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EXPECTATION AND VARIATION IN MULTI-PERIOD DECISIONS 

Multi-period decisions are decisions which determine an individual's payoffs in several 
periods in the future. This paper examines the theoretical foundations of the prevalent 
weighted average assumption. More specifically, we use a multi-period interpretation of the 
famous Ellsberg paradox in decision under uncertainty to show that in many cases of 
interest additively-separable functionals (in general) and weighted average ones (in particu- 
lar) do not seem appropriate for the representation of the decision maker's preferences. 

We then suggest replacing the sure-thing principle, which may be used to axiomatize a 
weighted average functional, by a weaker version of it. Using the weakened axiom in 
Schmeidler's nonadditive measure model (reinterpreted for the multi-period context) yields 
an axiomatization of a larger class of decision rules which are representable by a weighted 
average of the utility in each period und the utility variation between each two consecutive 
periods. 

The weighted average assumption is a special case of the generalized model, a case in 
which the decision maker is variation neutral. Similarly, we define and characterize 
variation aversion and variation liking, and show an example of the economic implications 
of these properties. 

KEYWORDS: Multi-period decisions, intertemporal separability, Ellsberg paradox, sure-
thing principle, non-additive measures. 

1. INTRODUCTION 

THEREIS A LARGE CLASS of economic problems in which a decision maker is 
asked to choose one alternative out of a choice set, each of the elements of which 
determines his payoff (or expected payoff) in several periods in the future. We 
will refer to these problems as multi-period problems. 

Examples in which t h s  structure is explicit are, for instance, models of 
investment, labor planning, and all problems whlch may be formulated as 
repeated games. There are, however, many more examples in which the same 
structure is implicitly assumed. In fact, it seems that one can hardly think of a 
real life decision problem (whether under certainty or uncertainty) that may be 
satisfactorily represented as a single-period problem. (In Savage (1954), for 
instance, the individual's single choice is among acts which provide, for each state 
of nature, a complete description of the aspects of the world relevant to him at 
every point of time in the future.) 

It is assumed in most of the economic literature that there exists an instanta- 
neous utility function, u, and a long-run function, U, such that each alternative 
f = (fl, f2,. . . ) is assessed by U(u( f,), u( f,), .. .). In many cases, no restrictions 
are set upon U (apart from monotonicity, quasi-concavity and so forth). In most 
of the cases in whch U's functional form is specified, it is assumed to be a 
weighted average L,p,u( f,), where common weights are p, = (1- P)P'-' for 
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0 < p < 1, i 2 1, and p, = 1/T for I I i I T, where T is the number of periods 
under consideration. 

Such a functional is discussed and axiomatized in Koopmans (1960), and 
Koopmans, Diamond, and Williamson (1964). More general (nonseparable) 
functionals are axiomatized, discussed, and used in more recent papers. See, for 
example, Kreps and Porteus (1978), Lucas and Stokey (1984), Epstein and Zin 
(1987a and 1987b), and others. 

The purpose of thls paper is to examine the theoretical foundations of the 
separable functional form from a different viewpoint, and to provide an axioma- 
tization of a slightly more general form, whlch is quite simple and seems to be 
more suitable for some of the possible applications. 

1.1. Motivation 

It is well known that Savage's formulation of the decision-under-uncertainty 
problem may be interpreted in other ways as well: in Savage (1954) an act is a 
function from the states of the world into the set of consequences. But if one 
chooses to replace the states of the world by individuals in a population, the 
resulting problem is a social choice problem; if the states are replaced by criteria 
and the consequences by grades, we obtain a model of a multi-criteria decision 
problem; and if the "states of the world" are interpreted as points of time, we 
end up with a multi-period decision problem. 

It follows then that Savage (1954), and Anscombe and Aumann (1963), provide 
axiomatic foundations for the equivalents of the expected utility paradigm in the 
other contexts, that is to say, for the hypothesis that the relevant functional U is 
a weighted average of { ~ ( s ) ) , , ,  where S is the domain on which acts are 
defined. 

However, even in their "native" interpretation-namely, in the realm of 
decisions under uncertainty-the classical models have been seriously attacked. 
(See, for instance, Allais (1952) and Ellsberg (1961).) It is, therefore, our task to 
examine their axioms carefully before applying them to any other field of 
decision theory. 

Let us first consider a simple example: a decision maker is faced with a choice 
problem, and his decision determines his payoffs in the next four periods. At each 
period his payoff may be either high ( H )  or low (L). He has four alternatives, 
whichare(H, H, L, L) , (H,  L , H , L ) ,  ( L , H ,  L , H ) ,  a n d ( L , L ,  H, H).  Suppose 
that in some sense (which is quite vague to us at this point) the utility in each 
period receives equal weight. However, there is a certain "cost of adjustment" 
incurred by any change in the payoff level. For example, the payoffs may be the 
instantaneous utility from commodity bundles or the standard of living levels, 
and the costs are the socio-psychological costs of changing the social status. One 
may also think of a firm where the payoffs are the revenue (and profit) levels, the 
variation of which involves some organizational cost due to the changes in the 
production level. Naturally, some inventory constraints must be assumed in such 
a model. However, there are many cases in which such constraints do exist-for 
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instance, the allowable storage time may be very short compared to the periods 
under consideration. 

Of course, one may argue that the "adjustment costs" should be incorporated 
into the payoffs, complying with the classical economic approach. However, by 
doing so we may overlook the properties of the special functional form which will 
be revealed by the reduced-form model considered here. 

In these cases it seems plausible that the decision maker's preference relation 
2 would satisfy 

(where > means strict preference and - means equivalence). 
It is easy to see that such preferences do not comply with the weighted average 

hypothesis. That is, there do not exist a utility function u = (u(H),  u(L)) and a 
measure p = (p, ,  p,, p,, p,) such that the preferences discussed above may be 
explained by maximization of the integral of u with respect to p. Moreover, note 
that these preferences cannot be accounted for by either a separable functional 
with state-dependent utility function, or by a concave utility function (which may 
reflect some aspects of variation-aversion if more than two utility levels are 
considered). 

In fact, this example is mathematically equivalent to the famous Ellsberg 
paradox (Ellsberg (1961)), which challenged Savage's sure-thing principle. We 
will now discuss this principle. 

1.2. The Sure- Thing Principle 

Roughly, the principle (Axiom P2 in Savage (1954)) says that, if two possible 
acts yield the same consequences whenever an event A occurs, the preferences 
between them should be determined only by the values they assume outside A .  
Or, formally, if f ,  g, f', and g' are four acts (functions from the set of states of 
the world S to the set of consequences X), and 

f ( s )  = g(s) ,  f f ( s )  = g'(s) for all s E A, 

f ( s )  =f ' (s) ,  g ( s )  = g'(s) for all s E A'. 

Then, f 2 g iff f '  2 g'. 
In the original interpretation of the model, the principle seems almost unobjec- 

tionable: by definition, exactly one of all possible states of the world actually 
obtains, hence there cannot eventually be any situation in which the decision 
maker is affected by the consequences attached by his act to other states of the 
world. 

Of course, the principle has proved to be objectionable after all. (This is an 
empirical fact.) However, we claim that in other interpretations its foundations 
are considerably weaker to start with. Consider, for example, the social choice 
interpretation of the same decision problem discussed in subsection 1.1. Assume 
H and L represent high and low salaries, respectively, and let the domain be 
(fair-haired in city A ;  dark-haired in city A ;  fair-haired in city B; dark-haired in 
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city B). It is perfectly reasonable to assume that a central planner should have no 
bias toward either city, nor towards either hair color, but would strictly prefer 
that the poorly-paid employees will not concentrate in any single city. 

In the context of long-run decisions we have already seen that the sure-thing 
principle may not be as compelling an axiom as it purports to be in its original 
context. There is, however, a slight modification of it which seems to be a 
reasonably sound foundation for our theory. 

1.3. Variation-Preserving Sure-Thing Principle 

In the context of long-run decisions, as opposed to the other ones, there is a 
natural linear ordering on the domain of the acts: time points (or periods) are 
ordered by their very definition, while states of the world and individuals in a 
society are not. This additional structure imposed on our model allows us to 
reject the sure-thing principle as formulated, without renouncing the gist of its 
essence. 

Let us consider the example of subsection 1.1 once more. The prospect 
(H ,  H,  L,  L )  is preferred to (L,  H, L, H), but if we replace the payoffs in 
periods 2 and 3 by (L, H),  we obtain the prospects (H,  L, H, L )  and 
(L ,  L ,  H, H), respectively, with the latter preferred to the former. One may 
observe that the replacement of (H,  L )  by (L,  H )  in periods 2 and 3 is biased in 
a certain sense: it increases the variation of (H,  H, L,  L )  but decreases that of 
(L,  H,  L,  H) .  If the variation of the acts should play any role in our theory, there 
is no reason to wonder at the preference reversal. But if we restrict ourselves to 
such changes which do not affect the variation asymmetrically, we may expect the 
principle to hold. 

A simple way in which we can assure that changing f to f' will have the same 
effect on the variation of f as changing g to g' will have on that of g is to restrict 
the scope of discussion to changes over time intervals on the edges of which f 
and g coincide. The weaker axiom which results will be called variation-preseru-
ing sure-thing principle. It is easy to see that it allows the preference reversal of 
subsection 1.1, since the time interval under discussion (periods 2 and 3) does not 
satisfy our additional condition: on its edges (periods 1 and 4) the two relevant 
acts ((H, H,  L,  L )  and (L, H, L,  H))  do not coincide. 

1.4. A Description of the Model and the Results 

We will use the framework of Anscombe and Aumann (1963) rather than that 
of Savage (1954), since it allows for a finite domain and a denumerable one with 
a continuous measure. Our whole discussion will, in fact, be restricted to these 
two cases. (The generalization to continuous time, for instance, meets the 
difficulties of axiomatizing measurability and continuity of various functions 
which are endogenous in the model. The author is not aware of any set of 
reasonably intuitive axioms which may guarantee the desired technical properties.) 
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Since we reject the sure-thing principle, we cannot adhere to the Anscombe- 
Aumann model; we therefore turn to its generalization suggested by Schmeidler 
(1982, 1986) using the concept of nonadditive measures. On this basic model we 
impose the variation-preserving sure-thing principle and, roughly, we obtain the 
following result: 

There are a utility function, u, and two functions, p and 6, on the set of 
periods {s,, s,, . . . ,s,), such that the preferences relation is represented by the 
functional 

(with an appropriate definition of u( f(s,))). That is to say, there exists an 
"intrinsic weight" p(si) to each period si, and the first element in the summation 
is the expected utility with respect to the measure p( . ) .  The second element for 
each period si is an extra cost/bonus incurred by the mere variation of the 
function u( f(.)I. 

A precise formulation and a proof of the representation theorem are to be 
found in Section 2. The extension to an infinite horizon is contained in Section 3. 
A by-product of this section is a characterization of continuous measures in 
Schmeidler's model, and a proof that the Choquet integral (see Choquet (1955)) is 
continuous in the appropriate sense. 

Given the functional form (for a finite or infinite horizon), one may ask what 
an individual's attitude is towards variation. Indeed, it turns out that we may 
define and characterize the notions of variation aversion, variation neutrality, and 
variation liking. This is done in Section 4. 

Finally, Section 5 provides an example of the implications of our model. It 
shows that even if two "identical" individuals play a repeated zero-sum game, the 
super game need not be zero-sum-that is, such two individuals may have a 
positive surplus of cooperation. 

2. THE MODEL AND THE FINITE-HORIZON REPRESENTATION THEOREM 

2.1. Schmeidler 's Model and Result 

Let X be a nonempty set of consequences and let Y denote the set of 
finite-support distributions over X ("lotteries"): 

Y =  iy :  X+ [O,l]ly(x) # Oforonlyfinitelymanyx'sin X 

and E y ( x )  = 1 
x c x  

Let S be a nonempty set of points of time and let 2 be an algebra of subsets of 
S. We will define F, the set of acts, to be a subset of the functions from S to Y,  
including all the constant functions. We assume that a binary (preference) 
relation 2 is given on F such that F is exactly the set of all 2-measurable 
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bounded functions with respect to t : given tcF X F we define 2 c Y x Y 
by identifying a lottery y in Y with the constant act which assumes the value of y 
over all S. As usual, > and - are defined to be the asymmetric and symmetric 
parts of 2 , respectively. An act f E F is 2-measurable if {sl f ( s )  +y ),{sl f ( s )  2 
y )  E 2 for all y E Y. We may then assume that 

F= { f :  S + Ylf is 2-measurable and there are yf, *,E Y such that -

Linear operations are performed on F pointwise. Two acts, f ,  g E F, are 
comonotonic iff there are no s, t E S for whch f ( s )  +f ( t )  and g(t) > g(s). 

Schmeidler's axioms are: 

A.l WEAK ORDER: 2 is complete and transitive. 

A.2 COMONOTONIC Iff, g, h E Fare pairwise comonotonic and INDEPENDENCE: 

aE(O, l ) ,  then f k g z f a f + ( l - a ) h t a g + ( l - a ) h .  


A.3 CONTINUITY:Iff, g, h E Fsatisfy f + g + h then there are a ,  /? E (0,l) such 
that 

a f + ( l - a ) h + g > / ? f + ( l - P ) h .  

A.4 MONOTONICITY:Iff, g E F satisfy f (s)  2 g(s) for all s E S, then f 2 g. 

A.5 NONDEGENERACY:There are f ,  g E F such that f + g. 

Note that A.l-A.3 imply that 2 satisfies the von Neumann-Morgenstern 
(1947) axioms on Y. 

Axiom A.2 deserves comment. In Anscombe and Aumann (1963), it was 
assumed in a stronger form, without the comonotonicity condition. Their theo- 
rem proves that such a preference relation is representable by expected utility 
maximization. Hence, it satisfies the sure-thing principle, which is too restrictlve 
for our theory. 

The following example illustrates why Anscombe-Aumann's original Axiom 
A.2 is incompatible with some of the preference patterns we would like to 
explain, and why the weaker version suggested above seems more appropriate. 
Suppose we have a four-period model, and for any two instantaneous expected 
utility levels, L < H, the preferences over acts satisfy, as in the example given in 
the introduction. 

( L ,  L ,  H, H )  - ( H ,  H,  L ,  L ) * ( L ,H, L ,  H )  - ( H ,  L ,  H ,  L ) .  
Suppose further that, for acts f ,  g, and h, 

E u ( f )  = (20,20,0,0), 

E U ( ~ )= (20,0,20,0), and 

Eu(h)  = (-20,0,0,20). 
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For a = 1/2, we obtain 

Eu(af  + (1 - a ) h )  = (0,10,0,10) 

and 

Eu(ag  + (1 - a ) h )  = (0,0,10,10). 

The preference relation we have chosen satisfies f > g but ag  + (1 - a)h > af + 
(1 - a)h,  so it violates the original (and stronger) version of A.2. 

It can be easily seen that f ,  g, and h in this example are not pairwise 
comonotonic. Moreover, the mixing of f with h increases the number of maximal 
length intervals on which f is monotonic (from 1 to 3) while it decreases the 
corresponding number for g (from 3 to 1). However, if we require that f ,  g, and 
h be pairwise comonotonic, the mixing with h cannot have this asymmetric affect 
on the monotonicity of f and g and the weakened independence axiom which 
results is a reasonable one. 

We now define a (nonadditive) measure u on (S, 2 )  to be a function 
u: 2 L:-, [O,1] which satisfies: 

(i) u ( 0 )  = 0;  u(S)  = 1 ;  
(ii) A C B C S * U ( A ) I U ( B ) .  

For a E-measurable and bounded real function +: S -t R, the (Choquet) 
integral of + (on S )  with respect to u is 

(where the integrals on the right side are Riemann's). When no confusion is likely 
to arise, the subscript, S, will be omitted and we will denote the integral simply 
by /+do. 

Note that for an additive u the Choquet integral coincides with the usual 
(Lebesgue) one. 

We now quote: 

SCHMEIDLER'STHEOREM:2 sat is jk A.l-A.4 if there are an afJine utility 
u: Y L:-, IW and a measure u on (S, 2 )  such that 

Furthermore, if A.l-A.5 hold, then u is unique up to a positive linear transforma- 
tion ( p.1.t.) and u is unique. 

2.2. The Model 

We now introduce additional assumptions. First of all, we assume that there 
exists a linear order >> defined on S. This is, of course, the "later than" relation 
defined on points of time. Next we assume (until Section 3) that S is finite and 
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that 2 = 2S. Without loss of generality, we assume that S = { s i ) ~ = ,where 
s,,, >> si for 1 r i s n - 1. We extend >> to subsets of S as follows: for A cS 
and s € S ,  s >> ( << ) A  if s >> ( < )t for all t E A. Similarly, for A ,  B c S ,  
B >> (<<)A if B >> ( < ) t  for all t E A .  A, B C S are separated if 3 s ~ Ssuch 
that A<s<< B or B<s<<A. 

A subset A c S is an interval if there are 1r i ,  j r n such that A = { s ,  E SI 
i I k I j ) .  In this case, A will also be denoted simply by [s,, s,]. 

Unless otherwise stated, we will assume that t satisfies A.l-A.5 and refer to 
u and u provided by Schmeidler's theorem. Furthermore, without loss of general- 
ity, we assume that sup{ u( y )  ly E Y )  > 1 and inf{ u( y )  ly E Y )  < 0, and for each 
a E [0, I ] ,  we choose y, E Y such that ~ ( y , )= a. 

For convenience, extend any act f to the domain S u { s o ,  s,, ,) by f ( s o )  = 

f (s,, ,) =yo for all f E F. (We assume also that s,, , >> S B so.) 
We may finally formulate: 

A.6 VARIATION-PRESERVING PRINCIPLE: = [s , ,  s,] SURE-THING Suppose that A 
with 1 I i I j I n ,  and that f ,  f ' ,  g, g' E F satisfy 

f ( s )  = g ( s ) ,  f ' ( s )  = g f ( s )  for alls G A ,  

f ( s )  = f f ( s ) ,  g ( s )  = g ' ( s )  for all s E Ac, 

and 

f ( s , ) = g ( s , ) = f ' ( s , ) = g ' ( s , )  for k = i - 1 ,  j + l .  

Then f tg iflf' 2 g'. 

THE MAIN THEOREM: satisjib A.6 if there are p, 6: S -+ H such that 

(i) p ( s , )  2 16(s,) I + I6(s,+,)I f o r i < n ,  

p ( s , )  2 (S (s , )  1, and 6 ( s , )  = 0, 

and 

(ii) / u ( f )  do= [ p ( s , ) u ( f ( s , ) )  + a ( s i ) I u ( f ( s i ) )  - u ( f ( s i - i ) )  I ]  
i = l  

for all f E F. 

Moreover, if A.6 holds then p and 6 are unique. ( I t  will also be clear from the 
ensuing analysis that A.6 is independent of the other axioms.) 

2.3. Proof of the Theorem 

Let us first assume A.6 holds. The main steps in the proof are the following: 
First we show that the nonadditive measure, provided by Schmeidler's theo- 

rem, has some additive measure properties with respect to the union of separated 
and overlapping intervals. Next we show that, using these properties, one has 
only (2n  - 1 )  degrees of freedom in determining u, as opposed to n degrees of 
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freedom for an additive measure on the one hand, and 2" - 2 degrees of freedom 
for a general nonadditive measure on the other hand. We then provide a 
relatively concise representation of the nonadditive measure v. Finally, we prove 
that the Choquet integral with respect to it also assumes a simple form which is, 
basically, the functional form we axiomatize. 

We begin with the following lemma. 

LEMMA1: Suppose A,  B C S are separated. Then 

u ( A  u B )  = u ( A )+ u ( B ) .  

PROOF: Suppose, without loss of generality, that A -e< s << B. Now assume 
that there exists C c S such that: (i) C >> s; (ii) C n B = cp; and (iii) u ( B U C )> 
u(B) .  

Let cu = u ( B ) / v ( BU C ) and define f,, f,, f,, g,, g,, g, E F as follows: 

Y,, 	 t E  B ,  ya, t E B U C ,  
otherwise, l t = ( yo otherwise, 

Y,, t E B ,  ~ E A u B U C ,
f 2 ( t )= IYa, t € A ,  ( ) = ( otherwise, 

yo 	 otherwise, 

and 

Y,,
Yl ,  	 t € B U A ,  

= y o  otherwise, 
g , ( t )  = IY,, t E B  U C ,  

yo otherwise. 

Since l u (  f,) du = l u ( g l )  du, we obtain f l  - g,. By A.6, f ,  - g, and g, - g, 
must also hold. Hence ju( f,) du = ju(g,) dv and ju( f,) dv = ju(g,) dv. The first 
equality implies 

(1 - a ) u ( B )+ a v ( A  u B )  = a v ( A  U B U C )  

and the second one yields 

U ( AU B )  = (1 - ( Y ) u ( A )+ ( Y V ( A UB U  c ) .  
Hence 

U ( Au B )  = (1 - cu)u(A)+ (1 - a ) u ( B )+ a u ( A  u B ) ,  

whence 
u ( A  u B )  = u ( A )+ u ( B ) .  

We now turn to the case in which there does not exist a subset C as required. 
We define S ' =  S U { s * )  and >>' on S'U { so ,  s,,,) by s,,, >>'s* >>' 
$,>>I... >>'s1>>'s0. 

For A c S', let ul (A)= u ( A n S ) + &I{,,,,) for a fixed E > 0. Now let F' = 

{ f :  S' -+ Y )  and define 2' on F' by I+(.) du'. By Schmeidler's theorem, 2' 
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on F' satisfies Axioms A.1-A.5. However. it also satisfies A.6 since 

Ly(f )  du' = k(f)du + u ( f ( s * ) ). r  for f s  F'. 

Considering A and B as subsets of S', there exists C = { s * )which satisfies our 
conditions. Therefore v'(A U B ) = u f ( A )+ u'(B). But s* E ( A U B)C and our 
conclusion follows. Q.E.D. 

By Lemma 1 we know that u is completely determined by its value on the 
intervals (since any A c S is the disjoint union of finitely many separated 
intervals). As there are (" '1 intervals, there are no more than (" i l )degrees of 
freedom in specifying u. However, the next lemma proves that this upper bound 
is not the best one one may obtain: 

LEMMA2: Let A  and B  be two intervals such that A  n B # 0 . Then v ( A  U B ) + 
U ( An B ) = U ( A )+ u ( B ) .  

PROOF: If A c B or B c A, the lemma is trivial. Assume, then, without loss of 
generality, that A = [si,s,] and B = [s,, s,] where I I i < k <j < I I n. As in the 
previous lemma, we first assume that there exists a subset C c [s,,,, s,] such that 
v ( B n C )> v ( B ) . In this case, let a E [O,1) satisfy u ( B )= (1- a ) u ( An B ) + 
a u ( B U C ) and define fl,f2 ,  f,, gl, g2, g, E F by: 

iYl, t E  B ,  

f 2 ( t )= Y,, t  E A  - B ,  


yo otherwise, 


Yl, t E A n B ,  


Y,, t E ( B-A )  u ( A- B )  u C ,  


yo otherwise, 


and 

Yl, t E B U - 4 ,  
g , ( t )=  y,, t € ( B - A ) U C ,( ) = y o  otherwise, iY l ,  t E A ,  

yo otherwise. 

Since l u ( f l )  du = v ( B )= (1- a ) u ( An B ) + au(B U C )= ju(gl)  du, fl - gl 
and A.6 implies that f2 - g2 and f ,  - g,. By ,I'M( f,) du = l u ( g 2 )  du we obtain 

( 1- a ) u ( B )+ a u ( A u B )  = (1- a ) u ( An B )  + a u ( A u B u C )  
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and the equality lu(  f,) du = ju(g,) du yields 

u ( A U B ) = (1 - a ) u ( A )+ a u ( A U B U C ) .  

Combining the equalities we get 

where a < 1. 
In case no such event exists, one may proceed as in Lemma 1 to complete the 

proof. Q.E.D. 

Note that in view of this last lemma, u is completely determined by its value 
on intervals of length 1and 2. Hence there are no more than (2n - 1) degrees of 
freedom in specifying u. We will now proceed to represent u in a simple way 
which will suggest an intuitive explanation of the (2n - 1) parameters. 

LEMMA3: There are functions j ,  8: S -+ H such that: 

Furthermore, these two functions are unique. 

PROOF: Let us first define the functions: set 8(s1) = 0, j ( s l )  = ~({s , ) ) ,  and 
for 2 I i I n define 

and 

It is obvious that j and 8 satisfy conditions (i) and (ii), and that they are the 
only pair of functions satisfying: 

We need only show that j and 8 also satisfy condition (iii). We use induction 
on 1. For 1 = 1 and 1 = 2 we use (1) and (2), respectively. Assuming correctness 
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for 1- 1, Lemma 2 yields 

Q.E.D.  

Now we have the following lemma. 

LEMMA4: For any f E F, 

(where x + =  max(x,O) for x ER). 

PROOF:For a given f E F, let a: (1,. ..,n )  + (1,. ..,n )  be a permutation 
such that u( f (s,(,)))2 u( f (s,(,+ ,,)) for 1I i I n - 1. By the definition of the 
Choquet integral: 

Q.E.D.  
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Now we may also prove the following lemma. 

,.
LEMMA5: For any 12 2, j(s,-,) 2 8(si) 2 - j (s , )  and for i In - 1 6(s,) + 

j ( ~ i )2 6^(s,+1>. 

PROOF: This result follows from the monotonicity axiom (A.4) and Lemma 4. 

We will now prove the main theorem. Let us define the functions p and 6 by 

6(s,) = (1/2) 8(s,) for i 5 n 

and 

p ( s , ) = j ( s , ) + ( ~ / 2 ) ( 8 ( s , ) - 8 ( s i + l ) ) for i s n  

(with 8(s, + ,) = 0 by definition). 
Let us first show that these funct(ons satisfy our conditions. Consider condi- 

tion (i). Obviously, 6(s1) = (1/2)6(s1) = 0. To see that p(s,) 2 l6(s,)l + 
IS(s,+,)l, one only has to use the definition of p and S and Lemma 5. Next 
consider condition (ii). Since x + =  (1/2)(x + 1x1) for all x E R,  Lemma 4 com- 
pletes the proof. 

Conversely, we have to assume that there are p and 6 as required, and prove 
that A.6 holds. However, this is quite easy. 

3. EXTENSION TO AN INFINITE HORIZON 

Let us now suppose that S = {s,li E N )  where s, << si+,, and retain all other 
assumptions and definitions. 

In the case of an infinite S, questions of continuity quite naturally arise. If 2 is 
a a-algebra, we will say that a measure u is continuous if, whenever B, c B,,, c S, 
lim,,, u(B,) = v(U,,,B,) and whenever S r ,  B, 3 B,,, we have lirn,,, v(B,,) 
= U(~,,,B,).  

In our case, 2 = 2S is a a-algebra, and it makes sense to ask when u is 
continuous. Our interest in this problem is not merely a matter of curiosity. We 
cannot expect to have a "neat" presentation of the Choquet integral as an infinite 
series-unless u is continnous. 

So let us define a topology on the sets of acts F. We define it by the following 
notion of convergence: Let { f, ), ,,cF and f E F. We say that { f, ), ,, mono-
tonically converges to f if the following two conditions hold: 

(i) There is a sequence {A,),,, C 2 for which A, c A,,, and U,,,A, = S ,  
such that f,(s) = f (s )  for s EA,. 

(ii) Either f,(s) 2f,+,(s) tf (s )  for all n 2 1 and s E S, or f (s )  2 f,+,(s) 2 
f,(s) 	 for all n 2 1and s E S. 

We now introduce another axiom: 

A.7 (TIME CONTINUITY): 	 monotonically converges to f andSuppose that { f,) 
that f > g(g > f ). Then there exists an n 2 1such that f, > g(g > f,). 
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The following lemma applies to Schmeidler's model whenever 2 is a o-algebra 
(and does not depend upon the denumerability of S or the strict order (>>) 
defined on it): 

LEMMA6 :  Suppose A.l-A.5 hold. Then A.7 is satisfied iff v is continuous. 

PROOF: First assume A.7 holds. Suppose that B, c B,+,(B, E 2) and let 
B = UnZ1B, .Let A ,  = B, u BC,and 

yo otherwise, yo otherwise. 

By A.7, /'u( f,) du + ,,,/'u( f )  du, hence u(B,) + u ( B ) .  
Now, consider the case B, 3 B,, ,(B, E 2)and denote B = n, ,,B,. Let A ,  = 

B U B; and define { f, ), and f as above. Again, { f, ), monotonically converges 
to f and the result follows. 

Now assume v is continuous, and that there are f ,  { A , ) ,  ,,and { f, ), ,,as 
required by A.7. (I.e., { f,),., monotonically converges to f and f, =f on A,.) 
We need only show that /'u( f,) dv +,,, /'u( f )  du, that is, that the Choquet 
integral is continuous with respect to monotonic convergence. 

Since f and f ,  are bounded, the whole sequence { f,), .,u { f ) is uniformly 
bounded. Without loss of generality we may assume that it is bounded by y, and 
yo, hence / 'u(f ,)  du = j,'u({slu( f ,(s))  > t ) )  dt for all n 2 1 and /'u( f )  du = 

/ 'o 'u({s lu( f (s>>> t ) )  dt. 
Suppose f ( s )  tf,+ ,(s) tf ,(s)  for all n 2 1 and s E S.  (The other case, namely 

f , (s)  tf,+,(s) tf ( s ) ,  is proved symmetrically.) For every t E [O, 11, 

and 

U { S I U ( ~ , ( S > )> t )  = { s I ~ ( ~ ( s > > > 4 .  
n t l  

Hence, u({sl  u( f,)) > t )) +, ,,v({s l  u( f ( s ) )  > t )) monotonically. Since [O,1]is 
compact, u({sl  u ( f , ( s ) )  > t )) uniformly converges (as a function of t )  to 
v ( {  s 1 u( f ( s ) )  > t 1).This implies that /'u( f,) du +, ,,/'u( f ) dv. Q.E.D. 

We may now prove the following Theorem. 

THEOREM2: Assume 2 satisfies A.l-A.5. Then A.6 and A.7 hold iff there are 
p,S: S +R such that: 

(1) p ( s i )  > J S ( s , )  )+18(s ,+,)  I f o r i 2  1 and S ( s , )  = O .  
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PROOF: For the "only if '  part, let p and S be defined as in the proof of the 
main theorem. Let there be given f E F and assume, without loss of generality, 
that y, tf ( s )  tyo for all s E S. Define A, = {s,(iIn } and 

s A,, 

yo otherwise. 


BY A.7, lu(f,) du +,,, ju ( f )  do. But lu(f,) dv = C:=l[p(s,)u(f(s;)) + 
S(s,)lu( f(s,)) - u( f(si-,))I] and (ii) follows. Hence (i) is also valid as in 
Lemma 5.  

Now let us prove the "if" part. A.6 is proved as in the main theorem. To see 
that A.7 holds as well, one only has to notice that since the series in (ii) converges 
for all f E F, v is continuous. Q.E.D. 

4. DEFINITION AND CHARACTERIZATION OF VARIATION AVERSION 

In this section we will assume that n 2 3 (or n = oo) and that on top of 
A.l-A.7, the following strong monotonicity axiom is satisfied: 

AS* (STRONG MONOTONICITY): For f ,  g E F, iff (s)  2 g(s) for all s E S and 
f ( s )  > g(s)  for some s E S, then f + g. 

Note that A.5* implies that p(s,) > 0 for all i. 
We will say that 2 is variation averse if the following condition holds: for all 

f,, f,, gl, gZ E F and i 2 2, if: 

(ii) fl(sj) =f2(sj) and gl(sj) = g,(sj) for all j f i ,  

(iii) f, - g,, and 

(iv) f l (s i)  kf l(s i- l ) ,  fl(s1+l); gl(s;) tgl(s;+l), and gi(si-1) tgz(s;), 

then g, > f,. 
That is to say, if f, - g, and we improve both of them on si (to the level 

f2(s,) = g2(s1)), but f,'s variation has increased while that of g, has remained 
constant, then the modified f, (namely, f,) is less preferred than the modified g, 
(which is g,). 

THEOREM3: Let 2 satisjj A.l-A.7 and AS*. Then 2 is variation averse iff 
S(s,) < 0 for all i 2 2. 

PROOF: First suppose that 2 is variation averse. Let us use the functional 
form of Lemma 4 (rather than that of the main theorem-or Theorem 2-itself) 
and show that 8(s,) < 0. For a fixed i 2 2, choose 0 < y < a < j3 < 1 such that 



1168 ITZHAK GILBOA 

( P  - f f ) ( & ~ , - ~ )  = yj(s,+,). Now define + j ( ~ ~ - ~ ) )  

y,, j = i , i - 1 ,  yo, j = i - 1 ,  

gl(sj) = iY,, j =  1 ,  
yo otherwise, yo otherwise, 

and 

yp, j= i, yo, j = i - l , i ,  
f2(sj) = y,, j = i + l ,  gz(sj) = yo otherwise. 

(yo otherwise, 

The numbers were chosen in such a way that Ju(f,) dv = lu(gl)  dv. qence, by 
variation aversion, g, +f2. However, Ju(g,) dv - Ju(f2) dv = - ( P  - a)S(si) > 0. 
Hence, 6^(s,) < 0, whch also implies 6(s,) < 0. 

On the other hand, if 6(si) < 0 for all i 2 2, 2 is obviously variation averse, 
and the proof is complete. Q.E.D. 

The definitions and characterizations of variation liking and variation neutral- 
ity are, of course, very similar and will not be given here in detail. 

5 .  AN EXAMPLE 

Consider a zero-sum two-person game played infinitely many times by two 
players who are identical as regards their assessments of future payoffs. That is to 
say, there exists a single functional U(u,, u,, . . . ) such that U(ur(zl), ur(z2), . . . ) 
represent player I ' s  utility if the outcome of the ith stage is z,, and 
U(urr(zl), uU(z,), . . .) represents player I I ' s  utility. 

In the classical model, U(ul, u,, . . . ) = C?= lpiu,. Hence the super-game itself is 
also zero sum and any pair of strategies is Pareto optimal. However, if the two 
players are not variation neutral, U is no longer a linear functional and this claim 
is no longer true. Since Iur(zi)- ur(z,- l)  1 = Iurr(zi)- urr(zi- l)  1 for any stage i 
and outcome vector (z,, z,, . . .), it may be the case that replacing (z,, z,, . . .) by 
(z;, z;, . . . ) will strictly increase or decrease both players' utility levels. Similarly, 
two identical agents with linear instantaneous utility function in a single com- 
modity economy (without production) may benefit from trade. 

J. L. Kellogg Graduate School of Business, Northwestern University, Evanston, I L  
60201, U.S.A. 

Munuscript received May, 1987;jnul revision received February, 1989. 
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