision under risk, minmax regret approaches, and

others. On the first of these, see Limpan and Pesendorfer (2011).
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Chateauneuf, Eichberger, and Grant (2007) axiomatize neo-additive Choquet ex-

pected utility, a tractable CEU criterion of the “Hurwicz” form V (f) = α
R
u (f (s)) dP (s)+

βmaxs u (f (s)) + (1− α− β)mins u (f (s)). Through the values of the weights α and

β, the preference functional V captures in a simple way different degrees of optimism

and pessimism, whose extreme forms are given by the min and max of u (f (s)).

Gajdos, Hayashi, Tallon, and Vergnaud (2008) axiomatize, as discussed before, a

model with objective information. Preferences are defined over pairs (f, C) of acts

and sets of probabilities (that represent objective information). Such pairs are ranked

through the functional V (f,C) = minp∈ϕ(C)
R
u (f (s)) dP (s), where ϕ (C) ⊆ C is the

subset of C that we denoted in the earlier discussion as D. When ϕ (C) = C, we get

back to the MMEU model.

Gul and Pesendorfer (2008) suggested subjective expected uncertain utility theory,

according to which acts can be reduced to bilotteries, each specifying probabilities for

ranges of outcome values, where these probabilities need not be allocated to sub-ranges.

Arlo-Costa and Helzner (2010a) propose to deal with the comparative ignorance hy-

pothesis of Tversky and Fox (1995), and present experimental findings that challenge

the explanation provided by the latter. (See also Arlo-Costa and Helzner, 2010b).

Siniscalchi (2009a) axiomatizes vector expected utility, in which Savage’s acts are

assessed according to V (f) =
R
u (f (s)) dP (s) + A

³¡R
ξi · u (f (s)) dP (s)

¢
i=1,...,n

´
where the first term on the right hand side is a baseline expected-utility evaluation

and the second term is an adjustment that reflects DMs’ perception of ambiguity and

their attitudes toward it. In particular, ξi are random variables with zero mean that

model different sources of ambiguity (see Siniscalchi, 2009a, p. 803).

Given the variety of the models of decision making that allow for non-neutral

approaches to ambiguity, one is led to ask, how should we select a model to work with?

There are at least three possible approaches to this problem. First, one may follow

the classical empirical tradition and compare the different models by a “horse-race”.

The model that best explains observed phenomena should be used for prediction,

with the usual trade-offs between the model’s goodness of fit and its simplicity and

generality. The degree to which models fit the data should be measured both for their

assumptions and for their conclusions. (Indeed, the assumptions are also, in a trivial

sense, conclusions.) Thus, this approach calls both for experimental tests of particular

axioms and of entire models, as well as for empirical tests of theories based on these

models. Importantly, when engaging in such an endeavor, one should be prepared
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to find that a model may be the most appropriate for analyzing certain phenomena

but not for others. Thus, for example, it is possible that smooth preferences are the

best model for the behavior of organizations, whereas variational preferences are a

better description for the behavior of individuals. Or that labor search models are

best explained by the maxmin model, while financial investments call for the Hurwicz-

Jaffray model, and so forth.

For qualitative analysis, one may adopt a second approach, which does not commit

to a particular model of decision under uncertainty, but uses representatives of these

models in order to gain robust insights. Adopting this approach, a researcher may

start with a benchmark Bayesian model, and add the uncertainty ingredient using any

of the models mentioned above, as a sensitivity analysis of the Bayesian model. In this

approach, theoretical convenience may be an important guideline. However, it will be

advisable to trust only the qualitative conclusions that emerge from more than one

model. That is, sensitivity analysis itself should not be too sensitive.

Finally, in light of the variety of models and the theoretical difficulties in selecting

a single one, one may choose a third approach, which attempts to obtain general con-

clusions within a formal model, without committing to a particular theory of decision

making. This approach has been suggested in the context of risk by Machina (1982).

In this celebrated paper, facing a variety of decision models under risk, Machina at-

tempted to show that much of economic analysis of choice under risk can be carried

through without specifying a particular model. More concretely, Machina stipulated a

functional on lotteries (with given probabilities) that was smooth enough to allow local

approximations by linear functions. The gradient of the functional was considered to

be a local utility function. Machina has shown that some results in economic theory

could be derived by allowing the local utility function to vary, as long as it satisfied

the relevant assumptions. Machina’s approach was therefore not about decision theory

per se. It was about the degree to which decision theory mattered: it showed that, for

some applications, economists need not worry about how people really make decisions,

since a wide range of models were compatible with particular qualitative conclusions.

A similar approach has been suggested for decisions under uncertainty. An early

example of this approach is the notion of biseparable preferences, suggested by Ghi-

rardato and Marinacci (2001), and mentioned above. Biseparable preferences are any

monotone and continuous preferences over general acts that, when restricted to acts
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f with only two outcomes, say, x and y, can be described by the maximization of

J(f) = u(x)ν(A) + (u(x)− u(y))(1− ν(A))

where ν is a capacity and

f(s) =

½
x s ∈ A
y s /∈ A

with x Â y. Biseparable preferences include both CEU and MMEU. Ghirardato and

Marinacci (2001) provide a definition of uncertainty aversion that does not depend on

the specific model of decision making and applies to all biseparable preferences.

More recently, Machina (2005) suggested a general approach to preferences un-

der uncertainty which, similarly to Machina (1982), assumes mostly smoothness and

monotonicity of preferences, but remains silent regarding the actual structure of pref-

erences, thereby offering a highly flexible model.

4 Ambiguity aversion

Schmeidler’s axiom S.6 provided a first important characterization of ambiguity aver-

sion, modelled through a preference for hedging/randomization. Epstein (1999) and

Ghirardato and Marinacci (2002) studied this issue from a different perspective, in-

spired by Yaari (1969)’s analysis of comparative risk attitudes.

Here we present the approach of Ghirardato and Marinacci because of its sharper

model implications. This approach relies on two key ingredients:

(i) A comparative notion of ambiguity aversion that, given any two preferences %1
and %2 on F , says when %1 is more ambiguity averse than %2.

(ii) A benchmark for neutrality to ambiguity; that is, a class of preferences % on F
that are viewed as neutral to ambiguity.

The choice of these ingredients in turn determines the absolute notion of ambiguity

aversion, because a preference % on F is classified as ambiguity averse provided it is

more ambiguity averse than an ambiguity neutral one.

The comparative notion (i) is based on comparisons of acts with lottery acts that

deliver a lottery p at all states. We consider them here because they are the most

obvious example of unambiguous acts, that is, acts whose outcomes are not affected

by the unknown probabilities.
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Consider DM1 and DM2, whose preferences on F are %1 and %2, respectively.
Suppose that

f %1 p,

that is, DM1 prefers the possibly ambiguous act f to the unambiguous lottery act p.

If DM1 is more ambiguity averse than DM2 it is natural to expect that DM2 will also

exhibit such preferences:

f %2 p.

For, if DM1 is bold enough to have f %1 p, then DM2 — who dislikes ambiguity no

more than DM1 — must be at least equally bold.

We take this as the behavioral characterization of the comparative notion of am-

biguity aversion.

Definition 16 Given two preferences %1 and %2 on F, %1 is more ambiguity averse
than %2 if, for all f ∈ F and p ∈ ∆ (X),

f %1 p⇒ f %2 p. (23)

As benchmark for neutrality to ambiguity we consider subjective expected utility

(SEU) preferences on F . These preferences intuitively embody ambiguity neutrality.
They might not be the only preference embodying ambiguity neutrality, but they seem

to be the most obvious ones.44

Methodologically, like the choice of lottery acts as the unambiguous acts in the

comparison (23), also the neutrality benchmark is chosen by making the weakest pre-

judgment on which preferences qualify for this role. Sharp model implications will

follow, nevertheless, as we will see momentarily.

Having thus prepared the ground, we can define ambiguity aversion

Definition 17 A preference relation % on F is ambiguity averse if it is more ambi-

guity averse than some SEU preference on F.

The next result, due to Ghirardato and Marinacci (2002), applies these notions

to the maxmin expected utility (MEU) model. Here u1 ≈ u2 means that there exist

α > 0 and β ∈ R such that u1 = αu2 + β.

44Epstein (1999) takes the standard for ambiguity neutrality to be preferences that are probabilis-
tically sophisticated in the sense of Machina and Schmeidler (1992). In his approach Theorem 18
below does not hold.
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Theorem 18 Given any two MMEU preferences %1 and %2 on F, the following con-
ditions are equivalent:

(i) %1 is more ambiguity averse than %2,

(ii) u1 ≈ u2 and C1 ⊆ C2 (provided u1 = u2).

Given that u1 ≈ u2, the assumption u1 = u2 is just a common normalization

of the two utility indices. Therefore, Theorem 18 says that more ambiguity averse

MMEU preferences are characterized, up to a normalization, by smaller sets of priors

C. Therefore, the set C can be interpreted as an index of ambiguity aversion.

This result thus provides a behavioral foundation for the comparative statics exer-

cises in ambiguity through the size of the sets of priors C that play a key role in the

economic applications of the MMEU model. In fact, a central question in these appli-

cations is how changes in ambiguity attitudes affect the relevant economic variables.

An immediate consequence of Theorem 18 is that, not surprisingly, MMEU pref-

erences are always ambiguity averse. That is, they automatically embody a negative

attitude toward ambiguity, an attitude inherited from axiom S.6.

The condition u1 ≈ u2 ensures that risk attitudes are factored out in comparing the

MMEU preferences %1 and %2. This is a dividend of the risk calibration provided by
the AA setup via the risk preference %∆ discussed in Section 3.1. In a Savage setup,

where this risk calibration is no longer available, Definition 16 has to be enriched

in order to properly factor out risk attitudes, so that they do not interfere with the

comparison of ambiguity attitudes (see Ghirardato and Marinacci, 2002, for details on

this delicate conceptual issue).

Maccheroni, Marinacci, and Rustichini (2006a) generalize Theorem 18 to varia-

tional preferences by showing that the condition C1 ⊆ C2 takes in this case the more

general form c1 ≤ c2. The function c can thus be viewed as an index of ambiguity aver-

sion that generalizes the sets of priors C. Variational preferences are always ambiguity

averse, a fact that comes as no surprise since they satisfy axiom S.6.

For CEU preferences, Ghirardato and Marinacci (2002) show that more ambiguity

averse CEU preferences are characterized, up to a common normalization of utility

indexes, by smaller capacities ν. More interestingly, they show that CEU preferences
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are ambiguity averse when the cores of the associated capacities are nonempty. Since

convex capacities have nonempty cores, CEU preferences that satisfy axiom S.6 are

thus ambiguity averse. The converse, however, is not true since there are capacities

with nonempty cores that are not convex. Hence, there exist ambiguity averse CEU

preferences that do not satisfy S.6, which is thus a sufficient but not necessary condi-

tion for the ambiguity aversion of CEU preferences. Ghirardato and Marinacci (2002)

discuss at length this feature of CEU preferences, and we refer the interested reader

to that paper for details (see also Chateauneuf and Tallon, 2002, who present a notion

of weak ambiguity aversion for CEU preferences, as well as Montesano and Giovan-

none, 1996, who investigate how CEU preferences may reflect aversion to increasing

ambiguity).

Unambiguous events Unambiguous events should be events over which decision

makers do not perceive any ambiguity. Intuitively, in terms of functional forms an

event E is unambiguous for a preference % if:

(i) ν (E) + ν (Ec) = 1 when % is CEU;

(ii) P (E) = P 0 (E) for all P,P 0 ∈ C when % is MMEU and, more generally, for all
P,P 0 ∈ dom c when % is variational;45

(iii) p (E) = k μ-a.e. for some k ∈ [0, 1] when % is smooth.

A few behavioral underpinnings of these notions of unambiguous event have been

proposed by Nehring (1999), Epstein and Zhang (2001), Ghirardato and Marinacci

(2002), Zhang (2002), Ghirardato, Maccheroni, and Marinacci (2004), Klibanoff, Mari-

nacci, and Mukerji (2005), and Amarante and Feliz (2007) (who also provide a discus-

sion of some of the earlier notions which we refer the interested to).

5 Updating beliefs

How should one update one’s beliefs when new information is obtained? In the case

of probabilistic beliefs there is an almost complete unanimity that Bayes’s rule is the

only sensible way to update beliefs. Does it have an equivalent rule for the alternative

models discussed above? The answer naturally depends on the particular non-Bayesian

45dom c is the effective domain of the function c; i.e., dom c = {P ∈ ∆ (S) : c (p) < +∞}.
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model one adopts. At the risk of over-generalizing from a small sample, we suggest

that Bayes’s rule can typically be extended to non-Bayesian beliefs in more than one

way. Since the focus of this survey is on static preferences, we mention only a few

examples, which by no means exhaust the richness of dynamic models.

For instance, if one’s beliefs are given by a capacity ν, and one learns that an

event B has obtained, one may assign to an event A the weight corresponding to the

straightforward adaptations of Bayes’s formula:

ν (A|B) = ν (A ∩B)
ν(B)

However, another formula has been suggested by Dempster (1967, see also Shafer,

1976) as a special case of his notion of merging of belief functions:

ν (A|B) = ν ((A ∩B) ∪Bc)− ν (Bc)

1− ν (Bc)

Clearly, this formula also boils down to standard Bayesian updating in case ν is

additive. Yet, the two formulae are typically not equivalent if the capacity ν fails to

be additive. Each of these formulae extends some, but not all, of the interpretations

of Bayesian updating from the additive to the non-additive case.

If beliefs are given by a set of priors C, and and event B is known to have occurred,

a natural candidate for the set of priors on B is simply the same set C, where each

probability is updated according to Bayes’s rule. This results in full Bayesian updating

(FBU), defining the set of priors (on B)

CB = { p (·|B) | p ∈ C }

FBU allows standard learning given each possible prior, but does not reflect any learn-

ing about the set of priors that should indeed be taken into consideration. It captures

Bayesian learning (conditional on a prior) but not the statistical inference typical of

classical statistics, namely, the selection of subsets of distributions from an a priori

given set of distributions. If we were to think of each prior p in C as an expert,

who expresses her probabilistic beliefs, FBU can be interpreted as if each expert were

learning from the evidence B, while the DM does not use the evidence to decide which

experts’ advice to heed.46

46See Seidenfeld and Wasserman (1993) who study counter-intuitive updating phenomena in this
context.
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Following this line of reasoning, and in accordance with statistical principles, one

may wish to select probabilities from the set C based on the given event B. One,

admittedly extreme way of doing so is to adopt the maximum likelihood principle.

This suggests that only the priors that a priori used to assign the highest probability

to the event B should be retained among the relevant ones. Thus, maximum likelihood

updating (MLU) is given by

CM
B =

½
p (·|B)

¯̄̄̄
p ∈ argmax

q∈C
q(B)

¾
If one’s beliefs are given by a convex capacity, or, equivalently, by a set C which is

the core of a convex capacity, MLU is equivalent to Dempster-Shafer’s updating. This

rule has been axiomatized by Gilboa and Schmeidler (1993), whereas FBU, suggested

by Jean-Yves Jaffray, has been axiomatized by Pires (2002).

FBU and MLU are both extreme. Using the experts metaphor, FBU retains all

experts, and gives as much weight to those who were right as to those who were

practically proven wrong in their past assessments. By contrast, MLU completely

ignores any expert who was not among the maximizers of the likelihood function. It

therefore makes sense to consider intermediate methods, though, to the best of our

knowledge, none has been axiomatized to date.

The tension between FBU and MLU disappears if the set of priors C is rectangular

(Epstein and Schneider, 2003) in the sense that it can be decomposed into a set of

current-period beliefs, coupled with next-period conditional beliefs, in such a way

that any combination of the former and the latter is in C. Intuitively, rectangularity

can be viewed as independence of sorts: it suggests that whatever happens in the

present period does not teach us which prior (or expert) is to be trusted more in

the next period. Formally, the set of conditional probabilities on the given event B

using all priors and the set obtained using only the maximum likelihood ones coincide.

Related arguments, in particular how rectangular sets of priors would lead to consistent

dynamic MMEU behavior, were made by Sarin and Wakker (1998) (see in particular

their Theorem 2.1). See also Epstein and Schneider (2007), who consider updating in

a more explicit model, distinguishing between the set of parameters and the likelihood

functions they induce.

Epstein and Schneider (2003) consider preferences over consumption processes,

and axiomatize a decision rule that extends MMEU to the dynamic set-up recursively.

Their axioms also guarantee that the set of priors C is rectangular. The recursive

structure means that the maxmin expected utility at a given period for the entire
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future can also be written as maxmin expected utility over the present period and

the discounted continuation (MMEU) value starting in the following period. Wang

(2003b) proposed a related recursive approach.

This recursive approach extends beyond the MMEU model. It has similarly been

applied to extend smooth preferences (see Klibanoff, Marinacci, and Mukerji, 2009,

and Hayashi and Miao, 2010) and variational preferences to dynamic set-ups (see

Maccheroni, Marinacci, and Rustichini, 2006b). Equipped with a variety of models of

behavior with ambiguous beliefs, which are adapted to deal with dynamic problems

recursively, the stage is set to analyze economic problems in not-necessarily Bayesian

ways.

Another approach to updating was proposed by Hanany and Klibanoff (2007, 2009).

They retain dynamic consistency by allowing the update rule to depend not only on

original beliefs and new information, but also on the choice problem. In the case of the

MMEU model, their approach consists of selecting a subset of priors, and updating

them according to Bayes rule, while the relevant subset of priors generally depends on

the act chosen before the arrival of new information.

A different route was pursued by Siniscalchi (2006b), who investigated choices over

decision trees rather than over temporal acts. This modification allows him to consider

sophisticated choices, characterized through a natural notion of consistent planning,

under ambiguity.

An important problem relating to updating is the long-run behavior of beliefs.

Suppose that a non-Bayesian decision maker faces a process that is, in a well-defined

sense, repeated under the same conditions. Will she learn the true process? Will

the set of probabilities converge in the limit to the true one? A partial answer was

given in the context of capacities, where laws of large numbers have been proved by

Marinacci (1999, 2002) and Maccheroni and Marinacci (2005). The behavior of the

set of probabilities in the context of the maxmin model was analyzed in Epstein and

Schneider (2007).

6 Applications

There are many economic models that lead to different qualitative conclusions when

analyzed in a Bayesian way as compared to the alternative, non-Bayesian theories. The

past two decades have witnessed a variety of studies that re-visited classical results

and showed that they need to be qualified when one takes ambiguity into account.
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The scope of this paper allows us to mention but a fraction of them. The following is

a very sketchy description of a few studies, designed only to give a general idea of the

scope of theoretical results that need to be re-examined in light of the limitations of

the Bayesian approach.47

Dow andWerlang (1992) analyzed a simple asset pricing model. They showed that,

if an economic agent is ambiguity averse as in the CEU or MMEU model, then there

will be a range of prices at which she will wish neither to buy nor to sell a financial

asset. This range will be of non-zero length even if one ignores transaction costs. To

see the basic logic of this result, consider two states of the world, where the probability

of the first state, p, is only known to lie in the interval [0.4, 0.6]. (This will also be

the core of a convex capacity.) Assume that a financial asset X yields 1 in the first

state and −1 in the second. The MMEU model values both X and −X at −0.2. In a
Bayesian model, p would be known, and the agent would switch, at a certain price π,

from demanding X to offering it. This is no longer the case when p is not known. In

this case, assuming ambiguity aversion, there will be an interval of prices π at which

neither X nor −X will seem attractive to the agent. This may explain why people

refrain from trading in certain markets. It can also explain why at times of greater

volatility one may find lower volumes of trade: with a larger set of probabilities that

are considered possible, there will be more DMs who prefer neither to buy nor to

sell.48 The question of trade among uncertainty averse agents has been also studied in

Billot, Chateauneuf, Gilboa and Tallon (2000), Kajii and Ui (2006, 2009), and Rigotti,

Shannon, and Strzalecki (2008).

Epstein and Miao (2003) use uncertainty aversion to explain the home bias phe-

nomenon in international finance, namely, the observation that people prefer to trade

stocks of their own country rather than foreign ones. The intuition is that agents know

the firms and the stock market in their own country better than in foreign ones. Thus,

there is more ambiguity about foreign equities than about domestic ones. A Bayesian

analysis makes it more difficult to explain this phenomenon: when a Bayesian DM

does not know the distribution of the value of a foreign equity, she should have beliefs

over it, reducing uncertainty to risk. Thus, a Bayesian would behave in qualitatively

similar ways when confronting known and unknown distributions. By contrast, the

47Mukerji and Tallon (2004) survey early works in this area.
48This argument assumes that the decision maker starts with a risk-free portfolio. A trader who

already holds an uncertain position may be satisfied with it with a small set of probabilities, but wish
to trade in order to reduce uncertainty if the set of probabilities is larger.
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notion that agents are ambiguity averse may more readily explain why they prefer to

trade when the value distribution is closer to being known than when there is a great

deal of ambiguity about it.

There are many other applications of ambiguity aversion to models of asset pricing.

For example, Epstein and Schneider (2008) show that models involving ambiguity can

better capture market reaction to the quality of information than can Bayesian models

(see also Epstein and Schneider, 2010), while Gollier (2011) shows that ambiguity

aversion may not reinforce risk aversion and investigates how this may affect asset

prices. Other recent asset pricing applications include Garlappi, Uppal and Wang

(2007), Caskey (2009), Miao (2009), Ju and Miao (2010), Miao and Wang (2011) (see

also Guidolin and Rinaldi, 2011).

The MMEUmodel has also been employed in a job search model by Nishimura and

Ozaki (2004). They ask how an unemployed agent will react to increasing uncertainty

in the labor market. In a Bayesian model, greater uncertainty might be captured by

higher variance of the job offers that the agent receives. Other things being equal, an

increase in variance should make the agent less willing to accept a given offer, knowing

that he has a chance to get better ones later on. This conclusion is a result of the

assumption that all uncertainty is quantifiable by a probability measure. Nishimura

and Ozaki (2004) show that for an ambiguity averse agent, using the MMEU model,

the conclusion might be reversed: in the presence of greater uncertainty, modeled as

a larger set of possible priors, the agent will be more willing to take a given job offer

rather than bet on waiting for better ones in the future.

Hansen, Sargent, and Tallarini (1999) and Hansen, Sargent, and Wang (2002)

compare savings behavior under expected utility maximization with savings behavior

of a robust DM who behaves in accordance with the multiple prior model. They

show that the behavior of a robust DM puts the market price of risk much closer to

empirical estimates than does the behavior of the classical expected utility maximizer,

and, in particular, can help account for the equity premium. Hansen and Sargent

(2001, 2008) apply multiplier preferences to macroeconomic questions starting from

the viewpoint that, whatever the probability model a policy maker might have, it

cannot be known with certainty. They ask how robust economic policy would be to

variations in the underlying probability, and find conclusions that differ qualitatively

from classical results. See also Miao (2004), who studies the consumption-savings

decision in a different set-up.

Other (published) applications of ambiguity averse preferences include Epstein and
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Wang (1994, 1995), who explain financial crashes and booms, Mukerji (1998), who

explains incompleteness of contracts, Chateauneuf, Dana, and Tallon (2000), who

study optimal risk-sharing rules with ambiguity averse agents, Greenberg (2000), who

finds that in a strategic set-up a player may find it beneficial to generate ambiguity

about her strategy choice, Mukerji and Tallon (2001), who show how incompleteness of

financial markets my arise because of ambiguity aversion, Rigotti and Shannon (2005),

who characterize equilibria and optima and study how they depend on the degree of

ambiguity, Bose, Ozdenoren and Pape (2006), who study auctions under ambiguity,

Nishimura and Ozaki (2007), who show that an increase in ambiguity changes the

value of an investment opportunity differently than does an increase in risk, Easley

and O’Hara (2009, 2010), who study how ambiguity affects market participation, and

Treich (2010), who studies when the value of a statistical life increases under ambiguity

aversion.

As mentioned above, this list is but a sample of applications and has no claim even

to be a representative sample.

7 Conclusion

Uncertainty is present in practically every field of economic enquiry. Problems in

growth and finance, labor and development, political economy and industrial organi-

zation lead to questions of uncertainty and require its modeling.

For the most part, economic theory has strived to have a unifying approach to

decision making in general, and to decision under uncertainty in particular. It is

always desirable to have simple, unifying principles, especially if, as is the case with

expected utility theory, these principles are elegant and tractable.

At the same time, expected utility theory appears to be too simple for some ap-

plications. Despite its considerable generality, there are phenomena that are hard to

accommodate with the classical theory. Worse still, using the classical theory alone

may lead to wrong qualitative conclusions, and may make it hard to perceive certain

patterns of economic behavior that may be readily perceived given the right language.

At this point it is not clear whether a single paradigm of decision making under

uncertainty will ever be able to replace the Bayesian one. It is possible that different

models will prove useful to varying degrees in different types of problems. But even if

a single paradigm will eventually emerge, it is probably too soon to tell which one it

will be.
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For the time being, it appears that economic theory may benefit from having more

than a single theory of decision under uncertainty in its toolbox. The Bayesian model is

surely a great candidate to remain the benchmark. Moreover, often it is quite obvious

that the insights learned from the Bayesian analysis suffice. For example, Akerlof’s

(1970) lemons model need not be generalized to incorporate ambiguity. Its insight is

simple and clear, and it will survive in any reasonable model. But there are other

models in which the Bayesian analysis might be misleadingly simple. In some cases,

adding a touch of ambiguity to the model, often in whatever model of ambiguity one

fancies, suffices to change the qualitative conclusions. Hence it seems advisable to have

models of ambiguous beliefs in our toolbox, and to test each result, obtained under

the Bayesian assumptions, for robustness relative to the presence of ambiguity.
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