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Abstract—An agent is asked to assess a real-valued variable Yp based on
certain characteristics Xp � (Xp

1, . . . , Xp
m), and on a database consisting of

(Xi
1, . . . , Xi

m, Yi) for i � 1, . . . , n. A possible approach to combine past
observations of X and Y with the current values of X to generate an
assessment of Y is similarity-weighted averaging. It suggests that the
predicted value of Y, Y� p

s, be the weighted average of all previously
observed values Yi, where the weight of Yi for every i � 1, . . . , n, is the
similarity between the vector Xp

1, . . . , Xp
m, associated with Yp, and the

previously observed vector, Xi
1, . . . , Xi

m. We axiomatize this rule. We
assume that, given every database, a predictor has a ranking over possible
values, and we show that certain reasonable conditions on these rankings
imply that they are determined by the proximity to a similarity-weighted
average for a certain similarity function. The axiomatization does not
suggest a particular similarity function, or even a particular form of this
function. We therefore proceed to suggest that the similarity function be
estimated from past observations. We develop tools of statistical inference
for parametric estimation of the similarity function, for the case of a
continuous as well as a discrete variable. Finally, we discuss the relation-
ship of the proposed method to other methods of estimation and predic-
tion.

I. Introduction

A. Motivation

ECONOMIC agents as well as various professionals are
often required to assess the value of a certain numerical

variable. In many situations, available data are relevant for
the assessment problem, but they do not suggest a value that
is indisputably the only reasonable assessment to make.
Consider the following examples.

1. A homeowner considers selling her house, and she
wonders how much she could get for it. Naturally, she
should be basing her assessment on the prices at
which other houses were sold. Yet, every house has its
idiosyncratic characteristics. Hence the “market
value” of her house is a variable that needs to be
assessed based on observations of other transactions,
but cannot be uniquely determined by these transac-
tions in the same way that the price of a ton of wheat
can.

2. An art dealer wants to sell a painting by a fairly
famous painter. Evidently, the market price of the
painting is related to the prices at which other, similar

paintings were sold. Yet, the painting is unique, and its
price may differ from the prices of all other paintings,
as well as from their average.

3. An analyst is asked to predict the rate of inflation for
the coming year. Using past empirical frequencies of
various inflation rates is hardly an option in this case,
because every year differs from past years in several
ways. Yet, it is obvious that past inflation rates are
informative and should somehow be used for the
prediction.1

4. The same analyst is now asked to assess the proba-
bility of a stock market crash within the next six
months. Again, she is expected to generate an assess-
ment that is based on past observations. However,
every two situations would typically differ in the
values of certain important economic variables.

5. A physician is asked to assess the probability of
success of an operation to be performed on a certain
patient. Past experience with other patients is clearly
relevant and should inform the assessment process.
Yet, every human body is unique, and simple relative
frequencies of success do not summarize all the rel-
evant information.

6. A lawyer is asked by her client what are the chances
of winning a case. Clearly, every case is idiosyncratic.
Yet, the rulings in similar cases and under like-minded
judges are relevant for the assessment.

In all of these problems one attempts to assess the value of
a variable Yp based on the values of relevant variables, Xp �
(Xp

1, . . . , Xp
m), and on a database consisting of the variables

(Xi
1, . . . , Xi

m, Yi) for i � 1, . . . , n. The question is, how
do and how should people combine past observations of
X and Y with the current values of X to generate an
assessment of Y?

This problem is extensively studied in statistics, machine
learning, and related fields. Among the numerous methods
that have been suggested and used to solve such problems
one may mention parametric and nonparametric regression,
neural nets, linear and nonlinear classifiers, k-nearest-
neighbor approaches (Fix & Hodges, 1951, 1952; Cover &
Hart, 1967; Devroye, Gyorfi, & Lugosi, 1996), kernel-based
estimation (Akaike, 1954; Rosenblatt, 1956; Parzen, 1962;
Silverman, 1986; Scott, 1992), and others. Each of these
methods has considerable success in a variety of applica-
tions. Moreover, each method can also be viewed as a
tentative model of human reasoning. How should we choose
among these approaches for descriptive and for normative
applications?
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Our approach to this problem is axiomatic and empirical.
We start with a system of axioms that characterizes a class
of assessment rules. We do not expect the axiomatic
approach or other theoretical considerations to fully specify
the parameters of the assessment rule. Rather, we suggest
that these parameters be estimated from data. This estima-
tion is done in the context of a probability model that allows
statistical inference. We now turn to describe this approach
in more detail.

B. Axiomatization of Similarity-Weighted Averaging

For the axiomatic model we assume that, given a database
B � (Xi, Yi)i�n, where n � �, Xi � �m, and Yi � �, and a
new data point Xp � �m, the agent has a ranking �B,Xp

over
the possible values of Yp. The interpretation of � �B,Xp

�
is that, given the database B and the new data point Xp, �
is more likely to be observed than is �. We study the
rankings �B,Xp

that the agent would generate given var-
ious possible databases, holding m fixed. We formulate
axioms on such rankings, and show that the rankings satisfy
these axioms if and only if they can be represented by
similarity-weighted averaging. Specifically, the axioms are
equivalent to the existence of a function s : �m � �m 3
��� � (0, �) such that, given a database B � (Xi, Yi)i�n and
a new data point Xp � (Xp

1, . . . , Xp
m) � �m, two possible

estimates of Yp are ranked according to their proximity to
the similarity-weighted average of all observations in the
database, namely,

Ȳp
s �

�i�n s�Xi, Xp�Yi

�i�n s�Xi, Xp�
. (1)

This rule for generating predictions is reminiscent of kernel
estimation. [See Akaike (1954), Rosenblatt (1956), and
Parzen (1962). See details in Section II below.] We prefer
the term “similarity” because it suggests a cognitive inter-
pretation of the function, as opposed to the more technical
“kernel.” This is obviously only a matter of interpretation.2

The axioms we propose are not universal, and they need
not be satisfied by all types of human reasoning. Specifi-
cally, when people use the data to develop theories, and then
use these theories to generate predictions, they are unlikely
to satisfy our axioms, or to follow equation (1). (We elab-
orate on this point after the presentation of the axioms in
section III.) Our axioms attempt to describe the assessment
of an agent who aggregates data, but who does not engage
in theorizing. When agents do reason by general rules, or
theories, a model such as regression analysis may be a better
model than the similarity-weighted averaging we discuss
here.

We also axiomatize the relation “more likely than” that
corresponds to a set of agents, constituting a “market,” and
we show that, under our axioms, one may replace all agents
with their subjective similarity functions by a “representa-
tive” agent with an appropriately defined similarity func-
tion.

C. The Empirical Similarity

The axiomatization we propose does not specify a par-
ticular similarity function, or even a particular functional
form thereof.3 Where do the similarity numbers come from?
In this paper we do not attempt to provide a theoretical
answer to this question. Rather, we suggest an empirical
approach: given a database B � (Xi, Yi)i�n, we assume that
past values Yi were also generated in accordance with
equation (1), adapted for p � i and n � i 	 1, that is,

Ȳi
s �

�k
i s�Xk,Xi�Yk

�k
i s�Xk, Xi�
, (2)

relative to the similarity function s of the representative
agent. We then ask which similarity function s : �m � �m3
��� can best fit the data B under this assumption. This
function, dubbed the empirical similarity, can then be used
to generate assessments of Ȳ p

s. These assessment will be
more objective than similar assessments based on a subjec-
tive similarity function.

In this paper we address a parametric version of the
question of estimation of the similarity function. We suggest
a functional form of s, and estimate its parameters with a
maximum likelihood estimator in a statistical model that we
define shortly. However, an “empirical similarity function”
may be any function that is estimated from the data, or that
is chosen to fit the data according to equation (2).

Further discussion of our estimation method and the
assumptions underlying it is deferred to section VI. We now
proceed to describe a statistical model within which this
estimation can be analyzed.

D. Statistical Analysis

The empirical similarity we obtain can be viewed as a
point estimate of a similarity function, if we embed equation
(1) in a statistical model. Specifically, we are interested in
similarity functions that depend on a weighted Euclidean
distance,

dw� x, x�� � ��
j�m

wj� xj � x�j�2, (3)

2 Our axiomatization relies on that of Gilboa and Schmeidler (2001,
2003). Yet, the former is not a special case of the latter. Moreover, the
analysis conducted here employs the fact that the variable Y is real-valued.

3 Billot, Gilboa, and Schmeidler (2004) offer an axiomatization of a
particular functional form of a similarity function. Assuming that an agent
employs a similarity-weighted averaging as suggested here, they impose
additional axioms on the agent’s assessments given various databases and
various new data points, which are equivalent to the existence of a norm
on Rm such that the similarity function is a negative exponential in this
norm.
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where x � (x1, . . . , xm) and x� � (x�1, . . . , x�m). The simi-
larity function may be expected to decrease in the distance
dw, to attain the value 1 for dw � 0, and to converge to 0 as
dw3 �. Natural candidates for such a function include sw �
e	dw and sw � 1/(1�dw). Billot et al. (2004) assume that an
agent generates assessments according to equation (1), and
take an axiomatic approach to the problem of selecting the
functional form of the similarity function. Specifically, they
show that certain conditions on the assessments Yp gener-
ated given various databases are equivalent to the existence
of a norm �.� on �m such that sw(x,x�) � e	�x	x��. Because dw

is a norm on Rm when wj � 0 for all j � m, the function sw �
e	dw may be viewed as a special case of the similarity
function axiomatized in Billot et al. (2004).

Observe that the weights (wj)j are not restricted to sum to
1. This allows some flexibility in the relative weight of
closer versus more remote observations. For instance, mul-
tiplying all weights (wj)j by a constant 2 � 0 is tantamount
to multiplying dw by  � 0. If  � 1, this transformation
reduces the relative effect of remote points.

For t � 2,. . ., n, we assume that

Yt � Yt
s �

�i
t s�Xi, Xt�Yi

�i
t s�Xi, Xt�
� εt, (4)

where εt � N(0, �2), and Y1 is an arbitrary random variable.
In such a model it makes sense to ask whether the point

estimates of the unknown parameters are significantly dif-
ferent from a prespecified value, and in particular, from 0. In
this paper we focus on maximum likelihood estimation of
the parameters (wj)j, and we develop tests for such hypoth-
eses.

For some applications, including examples 5 and 6 above,
the observed values of Yt are categorical. In this case one
cannot assume a model such as equation (4), and the latter
should be replaced with a model of the form

P�Yt � 1�X1, Y1, . . . , Xt	1, Yt	1� � F�Yt
s�,

where F is a cumulative distribution function, Xi is an
m-vector, and Yi � {0, 1}, with Yi � 1 denoting success and
Yi � 0 denoting failure in examples 5 and 6. This model
differs from discrete choice models in a way that parallels
the difference between our model for a continuous Yt

s and
linear regression. Specifically, the probability that Yt as-
sumes the value 1 depends on the weighted relative fre-
quency of 1 among past values {Yi}i
t, where the weight of
the value Yi depends on the similarity between the vector Xi

observed in the past and the current observation Xt. We
provide a statistical model for this case, and develop tests
for hypotheses about the values of the parameters (wj)j in
this model as well.

The rest of this paper is organized as follows. In section
II we discuss the relationship between our method and
existing statistical methods. Section III provides the axi-
omatization of similarity-weighted averaging, for a single

agent and for a set of agents. In section IV we develop the
statistical theory for the continuous case, whereas section V
deals with the discrete case. Finally, section VI concludes.

II. Related Techniques

Our main focus is on human reasoning. We are interested
in data that are generated by people, and we take the
similarity-weighted average as a possible model of how
people generate assessments. That is, we interpret our
model as describing a causal relationship.

Our method can be applied also to databases in which the
variable Y is not a result of human reasoning. In this case
our model should not be interpreted causally, but one may
still find a similarity function that best fits the data. More-
over, one may even conduct hypothesis tests for the param-
eters of the similarity function, to the extent that one
believes that the data-generating process may be in agree-
ment with one of the models specified above. In other
words, the empirical approach suggested here, coupled with
the statistical inference that accompanies it, may be viewed
as a general-purpose statistical technique dealing with the
prediction of a variable Y based on variables X1, . . . , Xm and
past observations of all these variables in conjunction.

Viewed from this perspective, one might wonder how our
prediction technique compares with established ones, such
as regression analysis. An obvious weakness of our ap-
proach is that it does not attempt to identify trends. For
instance, assume that there exists a single variable X which
denotes time, and that the data lie on a line Y � X. This
obvious trend will not be recognized by our technique,
which will continue to expect the next value of Y to be a
weighted average of past values of Y. The prediction tech-
nique we suggest makes sense especially when one might
believe that past observations were obtained under similar
circumstances.

A. Nonlinear Regression

Our approach differs from nonlinear regression in that we
do not assume that the data-generating process follows a
basic functional relationship of the form Y � f(X1, . . . , Xm).
Rather, we assume that Y is distributed around a weighted
average of its past values, where the X’s determine these
weights.

If, however, one does assume that there exists an under-
lying functional relationship Y � f(X1, . . . , Xm), our tech-
nique may still be used for prediction of Y. As long as f is
sufficiently smooth, one may hope that, with a large number
of observations that are evenly scattered with respect to
their X values, the similarity-weighted averaging will result
in reasonable predictions. Indeed, the similarity-weighted
average is reminiscent of the Nadaraya-Watson estimator of
a nonparametric functional relationship. Observe that, as
opposed to the Nadaraya-Watson technique and related
literature, we do not attempt to find an optimal kernel
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function based on theoretical considerations, but find the
kernel (similarity function) that best fits the data.

Our estimation of the similarity function s is parametric.
This does not imply that we restrict the function f to a
parametrized family of functions, should a relationship Y �
f(X1, . . . , Xm) actually exist. Whereas any function s may be
used to generate predictions in a nonparametric problem, we
restrict attention to functions s within a parametrized family
of similarity functions. Thus, we try to parametrically esti-
mate how to best perform nonparametric estimation.

B. Kernel Estimation and Case-Based Reasoning

If we think of similarity-weighted averaging as a model
of human reasoning, we find that a case-based reasoner, as
modeled by this formula, can be viewed as someone who
believes in a general rule of the form Y � f(X1, . . . , Xm) but
does not know the functional form of f and therefore
attempts to estimate it by nonparametric techniques.

The notion that people reason by analogies dates back to
Hume (1748) at the latest. In artificial intelligence, this idea
was revived as case-based reasoning by Schank (1986) and
Riesbeck and Schank (1989). Inspired by this work, Gilboa
and Schmeidler (1995, 2001, 2003) developed a formal,
axiomatically based theory of decision and prediction by
analogies. In this literature it has been mentioned that
case-based reasoning is a natural and flexible mode of
thinking and decision-making. Our statistical approach
strengthens this intuition by pointing out that case-based
reasoning may be a way to estimate a functional rule.

Taking an evolutionary viewpoint, assume that nature
programs the mind of an organism who needs to operate in
an unknown environment. The organism will need to learn
certain functional rules of the form Y � f(X1, . . . , Xm), but
it is not yet known what form the function f might take.
The statistical viewpoint suggests case-based assessment by
similarity-weighted averaging as a procedure to predict Y,
which may perform well in a variety of possible environ-
ments f. Moreover, it turns out that the similarity-weighted
averaging does not explicitly resort to general rules and
theories, and thus does not require abstract thinking. Case-
based reasoning therefore appears to be a flexible method-
ology of learning rules, which can be implemented on
simple machines. Admittedly, this method is limited, and
human reasoning requires also abstract thinking and the
development of explicit general theories. Yet, the evolution-
ary viewpoint seems to support case-based reasoning as a
simple but powerful technique.

C. Interpolation

Our prediction method can also be viewed as a type of
interpolation. Consider first the case m � 1, that is, a single
variable X. Every past case is a point (xi, yi) � �2, and we
are asked to assess the value of Y for a new point xp � �.
Assume for simplicity that xp is in the interval [mini xi,

maxixi]. Linear interpolation would generate a prediction by
the line segment connecting (xi, yi) and (xk, yk) for the two
values xi and xk that are closest to xp in either direction. This
approach may be a bit extreme in that it uses only the y
values for the closest x’s. In this respect, it is similar to a
(single) nearest-neighbor technique. Other types of interpo-
lation, such as polynomial interpolation, would take into
account also other points (xl, yl) for xl that is not necessarily
the closest to xp on either side.

These interpolation techniques implicitly assume that the
values observed are the actual, precise values of an un-
known function. If, however, we recognize that the process
contains some inherent randomness, that we may not mea-
sure certain hidden variables, or that there are measurement
errors, we might opt for a technique that is less sensitive to
each particular value of Y. Following this line of thought,
our approach can be viewed as performing statistical inter-
polation: every observation is used in the interpolation
process, where closer points have a larger effect on the
predicted value. As opposed to interpolation by high-order
polynomials, when many points have been observed, no
particular point would have a large effect on the predicted
value.

When we consider the case m � 1, generalizing this
interpolation technique requires a multidimensional dis-
tance function. Our methodology might therefore be con-
ceptualized as a multidimensional statistical interpolation
technique, where the distance function is empirically learnt.

D. Bayesian Updating

A special case of the formula (1) is when s is constant
(say, s � 1), and the formula boils down to the simple
average (of Y) over the entire database. This could be
viewed as an estimator of the unconditional expectation of
Y, having not observed any X’s.

By contrast, one may consider an extreme similarity
function given by s(Xi, Xp) � 1{xi � xp}, where 1 denotes the
indicator function. That is, two data points are considered to
be perfectly similar if they have exactly the same X values,
and absolutely dissimilar otherwise.4 In this case, formula
(1) yields the average of Y over the subdatabase defined by
the values Xp, and it can be viewed as an estimate of the
conditional expectation of Y, given Xp.

Thus, the formula (1) provides a continuum between
conditional and unconditional expectations. When s(Xi,
Xp) � 1{xi � xp}, the reasoner only considers identical cases
as relevant, and all of them are then deemed equally rele-
vant. By contrast, if s � 1, the reasoner considers all cases
as identically relevant. In between, equation (1) allows for
various cases to have various degrees of relevance. Given
the new data point Xp, past points Xi are judged for their

4 In our model the similarity function is positive everywhere. This
simplifies the formula and the axiomatization alike. But one can extend
the model to include similarity functions that may vanish, or consider zero
similarity values as a limit case.
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relevance, but not in a dichotomous way. In other words,
Bayesian updating may be viewed as a special case of
equation (1), where similarity is evaluated in a binary way:
two observations are similar if and only if they are identical
in every possible known aspect.

As compared to Bayesian updating, a reasoners who
employs equation (1) might be viewed as a less extreme
assessor of similarity. She does not use only the observa-
tions with identical X values, but also other, less relevant
ones. Why would she do that? Why should she contaminate
her assessment of Y for Xp with Y’s that were observed for
other X’s?

The answer is, presumably, the scarcity of data. If we are
faced with a database in which the very same Xp values
appear a very large number of times, it would seem reason-
able to assess the conditional expectation of Y given Xp

based solely on the observations that share the exact values
of Xp. But one may find that these exact values were
encountered very few times, if at all. Indeed, the X’s might
include certain variables, such as time and location, that
uniquely identify the observation. In this case, no two
observations ever share the exact X values, and conditioning
on Xp leaves one with an empty subdatabase. Even in less
extreme examples, the resulting subdatabase may be too
meager for generating predictions. In those cases, the for-
mula (1) offers an alternative, in which the similarity of the
observations is traded off for the size of the database.

Viewed thus, formula (1) may deserve the name “kernel
updating.” As in other kernel-based techniques, the rele-
vance of an observation (Xi, Yi) is not restricted to identical
data points Xp � Xi, but is extended to other data points Xp,
to an extent determined by the kernel values s(Xi, Xp). The
use of a kernel function in this case is justified by the
paucity of the data, that is, by the fact that observations with
precisely the same Xp are scarce. This parallels the motiva-
tion for the use of kernel functions in kernel estimation of a
density function and in kernel classification.

Finally, we observe that the use of observations (Xi, Yi)
where Xi�Xp for the prediction of Yp may also follow from
Bayesian updating if one assumes that the X variables are
observed with noise.5

E. Autoregression Models

From a mathematical viewpoint, the similarity-weighted
average can be regarded as a type of an autoregression
model. In autoregression models, as well as in our case, Yt

is distributed around a linear function of past values of Y.6

Yet, the similarity-weighted average formula differs from
autoregression models in several important ways. Mathe-
matically, the weights that past values {Yi}i
t have in the
equation of Yt do not depend on the time difference (t 	 i),

but on the similarity of the corresponding X values, that is,
on s(Xi, Xt). In particular, observe that the weights of {Yi}i
t

in the determination of the expectation of Yt are not known
before time t, because these weights depend on Xt. Observe
also that in our case each Yt depends on all past observa-
tions. Thus, our model is an autoregression model whose
order is not bounded a priori. Another important difference
is that in our case the index t has no cardinal significance.
We use it only to order the data; our procedure does not rely
on the fact that the time difference between observations t 	 1
and t is the same as the time difference between observa-
tions t 	 2 and t 	 1.7

Conceptually, our model assumes that similar situations
in the past might have a significant effect on current values
of Y, even if they occurred a long time ago. When one
discusses natural phenomena, such as population growth,
one expects the weight of past observations to be increasing
as a function of their recency. But when we deal with human
reasoning, as in the case of inflationary expectations, less
recent, but more similar situations in the past may have a
greater influence on the future than would more recent but
less similar situations. In a sense, human memory may serve
as a channel through which past periods can affect future
periods without the mediation of the periods in between.

The above need not imply that our model ignores time
completely. One may introduce time as one of the variables
Xj. This would allow more recent periods to have greater
influence on the prediction than less recent ones, simply
because the time difference is translated, via the variable Xj,
to a distance in the X space, and thus to a lower degree of
similarity.

F. How to Analyze Time Series

We conclude that the resemblance between our model
and autoregression models is superficial. Yet, our model can
be adapted to deal with time series in a way that resembles
auto regression in a more profound way. Autoregression can
be viewed, in bold strokes, as explaining a variable by its
own past values, with statistical techniques such as linear
regression. The natural counterpart in our case would be to
predict the variable Y by equation (1) where the variables
(Xj)j include lagged values of Y itself. For example, assume
that Yt is a quarterly growth rate. Introducing Yt	1, . . . , Yt	k

as Xt
1, . . . , Xt

k would suggest that the predicted rate of
growth at period t be a (weighted) average of the rates of
growth in similar periods in the past, where similarity is
defined by the pattern of growth rates in the most recent k
periods. Our technique would find weights w1, . . . , wk that
best fit the data when one uses the equation

5 This comment is due to Mark Machina.
6 As pointed out to us by an anonymous referee, when the similarity

function is allowed to vanish, the i.i.d. process is a special case of our
process when s(X1, Xt) � 1 and s(Xj, Xt) � 0 for 1 
 j 
 t, and Y1 � 0.

7 In fact, our procedure can be easily adapted to the case in which
observations are only partially ordered. As we briefly mention below, a
different variant of our model can deal with situations in which the
observations are not ordered at all.
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Ȳ t
s �

�i
t sw��Yi	k, . . . , Yi	1�, �Yt	k, . . . , Yt	1��Yi

�i
t sw��Yi	k, . . . , Yi	1�, �Yt	k, . . . , Yt	1��
, (5)

where

sw��Yi	k, . . . , Yi	1�,�Yt	k, . . . , Yt	1��

� exp� � � �
j�k

wj�Yi	j � Yt	j�
2�.

This estimation technique could be interpreted as follows.
We first ask, what determines the similarity of patterns of
growth? That is, is a “pattern” defined by the most recent
period or, if by several most recent periods, how many of
these, and what are their relative weights? The estimation of
the weights wj attempts to answer this question. Although
the resulting weights need not be monotonically decreasing
in j (the time difference), one would expect that these
weights would become small for large values of j. In fact, in
determining the number of periods that define a “pattern,” k,
one implicitly assumes that periods more distant than k are
not part of the “pattern.” The selection of this k may be
compared to the selection of the order p in autoregression
models of order p [AR(p)].

Once the weights wj have been determined, we search the
entire database for periods i such that the pattern preceding
i, (Yi	k, . . . , Yi	1), resembles the current pattern, (Yt	k, . . . ,
Yt	1). For such periods, the value Yi would have a larier-
weight in the prediction of Yt than would the value corre-
sponding to periods for which (Yt	k, . . . , Yt	1) resembles
(Yt	k, . . . , Yt	1) to a lesser degree. Again, one may also add
time as an additional variable Xk�1 to make sure that the
prediction discounts the past.

III. Axiomatization

A. Single Agent

The axiomatization does not require that past data points
range over all of �m. We assume that they belong to a
nonempty subset � � �m. However, we do assume that
every possible data point in � may have been observed
together with every value y � � any finite number of times.
We therefore model the database as a vector of counters,
denoted I, rather than the set of observations B used in the
introduction.

Specifically, let C � � � � denote case types. A case
type (x, �) � C is interpreted as an observation of a data
point x � � coupled with the value � � �. Memory is a
nonzero function I : C 3 �� (where �� denotes the
nonnegative integers) such that �c�C I�c� � �, specifying
for every case type c how many cases of that type have
appeared. Let � be the set of all memories.

We are currently presented with a new data point xp � �.
The task is to estimate the value � � � that corresponds to
xp. We assume that the predictor not only chooses one such
�, but has a likelihood ranking over all possible predictions.

Formally, for I � �, let �1 � � � � be a binary relation
over the reals. As usual, �I denotes the asymmetric part of
�1. For �,� � �, � �1 � is interpreted as “Given the
memory I, � is at least as likely as a value for the variable
Y at the new data point xp than is �.” Observe that in the
formal notation we suppress xp. This new data point is fixed
throughout this section.

We now state axioms on {�}I��. The first three are
identical to those appearing in Gilboa and Schmeidler
(2001, 2003).

A1 ORDER: For every I � �, �I is complete and transi-
tive on �.

A2 COMBINATION: For every I, J � � and every �, � �
�, if � �I � (� �I �) and � �J �, then � �I � J � (��I � J �).

A3 ARCHIMEDEAN AXIOM: For every I, J � � and every
�, � � �, if � �I �, then there exists l � � such that
� �

II � J
�.

Observe that in the presence of axiom A2, axiom A3 also
implies that for every I, J � � and every �, � � �, if � �I

�, then there exists l � � such that for all k � l we have
� �

kI � J
�.

Axiom A1 is rather standard. It requires that, given any
memory, the “at least as likely as” relation be a weak order.

Axiom A2 is the main axiom of Gilboa and Schmeidler
(1997, 2001, 2003). Roughly, it states that, if � is more
likely than � given each of two memories, then � should
also be more likely than � given their union. This axiom is
satisfied by a variety of statistical techniques, such as kernel
estimation, kernel classification, and maximum likelihood
rankings. Yet, it is by no means universal. To illustrate its
limitations, consider the following example. Suppose that
there is only one predictor (m � 1), that the database
consists of {(1, 1), (2, 2), . . . , (5, 5)}, and the new data
point is X6 � 6. Given each observation (i, i) for i � 1, . . . ,
5, the value 6 might seem less likely than the value 5. But
given the entire database, where five points lie exactly on
the line Y � X, the value 6 seems a much more reasonable
prediction for X6 � 6. Indeed, the similarity-weighted av-
erage formula that we axiomatize is doomed to predict some
weighted average of the values {1, . . . , 5}, and will not be
able to predict a value higher than 5.

This example shows a major limitation of the similarity-
weighted formula, for which axiom A2 carries most of the
blame: this formula is incapable of identifying trends and
generating predictions based on them. Axiom A2 suggests
that a conclusion that holds in two databases has to hold in
their union. But if there is a trend, or a pattern in the data,
it may be identified only when data are amassed. A2 rules
out the possibility that the union of two memories would
generate new insights. Similarly, if the similarity function is
being learned by the predictor while she produces predic-
tions, or if the estimator uses both inductive and deductive
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reasoning, then the combination axiom should not be ex-
pected to hold. Moreover, if the predictor knows that the
data are generated by a particular model, such as a linear
regression model or a specific Bayesian model, she will
generate predictions based on that model. In this case she is
likely to satisfy the combination axiom when estimating the
parameters of the model (and, in particular, maximum
likelihood estimation will satisfy the axiom), but not at the
level of specific predictions generated by the model. In spite
of all these limitations, A2 appears reasonable as a require-
ment on simple aggregation of evidence, in the absence of
a theory on the way the data are generated.

A3 states that, if memory I contains evidence that � is
more likely than �, then for each other memory J there
exists a large enough number l such that l repetitions of I
would be sufficient to overwhelm the evidence provided by
J, and suggest that � is more likely than � also given the
union of J and l times I. Thus A3 precludes the possibility
that one piece of evidence is infinitely more weighty than
another.

Gilboa and Schmeidler (1997, 2001, 2003) also use a
diversity axiom, which we do not use here. Instead, we
impose a new axiom that is specific to our setup. It states
that, if memory I consists solely of cases that relate to the
same data point x, then the ranking �I is consistent with
simple averaging. Observe that for such databases nothing
can be learnt from the values of x, because they do not
change at all. In this case, it makes sense that the most likely
value of y be taken as the average of its observed values, and
that possible values be ranked according to their proximity
to this average.8

For x � �, define �x to be the set of memories in which
only the data point x has been observed. Formally, �x �
{I � � �I((x�, y)) � 0 for x� � x}. For I � �x, define the
average yI � � by

yI �
��x,y� � C I�� x,y�� y

��x,y��C I�� x,y��
.

The last axiom we employ is

A4 AVERAGING: For every x � �, every I � �x, and
every �, � � �, � �I � iff �� 	 yI � � �� 	yI � .
Our result can now be stated:

Theorem 1. Let there be given �, and {�I}I��. Then the
following two statements are equivalent:

(i) {�I}I�� satisfy A1–A4,

(ii) There is a function s: � 3 ��� such that

for every I � � and every �, � � �,
� �I � iff �� � ys, I � � �� � ys, I �

, (�)

where ys, I � �� x,y��C s�x�I��x, y��y/�� x,y��C s�x�I��x,y��.
Furthermore, in this case the function s is unique up to

multiplication by a positive number.

B. Discussion

The theorem states that, if we rank possible predictions of
Y by their proximity to the average of past values of Y
whenever the values of X1, . . . , Xm are fixed, and we wish
to extend this ranking to general databases in a way that
satisfies our axioms (notably, the combination axiom), we
are bound to do it by proximity to weighted averages.

The axiomatization we provide can be interpreted de-
scriptively or normatively. From a descriptive point of view,
the theorem suggests that, if an agent’s rankings of possible
values of a variable y given various databases satisfy our
axioms, she can be ascribed a similarity function s such that
her rankings are determined by proximity to a similarity-
weighted average of past values of y, calculated by the
similarity function s. From a normative viewpoint, the
axiomatization might be used to convince an agent that
similarity-weighted averaging is a reasonable way to assess
the variable y given a database of past observations. Finally,
the axiomatization also suggests a definition of an agent’s
similarity function, and method of elicitation for it.

A weighted averaging formula is also axiomatized in
Billot et al. (2005). In their model a reasoner is asked to
name a probability vector based on a memory I. Billot et al.
impose an appropriate version of the combination axiom to
conclude that the probability vector given a memory I is a
weighted average of the vectors induced by each case in I
separately. Unfortunately, the result of Billot et al. only
applies if there are at least three states of the world, that is,
if the probability vector has at least two degrees of freedom.
For the special case of a single-dimension probability sim-
plex, their theorem does not hold. In this respect, the present
paper complements Billot et al. (2005).

C. Representative Agent

The theorem above shows under what conditions an
agent’s “as least as likely as” relation will follow the
similarity-weighted average formula for an appropriately
chosen similarity function. It relates the theoretical concept
of similarity to the relation “at least as likely as,” which is
assumed to be observable.

In practice, however, one can often observe only aggre-
gate data. For instance, one may observe market prices of
houses or paintings, but not the assessments of these prices
by agents. What properties should such assessments satisfy?
How are individual assessments aggregated over agents?

8 As pointed out to us by an anonymous referee, one may obtain
axiomatizations of similarity-weighted versions of other statistics, such as
the median. Any statistic that, in the absence of predictors, minimizes a
convex cost function (summed over the given observations) may be
viewed as the most likely value according to a relation �I that satisfies
A1–A3, and can then be generalized to a statistic that minimizes the
similarity-weighted sum of that cost function.
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Can such aggregates also be described as similarity-
weighted averages?

To answer these questions, we extend the model pre-
sented above to incorporate more than one agent. Specifi-
cally, let P � {1, . . . , p} be a set of agents, and redefine the
case types to be C � P � � � �. A case of type (i, x, y) is
interpreted as “agent i � P has observed a data point x � �
and a corresponding value of y � �.” Thus, every obser-
vation in this model specifies the observer, and not only the
observed.

We continue as before to defined memory as a nonzero
vector I : C 3 �� such that �c�C I�c� � �. Let � be the
set of all memories. We now think of a memory I is a matrix
of counters, specifying how many times each agent has
observed any possible (x,y) �� � � combination.

The relation �I is interpreted as follows. For �, � � R,
� �I � means that, if I specifies how many times each agent
has seen each pair (x, y), then � is at least as likely as � to
be the assessment of the set of agents. This assessment is
supposed to reflect some collective opinion, and it does not
reflect economic power or strategic considerations. If, for
instance, we discuss the value of a painting by van Gogh,
every agent is expected to have some assessment of the
value of the painting, regardless of their ability or willing-
ness to pay for it.

The axioms we use are the same axioms verbatim. The
logic behind the axioms mirrors that of the single-agent
case, though, naturally, in the multi agent case the axioms
are more demanding.

We first state the theorem as applied to this case:

Corollary 2. Let there be given P, �, and {�I}I��. Then
the following two statements are equivalent:

(i) {�I}I�� satisfy A1–A4.
(ii) There exist functions {si : � 3 ���}i�P such that

for every I � � and every �, � � R,
� �I � iff �� � ys,I� � �� � ys, I�

, (��)

where ys,I � ��i, x,y��C si�x�I��i,x,y��y/��i, x,y��C si�x�I��i,x,y��.
Furthermore, in this case the functions {si}i�P are unique

up to joint multiplication by a positive number.
We wish to show that, if we assume that all information

is shared, then a set of agents P, characterized by functions
{si}i�p, is indistinguishable from a representative agent
whose similarity function is the average of {si}i�p. To this
end, define �sh as the set of memories in which all agents
have the same information, that is: �sh � {I � ��I((i, x, y)) �
I((i,x,y)) for all i, i� � P}. We now have

Corollary 3. Let P, �, and {�I}I�� be given. Assume that
{�I}I�� satisfy A1–A4. Then there exists a function s: �3
��� such that

for every I � �sh and every �, � � R,
� �I � iff �� � ys, I� � �� � ys, I�

, (���)

where ys, I � ��i, x,y��C s�x�I��i,x,y��y/��i, x,y��C s�x�I��i,x,y��.
Furthermore, in this case the function s is unique up to
multiplication by a positive number.

Observe that the identification of individual similarity
functions si requires that memories I � �sh be considered,
that is, memories in which different agents may have ob-
served different cases. Measuring �I for I � �sh and testing
our axioms may be done in controlled experiments in a
laboratory. It is more challenging to observe �I for I � �sh

in empirical data. Yet, one may imagine that such relations
exist and satisfy our axioms.

As long as we restrict attention to shared information,
namely, to memories in �sh, we only observe the average
similarity function. Attributing this average similarity to a
representative agent, we conclude that the assessment made
by a set of agents will be equivalent to that made by the
representative agent.

The observability of �I mirrors the observability of a
utility function in economics: in principle, one may measure
each agent’s utility function. In reality, often only aggregate
data are available. Under certain conditions, one may as-
sume that the decisions of a set of agents can be described
by the decision of a single, representative agent. Similarly,
in our case one may, in principle, measure each agent’s
similarity function. In practice, we often observe only ag-
gregate assessments. However, under the conditions speci-
fied above, we may replace the set of agents by a single,
representative agent, and obtain the same assessment for
shared information. It is this similarity function, of a repre-
sentative agent, that we attempt to estimate.

IV. Statistical Inference for a Continuous Model

A. The Model and the Likelihood Function

If we assume the initial condition to be Y1 � ε1, then
equation (4) can be written in matrix form as

Sy � ε,

where S � S (w) � I 	 Bw Aw, I is the identity matrix of
order n;

Aw � �
0

sw,2,1 0
···

· · ·
sw,n,1 · · · sw,n,n	1 0

� ;

Bw � �
0 0 · · · 0
0 �e2�Aw1�	1 ······

· · · 0
0 · · · 0 �e�nAw1�	1

� ;

Sw,i,j � sw(Xj, Xi) � e	dw(xj,xi), d is based on equation (3): 1 is
an n � 1 vector of 1’s; ej is the canonical vector of 0’s, apart
from the jth position, where it is set to unity; y � (Y1, . . . ,
Yn)�; and ε is an n � 1 vector of i.i.d. Gaussian variables
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with mean 0 and variance �2. Note that S is a lower
triangular matrix that does not depend on the variables Yi.

We set � � (�1, . . . , �m�1) � (�2, w1, . . . , wm) and
observe that � � ����

m�1. The maximum likelihood esti-
mator (MLE) of �, �n̂, maximizes

l�� � � �
n

2
log�2��1� �

1

2
y�H���y,

where H � S�S/�2.
Note the difference between nonparametric regression

and our approach. In the former, the postulated relationships
are of the form y � g (x) � ε and the Nadaraya-Watson
estimator of the unknown g (x) has precisely the same form
as the term �i
t sw �Xi, Xt� Yi/�i
t sw �Xi, Xt� appearing in
equation (4). In our setup this term is part of the data-
generating process. In addition, in nonparametric regression
the bandwidth is selected so as to minimize some criterion,
such as the mean integrated squared error, whereas we use
maximum likelihood to estimate the weights wj.

B. Hypotheses Tests

Rejecting the null hypothesis H0 : wj � 0 implies that the
variable Xj contributes to the determination of Y, in the
sense that the distance function, according to which Yt is
determined in equation (4), does not ignore the jth variable.

Under general conditions on the similarity function which
are satisfied for exponential similarity, Lieberman (2005)
proved that the MLE is weakly consistent is locally asymp-
totically mixed normal, and that

�nF	1/ 2 ��0� � � Pn��0����̂n � �0�3 dN �0,Im�1�, (6)

where

F��0� � lim
n3�

E�0�1

n

�l��0�

��

�l��0�

���
� ,

Pn�� � �
1

n

�2l�� �

�� ���
,

and �0 is the true value of �. For simple hypotheses tests for
which the parameter is at the interior of the parameter space
under the null, equation (6) can be used to apply any of the
conventional likelihood-based tests (likelihood ratio, La-
grange multiplier, and Wald) in a straightforward manner.
For a hypothesis of the form H0 : wr � 0 versus wr � 0 (r �
1, . . . , m), the parameter is on the boundary under H0. For
this case, Chant (1974, equation (8)) showed that the dis-
tribution of the normalized MLE is half-normal. Hence, for
a one-sided t-test of the form above we reject H0 as we do
in the usual case when t is large (for example, when it
exceeds 1.645, if a 5% significance level is desired).

V. Statistical Inference for the Discrete Case

The Model and the Likelihood Function

We now deal with the case in which each Yt is categorical.
In particular, consider examples 5 and 6 in section I A in
which an expert is asked to estimate the probability of a
certain event, and the observed values of Y can only be {0,
1}. A probability estimated by our formula with the empir-
ical similarity function may be viewed as “objective” in that
it does not rely on subjective similarity judgments, while
still allowing different data points to have differing rele-
vance to the estimation problem at hand.

When assessing probabilities, the assessed values can be
anywhere in the interval [0, 1]. Indeed, formula (2) may
generate any value in [0, 1]. But in this case one cannot
assume that previously observed values of Y were generated
by a normal distribution centered around a similarity-
weighted average as in model (4).9

We therefore assume the following model:10

P�Yt � 1��t	1� � Ft� zt�w��, t � 1, . . . , n, (7)

where Ft is a continuous conditional distribution function
with density ft, �t	1 � � (Yt	1, . . . , Y1; Xt, . . . , X1), and

zt �
�i
t sw�Xi, Xt�Yi

�i
t sw�Xi, Xt�
. (8)

In this setting the X’s are taken to be fixed. Letting Ft be the
standard normal cumulative distribution function (cdf) leads
to a probit-type model whereas letting Ft be the logistic
distribution leads to a logit-type model. Because zt � [0, 1],
it might be sensible to let Ft be a beta distribution or, quite
simply, the uniform distribution. Note that in the classical
model, it is postulated that P (Yt � 1�X) � F (X�). Where no
Yj’s appear on the right-hand side, also observe that model
(7) is nonlinear through both Ft and zt.

In view of equations (7) and (8),

�P�Yt � 1��t	1�

�sw�Xj, Xt�
� ft� zt�

�i
t sw�Xi, Xt��Yj � Yi�

��i
t sw�Xi, Xt��
2 ,

which is non negative if Yj � 1 and nonpositive if Yj � 0.
In other words, when the similarity between Yt and Yj

increases, the conditional probability that Yt � 1 will not fall
when Yj � 1 and will not rise when Yj � 0.

Given our setup, the log likelihood is given by

l � ln L � �
t�1

n

�Yt ln Ft�zt� � �1 � Yt�ln�1 � Ft�zt���,

9 Other reasons for which the model (4) is inappropriate in this case are
that the R2 of regression would typically be low and that, because of the
non-Gaussian nature of the observations, OLS would be inefficient.

10 The categorical variables we discuss here may only assume the values
0 or 1. However, the analysis that follows can be extended to the case of
a categorical variable assuming more than two categories.
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and the MLE’s are the solutions of

�l

�wj
� �

t�1

n Yt � Ft

Ft�1 � Ft�
ft�t, j � 0, j � 1, . . . , m,

where

�t, j � � zt/�wj

�
��i
t ṡw, j �Xi, Xt� Yi� ��i
t sw �Xi, Xt��

��i � t sw �Xi, Xt��
2

�
��i � t ṡw, j �Xi, Xt�� ��i � t sw �Xi, Xt� Yi�

��i � t sw �Xi, Xt��
2 ,

ṡw, j �Xi, Xt� �
�sw,t,i

�wj
� �

sw,t,i�Xji � Xjt�
2

2d�Xi, Xj�
,

and d is given in equation (3). As in the previous section,
any likelihood-based procedure can be employed for hy-
pothesis tests of the form H0: w � w0.

VI. Concluding Remarks

In the statistical analysis we assumed that each observa-
tion Yt is distributed around a weighted average of past Yi, or
that P (Yt � 1) depends on such a weighted average. Such
an ordering is necessary for a causal interpretation of our
models. But if we consider a noncausal relationship, we
may assume a model in which the distribution of each Yi

conditional on the other variables {Yk} k�i is, say, normal
around the weighted average of {Yk} k�i. Indeed, such a
model may be more natural for applications in which the
data are not naturally ordered. For this case, one should
adapt the statistical model and the estimation of the simi-
larity function accordingly.

The assumptions underlying our estimation process call
for elaboration. The axiomatic model aims to describe how
an assessment of Yp, Y� p

s, is generated based on actually
observed values of the variable in question, namely, past
values (Yi)i�n, such as selling prices of houses or of paint-
ings. Applied to each past observation Yi, it suggests that the
assessment of Yi, Y� i

s, is generated by equation (2) for
actually observed past values (Yk)k
i. That is, when we
explain Yi by past observations (Yk) k
i, we treat Yi as if it
were an assessment. When we explain Yl for l � i, we treat
Yi as if it were an actual value. What justifies this confusion
between the actual value of a variable and an assessment
thereof?

For many applications of interest the answer lies in the
notion of equilibrium. If all economic agents agree in their
assessment of the price of a house or a painting, this joint
assessment will indeed be its market price. Similarly, the
price of a financial asset would equal its own assessment if
all agents agreed on the latter. In these cases, one may

assume that, as a feature of equilibrium, actually observed
data coincide with their assessments.11

There may be applications in which one has direct access
to, or indirect measurement of, both actual values (Yi) and
their assessments, say (Zi). In these cases one may find the
similarity function s that best fits the data according to

Z� i
s �

�k
i s�Xk, Xi�Yk

�k � i s�Xk, Xi�
, (9)

namely, a function s that provides values (Z̄i
s)i that are close

to (Zi)i, and then use this function to generate an estimate Z̄p
s

of Zp using actual values Yk by equation (9) applied to i � p.
Yet another class of applications involves only the assess-

ments (Zi). Assume, for instance, that one only observes
asking prices (Zi), and not actual selling prices (Yi). [This is
the case in Gayer, Gilboa, and Lieberman, 2004.] If every-
one has access only to the asking prices (Zi), one may apply
our axiomatization to these variables, and conclude that the
asking price of a new observation Zp will be a similarity-
weighted average of past asking prices (Zi)i�n. Moreover, it
makes sense to assume that the same similarity function
governed the generation of past values Zi as a function of
their past, (Zk)k
i. Hence one may estimate the similarity
function in equation (2) with Zi instead of Yi, and use the
estimated similarity for the prediction of Zp.

Finally, in some situations one does not have access to the
assessments (Zi), and there is no theoretical reason to as-
sume that Zi � Yi. In these cases our empirical approach
could still be applied. That is, one may still ask which
function s : �m � �m3 ��� can best fit the data under the
assumption that they were generated by equation (2), and
that function can then be used for prediction of Yp by
equation (1). In this type of application, (Yi) can be viewed
as proxies for (Zi). Observe that it is only in the estimation
of s that we replace (Zi) by (Yi). In the generation of the
prediction Z� p

s using the estimated s, we use the actual values
(Yi), as indeed we should.

This paper is devoted to the theory of similarity-weighted
averaging. This technique is used in Gayer et al. (2004) for
the assessment of real estate prices, as in example 1. Their
paper compared this method, representing case-based rea-
soning, with linear regression, representing rule-based rea-
soning.
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APPENDIX

Proofs

PROOF OF THEOREM 1: We begin by proving sufficiency of the axioms
[that is, that (i) implies (ii)] and the uniqueness of the function s. Consider
a pair �, � � �. Restricting {�I}I�� to {�, �}, one notices that they satisfy
the conditions of the representation theorem in Gilboa and Schmeidler
(2001, Theorem 3.1, p. 67, or 2003, Theorem 2, p. 16). Indeed, the first
three axioms follow directly from A1–A3, whereas the diversity axiom for
two alternatives follows from the averaging axiom, A4. To apply this
theorem we have also to define the trivial relation for the memory I �
0: ��0 � � � �. Hence there exists a function ���: � � �3 �, unique
up to multiplication by a positive number, such that, for every I � �,

� � I� iff �
� x,y��C

I��x,y������x,y� � 0.

Next consider a triple {�, �, �} � �. Restricting {�I}I�� to {�,�,�} will
no longer satisfy the diversity axiom in Gilboa and Schmeidler (2001).
This axiom would state that for every permutation of the triple {�, �, �}
there exists I � � such that �I agrees with that permutation. This
condition does not follow from our A4. Indeed, the diversity axiom is too
strict for our purposes. If � � � � �, then no �I represented by (�) will
satisfy � �I � �I �.

However, the proof of Gilboa and Schmeidler’s theorem does not
require the full strength of their diversity axiom. All that is required for
three alternatives {�, �, �} is that �� � not be a multiple of ���. To this end,

it suffices that there be three different permutations in {�I}I�� (restricted
to {�, �, �}). This latter condition is guaranteed by our A4. Specifically, by
the averaging axiom A4 for every distinct (�, �, �), there exists I�� such
that � �I �, �. Hence there are at least three permutations in {�I} I��

(restricted to {�, �, �}), and the representation theorem for triples holds.
Observe also that this argument does not employ all the relations {�I} I��,
and it can also be used for a restricted domain {�I}I��x

for any x � �.
It follows that, for every triple {�,�,�}, one can find ��,��,��: � � R3

R such that, for every a, b � {�, �, �} and for every I � �,

a � Ib iff �
� x,y��C

I ��x,y���a�x,y� � �
� x,y��C

I ��x,y���b�x,y�

N �
� x,y��C

I ��x,y�� ��a�x,y� � �b �x,y�� � 0.
(A-1)

In this case, the matrix (��, ��, ��) is unique up to multiplication by a
positive constant and addition of a constant to each row. Fix one such
matrix (��, ��, ��).

Fix x � � and consider �x. Restrict attention to {�I}I��x. Because
equation (A-1) applies to all I � �, it definitely holds for all I � �x � �.
However, we claim that, even on this restricted domain, the matrix (��, ��,
��) is unique as above. To see this, recall that our derivation of equation
(A-1) coupled with the uniqueness result, holds true for {�I}I��x

for any
x � �.

Observe that the relations {�I}I��x
are completely specified by A4.

Specifically, for every a, b � �, for every I � �x,

a � Ib iff �a � yI� � �b � yI�, (A-2)

where

yI �
�� x,y��C I�� x,y�� y

�� x,y��C I�� x,y��
.

That is, a �I b iff a is closer to the average yI than is b. Consider

fI��� � �
� x,y��C

I�� x,y���� � y�2.

The function fI (�) is quadratic (in �), and it has a minimum at � � yI. It
follows that for every a, b, for every I � �x,

fI�a� � fI�b� iff �a � yI� � �b � yI�.

Combining this fact with the definition of fI and with equation (A-2), we
conclude that, for every a, b � {�, �, �} and for every I � �x

a � Ib iff �
� x,y��C

I��x,y���a � y�2 � �
� x,y��C

I��x,y���b � y�2

N �
� x,y��C

I��x,y����a � y�2 � �b � y�2� � 0.
(A-3)

The uniqueness of the representation in equations (A-1) and (A-3) imply
that there exists a constant s(x) � 0 such that

�a� x, y� � �b� x, y� � � s� x���a � y�2 � �b � y�2� (A-4)

for every a,b � {�, �, �} and for every y � R. Obviously, once �a(x,y), �b

(x, y) are fixed, s(x) is uniquely determined by equation (A-4).
We now turn to discuss various x�s, while still focusing on the triple

{�,�, �}. Consider I in � (but not necessarily in �x for any x). Combine
equations (A-1) and (A-4) to conclude that, for a,b � {�, �, �} and for all
I � �,

a � Ib iff �
� x,y��C

I ��x,y��s�x��a � y�2

� �
� x,y��C

I��x,y��s�x��b � y�2

N �
� x,y��C

I��x,y��s�x���a � y�2 � �b � y�2� � 0.

(A-5)
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Define

gI��� � �
� x,y��C

I�� x,y��s� x��a � y�2.

Like the function fI above, the function gI(�) is quadratic (in �), and it has
a minimum at

� � ys,I �
�� x,y��C s� x�I�� x,y�� y

�� x,y��C s� x�I�� x,y��
.

It follows that for every a, b, for every I � �,

gI�a� � gI�b� iff �a � ys,I� � �b � ys,I�. (A-6)

Combining equation (A-5) with (A-6), we obtain

a � Ib iff �a � ys,I� � �b � ys,I�,

that is, {s(x)}x satisfies (�) for the triple {�,�,�}.
Observe that {s(x)}x are unique up to multiplication by a positive

number. In fact, we argue that if s and s� both satisfy (�) for particular a,
b � R, a � b, then there exists  � 0 such that s�(x) � s(x) for all x �
�. Indeed, assume that s and s� both satisfy (�) for particular a, b. This
would imply that they both satisfy equation (A-5) for these a, b, and then
the uniqueness of �a(x, y) 	 �b(x, y) in equation (A-1), combined with

equation (A-4), implies that there exists  � 0 such that s�(x) � s(x) for
all x � �.

It remains to show that the function s(x) does not depend on the choice
of the triple {�,�,�} � �. Consider the triple {�, �, �} where � � �.
Because equation (A-6) applied to � and � holds both for the function s of
the triple {�,�, �} and that of the triple {�, �, �} these two functions have
to be positive multiples of each other. Using this argument inductively
implies that all functions s derived from different triples differ only by a
factor. Because s can always be multiplied by a positive constant and still
satisfy (�), one may choose an s of one triple {�,�, �} arbitrarily and use
it for all other triples as well.

We need to prove the necessity of the axioms, that is, that (ii) implies
(i). The necessity of A1, A2, and A3 is proved as in Gilboa and Schmeidler
(2001, 2003), whereas the necessity of A4 follows directly from (�).

PROOF OF COROLLARY 2: This result is a rewriting of theorem 1 for the
special case in which C is the product of two sets.

PROOF OF COROLLARY 3: Use corollary 2, and define s(x) � 1
p
�i�P si�x�.

For I � �sh,

��i, x,y��C si� x�I��i, x,y�� y

��i, x,y��C si� x�I��i, x,y��
�
��i, x,y��C s� x�I��i, x,y�� y

��i, x,y��C s� x�I��i, x,y��
� ys, I,

which concludes the proof.
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