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Acts are functions from the set of states of the world into the set of consequences. Savage 
proposed axioms regarding a binary relation on the set of acts which are necessary and sufftcient 
for it to be representable by the functional gu(.)dP for some real-valued (utility) function u on 
the set of consequences and a (probability) measure P on the set of states of the world. The 
Ellsberg paradox leads us to reject one of Savage’s main axioms - the Sure Thing Principle - 
and develop a more general theory, in which the probability measure need not be additive. 

1. Introduction 

The problem of ‘subjective’ (or ‘personalistic’) probability, which is at the 
root of Bayesianism, has aroused interest since the early works of Bayes. The 
research on subjective probability attained new momentum with the works of 
F.P. Ramsey and B. De Finetti. However, the most convincing and well- 
known axiomatization of subjective probability was given by Savage (1954). 
He started with a preference relation over acts (i.e., functions from the states 

of the world into the consequences), in order to end up with a utility 
function and a probability measure, such that the individual’s decisions are 
being made so as to maximize the expected utility. 

However compelling Savage’s axioms and results are, they are not immune 
to attacks. The following example is due to Ellsberg (1961): Suppose there 
are two urns, each one containing 100 balls. The balls may be either black or 
red. Urn A is known to contain 50 black balls and 50 red ones. There is no 
information whatsoever about the number of black (or red) balls in urn B. 
You are now asked to choose an urn and a color, and then to draw a ball 
from the urn you named. (Of course, you are not allowed to see the balls in 
the urn when choosing one of them.) If the ball you draw will be of the color 
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you have chosen, you will gain $10. Otherwise you will not gain anything. 
What will be your choice? 

It has been claimed that, while most people are indifferent with respect to 
the color they bet on, they are not indifferent with respect to the urn they 
choose. For instance, a ‘reasonable’ preference relation would be to strictly 
prefer any bet (red or black) on the urn in which ‘probabilities are known’ 
over any bet on the other urn. (Note that no ‘objective’ or ‘physical’ 
probabilities are known in either case.) It is easy to see that such a decision- 
making pattern violates Savage’s ‘Sure Thing Principle’ [axiom P2 in Savage 
(1954)]: The decision maker has four possible acts to be denoted by AR, AB, 

BR, BB: (AR - betting on a red ball drawn from urn A; AB - betting on a 
black one, etc.). Each act has two possible consequences (a gain of $10 or $0) 
and we have four states in the world: sRR: a ball drawn from either urn will 

turn out to be red; sRB: a ball drawn from urn A will be red, while a ball 
drawn from urn B will be black; and ssR, sss are defined symmetrically. 

We thus have the following table which specifies the acts as functions from 
states of the world into the numerical prizes: 

AR 10 10 0 0 
AB 0 0 10 10 
BR 10 0 10 0 
BB 0 10 0 10 

Now, let C be the event {sRR,sBB}. Then we have 

AR(s)= BR(s) and AB(s)=BB(s) for SEC 

and 

AR(s)= BB(s) and AB(s)=BR(s) for SE Cc. 

Savage’s Sure Thing Principle implies that the preference relation over acts 
( 2) must satisfy 

AR2 BRoBBz AB 
,- 

while for the preference relation discussed above we have 

AR-AB>BB-BR 

(where > and - are defined as the asymmetric and symmetric parts of 2, 

respectively). 
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One can also directly verify that no additive probability measure may 

explain these preferences. However, if we allow the measure u to be non- 
additive, as suggested by Schmeidler (1982 and 1984) we may have 

but 

such that the expected value of acts AR and AB is 5 while that of BR and 
BB is zero. (The way in which expectation is computed when the probability 
measure is not necessarily additive will be discussed in the sequel; for the 
time being we may consider the last statement as a requirement which the 
new definition of expectation will have to satisfy.) 

Roughly speaking, in this paper we shall replace the Sure Thing Principle 
by weaker axioms, which will allow for non-additivity of the measure, thus 

explaining the Ellsberg Paradox. 
Although this was not the primary motive for developing the non-additive 

expected utility theory, it turned out that Schmeidler’s model may also 
explain some of the ‘paradoxes’ or counterexamples to the von Neumann- 
Morgenstern (1947) expected utility theory, which have already stimulated 
many studies of various generalizations of expected utility theory. Some of 
the latest of these studies (most of which are in a purely objectivistic context) 
such as Quiggin’s (1982), Yaari’s (1984) and others, lead to results that are 
special cases of the non-additive theory. 

Schmeidler’s works provide an axiomatization for expected utility maxi- 
mization, where the probability measure is not necessarily additive, in the 
framework of Anscombe and Aumann (1963). Their model, as opposed to 
Savage’s, involves both ‘objective’ (‘physical’) and ‘subjective’ probabilities, 
while only the latter are derived from a preference relation over acts (‘Horse 
Lotteries’), and the former are primitives of the model. This model is 
mathematically simpler than that of Savage, but it has the drawback of using 
the controversial concept of ‘objective’ probabilities. 

This paper is the non-objectivistic counterpart of that of Schmeidler: it 
axiomatizes expected utility maximization with a non-additive subjective 
probability in a Savageian spirit. That is to say, it does not presume the 
existence of ‘physical’ probabilities with respect to which one may ‘mix’ 
lotteries, satisfy the von Neumann-Morgenstern independence axiom and so 
forth. The connections among the models will be clarified by the following 
table: 
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Objective and subjective 
probabilities 

Only subjective 
probabilities 

Additive probabilities 

Non (necessarily) 
additive probabilities 

Anscombe-Aumann (1963) 

Schmeidler (1982) 

Savage ( 1954) 

The paper you’re 
now reading 

(The lower row models are generalizations of the respective upper row ones.) 

Mathematically speaking, there is a great difference between the right and 
the left columns of the table, since the mathematical objects involved in them 
are quite different, whereas there is a considerable similarity in the nature of 
the mathematical work within each column. However, it should be pointed 
out that this paper, although constantly comparing itself to that of Savage, 
differs significantly from the latter. In fact, almost none of Savage’s results 
were proved applicable, and even the fundamental von Neumann- 
Morgenstern expected utility theorem (1947), which is at the basis of all three 
existing theories, could not be used here. 

The paper is organized as follows: Section 2 deals with some preliminaries, 
namely: the framework of the model and some useful definitions; The 
Choquet integral; Savage’s theorem (for comparison purposes) and Statement 
and brief discussion of the axioms for the non-additive theory. Sections 3 and 
4 contain the proof of the main representation theorem. In section 3 the 
probability measure is almost constructed, or rather, something that is 
almost a measure is constructed. Section 4 develops the utility theory, by 
defining a utility function and proving some representation theorems. One of 

the stages is, of course, the completion of the construction of the measure. 
However, the distinction between these sections, which is undeniably some- 
what arbitrary, is based on their subject-matter: section 3 goes as far as the 
theory proceeds without mentioning the word ‘utility’, and there begins 
section 4. 

Note. Additional results regarding the independence of the axioms and the 
continuity of the measure are to be found in Gilboa (1985). 

2. Preliminaries 

2.1. Framework and definitions 

Let S be the set of states of the world, X the set of consequences, and 
F = (f: S-+X> the set of acts. Subsets of S will be called events. For J g E F 

and A c S we will define f/z to be the element of F satisfying: 

f/5(s) = f(s) \J s E A’, f/;(s) =g(s) V s E A. 
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For x E X we will define x E F to be the constant act: 

x(s)=x VSES. 

Since no confusion may result, we will not distinguish between the notations 
of the two entities (the consequence and the act). 2 will denote a binary 
relation over F: 2 c F x F, to be interpreted as the preference relation. 

(>,5,<,-) are defined in the usual way. An act assuming only finitely 

many values is said to be a simple act or a step function. 

We will use the following: 

Notation. For x1 > x1 > ... >x,(x,~X) and 4=A,cA,cAzc ... CA,=& 

(x,,A,; x,,A,;...; x,, A,) denotes the simple act f satisfying 

f(s)=xi VSEAi_Ai_,, _ _ 1 liln. 

Using this notation will henceforth presuppose that x1 >x2 > ... >x, and 

A,cAzc ... CA,. That is to say, any statement involving the act 

@,,A,;...; x,, A,) should be read as follows: ‘x1 > ... > x,, A, c ... c A,, 

and . . .‘. 
A set function u:~~+R will be called a measure iff it satisfies 

(i) EcF=w(E)~u(F), 

(ii) 44) = 0, o(S) = 1. 

If not explicitly stated, a ‘measure’ is not assumed to be additive. A measure 
u is said to have a convex range if for any B c A c S and any a E [0, 11 there is 
an event C, B c Cc A, such that 

u(C) = cw( B) + ( 1 - c()v( A). 

A real function over X will be called a utility. 
Two acts f; gE F are said to be comonotonic iff there are no s, t E S such 

that 

f(s) > f(t) and g(s) <g(r). 

An event A will be said to be jkonuex for an act f, iff the following 
condition holds: 

For any s, t E A, r E S such that f(s) <f(r) < f(t), it is true that r E A. 

2.2. The Choquet integral 

The introduction of non-additive probabilities poses some difficulties. First 
of all, the integration w.r.t. (with respect to) such (probability) measures is 
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not well-defined: Consider a constant function over [n, b] c R, and note that 
the partial Riemann sums (which are all supposed to equal the integral) 
depend upon the specilic partition of the domain. Straightforward definitions 
of the integral (such as summation over maximal sets, on which the 
integrand is constant) are bound to face problems of non-monotonicity 
and/or discontinuity of the functional. It turns out that the natural integral 
for the non-necessarily additive measures is the Choquet integral, defined as 
follows: Let S be the domain of the integrands, and v - a measure on S. The 
integral of w:S+R w.r.t. u (over S) is defined to be 

~wdv=~v({+(s)Lt})dt- ; [v({sjw(s)~t})-l]dt. 
0 -UZ 

(*) 

This integral was defined in Choquet (1955) and is used and discussed in 

Schmeidler (1986). In this paper the symbol J w dv will always stand for this 
functional. 

Note that, since the integrands in the two extended Riemann integrals in 
(*) are monotone functions, the Choquet integral always exists, which is a lot 
to ask of an integral. 

A useful definition will be the following: the utility u and the measure v are 
said to constitute an Integral-Representation (IR) of 2 over Fc F, iff 

2.3. Savage’s theorem 

To formulate Savage’s theorem, one has to cite the axioms and definitions 
involved in it: [The symbol Pn( 15 n 5 7) denotes an axiom.] 

PI. 2 is complete and transitive. 
P2. (Sure Thing Principle). For all f, g, h,, h, E F and any A c S, 

Definition. If f/jczg/jc for some (e all by P2) hE F, we shall say that f 2g 
given A. 

Definition. If for all f, gc F, f zg given A, A will be said to be null. 

P3. If AcS is not null, then for all f EF; x,y~X, 
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P4. For all x1, y,, x2, y,,~x and all A, BcS, 

(x,,A;y,,S)~(x,,~;~,, S) iff (x,,A;y,,S)~(x,,B;y,,S). 

(Recall that the above notation presupposes that x1 >y,, x2 >y2.) 

Definition. If for some (0 all by P4) x,y~X, (x, A;y,S)Z(x, B;y,S) then 
A2.B. 

P5. There are x*,x,~X such that x* >x,. 

P6. For any ig,hE F such that f>g, there is a finite partition of S 
(B,, . . , B,) such that 

flBhL>g and .f>gl& Vi. 

P7. If fg(z)g(s) given A for all seA, then fs(l)g given A. 

Savage’s Theorem. Suppose 2 satisfies PILP7. Then there are a unique 

(finitely) additive probability measure P on S with a convex range, and a 

bounded utility u, unique up to a positive linear transformation (p.l.t.), such that 

2 is integral-represented by (u, P) over all F. 

[This is a slight rephrasing of the original (Savage’s) theorem. The axioms 
are basically the original, rewritten with some new notations, whereas the 
conclusion is based on that appearing in Fishburn (1970).] 

2.4. Axioms for a non-additive theory 

The main difference between the additive and non-additive theories is the 
Sure Thing Principle, accepted by Savage, but rejected by the 
non(necessarily) additive theory. This means that we cannot accept Savage’s 
P2, and consequently have to replace it by a weaker version. 

However, it turns out that there are some technical differences between the 
two theories, which call for modifying or replacing other axioms as well: 

P3 as phrased, turns out to be too strong an axiom, excluding some of the 
measures we have no reason to object to; 

P4 is implied by P2’s substitute; 
PS is too weak, since the minimal number of z-distinguishable conse- 

quences needed for the uniqueness of the measure is 3 in the non- 
additive theory (rather than 2); 

P6 is simply insufficient for any kind of continuity in a non-additive context. 
Here it will be replaced by two axioms, of non-atomicity and 
archimedianity; 
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P7 is used in the sequel in a slightly different version than Savage’s, but the 
difference stems mainly from terminological reasons. 

In order to facilitate comparison, we will name the axioms after those of 
Savage. An asterisk will indicate that the axiom differs from its Savageian 
counterpart. When more than one axiom is used to replace a single axiom in 
the original model, the number of asterisks will increase monotonically. 

The axioms we will need are the following: 

(1) Pl. - as Savage’s. 
(2) P2.* - For all fr, f2, g,, g,EF, all A, BcS, and all x1,x2, Y,, Y,EX such 

that Y, )x1 and y, >xz, if 

(i) frl”A, fX, g,l"K, s1/'A' are pairwise comonotonic (p.c.), and so are 

f2/xB1, .fzI% g2/xB2, g& and 
(ii) fi12 -f212, g,IxK-gg,/x,z and fIl"A2f21% 
then g& Zg&. 

2.4.1. Observation. P2* implies Savage’s P4. 

Proof: Take fi = f2 =x1 and g, =g, =x2. 0 

Since P4 justifies the definition of 2. (over 2’), we may use Savage’s 
definition. 
(3) P3*. For all AC& x,y~X, f EF, if x<y then flhz f/2. 

2.4.2. Observation.’ If, furthermore, f(s) 5x < y for all s E S, and A >. 4, then 

fl2'fli. 
Proof: In P2*, take fi = f2 =x, g, =g, = fli, B= 4, and x1 =x2=x, y, = 

Yz=Y. 0 

(4) 

(5) 

(6) 

p5*. There are at least three consequences x*, x, x, such that 
x*>x>x*. 
P6*. (Non-atomicity). Let x, Y E X, f,ge F and A c S satisfy f/i >g> flh, 
where fl;; and fl; are comonotonic. Then there exists an event Bc A 
such that 

P6**. (Archimedianity). Let there be a sequence if.).> 1 c F, which for 
some x, y E X, x > y, and A c S satisfies the following twoconditions: 

(i) VsES, Vnz 1, f"(s)sy, 

(ii) L/i -L+lY 
then A-.$. 

‘This observation follows from P2 *, but it is closely connected to P3*, since both mean 
monotonicity. In the sequel we. shall refer to P3* and 2.4.2. together as ‘P3*‘. 
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(7) P7*. Let A be an f-convex event for f EF, and suppose that for some 

gEF> 

Then fz( 5)g. 

The main theorem is: Pl-P7* hold iff there are a measure v with a convex 
range and a bounded utility u, such that (u, v) are an IR of 2 over F. 

Furthermore, v is unique and so is u, up to a p.1.t. (The proof is given in 
sections 2 and 3.) The difference between this theorem and that of Savage is 
that v is not necessarily additive, and, consequently, the integration operation 
refers to the Choquet integral. 

A discussion of the axioms. Considering the axioms, one should distinguish 
between conceptually-essential axioms, such as Pl, and technical ones, such 
as P6*. The ‘essential’ axioms are those that are easily defendable on 
philosophical grounds, and it usually turns out to be the case that they are 
also easily defended on mathematical grounds, since one can construct 
simple examples of preference orders, satisfying all the axioms but the one 
under discussion, but having no IR. 

The axioms we will consider to be ‘essential’ are Pl, P2* and P3*, and 
they will be discussed first. 

Pl is identical to that of Savage, and we will not expatiate on it. 
P3* is a weaker version of P3, and is easily justifiable since it means 

monotonicity. A technical point should, however, be clarified: Under Savage’s 
P3, if A>.4 and A n B= 4, then A u B> .B. (This fact is also implied by P2.) 
This is not necessarily true in the non-additive case, so that P3 must be 
modified in order to include probability measures not satisfying the above 
condition. 

P2* is a new axiom, and deserves some deliberation. First, suppose that 
none of the eight acts involved in it are required to be comonotonic. The 
axiom simply states that there is a preference order between events: suppose 
firi -f&’ and fr/? 2 fJygl where y, > x1. This means that the improvement 
on A is more weighty than the same improvement on B, so that in some 
sense A is preferred to (or considered more likely than) B. This statement 
would be reversed if there were g,p; -g&? such that g,/yA<gJygZ with 
y,>x,. The axiom basically state that this reversal is impossible. (For simple 
acts it is equivalent to Savage’s P2 and P4.) However, this condition is 
restricted to the case where fJ$', f&, g,r;, g,/yA are pc., and so are 

The meaning of comonotonicity is that each event (A or B above) is 
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indeed conceived in the same way in each of the above acts in which it 
appears. What the Ellsberg paradox shows, in these terms, is that event- 
assessment is not context-free, i.e., the same event may have different weights 
when the ‘better’ or ‘worse’ events are different. 

In Schmeidler (1984) comonotonicity plays a similar role: restricting one of 
the essential axioms (Independence) to comonotonic acts allows the probability 
measure to be non-additive. 

Next we turn to the technical axioms, namely, P5*, P6*, P6**, P7*. 
P5*, to start with, is the most innocuous of all. It merely states that 

(XI- 12 3, and should it not hold, one cannot expect to have a unique 
measure. 

P6* is a non-atomicity axiom. It is supposed to sound reasonable. The 
same can be said about P6**, which is an archimedian axiom: it asserts that 
an act cannot be indefinitely improved if all ‘improvements’ are equally 
weighty. 

Both P6* and P6** have very similar counterparts in Lute and Krantz 
(1971) which is one of the few existing models in the Savageian spirit. 
However, the justification of these axioms is mainly pragmatic: without each 
of them, IR of 2 is not guaranteed. This is proved by counterexamples 
in Gilboa (1985, sect. 4). 

Finally consider P7*. Basically it is similar to P7, only that the latter is 
phrased in terms of ‘2 given an event’, which, in the absence of P2, is not 
well-defined. 

P7*, as phrased, seems to be the natural way of stating the axiom in our 
model. However, Savage’s example of a preference order, which satisfied Pl- 
P6 but is not integral-representable, may also serve as a justification of P7*, 
since that preference relation also satisfies Pl-P6**. 

3. Defining something like a meaare 

We begin with a preliminary lemma which will be used extensively 
hereafter. 

3.1. Lemma. Let a and b be two simple acts such that 

a=(z,,C,;z,,C,;...;z,,C,), b=(Zl,DI;...;z,,QJ, 

with Ci-.DiVisn. Then a-b. 

Proof: Use P2* inductively. 0 

Throughout the rest of this section and subsection 4.1, we shall assume X 
to be the triple T = {x.+.,x,x*} satisfying x* >x>x.+. Since the least-preferred 
consequence is always (=until subsection 4.2) x*, we can write any act f as 
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(x*, A; x, B), meaning 

A={s(f(s)=x*} and B={sIf(s)=x} u A. 

All definitions made in this context should be understood as dependent upon 
the triple T. However, for convenience of notation, the subscript T will be 

omitted. 

We shall need some lemmas: 

3.2. Lemma, Let E c E’, F c F’ be events, and a, a‘, b, b’, c, c’, d, d’ be acts 

satisfying one of the following three sets of conditions: 

(i) a=(x*,E;x,A)-b=(x*,F;x,B) 

a’ =(x*, E’; x, A); b’ =(x*, F’; x, B) 

c’=(x*,C;x,E)-d=(x*,D;x,F) 
c’ =(x*, C; x, E’); d’ =(x*, D; x, F’) 

(ii) a=(x*,E;x,A)-b=(x*,F;x,B) 

a’=(x*,E’;x,A); b’=(x*, F’;x,B) 
c=(x*,E;x,C)-d=(x*,F;x,D) 

c’=(x*, E’;x,C); d’=(x*, F’;x, D) 

or 

(iii) a=(x*,A;x,E)-b=(x*,B;x,F) 
a’=(x*,A;x, E’); b’=(x*, B;x, F’) 

c=(x*,C;x,E)-d=(x*,D;x,F) 

c’=(x*,C;x,E’); d’=(x*,D;x,F’) 

then a’zb ifl c’zd’. 

Proof. Follows from P2*, Lemma 3.1, P3* and P6*. 0 

We shall now define a partial binary operation on 2’/- ., which is to be 
thought of as an addition. It will, eventually, be equivalent to summation of 
the measure. In order to simplify notations and facilitate the discussion, we 
will not define the operation on equivalence classes of events formally, but 
rather use the following: 

Notation. If there are events H,, H,, Hb, H; such that H, -. Ho, H, - .H’, 

and 

(x*, B; x, Ho) -(x*, B,; x, H;) 

then we shall write B- .B,@B, (henceforth read ‘B is the circle-sum of B, 
and B,‘). 
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Note that, as defined, circle-addition need not be commutative, nor should it 
be defined for all pairs of events (B,, B,). 

Next, let us observe the following facts: 

3.3. Lemma 
(i) If B-.B,@B,, then B2.B1 and Bz.B,; 
(ii) ZfB’-.B, B; -‘B,, B;-.B, and B-.B, 0 B,, then B’-.B; 0 B;; 
(iii) Let B-.B,@B,, and suppose that F,-.Fb, F,-.F;, where 

B, c F,, B c Fb and B, c F;. Zf (x*, B,; x, F,) -(x*, 4; x, F,) then (x*, B; 
x, Fb) -(x*, B,; x, F;). 

Proof: Using 2.1, P3* and P6* shows (i) and (ii) to be trivial, whereas (iii) 
becomes a direct application of Lemma 3.2. 0 

Lemma 3.3.(iii) means, in fact, that the circle-sum of two events B,, B, 
does not depend upon other events. 

Having the circle-addition operation, we wish to construct a measure 
which is additive w.r.t. (with respect to) it. Constructing the measure is based 
on the familiar principle of measuring each event with an ever-increasing 
precision, for which one should have an ever-decreasing measurement unit. 
We are now about to construct these units. 

Since (x*,S)>(x,S)>(x*,S), there is an event A, such that (x*,Ai)-(x,S), 
whence 4. <Ai. <S. Similarly, there is an event A, c A, such that 
(x*,AJ-(x, A,), and, arguing inductively, we have a sequence {Alr}kB1 for 
which the following conditions hold: 

(i) AkxAkfl, 
(ii) Ak>.Ak+i (which also implies Ak > *d). 

(The notation A, will be reserved for members of this sequence even beyond 
sub-section 4.1, only that there the subscript T will be added to it.) We 
would like to know that this sequence is indeed fine enough to construct a 
measure. This is guaranteed by 

3.4. Lemma. Suppose H >.4. Then there exists an integer k such that 
A,.< H. 

Proof: Use the archimedian axiom (P6**). 0 

Another notation will be proved useful: for B, CcS and nE N, we will say 
that B-.nC if there are C=C1,...,C,=B such that Ci-.Ci_,OC for 
2 2 i sn. We shall refer to the symbol nC as an event, meaning ‘any B such 
that El-.&‘. If there is no B such that B-.nC, we will write ‘nC>.B’ for all 
B. Now we can formulate: 

3.5. Lemma. If Cp.4 and Bc S, there is an integer n such that nC2. B. 
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Proof This is a straightforward application of P6**. 0 

The preceding lemma allows us the following: 

Definition. For Bc S such that 4. < B.5 A, and k 2 1, nf is the unique 

integer satisfying 

$A,.5 B.<(nf+ l)A,. 

(The existence is implied by the lemma, whereas the uniqueness follows from 
the fact that Ak>.&) 

We shall also need 

3.6. Lemma. Suppose A, 2.Bz.C. Then there exists an event H such that 

B-.C@H. IL furthermore B>.C, then H>.4. 

Proof: The first part is proved by P6*, whereas the ‘furthermore’ clause is a 
consequence of P3*. 0 

Now we can prove 

3.7. Lemma. If BcS is such that qb<B.<A,, then nf+,,, co. 

Proof. The sequence is obviously non-decreasing. Lemmas 3.4 and 3.6 imply 
that it cannot be bounded. 0 

Now we are in a position to define a set-function for all events B such that 
B. 5 A,, which will be the measure of these events, up to a scaling factor: for 
each kz 1 define ck to be (nfl)-‘. Note that by 3.7, Ed +k_oa 0. Now let there 
be given an event B. 5 A,. Define i?(B) = limsup,, m E&. To see that this set- 
function is indeed ‘almost’ a measure, which is monotonic w.r.t. 2 ., we have 

3.8. Lemma 

(i) Zf C.ZB.sA,, then fi(C)zfi(B), 
(ii) $A,) = 1, 
(iii) i?(4)=0. 

Proof: Trivial. IJ 

The main property of the function v” is its circle-additivity: 

3.9. Theorem. Let B,, B,, B.sA, satisfy B-.B,@B,. Then ti(B)=i?(B,)+ 

fi(BJ. 
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Proof: First we note that for any k2 1 

n$l,. 5 B, .z (PI;* + l)A,, 

whence 

The left-hand side inequivalence implies 

while the right-hand-side one implies 

so that we may write 

Now suppose that {ki}ir 1 is a sub-sequence of N such that 3 lim,,, skir$= 
5((B). (Such a sub-sequence exists because of the definition of v” as limsup.) 
Obviously, limi, 30(~kinft1 + E,JJ$) = C(E). But, considering the definition of sk, 
one may easily see that sk,nfi E [0, l] for all ki, i.e., the sequence is bounded. 
Hence {ki}i has a sub-sequence { kij}j for which {sk,,r$} j converges. Since 
{t:ki,n~;,}j also converges (to r?(E)), we deduce that 

3 lim ski,n[:= 6((B) - lim ski,r$. 
j- a, j-m 

Since {ki,}j is a converging sub-sequence for both events B, and B,, we may 
write 

C((B,) 2 lim eki,nj?, 
j-m 

iY((BJ 2 lim Eki,nj?, 
j-cc 

and, as a conclusion, rY((B,) + C((8J 2 t?(B). 
Now we wish to prove that the converse inequality holds as well. For this 

we shall need the following: 

3.9.1. Lemma. Let there be I=(ki}i= , 1 and J = {kj}j2 1, two indices sequences, 

such that 
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Furthermore, assume that 

Then it is impossible that vi > v< and 012 <v;. 

Proof. Assume the contrary, i.e., that indeed v{ > vj and vi <v$. W.1.o.g. 
assume B, 2 * B,, whence, by Lemma 3.6, there is an event I?, such that 
B 1 -‘B,@B,. We already know that 

and therefore 

3 lim Ekin$’ E vl,, 3 lim E nB3svJ kj kj 39 
i-m j-00 

which satisfy 

v:=v:+v;, v:=vJ,+vJ,. 

Subtraction will yield 

or 

v: - v: = (vi - v:, + (vi - vg, 

v:-v”,=(v:-v:,+(v”,-v’,)>v:-v:, 

and, in particular, 

v:>v;. 

Now we have B, and B,, and we may proceed in this way to construct a 
sequence {B,},, 1 such that (vf _ i -vi_ ,)(vf, - vi) ~0. It is important to note 
that vfi, vi > 0 for all n. [To see this, note that if B, -.B,,+ 1, vfi=~fi+~ and 

J J v, = v,+ 1, contrary to the induction assumption. If, for instance, B, > .B,+ 1 

(the case B; < B,, , is identical), both vf, > vi+ 1 and vi > vi+ i, and conse- 
quently vf, + 2, vi+ 2 > 0.1 This sequence satisfies 

max(viCJ), vi(:),) - min(vLCJ), v~(:),) = vf(:$, 

that is, any number in {~fi}~> 3 (or in {t~i}~~ J is equal to the absolute 
difference between its two consecutive predecessors. This implies 
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VI vJ -+ n, n n-,m 0. (For instance: for any n2 1 there is a finite M such that 
t$(& g 1/2~:‘~‘.) But this means that Ivf,-- uil +n_m 0, while we have shown 
that 

This contradicts our assumption and thereby proves the Lemma. Cl 

We return now to the proof of the theorem: Let I=(kijiS,, and J=(k,)j, i 
be subsequences such that 

3 lim ck$; =i;(B,) and 
i-+ ~8 

3 lim akjrr$ =tT(&). 
j+m 

Since c,& E [0, I] (for all k 2 1, Be 5 A,), one can choose subsequences of I 
and J, to be denoted by r= {kir},= , 1 and J= (kj,>,z 1 respectively, such that 

If v:=vJ,, then r is a subsequence attaining Li(B,) and ij(BJ simultaneously, 
and this implies 

whence z?((B)~i?(B,)+F(B,). Therefore we may assume JJ~ <r: =t’;. But ac- 
cording to the lemma, this is possible only if vi Iv: Since v: =v: 
= limsup,, co Ed@, we have 0: =fi((B,), while we already know that v{=iY((B2). 
In that case again GEE +i.?(B& Combining the two inequalities we 
have 

which completes the proof. c] 

Another important property of the function v” is that it agrees with 2.: 

Proof By 3.6 and 3.9, it suffices to show that z?(H)>0 for H>‘+. This is 
proved by P6** and 3.9. c] 

We will also be interested in the range of ii First we prove 



3.11. Lemma. Suppose that H satisfies A, &*H>*& then there is an El’>*& 
such that 

This last lemma proves useful in 

3.12. Theorem. E has a cx3nue.x rapzge. (This property was ~r~~~~a~~~ deemed 
fir a measure, and L7 Jails to fte one, but the d~~n~t~~~ is extended in an 
obuicrus manner.) 

Proof In view of 3.9 and 3.11, the proof is straightforward. 0 

So far we have defined i?(B) for B+ SA i. Defining a measure for all 2s 
should be postponed until after we have said something about integral 
representation of 2, which will be done in the next section 

4. Inegral representation of the preference order 

This section is divided into three subsections: Subsection 4.1 constructs an 
IR of 2, retaining section 3’s assumption of X=(x*,x,x*}. This requires, of 
course, a definition of a measure for all 2s. 

Subsection 42 removes the restriction on X, but constructs an IR of 2 
only for step functions. This step includes, however, the comparison of the 
measures and utilities constructed in 4.1 for any triple of consequences. 

Subsection 4.3 proves that the utility and the measure that were con- 
structed in 4.2 constitute and IR of 2 aver all acts, and not only over 
simple ones ( = ‘step functions’). 

4.1. fR for u three-c~nse~l~e~ce world 

The steps in constructing the IR of 2 for a specific triple of consequences 
are: 

(a) fR for PC-J Ftx,Rt), where T is the triple of consequences, and F,= 

f&Mfg5i?f~ (for f&F). 
(b) Extending v” and normalizing it to construct a measure for 2s [this is 

done in view of (a)]. 
(c) IR for all TS. 
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It should be noted that we do not have a measure until step (b), so that 
the term ‘IR’ is not well-defined. However, the way we will define it will not 
be surprising: 

Since only three consequences are involved, one may safely assume that 
any utility a: T-+R satisfies u(x*) = 1 and u(x,) = 0. Hence for f =(x*, B; x, C) 
with B, C. 5 A,, we may define 

Ju(f)dv”=[l -u(x)]i7(B)+u(x)fi(C). 

Bearing this definition in mind until we have a ‘real’ measure, step (a) is no 
more than 

4.1.1. Theorem. For T= {x*,x,x*} with x* >x>x.+ and the function d 

attached to it, there exists a u: T-tR such that (u,v) is an IR of 2 (in the 

sense of the above definition) over TS n Fcx,A,,. 

Proof For any f =(x*, B; x, C) E F_(x,A1j there is (by P6*) an event D.SA, 

such that f-(x, D). Therefore it s&ices to show that there is an CI ~(0, i), 
(cI=u(x)) such that 

(1 -cz)i?(B)+afi(C)=cct?(D) 

for all (x*,B;x,C)-(x,D) with D.ZA,. First we observe that, since v” agrees 

with L., G(D) depends on B and C only through 6((B) and c(C), respectively. 
That is, if B’ and C’ are such that z?(B) = G(B’) and G(C) = G(C), and B’ c C’, 

then, by Theorem 3.10 and 3.1, (x*, B’; x, C’) -(x, D). Denoting by pi the set 

{fi(B)> c(C))) (x*. B;x,C)E_F~,,,+) we have proved the existence of a function 

$i: vi -[O, l] such that 

for all (x*,B;x,C)~r(x,A~) and D.SA,. 

Since D 2 .C, I?(D) 2 G(C) and we may write 

with t+k2: Vi-CO, 11. We now note that 

4.1.1.1. Lemma. ti2 is independent of its second argument. 

Proof: Implied by 3.9. q 
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Consequently there is a $3: vX-+[O, 11, with v3 being the projection of vi 
onto its first coordinate. such that 

It is obvious that I+!I~ is a non-negative, monotonically increasing function, 

with e3(0)=0. Another important fact about $3 is 

4.1.1.2. Lemma. $j is additive. 

Proof. Follows from the delinition of 0 and from 3.9. 0 

In the light of Conclusion 3.13, va is no more than an interval (either closed 
or half-closed), so that monotonicity and additivity imply the linearity of 1(/3: 
There exists a A>0 for which 

Taking a =(A + 1) ‘, one completes the proof of Theorem 4.1.1. 0 

Now we may turn to step (b), i.e., finally define the measure u for a given 
triple IT: using the set function v” and the number c( defined above: For 
B.5 A,, let v(B)=txG(B). For B>.A,, let C.sA, be such that 
(x*, C;x, A,)-(x, B), and define u(B) =v(A,) +((l -a)/cz)v(C). [v(B) is well 
defined in this case, since it does not depend upon the choice of C.] Note 
that v(A,) = c( and therefore v(S) = 1. 

Having v defined, we may proceed to the third step, namely, to construct 
an IR of 2 over all TS. First we extend Theorem 4.1.1 in the following way: 

4.1.2. Lemma. If (x*, B;x, C)-(x,D), then (1 -cr)u(B)+crv(C)=ctu(D). [Note 

that this means integral representation for all f, g 5 (x, S).] 

Proof Use the definition of v and 4.1.1. q 

Now we wish to extend the circle-additivity of v over [O,cl] to [0, 11: 

4.1.3. Lemma. v is circle-additive. 

Proof. The lemma is a conclusion of the definition of u and the previous 
two results. 0 
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The time is ripe to prove 

4.1.4. Theorem. For T = {x*,x,x*) with x* > x >x*, the measure v and the 
utility u defined above constitute an IR 2 over Ts 

Proof Trivial in view of the preceding lemmas. 0 

4.1.5. Corollary. v has a convex range. (Use Theorem 3.12.) 

4.2. IR for step functions 

It is the time to remind ourselves that the utility and the measure we have 
proved to constitute an IR of 2 over TS for a given triple T, are depend- 
ent upon this triple, and should be denoted by uT and vT respectively. We 
now come to the comparison among different triples: 

4.2.1. Lemma. Let TI and T2 be non-trivial triples of consequences. (i.e., 
(T/-1=3, i-1,2). Then vr,=vrz. 

Proof: By P2*, Or does not depend upon the triple T 4.1.3-4.1.5 complete 
the proof. 0 

Henceforth we shall refer to the measure Y (without a subscript), since it does 
not depend on the defining triple. 

We now turn to the comparison among {q-)r. We shall need some new 
definitions: 

X<={x~X/x,.x~x*) for x*2x,, 

F”={f EFI #{xEX(!lsES,f(s)=x}Sn} for nil, 

F<={~EFI~(s)EX~:VSES} for x*2x,, and 

1(f) = J u(f) dv (any subscripts, superscripts, apostrophies, and other 
symbols attached to u will be understood to define 
their corresponding Z’s). 

by which it is easier to formulate: 

4.2.2. Lemma. For any x* >x., there exists a u,.,,,:X<+R, such that for any 
T={x~,x,,x,} with x*hx:>x,>x,, ux*,*, and v are an IR of 1 over TS. 
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Proof. Let there be given an x EX~:. There is an event B, satisfying 
(x*, B,; x*, S) -(x, S). Define u,,,,(x) = u(B,). 17 

Next we shall need 

4.2.3. Lemma. Let a,b,c,dEF* be px., and for some HcS, 

a(s)=b(s) and c(s)=d(s) for SEH, 
a(s)=c(s) and b(s)=d(s) for SE H’. 

Suppose, furthermore that a-c. Then b-d. 

Proof: Let k be the minimal number of disjoint events {Hi}T= 1 such that 
ui Hi = S and on each Hi a, b, c and d are all constant. Now use induction on 
k, each step using PZ*. 0 

Now we have 

4.2.4. Theorem. For any x*>x, the utility ux* x and the measure v form an 
IR of 2 over F”,: n F*. (i.e., over all step functio’,s which are bounded by x* 
and x, from above and below, respectively.) 

Proof: Prove that u~*,~, and u are an IR of 2 over FzI n F”, for all n 2 1, by 
an inductive use of: 

4.2.4.1. Lemma. For any f E F” n Fc: (n>=3) there is an f’E F”-’ n FT 
satisfying: 

(i) f’-f 
(ii) L+...(f ‘) = L,,..(f ). 

The proof of which is trivial. c] 

We are now approaching the conclusion of this subsection. At long last we 
turn to define the utility u: 

Choose any x* >x,, and for x EX$ let u(x) =u,,,,l(x). [So that u(x*) = 1, 
u(x,) =O.] Now let x EX satisfy x > x *. Consider the triple T = {x,x*,x*), for 
which there exists a utility ur. Define u(x) =+(x*)-l, so that (u(x), u(x*), u(x,)) 
is a scalar multiplication (and hence a p.1.t.) of (u,(x),ur.(x*),uT(xJ). 
Similarly, for x satisfying x <x*, take the triple T = (x*,x*,x} and the 
utility uT attached to it, and define u(x) = -+(x*)/(1 -ur(x.,.)), again pre- 
serving the equality 

UT@*) - %c4 = 4x*) -u(x) 
q-(x*) - UT(X) u(x*) -u(x). 
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4.2.5. Theorem. The utility u defined above satisfies 

fZg*o(f)ZI(g) v’f;geF*. 

Proof: Trivial. 0 

The results obtained so far may be summarized in 

4.2.6. Theorem. The following two statements are equivalent: 

(4 

(ii) 

2 satisfies axioms 

functions. 

PI, P2*, P3*, P5*, P6* and P6** for all step 

There is a utility u, which is unique up to p.l.t., and a unique measure v 

with a convex range, which constitute an IR of 2 over F*. 

Proof (i)+(ii) is the conclusion of sections 3, 4.1, 4.2. (ii)=(i) is easy to 

check. IJ 

4.3. IR for all functions 

We now turn to the general case, in which the acts under comparison need 
not be simple acts. In this section, P7* is assumed to hold, unless otherwise 
stated. 

To begin with, we need 

4.3.1. Theorem. u is bounded. 

Proof. The proof is very similar to that of theorem 14.5 in Fishburn* (1970, 
pp. 206-207) and we shall not repeat it here. 0 

This theorem allows us to assume henceforth, w.l.o.g., that inf,,, u(x) = 0 and 
SU~,,~U(X) = 1. A crucial property of a preference relation satisfying P7* is 

4.3.2. Lemma. Let 4 = B, c B, c . . . c B, = S be events such that Bi - Bi _ 1 is 

f-convex for i 5 n. Suppose 

*This proof is not to be found in Savage (1954). Fishburn notes, that although the theorem is 
mainly due to Savage, it was not known to him until they discovered it together several years 
after the publication of ‘The Foundations of Statistics’. 
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Let f~ F* satisfy f-f. Then 

where U,+l=_u,+I~O. 

Proof. We shall prove only one of the two inequalities, say the left-hand 
side one, for the other one is proved symmetrically. Assume the contrary, i.e.: 

Take SE F* to be such that u 2 I(g) > I(J), whence S > f N f, (such a g exists 
because u has a convex range). Now for any (sr, s2,. . . , s,) such that si G B,- 
Bi _ , and any k 5 n, define 

f’“‘.‘..‘S’)(S)=f(Si), SEB~-B~_,, izk 

= f(s) otherwise. 

Note r(l’“’ ,__ “;z =&~;“‘~SnI’ F* for any sequence (sr,.. .,s,), and 
’ *Sn)>u> so that f’“‘*“‘9”n’~g. This can be written as 

f(Sl.....S.-1) f (%I) 
B,-B,-I 

2s VS,EB,-B,_~, 

whence, by P7*, ffsl,...,+‘)>=g for all (sr,. . , s,_ 1). Arguing inductively, 
f(sl*...,Sk)~g for all kzn and all (s 1,. . , s,J, and, in particular, f >,g, which is 
known to be impossible. 0 

A straightforward consequence is 

4.3.3. Lemma. Let f EF, ~EF* satisfy f -$ 
Then I(f)=I(f). 

Proof. Trivial. q 

Now the time has come to phrase: 

4.3.4. Theorem. Let PI, P2*, P3*, PS*, P6* and P6** hold. Then P7* holds 

ff 
f ZgGl(f)Zl(g) for all f,gEF. 
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Proof: First assume that P7* holds. Denote 

Note that 

(i) f E F iff there is an act f E F* such that f - J 
(ii) If f EF, then either f>x for all XGX, in which case fzg for all g EF 

and Z(j) = sup (U(X) 1 XEX}, or f <x for all XEX, in which case fsg for 
all gEF and Z(jJ=inf{u(x))x~X}. 

These observations, together with the previous results, complete the 
first half of the proof. However, the second half is trivial. 0 
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