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“In reality, all arguments from experience are founded on the similarity
which we discover among natural objects, and by which we are induced to
expect effects similar to those which we have found to follow from such ob-
jects. And though none but a fool or madman will ever pretend to dispute
the authority of experience, or to reject that great guide of human life, it
may surely be allowed a philosopher to have so much curiosity at least as to
examine the principle of human nature, which gives this mighty authority to
experience, and makes us draw advantage from that similarity which nature
has placed among different objects. From causes which appear similar we
expect similar effects. This is the sum of all our experimental conclusions.”
(Hume 1748, Section IV)
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Chapter 1

Prologue

1 The Scope of This Book

The focus of this book is formal modeling of decision making by a single
person who is aware of the uncertainty she is facing. Some of the models and
results we propose may be applicable to other situations. For instance, the
decision maker may be an organization or a computer program. Alternatively,
the decision maker may not be aware of the uncertainty involved or of the
very fact that a decision is being made. Yet, our main interest is in descriptive
and normative models of conscious decisions made by humans.

There are two main paradigms for formal modeling of human reasoning,
which have also been applied to decision making under uncertainty. One
involves probabilistic and statistical reasoning. In particular, the Bayesian
model coupled with expected utility maximization is the most prominent
paradigm for formal models of decision making under uncertainty. The other
employs rule-based deductive systems. Each of these paradigms provides a
conceptual framework and a set of guidelines for constructing specific models
for a wide range of decision problems.

These two paradigms are not the only ways in which people’s reasoning
may be, or has been, described. In particular, the claim that people reason
by analogies dates back at least to Hume. However, reasoning by analogies

9
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has not been the subject of formal analysis to the same degree that the other
paradigms have. Moreover, there is no general purpose theory we are aware
of that links reasoning by analogies to decision making under uncertainty.

Our goal is to fill this gap. That is, we seek a general purpose formal
model, comparable to the model of expected utility maximization, that will
(i) provide a framework within which a large class of specific problems can
be modeled; (ii) be based on data that are, at least in principle, observable;
(iii) allow mathematical analysis of qualitative issues, such as asymptotic
behavior; and (iv) be based on reasoning by analogies.

We believe that human reasoning typically involves a combination of the
three basic techniques, namely, rule-based deduction, probabilistic inference,
and analogies. Formal modeling tends to opt for elegance, and to focus on
certain aspects of a problem at the expense of others. Indeed, our aim is
to provide a model of case- or analogy-based decision making that will be
simple enough to highlight main insights. We discuss the various ways in
which our model may capture deductive and probabilistic reasoning, but we
do not formally model the latter. It should be taken for granted that a
realistic model of the human mind would have to include ingredients of all
three paradigms, and perhaps several others as well. At this stage we merely
attempt to lay the foundations for one paradigm whose absence from the
theoretical discussion we find troubling.

The theory we present here does not purport to be more realistic than
other theories of human reasoning or of choice. In particular, our goal is not
to fine-tune expected utility theory as a descriptive theory of decision making
in situations described by probabilities or states of the world. Rather, we
wish to suggest a framework within which one can analyze choice in situations
that do not fit existing formal models very naturally. Our theory is just as
idealized as existing theories. We only claim that in many situations it is a
more natural conceptualization of reality than are these other theories.

This book does not attempt to provide even sketchy surveys of the estab-
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lished paradigms for formal modeling of reasoning, or of the existing literature
on case-based reasoning. The reader is referred to standard texts for basic
definitions and background.

Many of the ideas and mathematical results in this book have appeared
in journal articles and working papers (Gilboa and Schmeidler 1995, 1996a,
1997a,b, 2000a,b,c). This material has been integrated, organized, and inter-
preted in new ways. Additionally, several sections appear here for the first
time.

In writing this book, we made an effort to address readers from different
academic disciplines. Whereas several chapters are of common interest, oth-
ers may address more specific audiences. The following is a brief guide to
the book.

We start with two meta-theoretical sections, one devoted to definitions
of philosophical terms, and the other to our own views on the way decision
theory and economic theory should be conducted. These two sections may be
skipped with no great loss to the main substance of the book. Yet, Section 2
may help to clarify the way we use certain terms (such as “rationality”, “nor-
mative science”, and the like), and Section 3 explains part of our motivation
in developing the theory described in this book.

Chapter 2 of the book presents the main ideas of case based decision
theory (CBDT), as well as its formal model. It offers several decision rules,
a behaviorist interpretation of CBDT, and a specification of the theory for
prediction problems.

Chapter 3 provides the axiomatic foundations for the decision rules in
Chapter 2. In line with the tradition in decision theory and in economics, it
seeks to relate theoretical concepts to observables and to specify conditions
under which the theory might be refuted.

Chapter 4, on the other hand, focuses on the epistemological underpin-
nings of CBDT. It compares it with the other two paradigms of human rea-
soning and argues that, from a conceptual viewpoint, analogical reasoning
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is primitive, whereas both deductive inference and probabilistic reasoning
are derived from it. Whereas Chapter 3 provides the mathematical foun-
dations of our theory, the present chapter offers the conceptual foundations
of the theory and of the language within which the mathematical model is
formulated.

Chapter 5 deals with planning. It generalizes the CBDT model from a
single-stage decision to a multi-stage one, and offers an axiomatic foundation
for this generalization.

Chapter 6 focuses on a special case of our general model, in which the
same problem is repeated over and over again. It relates to problems of
discrete choice in decision theory and in marketing, and it touches upon
issues of consumer theory. It also contains some results that are used later
in the book.

Chapter 7 addresses questions of learning, dynamic evolution, and in-
duction in our model. We start with an optimality result for the case of a
repeated problem, which is based on a rather rudimentary form of learning.
We continue to discuss more interesting forms of learning, as well as induc-
tive inference. Unfortunately, we do not offer any profound results about the
more interesting issues. Yet, we hope that the formal model we propose may
facilitate discussion of these issues.

2 Meta-Theoretical Vocabulary

We devote this section to define the way we use certain terms that are bor-
rowed from philosophy. Definitions of terms and distinctions among concepts
tend to be fuzzy and subjective. The following are no exception. These are
merely the definitions that we have found to be the most useful for discussing
theories of decision making under uncertainty at the present state. While our
definitions are geared toward a specific goal, several of them may facilitate
discussion of other topics as well.



2. META-THEORETICAL VOCABULARY 13

2.1 Theories and conceptual frameworks

A theory of social science can be viewed as a formal mathematical structure
coupled with an informal interpretation. Consider, for example, the economic
theory that consumer’s demand is derived from maximizing a utility function
under a budget constraint. A possible formal representation of this theory
consists of two components, describing two sets, C and P. The first set, C,
consists of all conceivable demand functions. A demand function maps a
vector of positive prices p ∈ Rn

++ and an income level I ∈ R+ to a vector of
quantities d(p, I) ∈ Rn

+, interpreted as the consumer’s desired quantities of
consumption under the budget constraint that total expenditure d(p, I) · p
does not exceed income I. The second set, P , is the subset of C that is
consistent with the theory. Specifically, P consists of the demand functions
that can be described as maximizing a utility function.1 When the theory
is descriptive, the set P is interpreted as all phenomena (in C) that might
actually be observed. When the theory is normative, P is interpreted as all
phenomena (in C) that the theory recommends. Thus, whether the theory is
descriptive or normative is part of the informal interpretation.

The informal interpretation should also specify the intended applications
of the theory. This is done at two levels. First, there are “nicknames” at-
tached to mathematical objects. Thus Rn

+ is referred to as a set of “bundles”,
Rn

++ – as a set of positive “price vectors”, whereas I is supposed to represent
“income” and d – “demand”. Second, there are more detailed descriptions
that specify whether, say, the set Rn

+ should be viewed as representing phys-
ical commodities in an atemporal model, consumption plans over time, or
financial assets including contingent claims, whether d denotes the demand
of an individual or a household, and so forth.

Generally, the formal structure of a theory consists of a description of

1Standard (neo-classical) consumer theory imposes additional constraints. For instance,
homogeneity and continuity are often part of the definition of demand functions, and utility
functions are required to be continuous, monotone, and strictly quasi-concave. We omit
these details for clarity of exposition.
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a set C and a description of a subset thereof, P . The set C is understood
to consist of conceivably observable phenomena. It may be referred to as
the scope of the theory. A theory thus selects a set of phenomena P out
of the set of conceivable phenomena C, and excludes its complement C\P .
What is being said about this set P , however, is specified by the informal
interpretation: it may be the prediction or the recommendation of the theory.

Observe that the formal structure of the theory does not consist of the sets
C and P themselves. Rather, it consists of formal descriptions of these sets,
DC and DP , respectively. These formal descriptions are strings of characters
that define the sets in standard mathematical notation. Thus, theories are
not extensional. In particular, two different mathematical descriptions DP
and D′

P of the same set P will give rise to two different theories. It may
be a non-trivial mathematical task to discover relationships between sets
described by different theories.

It is possible that two theories that differ not only in the formal structure
(DC ,DP) but also in the sets (C,P) may coincide in the real world phe-
nomena they describe. For example, consider again the paradigm of utility
maximization in consumer theory. We have spelled out above one manifesta-
tion of this paradigm in the language of demand functions. But the literature
also offers other theories within the same paradigm. For instance, one may
define the set of conceivable phenomena to be all binary relations over Rn

+,
with a corresponding definition of the subset of these relations that conform
to maximization of a real-valued function.

The informal interpretation of a theory may also be formally defined.
For instance, the assignment of nicknames to mathematical objects can be
viewed as a mapping from the formal descriptions of these objects, appearing
in DC and in DP , into a natural language, provided that the latter is a
formal mathematical object. Similarly, one may formally define “real world
phenomena” and represent the (intended) applications of the theory as a
collection of mappings from the mathematical entities to this set. Finally,
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the type of interpretation of the theory, namely, whether it is descriptive or
normative, can easily be formalized.2 Thus a theory may be described as a
quintuple consisting of DC, DP , the nicknames assignment, the applications,
and the type of interpretation.

We refer to the first three components of this quintuple, that is, DC, DP ,
and the nicknames assignment, as a conceptual framework (or framework for
short). A conceptual framework thus describes a scope and a description of
a prediction or a recommendation, and it points to a type of applications
through the assignment of nicknames. But a framework does not completely
specify the applications. Thus, frameworks fall short of qualifying as theories,
even if the type of interpretation is given.

For instance, Savage’s (1954) model of expected utility theory involves
binary relations over functions defined on a measurable space. The mathe-
matical model is consistent with real world interpretations that have nothing
to do with choice under uncertainty, such as choice of streams of consumption
over time, or of income profiles in a society. The nickname “space of states
of the world”, which is attached to the measurable space in Savage’s model,
defines a framework that deals with decision under uncertainty. But the con-
ceptual framework of expected utility theory does not specify exactly what
the states of the world are, or how they should be constructed. Similarly,
the conceptual framework of Nash equilibrium (Nash (1951)) in game theory
refers to “players” and to “strategies”, but it does not specify whether the
players are individuals, organizations, or states, whether the theory should
be applied to repeated or to one-shot situations, to situations involving few
or many players, and so forth.

By contrast, the theory of expected utility maximization under risk (von-
Neumann and Morgenstern (1944)), as well as prospect theory (Kahneman

2Our formal model allows other interpretations as well. For instance, it may represent
a formal theory of aesthetics, where the set P is interpreted as defining what is beautiful.
One may argue that such a theory can still be interpreted as a normative theory, prescribing
how aesthetical judgment should be conducted.
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and Tversky’s (1979)) are conceptual frameworks according to our definition.
Still, they may be classified also as theories, because the scope and nicknames
they employ almost completely define their applications.

Terminological remark : The discussion above implies that expected util-
ity theory should be termed a framework rather than a theory. Similarly,
non-cooperative games coupled with Nash equilibrium constitute a frame-
work. Still, we follow standard usage throughout most of the book and often
use “theory” where our vocabulary suggests “framework”.3 However, the
term “framework” will be used only for conceptual frameworks that have
several substantially distinct applications.

2.2 Descriptive and normative theories

There are many possible meanings to a selection of a set P out of a set of
conceivable phenomena C. Among them, we find that it is crucial to focus
on, and to distinguish between two that are relevant to theories in the social
sciences: descriptive and normative.

A descriptive theory attempts to describe, explain, or predict observa-
tions. Despite the different intuitive meanings, one may find it challenging to
provide formal qualitative distinctions between description and explanation.
Moreover, the distinction between these and prediction may not be very fun-
damental either. We therefore do not dwell on the distinctions among these
goals.

A normative theory attempts to provide recommendations regarding what
to do. It follows that normative theories are addressed to an audience of peo-
ple facing decisions who are capable of understanding their recommendations.
However, not every recommendation qualifies as normative science. There
are recommendations that may be classified as moral, religious, or political
preaching. These are characterized by suggesting goals to the decision mak-
ers, and, as such, are outside the realm of academic activity. There is an

3We apply the standard usage to the title of this book as well.
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additional type of recommendations that we do not consider as normative
theories. These are recommendations that belong to the domain of social
planning or engineering. They are characterized by recommending tools for
achieving pre-specified goals. For instance, the design of allocation mecha-
nisms that yield Pareto optimal outcomes accepts the given goal of Pareto
optimality and solves an engineering-like problem of obtaining it. Our use of
“normative science” differs from both these types of recommendations.

A normative scientific claim may be viewed as an implicit descriptive
statement about decision makers’ preferences. The latter are about con-
ceivable realities that are the subject of descriptive theories. For instance,
whereas descriptive theory of choice investigates actual preferences, norma-
tive theory of choice analyzes the kind of preferences that the decision maker
would like to have, that is, preferences over preferences. An axiom such as
transitivity of preferences, when normatively interpreted, attempts to de-
scribe the way the decision maker would prefer to make choices. Similarly,
Harsanyi (1953, 1955) and Rawls (1971) can be interpreted as normative
theories for social choice in that they attempt to describe to what society
one would like to belong.

According to this definition, normative theories are also descriptive. They
attempt to describe a certain reality, namely, the preferences an individual
has over the reality she encounters. To avoid confusion, we will reserve
the term “descriptive theory” for theories that are not normative. That
is, descriptive theories would deal, by definition, with “first-order” reality,
whereas normative theories would deal with “second-order” reality, namely,
with preferences over first-order reality. First-order reality may be external
or objective, whereas second-order reality always has to do with subjective
preferences that lie within the mind of an individual. Yet, first-order reality
might include actual preferences, in which case the distinction between first-
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order and second-order reality may become a relative matter.4,5

Needless to say, these distinctions are sometimes fuzzy and subjective. A
scientific essay may belong to several different categories, and it may be dif-
ferently interpreted by different readers, who may also disagree with the au-
thor’s interpretation. For instance, the independence axiom of von-Neumann
and Morgenstern’s expected utility theory may be interpreted as a compo-
nent of a descriptive theory. Indeed, testing it experimentally presupposes
that it has a claim to describe reality. But it may also be interpreted norma-
tively, as a recommendation for decision making under risk. To cite a famous
example, Maurice Allais presented his paradox (see Allais (1953)) to several
researchers, including the late Leonard Savage. The latter expressed pref-
erences in violation of expected utility theory. Allais argued that expected
utility maximization is not a successful descriptive theory. Savage’s reply was
that his theory should be interpreted normatively, and that it could indeed
help a decision maker avoid such mistakes.

Further, even when a theory is interpreted as a recommendation it may
involve different types of recommendations. For instance, Shapley axioma-
tized his value for cooperative transferable utility games (Shapley (1953)).
When interpreted normatively, the axioms attempt to capture decision mak-
ers’ preferences over the way in which, say, cost is allocated in different
problems. A related result by Shapley shows that a player’s value can be
computed as a weighted average of her marginal contributions. This result
can be interpreted in two ways. First, one may view it as an engineering
recommendation: given the goal of computing a player’s value, it suggests a

4There is a temptation to consider a hierarchy of preferences, and to ask which are in
the realm of descriptive theories. We resist this temptation.

5In many cases first-order preferences would be revealed by actual choices, whereas
second-order preferences would only be verbally reported. Yet, this distinction is not
sharp. First, there may be first-order preferences that cannot be observed in actual choice.
Second, one may imagine elaborate choice situations in which second-order preferences
might be observed, as in cases where one decides on a decision-making procedure or on a
commitment device.
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formula for its computation. Second, one may also argue that compensat-
ing a player to the extent of her average marginal contribution is ethically
appealing, and thus the formula, like the axioms, has a normative flavor.

To conclude, the distinctions between descriptive and normative theories,
as well as between the latter and engineering on the one hand and preaching
on the other, are not based on mathematical criteria. The same mathematical
result can be part of any of these types of scientific or non-scientific activi-
ties. These distinctions are based on the author’s intent, or on her perceived
intent. It is precisely the inherently subjective nature of these distinctions
that demands that one be explicit about the suggested interpretation of a
theory.

It also follows that one has to have a suggested interpretation in mind
when attempting to evaluate a theory. Whereas a descriptive theory is eval-
uated by its conformity with objective reality, a normative theory is not. On
the contrary, a normative theory that suggests to people to do what they
would anyway do is of questionable value. How should we evaluate a nor-
mative theory, then? Since we define normative theories to be descriptive
theories dealing with second-order reality, a normative theory should also be
tested according to its conformity to reality. But it is second-order reality
that a normative theory should be compared to. For instance, a reasonable
test of a normative theory might be whether its subjects accept its recom-
mendations.

It is undeniable, however, that the evaluation of normative theories is
inherently more problematic than that of descriptive theories. The evidence
for normative theories would have to rely on introspection and self-report
data much more than would the evidence for descriptive theories. Moreover,
these data may be subject to manipulation. To consider a simple example,
suppose we are trying to test the normative claim that income should be
evenly distributed. We are supposed to find out whether people would like
to live in an egalitarian society. Simply asking people might confound their
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ethical preferences with their self-interest. Indeed, a person might not be
sure whether she subscribes to a philosophical or a political thesis due to
pure conviction or to self-serving biases. A gedanken experiment such as
putting oneself behind the “veil of ignorance” (Harsanyi (1953, 1955), Rawls
(1971)) may assist one in finding one’s own preferences, but may still be of
little help in a social context. Further, the reality one tries to model, namely,
a person’s ethical preferences over the rules governing society, or her logico-
aesthetical preferences over her own preferences are a moving target that
changes constantly with actual behavior and social reality. Yet, the way we
define normative theories admits a certain notion of empirical testing.

2.3 Axiomatizations

In common usage, the term “axiomatization” refers to a theory. However,
most axiomatizations in the literature apply to conceptual frameworks ac-
cording to our definitions. In fact, the following definition of axiomatizations
refers only to a formal structure (DC,DP).

An axiomatization of T = (DC ,DP) is a mathematical model consisting
of: (i) a formal structure T ′ = (DC,DP′), which shares the description of
the set C with T , but whose set P ′ is described only in the language of
phenomena that are deemed observable; (ii) mathematical results relating
the set P ′ of T ′ to the set P of T . Ideally, one would like to have conditions
on observable phenomena that are necessary and sufficient for P to hold,
namely, to have a structure T ′ such that P = P ′. In this case, T ′ is considered
to be a “complete” axiomatization of T . The conditions that describe P ′ are
referred to as “axioms”.6

Observe that whether T ′ = (DC,DP ′) is considered to be an axiomatiza-
tion of T depends on the question of observability of terms in DP ′. Conse-

6As opposed to the original meaning of the word, an “axiom” need not be indisputable
or self-evident. However, evaluation of axiomatic systems typically prefers axioms that
are simple in terms of mathematical formulation and transparent in terms of empirical
content.
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quently, the definition above will be complete only given a formal definition
of “observability”. We do not attempt to provide such a definition here,
and we use the term “axiomatization” as if observability were well-defined.7

Throughout the rest of this subsection we assume that the applications of
the conceptual frameworks are agreed upon. We will therefore stick to stan-
dard usage and refer to axiomatizations of theories (rather than of formal
structures).

Because human decisions involve inherently subjective phenomena, it is
often the case that the formulation of a theory contains existential quan-
tifiers. In this case, a complete axiomatization would also include a result
regarding uniqueness. For instance, consider again the theory stating that
“there exists a [so-called utility] function such that, in any decision between
two choices, the consumer would opt for the one to which the [utility] function
attaches a higher value”. An axiomatization of this theory should provide
conditions under which the consumer can indeed be viewed as maximizing a
utility function in binary decisions. Further, it should address the question
of uniqueness of this function: to what extent can we argue that the utility
function is defined by the observable data of binary choices?

There are three reasons for which one might be interested in axiomati-
zations of a theory. First, the meta-scientific reason mentioned above: an
axiomatization provides a link between the theoretical terms and the (al-
legedly) observable terms used by the theory. True to the teachings of log-
ical positivism (Carnap (1923), see also Suppe (1974)), one would like to
have observable definitions of theoretical terms, in order to render the latter
meaningful. Axiomatizations help us identify those theoretical differences
that have observable implications, and avoid debates between theories that
are observationally equivalent.

One might wish to have an axiomatization of a theory for descriptive

7Indeed, people who disagree about the definition of observability may consequently
disagree whether a certain mathematical result qualifies as an axiomatization.
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reasons. Since an axiomatization translates the theory to directly observable
claims, it prescribes a way to test the empirical validity of the theory. To
the extent that the axioms do rule out certain conceivable observations, they
also ascertain that the theory is non-vacuous, that is, falsifiable, as preached
by Popper (1934). Note also that there are many situations, especially in the
social sciences, where it is impractical to subject a theory to direct empirical
tests. In those cases, an axiomatization can help us judge the plausibility of
the theory. In this sense, axiomatizations may serve a rhetorical purpose.

Finally, one is often interested in axiomatizations for normative reasons.
A normative theory is successful to the extent that it convinces decision
makers to change the way they make their choices.8 A set of axioms, formu-
lated in the language of observable choice, can often convince decision makers
that a certain theory has merit more than its mathematical formulation can.
Thus, the normative role of axiomatizations is inherently rhetorical.

It is often the case that an axiomatization serves all three purposes. For
instance, an axiomatization of utility maximization in consumer theory pro-
vides a definition of the term “utility” and shows that binary choices can
only define such a utility function up to an arbitrary monotone transforma-
tion. This meta-scientific exercise saves us useless debates about the choice
between observationally equivalent utility functions.9 On a descriptive level,
such an axiomatization shows what utility maximization actually entails.
This allows one to test the theory that consumers are indeed utility maxi-
mizers. Moreover, it renders the theory of utility maximization much more

8Changing actual decision making is the ultimate goal of a normative theory. Such
changes are often gradual and indirect. For instance, normative theories may first convince
scientists before they sift to practitioners and to the general public. Also, a normative
theory may change the way people would like to behave even if they fail to implement
their stated policies, for, say, reasons of self-discipline. Finally, a normative theory may
convince many people that they would like society to make certain choices, but they may
not be able to bring them about for political reasons. In all of these cases the normative
theories definitely have some success.

9This, at least, is the standard microeconomic textbook view. For an opposing view
see Beja and Gilboa (1992) and Gilboa and Lapson (1995).



2. META-THEORETICAL VOCABULARY 23

plausible, because it shows that relatively mild consistency assumptions suf-
fice to treat consumers as if they were utility maximizers, even if they are
not conscious of any utility function, of maximization, or even of the act
of choice. Finally, on a normative level, an axiomatization of utility maxi-
mization may convince a person or an organization that, according to their
own judgment, they should better adopt a utility function and act so as to
maximize it.

Similarly, Savage’s (1954) axiomatization of subjective expected utility
maximization provides observable definitions of the terms “utility” and “(sub-
jective) probability”. Descriptively, it provides us with reasons to believe that
there are decision makers who can be described as expected utility maximiz-
ers even if they are not aware of it, thus making expected utility maximization
a more plausible theory. Finally, from a normative point of view, decision
makers who shrug their shoulders when faced with the theory of expected
utility maximization may find it more compelling if they are exposed to Sav-
age’s axioms.

While our use of the term “axiomatization” highlights the role of pro-
viding a link between theoretical concepts and observable data, this term is
often used in other meanings. Both in mathematics and in the sciences, an
“axiomatization” sometimes refers to a characterization of a certain entity
by some of its properties. One is often interested in such axiomatizations as
decompositions of the concept that is axiomatized. Studying the “building
blocks” of which a concept is made typically enhances our understanding
thereof, and allows the study of related concepts. Axiomatizations in the
sense used in this book will typically also have the flavor of decomposition
of a construct. Thus, on top of the reasons mentioned above, one may also
be interested in axiomatizations simply as a way to better understand what
characterizes a certain concept and what is the driving force behind certain
results. For instance, an axiomatization of utility maximization in consumer
theory will often reduce utility theory to more primitive “ingredients”, and
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will also suggest alternative theories that share only some of these ingredi-
ents, such as preferences that are transitive but not necessarily complete.

2.4 Behaviorist, behavioral, and cognitive theories

We distinguish between two types of data. Behavioral data are observations
of actions taken by decision makers. By contrast, cognitive data are choice-
related observations that are derived from introspection, self-reports, and so
forth. We are interested in actions that are open to introspection, even if
they are not necessarily preceded by a deliberate decision making process.
Thus, what people say about what their choices might be, the reasons they
give for actual or hypothetical choices, their recollection of and motivation
for such choices are all within the category of cognitive data. In contrast
to common psychological usage, we do not distinguish between cognition
and emotion. Emotional motives, inasmuch as they can be retrieved by
introspection and memory, are cognitive data. Other relevant data, such
as certain physiological or neurological activities, will be considered neither
behavioral nor cognitive.

Theories of choice can be classified according to the types of data they
recognize as valid, as well as by the types of theoretical concepts they resort
to. A theory is behaviorist if it only admits behavioral data, and if it also
makes no use of cognitive theoretical concepts. (See Watson (1913, 1930)
and Skinner (1938).) We reserve the term “behavioral” to theories that only
recognize behavioral data, but that make use of cognitive metaphors. Neo-
classical economics and Savage’s (1954) expected utility theory are behavioral
in this sense: they only recognize revealed preferences as legitimate data, but
they resort to metaphors such as “utility” and “belief”. Finally, cognitive
theories make use of cognitive data, as well as of behavior data. Typically,
they also use cognitive metaphors.

Cognitive and behavioral theories often have behaviorist implications.
That is, they may say something about behavior that will be consistent
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with some behaviorist theories but not with others. In this case, we refer
to the cognitive or the behavioral theory as a cognitive specification of the
behaviorist theories it corresponds to. One may view a cognitive specification
of a behaviorist theory as a description of a mental process that implements
the theory.

2.5 Rationality

We find that purely behavioral definitions of rationality invariably miss an
important ingredient of the intuitive meaning of the term. Indeed, if one
adheres to the behavioral definition of rationality embodied in, say, Savage’s
axioms, one has a foolproof method of making rational decisions: choose any
prior and any utility function, and maximize the corresponding expected
utility. Adopting this method, one will never be caught violating Savage’s
axioms. Yet, few would accept an arbitrary choice of a prior as rational.

It follows that rationality has to do with reasoning as well as with be-
havior. As a first approximation we suggest the following definition. An
action, or a sequence of actions is rational for a decision maker if, when the
decision maker is confronted with an analysis of the decisions involved, but
with no additional information, she does not regret her choices.10 This def-
inition of rationality may apply not only to behavior, but also to decision
processes leading to behavior. Observe that our definition presupposes a de-
cision making entity capable of understanding the analysis of the problems
encountered.

Consider the example of transitivity of binary preferences. Many people,
who exhibit cyclical preferences, regret some of their choices when exposed to
this fact. For these decision makers, violating transitivity would be consid-
ered irrational. Casual observation shows that most people feel embarrassed
when it is shown to them that they have fallen prey to framing effects (Tver-
sky and Kahneman (1981)). Hence we would say that, for most people,

10Alternatively, one can substitute “does not feel embarrassed by” for “does not regret”.
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rationality dictates that they be immune to framing effects. Observe, how-
ever, that regret that follows from unfavorable resolution of uncertainty does
not qualify as a test of rationality.

As another example, consider the decision maker’s autonomy. Suppose
that a decision maker decides on an act, a, and ends up choosing another act,
b, because, say, she is emotionally incapable of foregoing b. If she is surprised
or embarrassed by her act, it may be considered irrational. But irrationality
in this example may be due to the intent to choose a, or to the implicit
prediction that she would implement this decision. Indeed, if the decision
maker knows that she is incapable of foregoing act b, it would be rational for
her to adjust her decisions and predictions to the actual feasible set. That
is, if she accepts the fact that she is technologically constrained to choose
b, and if she so plans to do, there will be nothing irrational in this decision,
and there will be no reason for her to regret not making the choice a, which
was never really feasible. Similarly, a decision maker who has limitations
in terms of simple mistakes, failing memory, limited computational capacity,
and the like, may be rational as long as her decision takes these limitations
into account, to the extent that they can be predicted.

Our definition has two properties that we find necessary for any defini-
tion of rationality and one that we find useful for our purposes. First, as
mentioned above, it relies on cognitive or introspective data, as well as on
behavioral data, and it cannot be applied to decision makers who cannot
understand the analysis of their decisions. According to this definition it is
meaningless to ask whether, say, bees, are rational. Second, it is subjective
in nature. A decision maker who, despite all our preaching, insists on making
frame-dependent choices, will have to be admitted into the hall of rationality.
Indeed, there is too little agreement among researchers in the field to justify
the hope for a unified and objective definition of rationality. Finally, our
definition of rationality is closely related to the practical question of what
should be done about observed violations of classical theories of choice, as we



2. META-THEORETICAL VOCABULARY 27

explain in the sequel. As such, we hope that this definition may go beyond
capturing intuition to simplifying the discussion that follows.11

2.6 Deviations from rationality

There is a large body of evidence that people do not always behave as classi-
cal decision theory predicts. What should we do about observed deviations
from the classical notion of rational choice? Should we refine our descriptive
theories or dismiss the contradicting data as exceptions that can only clutter
the basic rules? Should we teach our normative theories, or modify them?

We find the definition of rationality given above useful in making these
choices. If an observed mode of behavior is irrational for most people, one
may suggest a normative recommendation to avoid that mode of behavior.
By definition of irrationality, most people would accept this recommendation,
rendering it a successful normative theory. By contrast, there is a weaker
incentive to incorporate this mode of behavior into descriptive theories: if
these theories were known to the decision makers they describe, the decision
makers would wish to change their behavior. Differently put, a descriptive
theory of irrational choice is a self-refuting prophecy. If, however, an observed
mode of behavior is rational for most people, they will stick to it even if
theorists preach the opposite. Hence, recommending to avoid it would make
a poor normative theory. But then the theorists should include this mode of
behavior in their descriptive theories. This would improve the accuracy of
these theories even if the theories are known to their subjects.

2.7 Subjective and objective terms

Certain terms, such as “probability”, are sometimes classified as subjective or
objective. Some authors argue that all such terms are inherently subjective,
and that the term “objective” is but a nickname for subjective terms on

11For other views of rationality, see Arrow (1986), Etzioni (1986), and Simon (1986).



28 CHAPTER 1. PROLOGUE

which there happens to be agreement. (See Anscombe and Aumann (1963).)
A possible objection is raised by the following example. Five people are
standing around a well that they have just found in the field. They all
estimate its depth to be more than 100 feet. This is the subjective estimate
of each of the five people. Yet, while they all agree on the estimate, they also
all agree that there is a more objective way to measure the depth of the well.

Specifically, assume that Judy is one of the five people who have discov-
ered the well, and that she recounts the story to her friend Jerry. Compare
two scenarios. In the first scenario, Judy says, “I looked inside, and I saw
that it was over 100 feet deep.” In the second scenario she says, “I had
dropped a stone into the well and three seconds had passed before I heard
the splash.” Jerry is more likely to accept Judy’s estimate in the second sce-
nario than he is in the first. We would also like to argue that Judy’s estimate
of the well’s depth in the second scenario is more objective than in the first.
This suggests a definition of objectivity that requires more than agreement
among subjective judgments: an assessment is objective if someone else is
likely to agree with it. Generally, one may argue that objective judgments
require some justification beyond the perhaps coincidental agreement among
subjective ones.

It may be useful to conceptualize the distinction between subjective and
objective judgments as quantitative, rather than qualitative. As such, the
first definition of objectivity suggests the following measure: an assessment
is more objective, the more people happen to share it as their subjective
assessment. The definition we propose here offers a different measure: an
assessment is more objective, the more likely are people, who have not given
thought to it and who have no additional relevant information, to agree with
it.

To consider another example, let us contrast classical with Bayesian
statistics. If a classical statistician rejects a hypothesis, the belief that it
should be rejected is relatively objective. By contrast, a prior of a Bayesian
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statistician is more subjective. Indeed, another classical statistician is more
likely to agree with the decision to reject the hypothesis than is another
Bayesian statistician likely to adopt a prior if it differs from her own. Two
Bayesian statisticians may have the same subjective prior, but if they are
about to meet a third one, they have no way to convince her to agree with
their prior. There is no agreed upon method to adopt a prior, while there
are agreed upon methods to test certain hypotheses.12

One may argue that our definition of objectivity again resorts to agree-
ment among subjective judgments, only that the latter should include all
hypothetical judgments made by various individuals at various times and at
various states of the world. But for practical purposes of the following dis-
cussion, we find the distinction between objective terms and coincidence of
subjective terms quite useful.

3 Meta-Theoretical Prejudices

This section expresses our views on certain issues relating to the state of the
art in decision theory as well as to its applications to economics and to other
social sciences. These views undoubtedly correlate with our motivation for
developing case-based decision theory. Yet, as we explain below, the theory
may be suggested and evaluated independently of our prejudices.

3.1 Preliminary remark on the philosophy of science

Analytical philosophy is a science, in the sense that the social sciences are.
Namely, it uses formal or formalizable analytical models to describe, explain,
and predict certain phenomena (as a descriptive science), or to produce rec-
ommendations and prescriptions (as a normative science). Generally, philos-

12Two Bayesians will agree on a prior, i.e., will have a common prior, in practice, if this
prior conveys minimal information (say, a uniform prior when it is well-defined). This is
essentially Laplace’s dictum for the case of complete ignorance, which indicates a failure of
the Bayesian claim that any prior information may be expressed by a probability function.
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ophy is concerned with phenomena that are primarily concentrated in the
human mind, such as language, religion, ethics, aesthetics, science, and oth-
ers. Hence, philosophy is closer to the social or human sciences than it is to
the natural ones.

Many social scientists would agree that their theories are no more than
suggestive illustrations or rough sketches.13 These theories are supposed to
provide insights without necessarily being literally true. For instance, the
economic model of perfect competition offers important insights regarding
the way markets work. It obviously describes a highly idealized reality. That
is, it is false. But it is neither worthless nor useless. Naturally, one has to
study other models that are more realistic in certain aspects, such as models
of imperfect competition, asymmetric information, and so forth. The analysis
of these models qualifies and refines the insights of the perfect competition
model, but it does not nullify them.

Viewing philosophy as a social science, there is no reason to expect its
theories and models to be more accurate or complete than are those of eco-
nomics or psychology. For example, the logical positivists’ Received View
offers useful guidelines for developing scientific theories. It is also very in-
sightful when interpreted descriptively, as a model of how science is done. But
one expects the Received View to be neither a perfect description of, nor a
foolproof prescription for scientific activity. Hanson’s theory that observa-
tions are theory-laden (Hanson (1958)), for example, also provides profound
insights and enhances our understanding of the scientific process. It qualifies,
but does not nullify the insights gained from the Received View. Allowing
ourselves a mild exaggeration, we argue for humility in evaluating theories in
the social sciences, philosophy included: ask not, is there a counterexample
to a theory; ask, is there an example thereof.1415

13An extreme term, which was suggested by Gibbard and Varian (1978), is “caricatures”.
14In this sense, our view is reminiscent of verificationism. For a review, see, for instance,

Lewin (1996).
15It is inevitable that similar qualifications would apply to this very paragraph.
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3.2 Utility and expected utility “theories” as concep-
tual frameworks and as theories

As mentioned in Subsection 2.1, in common usage the term “theory” often
defines only a conceptual framework. Consider, for instance, utility theory,
suggesting that, given a set of feasible alternatives, decision makers maximize
a utility function. When an intended application is explicitly or implicitly
given, this is a descriptive theory in the tradition of logical positivism, which
would also pass Popper’s falsifiability test. The theoretical term “utility” is
axiomatically derived from observations. The axioms define quite precisely
the conditions under which the theory is falsified. It can therefore be tested
experimentally. However, when the application is neither obvious nor agreed
upon, it is not as clear what constitutes a violation of the axioms, or a
falsification of the theory. In fact, almost any case in which the theory seems
to be refuted can be re-interpreted in a way that conforms to the theory. One
may always enrich the model, redefining the alternatives involved, in such a
way that apparent refutations are reconciled.

Utility theory is a conceptual framework in the language of Subsection
2.1 above. There is no canon of application that would state precisely what
are the real world phenomena to which utility theory may be applied. In
certain situations, such as carefully designed laboratory experiments, there
is only one reasonable mapping from the formal structure to observed phe-
nomena. But in many real life situations one has a certain degree of freedom
in choosing this mapping. It is then not obvious what counts as a refutation
of the theory. Thus, utility maximization may not be a theory in the Pop-
perian sense. Rather, it is a conceptual framework, offering a certain way of
conceptualizing and organizing data. Working within this conceptual frame-
work, one may suggest specific theories that also define the set of alternatives
among which choice is made.

Similarly, expected utility theory seems to be well defined and clearly
falsifiable when one accepts a certain application. Indeed, in certain labo-
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ratory experiments it can be directly tested. But most empirical data do
not present themselves with a clear definition of states of the world or of
outcomes. Hence apparent violations of the theory may be accounted for by
re-interpreting these terms.

The “theories” of utility maximization and of expected utility maximiza-
tion therefore serve a dual purpose: they are formulated as testable theories,
but they are also used as conceptual frameworks for the generation of more
specific theories. We believe that this dual status is useful. On the one hand,
treating these conceptual frameworks as falsifiable theories with axiomatic
foundations facilitates the scientific discussion and ensures that we do not
engage in debates between observationally equivalent theories. On the other
hand, decision theory would be very limited in its applications if one were
to insist that these conceptual frameworks be used only when there is no
ambiguity regarding their interpretation. It is therefore useful to insist that
every conceptual framework be grounded in a falsifiable axiomatization, as
if it were a specific theory, yet to use the framework also beyond the realm
in which falsification is unambiguously defined.16

Moreover, many of the theoretical successes of utility theory and of ex-
pected utility theory involve situations in which one cannot reasonably hope
to test their axioms. For instance, the First Welfare Theorem (Arrow and
Debreu (1954)) provides a fundamental insight regarding the optimality of
competitive equilibria, even though we cannot measure the utility functions
of all individuals involved. Similarly, economic and game theoretic anal-
ysis that relies on expected utility maximization offers important insights
and recommendations regarding financial markets, markets with incomplete
information, and so forth, while neither subjective probabilities nor utility
functions can practically be measured. Again, we believe that one should
make sure that all theoretical terms are in-principle observable, but allow

16Historically, conceptual frameworks often originate from theories. A formal theory
may be suggested with an implicit understanding of its intended applications, but it might
later be generalized and evolve into a conceptual framework.
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oneself some freedom in using these terms even when actual observations are
impossible.

3.3 On the validity of purely behavioral economic the-
ory

The official position of economic theory, as reflected in many graduate (and
undergraduate) level courses and textbooks, is that economics is and should
be purely behavioral. Economists do not care what people say, they only care
what they do. Moreover, it is argued, people are often not aware of the way
they make decisions, and their verbal introspective account of the decision
process may be more confusing than helpful. As long as they behave as if
they follow the theory, we should be satisfied.

One can hardly take issue with this approach if the underlying axioms
are tested and proved true, or if the theory generates precise quantitative
predictions that conform to reality. But economics often uses a theory such
as expected utility maximization in cases where its axioms cannot be tested
directly, and its predictions are at best qualitative. That is, theories are often
used as rhetorical devices. In these cases, one cannot afford to ignore the
intuitive appeal and cognitive plausibility of behavioral theories. The more
cognitively plausible a theory is, the more effective rhetorical device will it
be.

Many economists would argue that the cognitive plausibility of a theory
follows from that of its axioms. For instance, Savage’s behavioral axioms
are very reasonable; thus it is very reasonable that people should and would
behave as if they were expected utility maximizers. However, we claim
that behavioral axioms that appear plausible when formulated in a given
language may not be as convincing when this language is unnatural. For
instance, Savage’s axiom P2 (often referred to as the “sure-thing principle”)
is very compelling when acts are given as functions from states to outcomes.
But in examples in which outcomes and states are not naturally given in the
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description of the problem, it is not clear what all the implications of the sure-
thing principle are, namely, how preferences among acts are constrained by
the sure-thing principle. It is therefore not at all obvious that actual behavior
would follow this seemingly very compelling principle. More generally, the
predictive validity of behavioral axioms is not divorced from the cognitive
plausibility of the language in which they are formulated.

Moreover, when there is no obvious mapping between the reality modeled
and the mathematical model, it is no longer clear that the theory is indeed
behavioral. For example, Savage’s model assumes that choices between acts
are observable. This assumption is valid when one chooses between bets on,
say, the color of a ball drawn from an urn. In this case it is quite clear that
the states of the world correspond to the balls in the urn, and these states
are observable by the modeler. But in many problems to which the theory is
applied, states of the world need to be defined, and there is more than one
way to define them. In these cases one cannot be sure that the states that are
supposedly conceived of by the decision maker are those to which the formal
model refers. The need to refer to states that exist in the decision maker’s
mind renders the theory’s data cognitive rather than behavioral. As a matter
of principle, a behavioral theory has to rely on data that are observable by
an outside observer without ambiguity.

In conclusion, the position that cognitive plausibility of economic or
choice theories is immaterial seems untenable. A behaviorist theory, treat-
ing a decision maker as a “black box”, has to be supported by a convincing
cognitive specification. On the other hand, a seemingly compelling mental
account of a decision making process is also unsatisfactory as long as we do
not know what types of behavior it induces. Thus, a satisfactory theory of
choice should tell a convincing story both about the cognitive process and
about the resulting behavior.
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3.4 What does all this have to do with CBDT?

The motivation for the development of case-based decision theory has to do
with our dissatisfaction with classical decision theory. Specifically, we find
that expected utility theory is not always cognitively plausible, and that the
behavioral approach, often quoted as its theoretical foundation, is untenable.
Moreover, we believe that expected utility theory is not always successful as
a normative theory, because it is often impractical. And in those cases where
one cannot follow expected utility theory, it is neither irrational, nor even
boundedly rational, to deviate from Savage’s postulates. Yet, the theory
we present in this book is independent of these prejudices. In particular,
the following chapters may be read also by people who believe only in purely
behavioral theories, or who are only willing to consider CBDT as a descriptive
theory of bounded rationality.
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Chapter 2

Decision Rules

4 Elementary Formula and Interpretations

Expected utility theory enjoys the status of an almost unrivaled paradigm for
decision making in face of uncertainty. Relying on such sound foundations as
the classical works of Ramsey (1931), de Finetti (1937), von Neumann and
Morgenstern (1944), and Savage (1954), the theory has formidable power
and elegance, whether interpreted positively or normatively, for situations of
given probabilities (“risk”) or unknown ones (“uncertainty”) alike.

While evidence has been accumulating that the theory is too restrictive
(at least from a descriptive viewpoint), its various generalizations only at-
test to the strength and appeal of the expected utility paradigm. With few
exceptions, all suggested alternatives retain the framework of the model,
relaxing some of the more demanding axioms while adhering to the more
basic ones. (See Machina (1987), Karni and Schmeidler (1991), Camerer and
Weber (1992), and Harless and Camerer (1994) for extensive surveys.)

Yet it seems that in many situations of choice under uncertainty, the very
language of expected utility models is inappropriate. For instance, states of
the world are neither naturally given, nor can they be simply formulated.
Furthermore, sometimes even a comprehensive list of all possible outcomes
is not readily available or easily imagined. The following examples illustrate

37
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these points.

4.1 Motivating examples

Example 2.1 As a benchmark, we first consider Savage’s famous omelet
problem (Savage 1954, pp. 13-15): Leonard Savage is making an omelet
using six eggs. Five of them are already cracked into a bowl. He is holding
the sixth, and has to decide whether to crack it directly into the bowl, or into
a separate, clean dish to examine its freshness. This is a decision problem
under uncertainty, because Leonard Savage does not know whether the egg is
fresh or not. Moreover, uncertainty matters: if he knew that the egg is fresh,
he would be better off cracking it directly into the bowl, saving the need to
wash another dish. On the other hand, a rotten egg would result in losing the
five eggs already in the bowl; thus, if he knew that the egg were not fresh, he
would prefer to crack it into the clean dish.

In this example, uncertainty may be fully described by two states of the
world: “the egg is fresh” and “the egg isn’t fresh”. Each of these states
“resolves all uncertainty” as prescribed by Savage (1954). Not only are there
relatively few relevant states of the world in this example, they are also nat-
urally given in the description of the problem. In particular, they can be
defined independently of the acts available to the decision maker. Further-
more, the possible outcomes can be easily defined. Thus this example falls
neatly into decision making under uncertainty in Savage’s model.

Example 2.2 A couple has to hire a nanny for their child. The available
acts are the various candidates for the job. The decision makers do not know
how each candidate would perform if hired. For instance, each candidate may
turn out to be negligent or dishonest. Coming to think about it, they realize
that other problems may also occur. Some nannies are treating children well,
but cannot be trusted with keeping the house in order. Others appear to be
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just perfect on the job, but are not very loyal and may quit the job on short
notice.

The couple is facing uncertainty regarding the candidates’ performance
on several measures. However, there are several difficulties in fitting this
problem into the framework of expected utility theory (EUT). First, imag-
ining all possible outcomes is not a trivial task. Second, the states of the
world do not naturally suggest themselves in this problem. Furthermore,
should the decision makers try to construct them analytically, their number
and complexity would be daunting: every state of the world should specify
the exact performance of each candidate on each measure.1

Example 2.3 President Clinton has to decide on military intervention in
Bosnia-Herzegovina2. The alternative acts are relatively clear: one may do
nothing, impose economic sanctions, use limited military force (say, only air
strikes) or opt for a full-blown military intervention. The main problem is
to decide what are the likely short-run and long-run outcomes of each act.
For instance, it is not exactly clear how strong are the military forces of
the warring factions in Bosnia; it is hard to judge how many casualties each
military option would involve, and what would be the public opinion response;
there is some uncertainty about the reaction of Russia, especially if it goes
through a military coup.

In short, the problem is definitely one of decision under uncertainty. But,
again, neither all possible eventualities, nor all possible scenarios are readily

1It may be easier to assess distributions of utility for each candidate and to then apply
EUT to these distributions than to spell out all the states of the world. This proves our
point, namely, that the state model is unnatural in this example. It follows that one cannot
use de Finetti’s or Savage’s axiomatic derivations of subjective probability as foundations
for the assessment of distributions in such examples.

2USA military involvment in parts of what was Yugoslavia is on the political agenda
in the USA since we wrote the first version of our first paper on CBDT (March 1992) till
now (September 2000).
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available. Any list of outcomes or of states is bound to be incomplete. Fur-
thermore, each state of the world should specify the result of each act at each
point of time. Thus, an exhaustive set of the states of the world certainly
does not naturally pop up.

In example 2.1, expected utility theory seems a reasonable description of
how people think about the decision problem. By contrast, we argue that in
examples such as 2.2 and 2.3, EUT does not describe a plausible cognitive
process. Should the decision maker attempt to think in the language of EUT,
she would have to imagine all possible outcomes and all relevant states. Often
the definition of states of the world would involve conditional statements,
attaching outcomes to acts. Not only would the number of states be huge,
the states themselves would not be defined in an intuitive way.

Moreover, even if the agent managed to imagine all outcomes and states,
her task would by no means be done. Next she would have to assess the utility
of each outcome, and to form a prior over the state space. It is not clear how
the utility and the prior are to be defined, especially since past experience
appears to be of limited help in these examples. For instance, what is the
probability that a particular candidate for the job in example 2.2 will end
up being negligent? Or being both negligent and dishonest? Or, considering
example 2.3, what are the chances that a military intervention will develop
into a full-blown war, while air strikes will not? What is the probability that
a scenario that no expert predicted will eventually materialize?

It seems unlikely that decision makers can answer these questions. Ex-
pected utility theory does not describe the way people actually think about
such problems. Correspondingly, it is doubtful that EUT is the most useful
tool for predicting behavior in decision problems of this nature. A theory
that will provide a more faithful description of how people think would have
a better chance of predicting what they will do. How, then, do people think
about such decision problems? We resort to Hume (1748), who argued that
“From causes which appear similar we expect similar effects. This is the sum
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of all our experimental conclusions.” That is, the main reasoning technique
that people use is drawing analogies between past cases and the one at hand.3

Applying this idea to decision making, we suggest that people choose acts
based on their performance in similar problems in the past. For instance, in
example 2.2, a common, and indeed very reasonable thing to do is to ask
each candidate for references. Every recommendation letter provided by a
candidate attests to his/her performance (as a nanny) in a different situation
or “problem”. In this example, the agents do not rely on their own memory;
rather, they draw on the experience of other employers. Each past “case”
would be judged for its similarity; for instance, serving as a nanny to a
month-old toddler is somewhat different from the same job when a two-
year old child is concerned. Similarly, the house, neighborhood and other
factors may affect the relevance of past cases to the problem at hand. Thus
we expect decision makers to put more weight on the experience of people
whose decision problem was more similar to theirs. Furthermore, they may
rely more heavily on the experience of people they happen to know, or judge
to have similar tastes to their own.

Next consider example 2.3. While military and political experts certainly
do try to write down possible scenarios and to assign likelihoods to them,
this is by no means the only reasoning technique used. (Nor is it necessarily
the most compelling a-priori or the most successful a-posteriori.) Very often
people’s reasoning employs analogies to past cases. For instance, proponents
of military intervention tend to cite the Gulf War as a “successful” case.
They stress the similarity of the two problems, say, as local conflicts in post-

3We were first exposed to this idea as an explicit “theory” in the form of “case-based
reasoning” (Schank (1986), Riesbeck and Schank (1989)), to which we owe the epithet
“case-based”. (See also Kolodner and Riesbeck (1986) and Kolodner (1988).) Needless
to say, our thinking about the problem was partly inspired by case-based reasoning. At
this stage, however, there does not seem to be much in common between our theory and
case-based reasoning, beyond Hume’s basic idea. It should be mentioned that similar ideas
were also expressed in the economic literature by Keynes (1921), Selten (1978), and Cross
(1983).
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cold-war world. Opponents adduce the Vietnam War as a case in which
military intervention is generally considered to have been a mistake. They
also point to the similarity of the cases, for instance to the “peace-keeping
mission” mentioned in both.

Case-based decision theory (CBDT) attempts to formally capture this
mode of reasoning as it applies to decision making. In the next subsection we
begin by describing the simplest version of CBDT. This version is admittedly
rather restrictive. It will be generalized later on to encompass a wider class
of phenomena. At this point we only wish to highlight some features of the
general theory, which are best illustrated by the simplest version presented
below.

4.2 Model

Assume that a set of problems is given as primitive, and that there is some
measure of similarity on it. The problems are to be thought of as descrip-
tions of choice situations, as stories involving decision problems. Generally,
a decision maker would remember some of the problems that she and other
decision makers encountered in the past. When faced with a new problem,
the similarity of the situation brings this memory to mind, and with it the
recollection of the choice made and the outcome that resulted. We refer to
the combination of these three, the problem, the act, and the result, as a
“case”. Thus similar cases are recalled, and based on them each possible
decision is evaluated. The specific model we propose here evaluates each
act by the sum, over all cases in which it was chosen, of the product of the
similarity of the problem to the one at hand and the resulting utility.

Formally, we start with three sets: let P be a set of decision problems, A
– a set of acts that may be chosen at the current problem, and R – a set of
possible outcomes. A case is a triple (q, a, r) where q is a problem, a is an
act and r – an outcome. Thus, the set of conceivable cases is the set of all
such triples:
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C ≡ P ×A×R .

Observe that C is not the set of cases that actually have occurred. More-
over, it will typically be impossible for all cases in C to co-occur, because
different cases in C may attach a different act or a different outcome to a
given decision problem. The set of cases that are known to have occurred
will thus be a subset of C.

The next two components of the formal model are similarity and utility
functions. The similarity function

s : P × P → [0, 1]

is assumed to provide a quantification of similarity judgments between
decision problems. The concept of similarity is the main engine of the deci-
sion models introduced in this book. Performing similarity judgments is the
chief cognitive task of the decision maker we have in mind. Hume (1748)
has already suggested similarity as a basis for inductive reasoning. For-
mal models of similarity date back at least to Quine (1969b) and Tversky
(1977),4 and much attention has been given to analogical reasoning. (See,
for instance, Gick and Holyoak (1980, 1983), and Falkenhainer, Forbus, and
Gentner (1989).) However, we are unaware of a formal theory of decision
making that is explicitly based on similarity judgments.

As is normally the case with theoretical concepts, the exact meaning of
the similarity function will be given by the way in which it is employed.
The way we use similarity between problems, to be specified shortly, implies
uniqueness only up to multiplication by a positive number.

The term “similarity” should not be taken too literally. Past decision
problems affect the decision maker’s choice only if they are recalled. For

4The classical notion of similarity, as employed in Euclidean geometry, suggests that
similarity be modeled as an equivalence relation. Obviously, a real-valued similarity func-
tion can capture such a notion of similarity. But it allows similarity relations that are
intransitive or asymmetric, and, importantly, it can also capture gradations of similarity.
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instance, assume that a voter named John is asked to voice his view regarding
military intervention in Bosnia. It is possible that, if asked, John would judge
the KoreanWar to be similar to the situation in Bosnia. But it is also possible
that John would not be reminded of the Korean War on his own. For our
purposes, John may be described as attaching a zero similarity value to the
two decision problems. Thus, while we use the suggestive term “similarity”,
we think of this function as representing awareness and probability of recall
as well as conscious similarity assessments.

Our formulation assumes that similarity judgments cannot be negative.
This may sometimes be too restrictive. For instance, Sarah may know that
she and Jim always disagree about movies. If Sarah knows that Jim liked
a movie, she will take it as a piece of evidence against watching this movie.
This may be thought of as if Sarah’s problem has a negative similarity to
a decision problem in which Jim was involved. However, for concreteness
we choose to restrict the discussion to non-negative similarity values at this
point.5

This section restricts similarity judgments to decision problems. We later
extend the formal model to include similarity judgments between pairs of
problems and acts, and even between entire cases.

The decision maker is also characterized by a utility function:

u : R→ R .

The utility function measures the desirability of outcomes. The higher is
the value of this function, the more desirable is the outcome considered to
be. Moreover, positive u-values can be associated with positive experiences,
which the decision maker would like to repeat, whereas negative u-values
correspond to negative experiences, which the decision maker would rather

5This restriction may pose a problem in our example. It can be solved by assuming
that Sarah assigns negative utility values to outcomes that Jim likes. The utility function
is introduced below.
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avoid. As in the case of the similarity function, the exact measurement of
desirability of positive outcomes and of the undesirability of negative ones
will be tied to the particular formula in which this function is employed.

We now proceed to specify the decision model. A decision maker is facing
a problem p ∈ P . We assume that she knows the possible courses of action
she might take. These are denoted by A. We do not address the question
of specification of the acts that are, indeed, available in a given decision
problem, or of identification of the decision problem in the first place.6

The decision maker can base her decision on the cases she knows of. We
refer to the set consisting of these cases as the decision maker’s memory.
Formally, memory is a subset of cases:

M ⊂ C .

Whereas C is the set of all conceivable cases, M represents those that
actually occurred, and that the decision maker was informed of. Cases in
which the decision maker was the protagonist would naturally belong to
M . But so will cases in which other people were the protagonists, if they
were related to our decision maker, reported in the media, and so forth.
We assume that each decision problem q ∈ P may appear in M at most
once. This will naturally be the case if the description of a decision problem
is detailed enough. For instance, if the identity of the decision maker and
the exact time of decision are part of the problem’s description, no problem
would repeat itself precisely. Adopting this assumption allows us to use
set notation and to obviate the need for indices. This notation involves no
loss of generality, because a problem that does repeat itself in an identical
fashion can be represented as several problems that happen to have the same
features, though not the same formal description.

6In Chapter 5, however, we discuss the way a decision maker develops plans. As such,
it may be viewed as an attempt to model the process by which decision makers generate
the set of acts available to them.
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The most elementary version of CBDT offers that the decision maker
would rank available acts according to the similarity-weighted sum of utilities
they have resulted in the past. Formally, a decision maker with memoryM ,
similarity function s, and utility function u, who now faces a new decision
problem p, will rank each act a ∈ A according to

U(a) = Up,M (a) =
∑

(q,a,r)∈M
s(p, q)u(r) , (∗)

(where the summation over the empty set is taken to yield zero), and will

choose an act that maximizes this sum. Observe that, given memoryM , the
function U only uses the u values of outcomes r that have appeared in M .

For each act a ∈ A and each case c = (q, a, r) ∈ M in which act a
was indeed chosen, one may view the product s(p, q)u(r) as the effect that
case c has on the evaluation of act a in the present problem p. If act a has
resulted in case c in a desirable outcome r, namely an outcome such that
u(r) > 0, having case c in memory would make act a more attractive in the
new problem as well. Similarly, recalling case c in which act a has resulted
in an undesirable outcome r, that is, an outcome for which u(r) < 0, would
render act a less attractive in the current decision problem. In both cases,
the impact that case c would have on the way act a is viewed depends on the
similarity of the problem at hand to the problem in case c. Finally, the overall
evaluation of act a is obtained by summing up the products s(p, q)u(r) over
all cases of the form (q, a, r), namely, over all cases in which a was chosen in
the past.

Let us consider example 2.3 again. President Clinton has to choose among
several acts, such as “send in troops”, “use air strikes”, “do nothing”, and so
forth. The act “send in troops” would be evaluated based on its performance
in the past. The Vietnam War would probably be a case in which this act
yielded an undesirable outcome. The Gulf War is another relevant case, in
which the same act resulted in a desirable outcome. One has to assess the
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degree of desirability or undesirability of each outcome, as well as the degree
to which each past problem is similar to the problem at hand. One then
multiplies the desirability values by the corresponding similarity values. The
summation of these products will constitute the overall evaluation of the
act, which may turn out to be positive or negative. An alternative act, “do
nothing” might be judged based on its performance in various cases where
no intervention was chosen, and so forth.

The formula (∗) may be viewed as modeling learning. It attempts to
capture the way in which experience affects decision making, and it suggests
a dynamic interpretation: with the addition of new cases, memory grows. As
we will see in Chapter 7, adding cases to memory is but the simplest form of
learning. Yet, it appears to be the basis for other forms of learning as well.

4.3 Aspirations and satisficing

The presentation of the elementary formula above highlights the distinction
between desirable outcomes, whose utility values are positive, and undesir-
able ones, to which negative utility values are attached. While this distinc-
tion is rather intuitive, classical decision theory typically finds it redundant:
higher utility values are considered more desirable, or, equivalently, less un-
desirable. All utility indices are used only in the context of pairwise com-
parisons, and their values have no meaning on any absolute scale. Indeed,
most classical theories of decision allow the utility function to be “shifted”
by adding a constant to all values, without changing the theory’s observable
implications.

This is not the case with the elementary formula (∗). One may easily
observe that shifting the utility function by a constant will generally result in
a different prediction of choice. Indeed, shifting the function u by a constant
c would change U(a) by c ·∑(q,a,r)∈M s(p, q). Since there in no reason that∑

(q,a,r)∈M s(p, q) will be the same for different acts a, such a shift is not
guaranteed to preserve the U -ranking of the acts. Specifically, if c > 0, such
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a shift would favor acts that were chosen in the past in similar problems,
whereas a shift by c < 0 would favor acts that have not been chosen in
similar problems.

It follows that the choice of the reference point zero on the utility scale
cannot be arbitrary. This suggests that our intuitive distinction between
desirable and undesirable outcomes might have a behavioral meaning as well.
Indeed, consider a simple case in which there is no uncertainty. That is,
whenever an act a ∈ A is chosen, a particular outcome ra ∈ R results. The
decision maker is not assumed to know this fact. Moreover, she certainly
does not know what utility value corresponds to which act. All she knows
are the cases she has experienced, and she follows U -maximization as in (∗).

Starting out with an empty memory, all acts are assigned a zero U-value.
At this point the decision maker’s choice is arbitrary. Assume that she chose
an act a that resulted in an undesirable outcome ra, that is, an outcome
with u(ra) < 0. Let us now consider the same decision maker confronted
with the next problem. Suppose that this problem bears some similarity to
the first one. In this case, act a will have a negative U -value (u(ra) multiplied
by the similarity of the two problems), whereas all other acts, which have
empty histories, still have a U -value of zero. Thus the one act that has been
tried, and that has resulted in an undesirable outcome, is the only one the
decision maker has some information about, and she tries to veer away from
this act. Her choice among the other ones will be arbitrary again. Suppose
she chooses act b. If u(rb) < 0, then, in the next similar problem, she will
find that both a and b are unattractive acts, and will choose (in an arbitrary
fashion) among the other ones, which have not yet been tried.

This process may continue until the decision maker has a negative ex-
perience with each and every possible act. In this situation she would have
to choose the lesser of these evils and opt for an act whose U -value is high-
est, that is, least negative. Assume, however, that the decision maker finds
an act, say, d, that leads to a desirable outcome, namely, an act such that
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u(rd) > 0. In this case, in the next similar problem act d would have a posi-
tive U-value, whereas all other acts would have non-positive U-values. Thus
d will get to be chosen again. Since act d always leads to the same desirable
outcome rd, its U-value will always remain positive, and d will always be
chosen. The decision maker will never attempt any act other than d, despite
the fact that many other acts might not have been tried even once.

One might view this mode of behavior as satisficing in the sense of Simon
(1957) and March and Simon (1958). Taking the value zero on the utility
scale to be the decision maker’s aspiration level, the decision maker would
cling to an act that achieves this value without attempting other acts and
without experimentation. It is only when the decision maker’s current choice
is evaluated below the aspiration level that the decision maker is “unsatis-
ficed” and is prodded to experiment with other options.

Aspiration levels are likely to change as a result of past experiences.7 One
might therefore wish to explicitly introduce notation that keeps track of these
changes. Let uM denote the utility function given memory M , restricted to
outcomes that have appeared in M . Assume that (for all M and M ′) uM

and uM ′ differ by an additive constant on the intersection of their domains.
We may then choose a utility function û and define the aspiration level given
memory M , HM , such that uM = û−HM . In this case, we can reformulate
(∗) as follows. The decision maker is maximizing

U(a) = Up,M (a) =
∑

(q,a,r)∈M
s(p, q)[û(r)−HM ] . (∗′)

To see the role of the aspiration level, consider the following example.
Suppose that act a was chosen 10 times, yielding a payoff (û) of 1 each time.
Act b, by contrast, was only tried twice, yielding a payoff of 4 each time.

7Indeed, experience may and generally does shape both similarity judgments and de-
sirability evaluations in more general ways. At this point we focus only on shifts of the
utility function.
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Assume that all past problems are equally similar to the one at hand. If
the aspiration level is zero, one may equate the utility u with the payoff û,
and thus the U -value of a exceeds that of b. Next, assume that, with the
same payoff function û, the aspiration level is 2 rather than 0. This makes
all the outcomes of act a undesirable, whereas those corresponding to b are
still desirable. Hence, b will be preferred to a.

Consider now a dynamic process of aspiration level adjustment. Assume,
as above, that a decision maker starts out with an aspiration level of 0, and
considers all outcomes of both acts a and b to be desirable. Having twice
observed that 4 is a possible payoff, however, the decision maker considers the
payoff 1 to be less satisfactory than she used to. In other words, her aspiration
level rises. As we saw above, a large enough increase in the aspiration level
would render b more desirable than a according to (∗′).

In general, the function U , being cumulative in nature, may give prefer-
ence to past choices that yielded desirable outcomes simply because they were
chosen many times. Among those acts that, overall, yielded desirable out-
comes, U-maximization does not opt for the highest average performance.
It may even exhibit habit formation. But this conservative nature of U -
maximization is mitigated by the process of aspiration level adjustment. We
devote Section 18 to this issue, and show that reasonable assumptions on
the aspiration level adjustment process lead to optimal choices in situations
where the same problem is encountered in exactly the same way.

4.4 Comparison with EUT

In CBDT, as in EUT, acts are ranked by weighted sums of utilities. Indeed,
the formula (∗) so resembles that of expected utility theory that one may
suspect CBDT to be no more than EUT in a different guise. However,
despite appearances, the two theories have little in common. First, note
some mathematical differences between the formulae. In (∗) there is no
reason for the coefficients s(p, ·) to add up to 1 or to any other constant.
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More importantly, while in EUT every act is evaluated at every state, in
U -maximization each act is evaluated over a different set of cases. To be
precise, if a = b, the set of elements of M summed over in U(a) is disjoint
from that corresponding to U(b). In particular, this set may well be empty
for some a’s.

On a more conceptual level, in expected utility theory the set of states is
assumed to be an exhaustive list of all possible scenarios. Each state “resolves
all uncertainty”, and, in particular, attaches a result to each available act.
By contrast, in case-based decision theory the memory contains only those
cases that actually happened. Correspondingly, the utility values that are
used in (∗) are only those that were actually experienced. To apply EUT one
needs to engage in hypothetical reasoning, namely to consider all possible
states and the outcome that would result from each act in each state. To
apply CBDT, no hypothetical reasoning is required.

As opposed to expected utility theory, CBDT does not distinguish be-
tween certain and uncertain acts. In hindsight, a decision maker may ob-
serve that a particular act always resulted in the same outcome (i.e., that it
seems to involve no uncertainty), or that it is “uncertain” in the sense that
it resulted in different outcomes in similar problems. But the decision maker
is not assumed to know a-priori which acts involve uncertainty and which do
not. Indeed, she is not assumed to know anything about the outside world,
apart from past cases.

CBDT and EUT also differ in the way they treat new information and
evolve over time. In EUT new information is modeled as an event (a subset
of states) that has obtained. The model is restricted to this event and the
probability is updated according to Bayes’ rule. By contrast, in CBDT new
information is modeled primarily by adding cases to memory. In the basic
model, the similarity function calls for no update in face of new informa-
tion. Thus, EUT implicitly assumes that the decision maker was born with
knowledge of and beliefs over all possible scenarios, and her learning con-
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sists of ruling out scenarios that are no longer possible. On the other hand,
according to CBDT the decision maker was born completely ignorant, and
she learns by expanding her memory.8 Roughly, an EUT agent learns by
observing what cannot happen, whereas a CBDT agent learns by observing
what can.

We do not consider case-based decision theory to be better than or a
substitute for expected utility theory. Rather, we view the two theories as
complementary. While these theories are justified by supposedly behavioral
axiomatizations, we believe that their scope of applicability may be more
accurately delineated if we attempt to judge the psychological plausibility
of the various constructs. Two related criteria for classification of decision
problems may be relevant. One is the problem’s description, the second is
its relative novelty.

If a problem is formulated in terms of probabilities, EUT is certainly a
natural choice for analysis and prediction. Similarly, when states of the world
are naturally defined, it is likely that they will be used in the decision maker’s
reasoning process, even if a (single, additive) prior cannot be easily formed.
However, when neither probabilities nor states of the world are salient (or
easily accessible) features of the problem, CBDT may be more plausible than
EUT.

We may thus refine Knight’s dichotomous distinction between risk and
uncertainty (Knight (1921)) by introducing a third category of structural
ignorance: “risk” refers to situations where probabilities are given; “uncer-
tainty” – to situations in which states are naturally defined, or can be simply
constructed, but probabilities are not. Finally, decision under “structural
ignorance” refers to decision problems for which states are neither (i) nat-
urally given in the problem; nor (ii) can they be easily constructed by the
decision maker. EUT is appropriate for decision making under risk. In face

8In Chapter 7 we discuss other forms of learning, including changes of the similarity
judgments.
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of uncertainty (and in the absence of a subjective prior) one may still use
those generalizations of EUT that were developed to deal with this prob-
lem specifically, such as non-additive probabilities (Schmeidler (1989)9) and
multiple priors (Bewley (1986)10, Gilboa and Schmeidler (1989)). However,
in cases of structural ignorance CBDT is a viable alternative to the EUT
paradigm.

Classifying problems based on their novelty, one may consider three cat-
egories. When a problem is repeated frequently enough, such as whether to
stop at a red traffic light, the decision becomes almost automated. Very little
thinking is involved in making such a decision, and it may be best described
as rule-based. When deliberation is required, but the problem is familiar
enough, such as whether to buy insurance, it can be analyzed in isolation.
In these situations the history of the same problem suffices for the formula-
tion of states of the world and perhaps even of a prior, and EUT (or some
generalization thereof) may be cognitively plausible. Finally, if the problem
is unfamiliar, such as whether to get married or to invest in a politically
unstable country, it needs to be analyzed in a context- or memory-dependent
fashion, and CBDT is a more accurate description of the way decisions are
made.

Thus, rule-based systems are the simplest description of decision making
when the decision maker is not aware of uncertainty or even of the fact that
she is making a decision.11 Expected utility theory offers the best description
of decisions in which uncertainty is present and the decision maker has enough
data to analyze it. By contrast, case-based decision theory is probably the
most natural description of decision making when the decision problem is
amorphous and there are insufficient data to analyze it properly.

9See also Gilboa (1987) and Wakker (1989).
10See also Aumann (1962).
11Such decisions may also be viewed as a special type of case-based decisions. Specifi-

cally, a rule can be thought of as a summary of many cases, from which it was probably
derived in the first place. See Section 13 for a more detailed discussion.
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We defer a more detailed discussion of CBDT and EUT until Chapter 4,
following the axiomatic derivation of CBDT in Chapter 3.

4.5 Comments

Subjective Similarity As will be shown in Chapter 3, the similarity func-
tion in our model may be derived from observed preferences. Since different
people may have different preferences, we should expect that the derived sim-
ilarity functions would also differ across individuals. The similarity function
is therefore subjective, as is probability in the works of de Finetti (1937)
and Savage (1954). Yet, for some applications one may find that the data
suggest an agreed-upon way to measure similarity, which may be viewed as
objective.

Cumulative Utility In the description of CBDT above, we advance a certain
cognitive interpretation of the function u. We assume that it represents
fixed preferences, and that memory may affect choices only by providing
information about the u-value of the outcomes that acts yielded in the past.
However, one may suggest that memory has a direct effect on preferences.
According to this interpretation, the utility function is the aggregate U , while
the function u describes the way in which U changes with experience. For
instance, if the decision maker has a high aspiration level, corresponding to
negative u values, she will like an option less, the more she used it in the
past, and will exhibit change seeking behavior. On the other hand, a low
aspiration level, corresponding to positive u values, would make her evaluate
an option more highly, the more she is familiar with it, and would result in
habit formation. Chapter 6 is devoted to this interpretation.

Hypothetical Cases Consider the following example. Jane has to drive to
the airport and she can choose between road A and road B. She chooses road
A and arrives at the airport on time. On the way to the airport, however,
she learns that road B was closed for construction. A week later Jane is
faced with the same problem. Regardless of her aspiration level, it seems
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obvious that she will choose the road A again. (Road constructions, at least
in psychologically plausible models, never end.)

This example shows that relevant cases may also be hypothetical, or coun-
terfactual. More explicitly, Jane’s reasoning probably involves a counterfac-
tual proposition such as “Had I taken road B, I would never have made it.”
This may be modeled as a hypothetical case in which she took road B and
arrived at the airport with a considerable delay. Hypothetical cases may
endow a case-based decision maker with reasoning abilities she would other-
wise lack. Moreover, it seems that any knowledge the agent possesses and
any conclusions she deduces from it can, inasmuch as they are relevant to
the decision at hand, be reflected by hypothetical cases.

5 Variations and Generalizations

5.1 Average similarity

The previous chapter introduced the basic decision criterion of CBDT, namely
maximization of the function

U(a) = Up,M (a) =
∑

(q,a,r)∈M
s(p, q)u(r) . (∗)

This function is cumulative, summing up the impact of past cases. Con-
sequently, the number of times a certain act was chosen in the past affects its
perceived desirability. As mentioned above, according to the function U , an
act a that was chosen relatively many times, yielding low but positive pay-
offs, may be preferred to an act b that was chosen less frequently, yielding
consistently high payoffs. Moreover, this is true even if both acts were chosen
frequently enough to allow statistical estimation of their payoffs means, or
even if no uncertainty is present.

We have argued that in presence of high and low payoffs, the aspira-
tion level is likely to take an intermediate value, making the low payoffs
appear negative. While this may make a U -maximizer prefer b over a in the
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example above, one may still wonder whether the function U is the most
reasonable way to evaluate alternatives. An obvious variation would be to
use a similarity-based “average” utility function, namely

V (a) =
∑

(q,a,r)∈M
s′(p, q)u(r)

where

s′(p, q) =
s(p, q)∑

(q′,a,r)∈M s(p, q′)
.

if
∑

(q′,a,r)∈M s(p, q′) > 0 and 0 otherwise.
V -maximization may be viewed as a way to formalize the idea of fre-

quentist belief formation (insofar as it is reflected in behavior). Although
beliefs and probabilities do not explicitly exist in this model, in some cases
they may be implicitly inferred from the weights s′. That is, if the decision
maker happens to choose the same act in many similar cases, the evaluation
function V may be interpreted as gathering statistical data, or as forming a
“frequentist” prior. Observe that CBDT does not presuppose any a priori
beliefs. Actual cases generate statistics, but no beliefs are assumed in the
absence of data.

V -maximization is more plausible than is U-maximization if very similar
problems are encountered over and over again. But when memory consists
only of remotely related problems, V -maximization may not be as convincing.
In particular, it involves discontinuity at zero total similarity. For instance, if
there is but one case in memory, (q, a, r), with problem similarity s(p, q) = ε,
then V (a) = u(r) for every ε > 0, but V (a) = 0 for ε = 0. One may view
both U-maximization and V -maximization as rough approximations, whose
appropriateness depends on the range of the similarity function.

In Section 18 we assume that the aspiration level changes over time,
mostly as a result of past experiences. We show that, under certain as-
sumptions, U -maximization, but not V -maximization, leads to asymptoti-
cally optimal choice in a stochastically repeated decision problem. In view of
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this result, we tend to view U -maximization as the primary formula, despite
the fact that it seems inappropriate for repeated problems with a constant
aspiration level.

5.2 Act similarity

While it stands to reason that past performance of an act would affect the
act’s evaluation in current problems, it is not necessarily the case that past
performance is the only relevant factor in the evaluation process. Specifically,
an act’s desirability may be affected by the performance of other, similar
acts. For instance, suppose that Ann is looking for an apartment to rent.
One of her options is to rent apartment A. Ann hasn’t lived in apartment A
before. Thus, she has never chosen the particular act now available to her.
But Ann has lived in the past in apartment B, which is located in the same
neighborhood as is A. The act “renting apartment A” is similar to the act
“renting apartment B” at least in that the two apartments are in the same
neighborhood. It seems unavoidable that Ann’s experience with the similar
act will affect her evaluation of the act she is now considering.

Similarly, suppose that Bob tries to decide whether or not to buy a new
product in the supermarket. He has never purchased this product in the
past, but he has consumed similar products by the same producer. Thus
the particular act that Bob is now evaluating has no history. But Bob’s
memory contains cases in which he chose other acts that are similar to the
one he now considers. Again, we would expect Bob’s decision to depend on
his experience with similar acts.

A decision maker is often faced with new acts, that is, acts that her
memory contains no information about their past performance. According
to formula (∗), the evaluation index attached to these acts is the default
value zero. As in the examples above, this application of CBDT is not
very plausible. Correspondingly, it may lead to counter-intuitive behavioral
predictions. For instance, it would suggest that Ann will be as likely to



58 CHAPTER 2. DECISION RULES

rent the apartment in the neighborhood she knows as an apartment in a
neighborhood she does not know. Similarly, Bob will be predicted to buy
the new product based on his aspiration level alone, without distinguishing
among products by the record of their producers. In reality, however, decision
makers are reminded of cases involving similar acts, and expect similar acts,
chosen in similar problems, to result in similar outcomes. Thus we need to
extend the model to reflect act similarity and not just problem similarity.

Act similarity effects are especially pronounced in economic problems
involving a continuous parameter. For instance, the decision whether or not
to “Offer to sell at price p” for a specific value p, will likely be affected by
the results of previous sell offers at different but close values of p. Generally,
if there are infinitely many acts available to the decision maker, it is always
the case that most of them are new to her. However, she will typically
infer something about these new acts from the performance of other acts
she has actually tried. While a straightforward application of CBDT to
economic models with an infinite set of acts may result in counter-intuitive
and unrealistic predictions, the introduction of act similarity may improve
these predictions.

Observe that act similarity effects are not restricted to the evaluation of
new acts. Even if an act was chosen in the past in a similar problem, its
evaluation is likely to be colored by the performance of similar acts.

The need for modeling act similarity may sometimes be obviated by re-
defining “acts” and “problems”. For instance, Ann’s acts may be simply
“To Buy” and “Not to Buy”, where each possible purchase is modeled as a
separate decision problem. However, such a model is hardly very intuitive,
especially when many acts are considered simultaneously. It is more natural
to explicitly model a similarity function between acts. Moreover, in many
cases the similarity function is most naturally defined on problem-act pairs.
For example, “Driving on the left in New York” may be more similar to
“Driving on the right in London” than to “Driving on the left in London”,
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“Buying when the price is low” may be more similar to “Selling when the
price is high” than to “Selling when the price is low”, and so forth.

In short, we would like to have a model in which the similarity function
s is defined on problem-act pairs, and, given a memory M and a decision
problem p, each act a is evaluated according to the weighted sum

U ′(a) = U ′
p,M (a) =

∑
(q,b,r)∈M

s((p, a), (q, b))u(r) . (•)

Observe that a case (q, b, r) in memory may be viewed as a pair ((q, b), r),
where the problem-act pair (q, b) is a single entity, describing the circum-
stances from which the outcome r resulted. That is, when past cases are
considered, the distinction between problems and acts is immaterial. Indeed,
it may also be fuzzy in the decision maker’s memory. By contrast, when
evaluating currently available acts, this distinction is both clearer and more
important: the problem refers to the given circumstances, which are not un-
der the decision maker’s control, whereas the various acts describe alternative
choices.

5.3 Case similarity

It is sometimes convenient to think of a further generalization, in which the
similarity function is defined over entire cases, rather than over problem-act
pairs alone. According to this view, the decision maker may realize that a
similar act in a similar problem may lead to a correspondingly similar (rather
than identical) result. For instance, assume that John has used automatic
vending machines for soft drinks in the past, and that he now faces a vend-
ing machine for sandwiches for the first time. There is evident similarity
between pushing a button on this machine and pushing buttons on the soft
drink machines he has used. Based on this similarity, John expects that
pushing a button will result in receiving the product shown in the picture
that is adjacent to the button. That is, he expects a sandwich to drop out
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of the sandwich machine in spite of the fact that he has never seen a sand-
wich dropping out of any machine before. Indeed, he has never seen such a
machine either. Given the similarity of the problem and the act to previous
problem-act pairs, John expects a correspondingly similar outcome to result.
He probably considers such an outcome to be more likely than any of the
outcomes he has experienced.

While one may attempt to fit this type of reasoning into the framework of
U ′-maximization by a re-definition of the results, it is probably most natural
to assume a similarity function that is defined over whole cases. Thus, the
case (soft drink machine, push button A, get drink A) is similar to the case
(sandwich machine, push button B, get sandwich B) more than to (sandwich
machine, push button B, get drink A). If we assume that the decision maker
can imagine the utility of every outcome (even if it has not been actually
experienced in the past), we are naturally led to the following generalization
of CBDT:

U
′′
(a) = U

′′
p,M (a) =

∑
r∈R

∑
(q,b,t)∈M

s((p, a, r), (q, b, t))u(r) . (••)

In this formula every outcome r is considered as a possible result of act
a in problem p, and the weight of the utility of outcome r is the sum of
similarity values of the present case, should act a be chosen and outcome r
result in it, to past cases.

Observe that case similarity can also capture asymmetric inferences.12

For instance, consider a seller of a product, who posts a price and observes
an outcome out of {sale, no-sale}. Consider two acts, offer to sell at $10
and offer to sell at $12. Should the seller fail to sell at $10, she can safely
assume that asking $12 would also result in no-sale. By contrast, selling at
$10 provides but indirect evidence regarding the result of offer to sell at $12.
Denoting two generic decision problems (say, days) by p and q, the similarity
between (p, offer to sell at $10, no-sale) and (q, offer to sell at $12, no-sale)

12This point is due to Ilan Eshel.
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is higher than that between (q, offer to sell at $12, no-sale) and (p, offer to
sell at $10, no-sale).

6 CBDT as a Behaviorist Theory

6.1 W -Maximization

Our focus so far has been on CBDT as a theory that attempts to describe an
actual mental process. It makes explicit reference to cognitive terms such as
“utility” and “similarity”, and it has a claim to cognitive plausibility. But
the reference to cases, representing factual knowledge on the one hand, and
to choices on the other also allows a behaviorist version of CBDT. Such a
theory would treat cases that actually happened as stimuli, or input, and
decisions as responses, or output, without specifying the mental process by
which cases affect decisions.

The behaviorist case-based decision theory we suggest here retains the
additivity of the theories presented above, but abstracts away from the struc-
ture of cases and the related similarity and utility functions. Specifically, we
assume that cases are abstract entities. For each case c and each act a we
assume that there is a number wp(a, c) that summarizes the degree to which
case c supports the choice of a in the given problem p. Further, we assume
that these support indices are accumulated additively, that is, that given a
set of cases M , the decision maker will choose an act that maximizes

W (a) =Wp,M (a) =
∑
c∈M

wp(a, c) . (◦)

over a ∈ A.
In the behaviorist interpretation, M is the set of cases to which the deci-

sion maker is exposed when faced with the decision problem p. For instance,
it may represent the collection of stories that were published in the media
available to her. Memory, the set of cases, is the input, or the stimulus. The
act chosen is the output, or the response. The theory of W -maximization
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makes no reference to any cognitive constructs such as probability, similarity,
or utility. It does not try to capture wants or needs, beliefs or evaluations.
It merely lumps together the impact of stimulus c on potential response a by
a number wp(a, c), and argues that the impact of several stimuli is additive.

In contrast to the theories described in previous sections, this theory
allows cases to be completely abstract, in the sense that they do not have to
comprise of a decision problem, an act, and an outcome. Cases here need not
have any formal relationship to the acts among which the decision maker has
to choose. Hence the interpretation of a “case” may go beyond an explicit
story of a previous decision. For instance, suppose that Jane has to decide
whether to go on a trip to the country. A relevant case might be the fact
that it rained the day before. This case specifies neither an act that was
chosen nor an outcome that was experienced. It is still possible, and indeed
likely that it will influence Jane’s choice of an act in the current decision
problem. Similarly, a stock market crash in 1929 may be a case that affects
an investment decision of a person who was born after this case occurred.13

It will be convenient (and essential for the axiomatic derivation) to allow
cases in memory to appear more than once.14It is then natural to define a
memory to be a function I :M → Z+ (where Z+ stands for the non-negative
integers) that counts occurrences of cases in M . In this formulation, CBDT
offers that the decision maker will choose an act that maximizes

W (a) = Wp,I (a) =
∑
c∈M

I(c)wp(a, c) . (�)

over a ∈ A.
13As argued above, all the abstract cases discussed here, to the extent that they might

affect decisions, can be translated into the language of problems, acts, and outcomes as
hypothetical cases. Such a translation, however, constitutes a cognitive task. The present
formulation is consistent with a purely behaviorist approach.

14Alternatively, one may assume that each case is unique, but that two cases may be
equivalent in the eyes of the decision maker, as far as problem p is concerned. One can
then require that to each case there be infinitely many other cases that are equivalent to
it in this sense.
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6.2 Cognitive Specification: EUT

In the next chapter we axiomatize the behaviorist theory ofW - maximization.
While we believe that the axioms suggested therein may convince the reader
that our theory is plausible, both descriptively and normatively, we wish to
support it also by a cognitive account. Descriptively, our belief in the theory
as a valid description of actual decision making will be enhanced if we can
describe a mental process that implements it. From a normative viewpoint,
such a process is essential to make the theory a practical recommendation
for decision making. In Section 2 we refer to such a mental process as a
“cognitive specification” of the theory.

A behaviorist theory may have more than one cognitive specification.
While we view W - maximization as the behaviorist manifestation of men-
tal processes involving similarity and utility judgments, it is also true that
expected utility theory is a cognitive specification of W - maximization. To
see this, assume that the decision maker conceives of a set of states of the
world Ω. Assume further that she forms beliefs µ over Ω as follows. Each
case c induces a probability measure µc over Ω, such that, given memory I,
the decision maker forms beliefs 15

µ =
∑
c∈M

I(c)µc .

Should this decision maker maximize the expected value of a utility func-
tion u : A× Ω→ R with respect to µ, she may be viewed as maximizing W
in (�) with

wp(a, c) =
∫

u(a, ω)dµc(ω) .

15Observe that, in order to be a probability measure, µ may have to be normalized
(separately for each memory I). The process of generation of subjective beliefs in this way
is axiomatized in Gilboa-Schmeidler (2000b).
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6.3 Cognitive Specification: CBDT

We have seen that expected utility theory with case-based probabilities is
a possible cognitive specification of W -maximization. Naturally, the case-
based decision rules of U -, U ′-, and U ′′-maximization discussed above are
also cognitive specifications of the same theory. Specifically, assume, as in
the previous sections, that all cases c are triples of the form (q, b, r), namely,
that each case describes an act chosen in a decision problem and an outcome
that resulted from it. The theory of U -maximization corresponds to the
following definition of the support weights wp(a, c):

wp(a, c) = wp(a, (q, b, r)) =

{
s(q, p)u(r) if a = b

0 otherwise
.

That is, U -maximization tells a story about a mental process in which
each act is evaluated based only on those cases in which it was chosen, and
for such a case c = (q, a, r), wp(a, c) = wp(a, (q, a, r)) is the product of
the similarity of the problems by the utility of the outcome. Similarly, U ′-
maximization would result from defining

wp(a, c) = wp(a, (q, b, r)) = s((p, a), (q, b))u(r).

In other words, the cognitive account of wp(a, c) suggested by U ′-maximization
involves the separation of similarity and utility, where similarity is defined for
problem-act pairs. Finally, U ′′-maximization may be viewed asW -maximization
where one defines

wp(a, c) = wp(a, (q, b, r)) =
∑
t∈R

s((p, a, t), (q, b, r))u(r).

Note that V -maximization is not a special case of W -maximization. To
fit the W function, one may define

wM
p (a, c) = wM

p (a, (q, b, r)) =
s(p, q)∑

(q′,a,r)∈M s(p, q′)
u(r)
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if a = b and if the denominator is positive, and wM
p (a, c) = 0 otherwise. But

in this case wM
p (a, c) depends on the entire memory M , and not only on the

case c in it. Formally, in V -maximization memory changes the similarity
function. This is done in a proportional manner: the similarity function is
normalized to add up to 1. Generally, memory may affect similarity judg-
ments in more subtle ways, as will be discussed in Section 19. Whenever the
similarity function depends on memory, the resulting decision rule should not
be expected to be a special case of W -maximization.

Viewing both EUT and various variants of CBDT as special cases of W -
maximization facilitates the comparison between them. While both theories
can be described as accumulating evidence from past cases, in EUT the
decision maker is capable of hypothetical thinking, as she uses a case that
occurred in the past both for the evaluation of the act she has indeed chosen in
this case (if there was one), and for the evaluation of acts she has not chosen.
Moreover, the same probabilities of states of the world are used for all acts.
Thus an expected utility maximizer trusts her hypothetical thinking as much
as she trusts her actual experience. By contrast, a case-based decision maker
who maximizes U or U ′ evaluates acts based only on the outcomes that have
actually been experienced in the past. She does not attempt to imagine what
outcomes might have resulted from other acts in the same situations.

6.4 Comparing the cognitive specifications

Viewed thus, both theories appear extreme. U ′-maximization (and, perforce,
U -maximization) does not allow the decision maker to engage in hypothet-
ical thinking, unless hypothetical cases are explicitly introduced into mem-
ory. By contrast, EUT insists that hypothetical thinking is possible and,
moreover, that it is just as influential as actual experience. However, the
behaviorist theory of W -maximization allows many intermediate degrees of
hypothetical thinking. Indeed, U ′′-maximization is a cognitive specification
of W -maximization that spans this range. In one extreme, we may define



66 CHAPTER 2. DECISION RULES

s((p, a, t), (q, b, r)) in (••) as

s((p, a, t), (q, b, r)) =

{
s((p, a), (q, b)) if t = r

0 otherwise
,

yielding U ′-maximization as a special case, and precluding hypothetical
thinking about the outcome that could have resulted in case (q, b, r) had a

been chosen rather than b. On the other extreme, we may set

s((p, a, t), (q, b, r)) = µc({ω ∈ Ω | a(ω) = r})
yielding EUT (with respect to beliefs µ =

∑
c∈M I(c)µc) as a special case.

But s((p, a, t), (q, b, r)) may, in general, be non-zero for t = r (as in EUT),
allowing the decision maker to imagine that a different act in a different prob-
lem might result in a different outcome, while still depending on t, allowing a
distinction between actual and hypothetical outcomes. Thus, the behaviorist
theory of W -maximization offers a wide range of decision making patterns,
as described by its cognitive specification of U ′′-maximization.

The theory of W -maximization has non-behaviorist interpretations as
well. First, the weights wp(a, c), measuring the support that a case c provides
to act a, may be directly accessible by introspection, even if they do not take
one of the forms suggested by the cognitive specifications above. Second, one
may apply W -maximization to a decision maker’s memory that may not be
observable by the modeler directly, provided that this memory is available
to the decision maker by introspection. Thus W -maximization may be a
behavioral or even a cognitive theory.

In the next chapter we axiomatize CBDT in the general form of W -
maximization.16 But most of the discussion that follows relates to the sim-
plest model, namely, U-maximization. While this model is rather restrictive,
it highlights the way in which CBDT differs from EUT. Thus we focus on the
model that is most likely to be wrong but also most likely to be insightful.17

16As mentioned above, W -maximization does not generalize V -maximization. For an
axiomatization of V -maximization, see Gilboa and Schmeidler (1995).

17An exception is the discussion of planning in Chapter 5, which requires the use of
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7 Case-Based Prediction

In a prediction problem a predictor is faced with certain circumstances, and
is asked to name one of possible eventualities that might arise. Prediction
may be regarded as a special type of decision making under uncertainty: the
acts available to the predictor are the possible predictions, and the possible
outcomes are success (for a correct prediction) and failure (for a wrong one).
In a more general model, one may also rank predictions on a continuous
scale, measuring the proximity of the prediction to the eventuality that ac-
tually transpires, allow set-valued predictions, probabilistic predictions, and
so forth.

As any other type of decision under uncertainty, prediction is based on
past knowledge. Indeed, the formal structure of a prediction problem would
typically include also a history, or memory, namely, a set of examples, con-
sisting of circumstances that were encountered in the past, coupled with the
eventualities that are known to have resulted from them. This structure also
encompasses problems referred to in the literature as classification, catego-
rization, or learning.

Viewed as a special case of decision problems, prediction problems are
characterized by the following feature: outcomes are assumed to be inde-
pendent of acts. The predictor, viewed as a decision maker, believes that
she is an outside observer who may guess the eventuality that would result
from circumstances, but that she cannot affect it in any way. She affects
the outcome of her own decision problem by guessing the eventuality cor-
rectly or incorrectly, but not through the eventuality itself. It follows that,
when considering a past case of prediction, the decision maker knows what
the eventuality that actually transpired would have been the same had she
predicted differently. Thus she can estimate the success of each possible
prediction she could have made with the same ease of imagination and the

U ′′-maximization.
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same certainty as for the prediction she actually did make. In fact, in for-
mally describing a past case of prediction, one may completely suppress the
predictor’s choice and focus only on the circumstances, namely, the decision
problem, and the eventuality.

Let us consider a simple formal model in which memory M contains
examples of the form (q, r) ∈ P ×R, i.e., pairs of problems, or circumstances,
q and eventualities r. Assume that a similarity function s : P ×P → [0, 1] is
given as above. Given a problem p ∈ P , it is natural to suggest that possible
eventualities be ranked according to

W ′(r) =W ′
p,M (r) =

∑
(q,r)∈M

s(p, q) .

That is, an eventuality r is assigned a numerical value corresponding to
the sum, over all examples in which r actually transpired, of the similarity
values of the problems in the past to the one at hand. It is easily seen that
W ′ is a special case of W defined above. Indeed, consider a decision problem
in which A = R. That is, the set of possible predictions coincides with the
set of eventualities. Let cases be pairs (q, t) ∈ P ×R and define the support
weights wp(r, c) by:

wp(r, c) = wp(r, (q, t)) =

{
s(p, q) if r = t

0 otherwise
.

With these definitions,W -maximization in the decision problem coincides
withW ′-maximization in the prediction problem. Moreover,W -maximization
also allows more general prediction forms. That is, knowing that eventuality
t transpired in a past case may make another eventuality r = t more or less
plausible.

The following chapter provides an axiomatic derivation ofW -maximization
in the context of decision under uncertainty. It can also be interpreted as an
axiomatization of a general prediction rule based on abstract cases. With the
special structure above in mind, one may easily formulate additional condi-
tions that would characterizeW ′-maximization. (See Gilboa and Schmeidler
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(2000b,c), in which we follow this path.) Observe thatW ′-maximization gen-
eralizes kernel estimates of density functions. (See Akaike (1954), Rosenblatt
(1956), and Parzen (1962).)
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Chapter 3

Axiomatic Derivation

8 Highlights

We devote this chapter to the axiomatization of W -maximization. In this
section we describe the model and our key assumptions. Formal discussion
is presented in the following section.

The decision maker is asked to rank acts in a set A by a binary preference
relation, based on her memory M . Further, we assume that the decision
maker has a well-defined preference relation on A not only for the actual
memoryM , but also for other, hypothetical memories that can be generated
from M by replication of cases in it. While the representation (�) in Section
6.1 allows repetitions in memory, we now require that preferences be defined
for any such vector of repetitions.

In many situations it is not hard to imagine cases appearing in memory
repeatedly. For instance, in the recommendation letters example one may
imagine several letters relating practically identical stories about a candidate.
Cases that are available to a physician in treating a specific patient will often
be identical to the best of the physician’s knowledge. Moreover, cases that
are known to be different may still be considered equivalent as far as the
present decision is concerned. Patterns in the history of the weather or of
the stock market can also be imagined to have occurred in history more or

71
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less times than they actually have.

Yet, the assumption that cases can be repeated is restrictive. Consider
the example of war in Bosnia again. We quoted the Vietnam war as a rel-
evant case. But it is not entirely clear what is meant by assuming that the
Vietnam war occurred, say, five times. In what order do these repeated wars
supposed to occur? Were the relevant decision makers aware of the previous
occurrences? And, on a more philosophical level, can anything ever repeat
itself in exactly the same way? Will the repetition itself not make it different?

Indeed, no two cases are identical. But many cases can be identical to
the best of the decision maker’s knowledge, or to the best of her judgment,
at least as far as the present decision problem is concerned. As explained
below, one might derive the notion of identicality of cases from preference
relations as well. In this approach, the philosophical problem is resolved,
because identicality is not assumed primitive. The decision maker is not
supposed to believe that cases are identical. Rather, if the decision maker’s
preferences reveal that two cases are equivalent in her eyes for the problem
at hand, we may treat them as if they were identical. Still, one would need
to assume that for each case there are infinitely many other cases that are
equivalent to it in this sense.

Another approach to the axiomatic derivation of CBDT involves a dif-
ferent type of hypothetical rankings: rather than assume that entire cases
repeated themselves in exactly the same way, one may assume that each case
occurred only once, but that it has resulted in a different outcome than the
one actually experienced. We follow this tack in the axiomatization of U - and
of V - maximization with a given utility function in Gilboa and Schmeidler
(1995), in the axiomatization of U ′-maximization in Gilboa and Schmeidler
(1997), and in that of U ′-maximization with an endogenously derived utility
function in Gilboa, Schmeidler, and Wakker (1999). There are situations
where it is easier to imagine an entire case repeating itself with the same
outcome, that to imagine the same case resulting in a different outcome, and
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there are situations where the converse holds. Observe, however, that both
types of hypothetical rankings are needed only for the axiomatization, not
for the formulation of the theory itself. They will be required for elicitation
of parameters, but not for application of the theory by a decision maker who
can estimate these parameters directly.

The repetitions model makes yet another implicit assumption: not only
do repetitions make sense, they are also supposed to contain all relevant
information for the generation of preferences. Specifically, the order in which
cases have supposedly occurred is not reflected in memory. This assumption
is not too restrictive, since the description of a case may include a time
parameter or certain relevant features of history. Yet, it has a flavor of de
Finetti’s exchangeability condition.

Our main assumption within this set-up is a combination axiom. Roughly,
it states that, if act a is preferred to act b given two disjoint databases of cases,
than a should be preferred to b also given their union. To see the basic logic of
this condition, imagine that the science of medicine equips physicians with
an algorithm to provide recommendation to patients given their personal
experience. Imagine that a patient consults two physicians who work in
different hospitals, and who therefore have been exposed to disjoint databases
of patients. Imagine further that both physicians recommend treatment a
over treatment b. Should the patient insist that they get together to consult
her case? A negative answer elicits an implicit belief in the combination
axiom: applying the same decision making algorithm to the union of the
two databases should result in the same conclusion as applying it to each
database separately (if these yielded an identical result).

Yet, the combination axiom may seem rather implausible is various cases.
We first present the formal model and then discuss this and the other axioms
in more detail.
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9 Model and Result

The formal model and the results in this section appear in Gilboa and Schmei-
dler (2000b). In that paper we discuss predictions and inductive inference,
where one assumes that rankings of eventualities by their plausibility are
given as data. Here we interpret the rankings as preferences over possible
acts.

LetM be a finite a non-empty set of cases and A – a set of acts available
at the decision problem p under discussion. We assume that A contains at
least two acts. For simplicity of notation we suppress p throughout. Denote
J = ZM

+ = {I|I :M → Z+} where Z+ stands for the non-negative integers. J
is the set of hypothetical memories, or simply memories. We assume that for
every I ∈ J the decision maker has a binary relation “at least as desirable as”
on A denoted by �I (i.e., �I⊂ A × A).1In other words, we are formalizing
here a rule, as opposed to an act, of decision making. The rule generates
decisions not only for the available set of cases, but also for hypothetical
ones. Some of the hypothetical collections of cases, i.e., vectors in J, may
become actual when the decision maker acquires additional information. (On
this see also Subsection 9.3) In conclusion, our structural assumption (axiom
0) is the existence of a binary relation �I on A for all I ∈ J.

9.1 Axioms

We will use the four axioms stated below. In their formalization let �I

and ≈I denote the asymmetric and symmetric parts of �I , as usual. �I is
complete if x �I y or y �I x for all x, y ∈ A. Finally, algebraic operations

1This mathematical structure is akin to, and partly inspired by Young (1975) and
Myerson (1995), who derive scoring rules in voting theory. Rather than a binary relation
�I on A, they assume a function selecting a subset of A for every I ∈ J, to be interpreted
as the set of winning candidates given a distribution of ballots I. Our model assumes
more information, since we require a complete ranking of alternatives in A for each I.
In return, we obtain an almost unique representation, and we do not need to assume
symmetry among the alternatives.
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on J are performed pointwise.

A1 Ranking: For every I ∈ J, �I is complete and transitive on A.

A2 Combination: For every I, J ∈ J and every a, b ∈ A, if a �I b (a �I b)
and a �J b, then a �I+J b (a �I+J b).

A3 Archimedean Axiom: For every I, J ∈ J and every a, b ∈ A, if a �I b,
then there exists l ∈ N such that a �lI+J b.

Observe that in the presence of Axiom 2, Axiom 3 also implies that for
every I, J ∈ J and every a, b ∈ A, if a �I b, then there exists l ∈ N such that
for all k ≥ l, a �kI+J b.

Axiom 1 simply requires that, given any conceivable memory, the decision
maker’s preference relation over acts be a weak order. Axiom 2 states that,
if act a is preferred to act b given two disjoint memories, then a should
also be preferred to b given the combination of these memories. In our set-
up, combination (or concatenation) of memories takes the form of adding
the number of repetitions of each case in the two memories. Axiom 3 is
a continuity condition. It states that if, given the memory I, the decision
maker strictly prefers act a to act b, then, no matter what is her ranking for
another memory, J , there is a number of repetitions of I that is large enough
to overwhelm the ranking induced by J .

Finally, we need a diversity axiom that is not necessary for the functional
form we would like to derive. While the theorem we present is an equivalence
theorem, it characterizes a more restricted class of preferences than those
discussed in the introduction. Specifically, we require that for any four acts,
there is a memory that will distinguish among all four of them.

A4 Diversity: For every list (a, b, d, e) of distinct elements of A there exists
I ∈ J such that a �I b �I d �I e. If |A| < 4, then for any strict ordering of
the elements of A there exists I ∈ J such that �I is that ordering.

We remind the reader that the next section is devoted to a detailed dis-
cussion of the axioms, and proceed to state their implication.
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9.2 Basic result

The key result of this chapter can now be formulated.

Theorem 3.1 : Let there be given A, M , and {�I}I∈J as above. Then the
following two statements are equivalent if |A| ≥ 4 :

(i) {�I}I∈J satisfy A1-A4;

(ii) There is a matrix w : A×M → R such that:

(∗∗)
 for every I ∈ J and every a, b ∈ A,

a �I b iff
∑

c∈M I(c)w(a, c) ≥∑
c∈M I(c)w(b, c) ,

and for every list (a, b, d, e) of distinct elements of A, the convex hull
of differences of the row-vectors (w(a, ·) − w(b, ·)), (w(b, ·) − w(d, ·)),
and (w(d, ·)− w(e, ·)) does not intersect RM

− .

Furthermore, in this case the matrix w is unique in the following sense:
w and ŵ both satisfy (∗∗) iff there are a scalar λ > 0 and a matrix u :
A × M → R with identical rows (i.e., with constant columns) such that
ŵ = λw + u .
Finally, in the case |A| < 4, the numerical representation result (as in (∗∗))
holds, and uniqueness as above is guaranteed.

The main point of the theorem is that the infinite family of rankings has a
linear representation via a real matrix of order |A|× |M |. For (a, c) ∈ A×M

the number w(a, c) is interpreted as the amount of support that case c lends
to act a.

Given any real matrix of order |A| × |M |, one can define for every I ∈ J

a weak order on A through (∗∗). It is easy to see that these orders would
satisfy A2 and A3 but not necessarily A4. For example, A4 will be violated if
a row of the matrix dominates another row. It is therefore natural to wonder
whether one can obtain a numerical representation using only A1-A3. The
answer is given by the following proposition.
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Proposition 3.2 Axioms A1, A2, and A3 do not imply the existence of a
matrix w satisfying (∗∗).

In other words, A1, A2, and A3 are necessary but (jointly) insufficient
conditions for the existence of a matrix w satisfying (∗∗).2

9.3 Learning new cases

The decision rule is constructed in anticipation of incorporating new infor-
mation. Let us assume that the decision maker conceives of cases in a set
M and has information represented by I ∈ ZM

+ . Correspondingly, she ranks
acts by �I . Assume now that the decision maker acquires a new database. If
the new database consists of additional repetitions of cases that the decision
maker has conceived of, namely, cases inM , it can be represented by a vector
J ∈ ZM

+ , and the decision maker’s new preference will be �I+J . But if the
new database contains at least one case c that is not in M , it cannot be rep-
resented by a member of ZM

+ . One may choose another set M ′ and represent
the new database by J ∈ ZM ′

+ , but then I and J do not belong to the same
space and they cannot be summed up. In particular, the combination axiom
does not apply and the representation theorem cannot be invoked. True, one
may apply the theorem separately to ZM

+ and to ZM ′
+ , but then the theorem

would yield a matrix w′ for memory M ′ that may be completely unrelated
to the matrix w of the memory M .

Specifically, even if case c belongs to both M and M ′, the degree of
support it lends to an act a in memory M need not be the same as in
memory M ′. This would imply that the support that a case lends to an act
may depend not only on their intrinsic features, but also on other cases in
memory. Should one want to rule out this dependence, one should require an
additional axiom. Before we introduce it, a piece of notation will be useful:

2A theorem in Ashkenazi and Lehrer (2000) suggests a condition on {�I}I∈J that is
necessary and sufficient for a representation as in (∗∗). This condition is less intuitive than
the axioms we use and is therefore omitted.
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for two memories M and M ′ satisfying M ⊂ M ′, and for each I ∈ ZM
+ , let

I ′ ∈ ZM ′
+ be the extension of I to M ′ defined by I(c) = 0 for c ∈ M ′\M .

We can now state the condition guaranteeing that the similarity function is
independent of memory:

A5 Case Independence: If M ⊂M ′, then �I= �I ′ for all I ∈ ZM
+ .

We now state the sought for result. Its proof is quite simple and hence
omitted.

Proposition 3.3 : Let there be given a set of cases C, a set of alternatives
A, and a family M of finite subsets of C . Assume that for every M ∈ M,
{�I}I∈ZM

+
, satisfy A1-A4, that |A| ≥ 4, and that M is closed under union.

Then the following two statements are equivalent:

(i) A5 holds on M;

( ii) For every c ∈ C and every a ∈ A there exists a number w(a, c) such
that (∗∗) of Theorem 3.1 (ii) holds for every M ∈M.

9.4 Equivalent cases

Axiom 5 and Proposition 3.3 enable us to resolve an additional modeling
difficulty within our framework. From the description of our model it seems
that the initial information of the decision maker isM or, equivalently, 1M ∈
ZM

+ . 3 Assume, for instance, that the observed cases are 5 flips of a coin,
say HTHHT . Are these five separate cases, with M = {ci|i = 1, ..., 5} and
I = (1, 1, 1, 1, 1)? Or is the correct model one where M ′ = {H, T} and
I = (3, 2) ∈ ZM ′

+ ? Or should we perhaps opt for a third alternative where
the decision maker’s knowledge is J = (3, 2, 0, 0, 0) ∈ ZM

+ ? It would be nice
to know that these modeling choices do not affect the result.

31E stands for the idicator vector of a set E in the appropriate space. In our model we
identify M with 1M ∈ ZM

+ .
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First we note that, indeed, under Axiom 5 and the proposition, the
rankings of A for (3, 2) and for (3, 2, 0, 0, 0) should be identical. Second,
if the decision maker believes that c1, c3, c4 ∈M are the “same” case, and so
are c2, c5 ∈ M , we should also expect the rankings for (1, 1, 1, 1, 1) and for
(3, 2, 0, 0, 0) to be identical. Moreover, if this is the case also whenever we
“replace” occurrences of c1 by occurrences of, say, c3, we may take this as a
definition of “sameness” of cases.

Formally, for two cases c1, c2 ∈ M , define c1 � c2 if the following holds:
for every I, J ∈ J such that I(c) = J(c) for all c = c1, c2, and I(c1) + I(c2) =
J(c1) + J(c2), we have �I=�J . In conclusion we state the obvious:

Proposition 3.4 (i) � is an equivalence relation on M .
(ii) If (∗∗) holds then: c1 � c2 ⇔ ∃β ∈ R s.t., ∀a ∈ A, w(a, c1) =

w(a, c2) + β

It follows that one may start out with a large set of distinct cases, and al-
low the decision maker’s subjective preferences to reveal possible equivalence
relations between them. It is then possible to have an equivalent representa-
tion of the decision maker’s knowledge, based on the smallest set of different
cases. Thus for the minimal representing matrix w, not only are all columns
different, but no column is obtained from another by addition of a constant.

This derivation of equivalence relation between cases, however, still as-
sumes that cases may be repeated in an identical manner. As mentioned
above, one may find this objectionable on philosophical grounds. In this
case, one may prefer a model that does not assume that identicality of cases
is primitive. Such a model may be adapted from that presented above as
follows. Let there be given a set of distinct cases C. Assume that for every
finite M ⊂ C there exists a relation �M on A. Define cases i, j ∈ C to be
equivalent if �M∪{i}=�M∪{j} for all finite M ⊂ C with M ∩ {i, j} = ∅. It
is easy to verify that this is indeed an equivalence relation. The structural
assumption is then that every equivalence class of this relation is infinite.
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9.5 U-Maximization

Consider again the model described in Section 4, where a case consists of a
problem, an act, and an outcome. With this additional structure one may
distinguish U-maximization from U ′- and U ′′-maximization by the fact that
in U -maximization an act is evaluated based only on its own history. This
may be formulated by the following axiom.

A6 Specificity: For all I, J ∈ J, and all a, b ∈ A, if I(c) = J(c) whenever
c = (q, a, r) or c = (q, b, r), then a �I b iff a �J b.

A6 requires that if two memories agree on the number of occurrences
of all cases involving acts a and b, then the two memories induce the same
preference order between these two acts. Observe that this axiom should
hold if the history of each given act a affects only the evaluation of this
very act. In other words, if we knew that the impact of act a’s history were
specific to the evaluation of act a itself, we would expect A6 to hold. The
following result shows that this axiom is also sufficient to obtain the kind of
representation we seek. That is, under this additional axiom, the evaluation
of each act does not depend on past performance of other acts.

Proposition 3.5 Assume that {�I}I∈J satisfy A1-A4 and A6. Then there
exists a matrix w : A×M → R such that

(∗ ∗ ∗)



for every I ∈ J and every a, b ∈ A,

a �I b iff∑
c∈M I(c)w(a, c) ≥∑

c∈M I(c)w(b, c) iff∑
c=(q,a,r)∈M I(c)w(a, c) ≥∑

c=(q,b,r)∈M I(c)w(b, c)

Further, this matrix w is unique up to multiplication by a positive number
and it satisfies w(a, (q, b, r)) = 0 whenever a = b.

A6 implies that the matrix w of Theorem 3.1 has the following property:
if acts b, d were not chosen in case c, then w(b, c) = w(d, c). Since every
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column in the matrix w can be shifted by a constant, one may set w(b, c) to
zero whenever act b was not chosen in case c. Given this choice of w, the last
two lines of (∗ ∗ ∗) are obviously equivalent. Moreover, this choice makes w
unique up to multiplication by a positive number. We omit the formal proof
of the proposition, which follows this reasoning. Observe that the resulting
matrix w consists mostly of zeroes: in every column there exists at most one
entry that differs from zero.

In case a utility function u : R→ R is given, one may write w(a, (q, a, r)) =
s(q)u(r) (unless u(r) vanishes and w(a, (q, a, r)) does not).4Interpreting s(q)
as the similarity of the past problem q to the problem at hand p yields U-
maximization. Indeed, with a given utility function one may decompose the
function w even without A6 and write w(a, (q, b, r)) = s((p, a), (q, b))u(r) to
get U ′-maximization. (Again, such a decomposition assumes that u(r) = 0
implies w(a, (q, b, r)) = 0.)

Observe, however, that in the absence of a given utility function there is
no unique decomposition of w(a, (q, b, r)) (or of w(a, (q, a, r))) to a product
of a similarity function and a utility function. Indeed, if cases can only
repeat themselves in memory in their entirety, one cannot hope to observe
the separate impacts of similarity judgment and of desirability evaluation
on behavior.5 If a function w can be written as the product of similarity s

and utility u, it is also the product of −s and −u. Thus even the ordinal
ranking of past outcomes cannot be gleaned from the function w alone. For
instance, if Jane tends to choose act a in problem p after having chosen a in
case (q, a, r), it is possible that she liked outcome r and that she considers
problem p to be similar to problem q (i.e., u(r), s(p, q) > 0), but it is also
possible that she did not like outcome r, and that she considers problems p

4There are many situations in which a utility function may be assumed given. In
particular, one may have a cognitive measure of utility that is independent of the behavioral
theory under discussion. See, for instance, Alt (1936) for such a derivation.

5This problem is reminiscent of the axiomatization of state-dependent utility with
subjective probability. See Karni, Schmeidler, and Vind (1983) and Karni and Mongin
(2000).



82 CHAPTER 3. AXIOMATIC DERIVATION

and q to be dissimilar (i.e., u(r), s(p, q) < 0).

To obtain a decomposition of the function w into a product of utility
and similarity based on behavior data alone, one would need to consider
not only repetitions of cases, but also hypothetical cases in which different
outcomes resulted from the same problem-act pairs. Such an approach is
used by Gilboa and Schmeidler (1995, 1997a) and Gilboa, Schmeidler, and
Wakker (1999).

10 Discussion of the Axioms

Axiom 1 states that the decision maker has a weak preference over the set of
acts given any memory. This axiom is standard in decision theory, and it is
as plausible here as in most models. Once one accepts the structural assump-
tions, namely, that the decision maker has preferences given any conceivable
memory and that only the number, and not the order of cases matters, A1
is not too objectionable.6

As mentioned above, the combination axiom (A2) is the most fundamen-
tal of our assumptions. Whereas its basic logic seems sound, it is by no means
universally applicable. In particular, the CBDT rule of V -maximization does
not satisfy it. To see this, consider the following version of “Simpson’s Para-
dox” (see, for instance, DeGroot (1975)).7 One has to choose between betting
on coin a coming up Head or on coin b coming up Head. In database I coin
a resulted in Head 110 out of 1,000 tosses, whereas coin b – 10 out of 100
tosses. Thus, V -maximization, which is a rather reasonable decision rule in
this context, would prefer a (with success rate of 11%) to b (with 10%). In
database J , a resulted in Head 90 out of 100 tosses, whereas b – in 800 out

6It should be mentioned that both completeness and transitivity of preferences, and, in
particular, transitivity of indifference, have been challenged in decision theory. (See Luce
(1956) and Fishburn (1970, 1985).) The criticism of these axiom applies here as in any
other context in which it was raised.

7Simpson’s paradox was suggested to us as a counterexample to the combination axiom
by Bernard Walliser.
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of 1,000. Again, V -maximization would prefer a to b. But in the combined
database a resulted in Head 200 times out of 1,100, whereas b – 810 out of
1,100, and V -maximization would prefer b to a.

The implicit assumption that makes V -maximization a reasonable deci-
sion rule in this situation is that the coin tosses for both coin a and coin b

result from independent sampling from fixed distributions. But this assump-
tion also makes the scenario above unlikely. Observing databases such as I
and J probably indicates that this assumption is false, and that not all tosses
of the coins are similar. In particular, in database I the percentage of Heads
is much lower than in database J , for both coins. It is possible, for instance,
that the tossing machine in database J has a Head bias. Introducing the
tossing machine as part of the description of a case would resolve the incon-
sistency. Specifically, coin tosses from database I would differ from tosses of
the same coins from database J , and it would no longer make sense to apply
V -maximization to the union of the two databases.

The combination axiom may also be violated when small databases are
considered. For instance, consider a statistician who has to decide whether
to accept or to reject a null hypothesis. Assume that the statistician uses a
standard hypothesis testing technique. It is normally the case that one can
find two samples, each of which is too small to reach statistical significance,
and whose union is large enough for this purpose. Thus, the decision given
each database would be “accept”, whereas given their union it would be
“reject”. It should be noted, however, that this is due to the inherent asym-
metry between acceptance and rejection of a null hypothesis, which often
stems from the fact that the null hypothesis enjoys the status of “accepted
view” or “common wisdom”. This, in turn, probably relies on past cases
that precede the samples under discussion. If we were to consider the entire
database on which the statistician relies, we would include these past cases
as well as the new samples. In this case, the two databases defined by past
cases combined with each of the new samples are not disjoint.
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To consider another example, assume that an inspector has to decide
whether a roulette wheel is fair. Observing a hundred cases in which the
wheel came up on red, she may conclude that the roulette is biased and that
legal action is called for. Obviously, she should make the same decision if
she observes a hundred cases, all of which involving black outcomes. Yet,
the combination of the two databases will not warrant any action.8 Observe,
however, that this example hinges on the fact that the acts are not described
in sufficient detail. If one were to choose among “no act”, “sue for a red
bias”, and “sue for a black bias”, the violation of the combination axiom
would disappear.9

Perhaps the most important violation of the combination axiom occurs
when the function w(a, c) itself is learned from experience. We refer to this
process as “second-order induction”, since it describes how one learns how
to learn from experience. Chapter 7 discusses this issue in detail.

The Archimedean axiom states that conceivable memories are compa-
rable, or that no conceivable memory can be infinitely more weighty than
another. It is violated, for instance, by decision systems that are based on
nearest neighbor classifications. To consider a concrete example, imagine
that a physician has to decide whether to perform a surgery on a patient.
One possible algorithm for making this decision is to consider the most sim-
ilar patient who has undergone the surgical procedure, and to perform the
surgery on the current patient if and only if the most similar past case of
surgery was successful. For this decision rule, a single most-similar case of,
say, a successful operation will outweigh any number of less similar cases
of unsuccessful operations. We view this example as a criticism of nearest
neighbor approaches more than of the Archimedean axiom. At any rate,
one may drop the Archimedean axiom and develop a nonstandard analysis
version of our theorem.

8This example is based on an example of Daniel Lehman.
9As in the example of Simpson’s paradox, the scenario described in this example is

highly unlikely under the assumption of stochastic independence (or exchangeability).
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In Gilboa and Schmeidler (2000b) we use the combination and the Archimedean
axioms as applied to prediction, and we identify several classes of examples
in which they are unlikely to hold. Since every prediction problem can be
embedded in a decision problem, these classes of examples apply here as
well. Yet, it appears that these axioms are rather plausible in a wide range
of applications.

We now turn to the diversity axiom. Its main justification is necessity:
without it the representation of preferences by W -maximization cannot be
derived. We readily admit that it is too restrictive for many purposes. For
instance, consider three acts, a =“sell 100 shares”, b =“sell 200 shares”, and
d =“sell 300 shares”. One may argue that act b will always be ranked be-
tween acts a and d. But this contradicts the diversity axiom. Yet, with a large
enough set of conceivable cases M , the diversity axiom is not too objection-
able. For instance, there might be circumstances under which obtaining the
optimal portfolio would require selling precisely 200 shares. Having strong
enough evidence from past cases that the present problem belongs to this
category, one may indeed rank, say, b over a and a over d.

The above notwithstanding, it would be useful to have another axiom
that, in the presence of A1-3, would yield W -maximization. It will be clear
from the proof that one does not need the full strength of A4 to obtain the
desired result. It suffices that there be enough quadruples of acts for which
the conclusion of the axiom holds, rather than that it hold for all quadruples.
Such a weakening would allow act b in the example above to be always ranked
between a and d, provided that there are other acts, say e and f , such that for
every pair of distinct acts {x, y} ⊂ {a, b, d}, every strict ranking of {x, y, e, f}
is obtained for some I. For simplicity of exposition we formulate A4 in its
full strength, rather than tailor it to its exact usage in the proof. At present
we are not aware of any elegant alternative to A4.
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11 Proofs

Proof of Theorem 3.1:

Theorem 3.1 is reminiscent of the main result in Gilboa and Schmeidler
(1997). In that work, cases are assumed to involve numerical payoffs, and
algebraic and topological axioms are formulated in the payoff space. Here,
by contrast, cases are not assumed to have any structure, and the algebraic
and topological structures are given by the number of repetitions. This fact
introduces two main difficulties. First, the space of “contexts” for which
preferences are defined is not a Euclidean space, but only integer points
thereof. This requires some care with the application of separation theorems.
Second, repetitions can only be non-negative. This fact introduces several
complications, and, in particular, changes the algebraic implication of the
diversity condition.

We present the proof for the case |A| ≥ 4. The proofs for the cases |A| = 2
and |A| = 3 will be described as by-products along the way.

We start by proving that (i) implies (ii). We first note that the following
homogeneity property holds:

Claim 3.1 For every I ∈ ZM
+ and every k ∈ N, �I=�kI .

Proof: Follows from consecutive application of the combination axiom. �
In view of this claim, we extend the definition of �I to functions I whose

values are non-negative rationals (denoted Q+). Given I ∈ QM
+ , let k ∈ N be

such that kI ∈ ZM
+ and define �I= �kI . �I is well-defined in view of Claim

3.1. By definition and Claim 3.1 we also have:

Claim 3.2 (Homogeneity) For every I ∈ QM
+ and every q ∈ Q , q > 0 :

�qI= �I .

Claim 3.2, A1, and A2 imply:
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Claim 3.3 (The ranking axiom) For every I ∈ QM
+ , �I is complete and

transitive on A, and (the combination axiom) for every I, J ∈ QM
+ and

every a, b ∈ A and p, q ∈ Q , p, q > 0: if a �I b (a �I b) and a �J b, then
a �pI+qJ b (a �pI+qJ b).

Two special cases of the combination axiom are of interest: (i) p = q = 1,
and (ii) p + q = 1. Claims 3.2 and 3.3, and the Archimedean axiom, A3,
imply the following version of the axiom for the QM

+ case:

Claim 3.4 (The Archimedean axiom) For every I, J ∈ QM
+ and every

a, b ∈ A, if a �I b, then there exists r ∈ [0, 1) ∩Q such that a �rI+(1−r)J b.

It is easy to conclude from Claim 3.4 (and 3.3), that for every I, J ∈ QM
+

and every a, b ∈ A, if a �I b, then there exists r ∈ [0, 1) ∩ Q such that
a �pI+(1−p)J b for every p ∈ (r, 1) ∩Q.

The following notation will be convenient for stating the first lemma. For
every a, b ∈ A let

Y ab ≡ {I ∈ QM
+ | a �I b} and

W ab ≡ {I ∈ QM
+ | a �I b}.

Observe that by definition and A1: Y ab ⊂ W ab, W ab ∩ Y ba = ∅, and
W ab ∪ Y ba = QM

+ . The first main step in the proof of the theorem is:

Lemma 3.5 For every distinct a, b ∈ A there is a vector wab ∈ RM such
that,

(i) W ab = {I ∈ QM
+ | wab · I ≥ 0};

(ii) Y ab = {I ∈ QM
+ | wab · I > 0};

(iii) W ba = {I ∈ QM
+ | wab · I ≤ 0};

(iv) Y ba = {I ∈ QM
+ | wab · I < 0};

(v) Neither wab ≤ 0 nor wab ≥ 0;
(vi) −wab = wba.
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Moreover, the vector wab satisfying (i)-(iv), is unique up to multiplication by
a positive number.

The lemma states that we can associate with every pair of distinct acts
a, b ∈ A a separating hyperplane defined by wab · x = 0 (x ∈ RM), such that
a �I b iff I is on a given side of the plane (i.e., iff wab · I ≥ 0). Observe that
if there are only two acts, Lemma 3.5 completes the proof of sufficiency: for
instance, one may set wa = wab and wb = 0. It then follows that a �I b

iff wab · I ≥ 0, i.e., iff wa · I ≥ wb · I. More generally, we will show in the
following lemmata that one can find a vector wa for every alternative a, such
that, for every a, b ∈ A, wab is a positive multiple of (wa − wb).

Before starting the proof we introduce additional notation: let Ŵ ab and
Ŷ ab denote the convex hulls (in RM ) of W ab and Y ab, respectively. For a
subset B of RM let int(B) denote the set of interior points of B.

Proof of Lemma 3.5: We break the proof into several claims.

Claim 3.6 For every distinct a, b ∈ A, Y ab ∩ int(Ŷ ab) = ∅ .

Proof: By the diversity axiom Y ab = ∅ for all a, b ∈ A, a = b. Let I ∈
Y ab∩ZM

+ and let J ∈ ZM
+ with J(m) > 1 for all m ∈M. By the Archimedean

axiom there is an l ∈ N such that K = lI + J ∈ Y ab. Let (xj)2
|M|

j=1 be the 2|M |

distinct vectors in RM with coordinates 1 and −1. For j, (j = 1, ..., 2|M |),
define yj = K + xj. Obviously, yj ∈ QM

+ for all j. By Claim 3.4 there is an
rj ∈ [0, 1)∩Q such that zj = rjK + (1− rj)yj ∈ Y ab (for all j). Clearly, the
convex hull of { zj | j = 1, ..., 2|M |}, which is included in Ŷ ab, contains an
open neighborhood of K. �

Claim 3.7 For every distinct a, b ∈ A, Ŵ ba ∩ int(Ŷ ab) = ∅ .

Proof: Suppose, by way of negation, that for some x ∈ int(Ŷ ab) there are
(yi)ki=1 and (λi)ki=1, k ∈ N such that for all i, yi ∈W ba, λi ∈ [0, 1], Σk

i=1λi = 1,
and x = Σk

i=1λiyi. Since x ∈ int(Ŷ ab), there is a ball of radius ε > 0 around x
included in Ŷ ab. Let δ = ε/(2Σk

i=1||yi||) and for each i let qi ∈ Q∩ [0, 1] such
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that |qi− λi| < δ , and Σk
i=1qi = 1. Hence, y = Σ

k
i=1qiyi ∈ QM

+ and ||y−x|| <
ε, which, in turn, implies y ∈ Ŷ ab∩QM

+ . Since for all i : yi ∈W ba, consecutive
application of the combination axiom (Claim 3.3) yields y = Σk

i=1qiyi ∈W ba.
On the other hand, y is a convex combination of points in Y ab ⊂ QM

+ and thus
it has a representation with rational coefficients (because the rationals are
an algebraic field). Applying Claim 3.3 consecutively as above, we conclude
that y ∈ Y ab – a contradiction.�
The main step in the proof of Lemma 3.5: The last two claims imply
that (for all a, b ∈ A, a = b) Ŵ ab and Ŷ ba satisfy the conditions of a separating
hyperplane theorem. So there is a vector wab = 0 and a number c so that

wab · I ≥ c for every I ∈ Ŵ ab

wab · I ≤ c for every I ∈ Ŷ ba .

Moreover,

wab · I > c for every I ∈ int(Ŵ ab)

wab · I < c for every I ∈ int(Ŷ ba) .

By homogeneity (Claim 3.2), c = 0. Parts (i)-(iv) of the lemma are
restated as a claim and proved below.

Claim 3.8 For all a, b ∈ A, a = b: W ab = {I ∈ QM
+ | wab · I ≥ 0}; Y ab =

{I ∈ QM
+ | wab · I > 0}; W ba = {I ∈ QM

+ | wab · I ≤ 0}; and Y ba = {I ∈
QM

+ | wab · I < 0}.

Proof: (a) W ab ⊂ {I ∈ QM
+ | wab · I ≥ 0} follows from the separation result

and the fact that c = 0.
(b) Y ab ⊂ {I ∈ QM

+ | wab · I > 0}: assume that a �I b, and, by way of
negation, wab · I ≤ 0. Choose a J ∈ Y ba∩ int(Ŷ ba). Such a J exists by Claim
3.6. Since c = 0, J satisfies wab · J < 0. By Claim 3.4 there exists r ∈ [0, 1)
such that rI + (1 − r)J ∈ Y ab ⊂ W ab. By (i), wab · (rI + (1 − r)J) ≥ 0.
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But wab · I ≤ 0 and wab · J < 0, a contradiction. Therefore, Y ab ⊂ {I ∈
QM

+ | wab · I > 0}.
(c) Y ba ⊂ {I ∈ QM

+ | wab · I < 0}: assume that b �I a and, by way of
negation, wab · I ≥ 0. By Claim 3.6 there is a J ∈ Y ab with J ∈ int(Ŷ ab) ⊂
int(Ŵ ab). The inclusion J ∈ int(Ŵ ab) implies wab · J > 0. Using the
Archimedean axiom, there is an r ∈ [0, 1) such that rI + (1 − r)J ∈ Y ba.
The separation theorem implies that wab · (rI + (1 − r)J) ≤ 0, which is
impossible if wab · I ≥ 0 and wab · J > 0. This contradiction proves that
Y ba ⊂ {I ∈ QM

+ | wab · I < 0}.
(d) W ba ⊂ {I ∈ QM

+ | wab · I ≤ 0}: assume that b �I a, and, by way
of negation, wab · I > 0. Let J satisfy b �J a. By (c), wab · J < 0. Define
r = (wab · I)/(−wab · J) > 0. By homogeneity (Claim 3.2), b �rJ a. By
Claim 3.3, I + rJ ∈ Y ba. Hence, by (c), wab · (I + rJ) < 0. However, direct
computation yields wab · (I + rJ) = wab · I + rwab · J = 0, a contradiction. It
follows that W ba ⊂ {I ∈ QM

+ | wab · I ≤ 0}.
(e) W ab ⊃ {I ∈ QM

+ | wab · I ≥ 0}: follows from completeness and (c).

(f) Y ab ⊃ {I ∈ QM
+ | wab · I > 0}: follows from completeness and (d).

(g) Y ba ⊃ {I ∈ QM
+ | wab · I < 0}: follows from completeness and (a).

(h) W ba ⊃ {I ∈ QM
+ | wab · I ≤ 0}: follows from completeness and (b). �

Completion of the proof of the Lemma.

Part (v) of the Lemma, i.e., wab /∈ RM
+ ∪ RM

− for a = b, follows from
the facts that Y ab = ∅ and Y ba = ∅. Before proving part (vi), we prove
uniqueness.

Assume that both wab and uab satisfy (i)-(iv). In this case, uab · x ≤ 0
implies wab · x ≤ 0 for all x ∈ RM

+ . (Otherwise, there exists I ∈ QM
+ with

uab · I ≤ 0 but wab · I > 0, contradicting the fact that both wab and uab

satisfy (i)-(iv).) Similarly, uab · x ≥ 0 implies wab · x ≥ 0. Applying the
same argument for wab and uab, we conclude that {x ∈ RM

+ | wab · x = 0} =
{x ∈ RM

+ | uab · x = 0}. Moreover, since int(Ŷ ab) = ∅ and int(Ŷ ba) = ∅,
it follows that {x ∈ RM

+ | wab · x = 0} ∩ int(RM
+ ) = ∅. This implies that
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{x ∈ RM | wab · x = 0} = {x ∈ RM | uab · x = 0}, i.e., that wab and uab have
the same null set and are therefore a multiple of each other. That is, there
exists α such that uab = αwab. Since both satisfy (i)-(iv), α > 0.

Finally, we prove part (vi). Observe that both wab and −wba satisfy
(i)-(iv) (stated for the ordered pair (a, b)). By the uniqueness result, −wab =
αwba for some positive number α. At this stage we redefine the vectors
{wab}a,b∈A from the separation result as follows: for every unordered pair
{a, b} ⊂ A one of the two ordered pairs, say (b, a), is arbitrarily chosen and
then wab is rescaled such that wab = −wba. (If A is of an uncountable power,
the axiom of choice has to be used.)�

Lemma 3.9 For every three distinct eventualities, f, g, h ∈ A, and the cor-
responding vectors wfg, wgh, wfh from Lemma 3.5, there are unique α, β > 0
such that:

αwfg + βwgh = wfh .

The key argument in the proof of Lemma 3.9 is that, if wfh is not a linear
combination of wfg and wgh, one may find a vector I for which �I is cyclical.

If there are only three alternatives f, g, h ∈ A, Lemma 3.9 allows us to
complete the proof as follows: choose an arbitrary vector wfh that separates
between f and h. Then choose the multiples of wfg and of wgh defined by
the lemma. Proceed to define wf = wfh, wg = βwgh, and wh = 0. By
construction, (wf − wh) is (equal and therefore) proportional to wfh, hence
f �I h iff wf ·I ≥ wh ·I. Also, (wg−wh) is proportional to wgh and it follows
that g �I h iff wg · I ≥ wh · I. The point is, however, that, by Lemma 3.9, we
obtain the same result for the last pair: (wf − wg) = (wfh − βwgh) = αwfg

and it follows that f �I g iff wf · I ≥ wg · I.
Proof of Lemma 3.9:

First note that for every three distinct eventualities, f, g, h ∈ A, if wfg

and wgh are colinear, then for all I either f �I g ⇔ g �I h or f �I g ⇔
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h �I g. Both implications contradict diversity. Therefore any two vectors
in {wfg, wgh, wfh} are linearly independent. This immediately implies the
uniqueness claim of the lemma. Next we introduce

Claim 3.10 For every distinct f, g, h ∈ A, and every λ, µ ∈ R, if λwfg +
µwgh ≤ 0, then λ = µ = 0.

Proof: Observe that Lemma 3.5(v) implies that if one of the numbers λ,
and µ is zero, so is the other. Next, suppose, per absurdum, that λµ = 0,and
consider λwfg ≤ µwhg. If, say, λ, µ > 0, then wfg · I ≥ 0 necessitates
whg · I ≥ 0. Hence there is no I for which f �I g �I h, in contradiction to
the diversity axiom. Similarly, λ > 0 > µ precludes f �I h �I g; µ > 0 > λ

precludes g �I f �I h; and λ, µ < 0 implies that for no I ∈ QM
+ is it the case

that h �I g �I f . Hence the diversity axioms holds only if λ = µ = 0. �
We now turn to the main part of the proof. Suppose that wfg, wgh, and

whf are column vectors and consider the |M | × 3 matrix (wfg, wgh, whf) as
a 2-person 0-sum game. If its value is positive, then there is an x ∈ ∆(M)
such that wfg · x > 0, wgh · x > 0, and whf · x > 0. Hence there is an
I ∈ QM

+ ∩∆(M) that satisfies the same inequalities. This, in turn, implies
that f �I g, g �I h, and h �I f - a contradiction.

Therefore the value of the game is zero or negative. In this case there are
λ, µ, ζ ≥ 0, such that λwfg + µwgh+ ζwhf ≤ 0 and λ+ µ+ ζ = 1. The claim
above implies that if one of the numbers λ, µ and ζ is zero, so are the other
two. Thus λ, µ, ζ > 0. We therefore conclude that there are α = λ/ζ > 0
and β = µ/ζ > 0 such that

(∗) αwfg + βwgh ≤ wfh

Applying the same reasoning to the triple h, g, and f , we conclude that
there are γ, δ > 0 such that

(∗∗) γwhg + δwgf ≤ whf .
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Summation yields

(∗ ∗ ∗) (α− δ)wfg + (β − γ)wgh ≤ 0.

Claim 3.10 applied to inequality (∗ ∗ ∗) implies α = δ and β = γ. Hence
inequality (∗∗) may be rewritten as αwfg+βwgh ≤ wfh, which together with
(∗) yields the desired representation.�

Lemma 3.9 shows that, if there are more than three alternatives, the
preference ranking of every triple of alternatives can be represented as in
the theorem. The question that remains is whether these separate repre-
sentations (for different triples) can be “patched” together in a consistent
way.

Lemma 3.11 There are vectors {wab}a,b∈A,a 
=b, as in Lemma 3.5, and for
any three distinct acts, a, b, d ∈ A, the Jacobi identity wab+wbd = wad holds.

Proof : The proof is by induction, which is transfinite if A is uncountably
infinite. The main idea of the proof is the following. Assume that one has
rescaled the vectors wab for all alternatives a, b in some subset of acts A′ ⊂ A,
and one now wishes to add another act to this subset, d ∈ A′. Choose a ∈ A′

and consider the vectors wad, wbd for a, b ∈ A′. By Lemma 3.9, there are
unique positive coefficients α, β such that wab = αwad + βwdb . One would
like to show that the coefficient α does not depend on the choice of b ∈ A′.
Indeed, if it did, one would find that there are a, b, c ∈ A′ such that the vectors
wad, wbd, wcd are linearly dependent, and this contradicts the diversity axiom.

Claim 3.12 Let A′ ⊂ A, |A′| ≥ 3, d ∈ A\A′. Suppose that there are vectors
{wab}a,b∈A′,a 
=b, as in Lemma 3.5, and for any three distinct acts, a, b, e ∈ A′,
wab + wbe = wae holds. Then there are vectors {wab}a,b∈A′∪{d},a 
=b, as in
Lemma 3.5, and for any three distinct acts, a, b, e ∈ A′∪{d}, wab+wbe = wae

holds.
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Proof : Choose distinct a, b, c ∈ A′. Let wad,wbd, and wcd be the vectors
provided by Lemma 3.5 when applied to the pairs (a, d), (b, d), and (c, d),
respectively. Consider the triple {a, b, d}. By Lemma 3.9 there are unique
coefficients λ({a, d}, b), λ({b, d}, a) > 0 such that

(I) wab = λ({a, d}, b)wad + λ({b, d}, a)wdb

Applying the same reasoning to the triple {a, c, d}, we find that there are
unique coefficients λ({a, d}, c), λ({c, d}, a) > 0 such that

wac = λ({a, d}, c)wad + λ({c, d}, a)wdc.

or

(II) wca = λ({a, d}, c)wda + λ({c, d}, a)wcd.

We wish to show that λ({a, d}, b) = λ({a, d}, c). To see this, we con-
sider also the triple {b, c, d} and conclude that there are unique coefficients
λ({b, d}, c), λ({c, d}, b) > 0 such that

(III) wbc = λ({b, d}, c)wbd + λ({c, d}, b)wdc.

Since a, b, c ∈ A′, we have

wab + wbc + wca = 0

and it follows that the summation of the right-hand sides of (I), (II), and

(III) also vanishes:

[λ({a, d}, b)− λ({a, d}, c)]wad + [λ({b, d}, c)− λ({b, d}, a)]wbd+
[λ({c, d}, a)− λ({c, d}, b)]wcd = 0.
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If some of the coefficients above are not zero, the vectors {wad, wbd, wcd}
are linearly independent, and this contradicts the diversity axiom. For in-
stance, if wad is a non-negative linear combination of wbd and wcd, for no I
will it be the case that b �I c �I d �I a.

We therefore obtain λ({a, d}, b) = λ({a, d}, c) for every b, c ∈ A′\{a}.
Hence for every a ∈ A′ there exists a unique λ({a, d}) > 0 such that, for
every distinct a, b ∈ A′ wab = λ({a, d})wad + λ({b, d})wdb. Defining wad =
λ({a, d})wad completes the proof of the claim.�

The lemma is proved by an inductive application of the claim. In case A
is not countable, the induction is transfinite.�

Note that Lemma 3.11, unlike Lemma 3.9, guarantees the possibility to
rescale simultaneously all the wab-s from Lemma 3.5 such that the Jacobi
identity will hold on A.

We now complete the proof that (i) implies (ii). Choose an arbitrary act,
say, e in A. Define we = 0, and for any other alternative, a, define wa = wae,
where the wae-s are from Lemma 3.11.

Given I ∈ QM
+ and a, b ∈ A we have:

a �I b⇔ wab · I ≥ 0⇔ (wae +web) · I ≥ 0⇔
(wae − wbe) · I ≥ 0⇔ wa · I − wb · I ≥ 0⇔ wa · I ≥ wb · I

The first implication follows from Lemma 3.5(i), the second from the Jacobi
identity of Lemma 3.11, the third from Lemma 3.5(vi), and the fourth from
the definition of the wa-s. Hence, (∗∗) of the theorem has been proved.

It remains to be shown that the vectors defined above are such that
conv({wa − wb, wb − wd, wd − we}) ∩ RM

− = ∅ for every distinct a, b, d, e.
Indeed, in Lemma 3.5(v) we have shown that wa − wb /∈ RM

− . To see this,
one only uses the diversity axiom for the pair {a, b}. Lemma 3.9 has shown,
among other things, that a non-zero linear combination of wa−wb and wb−wc

cannot be in RM
− , using the diversity axiom for triples. Linear independence

of all three vectors was established in Lemma 3.11. However, the full im-
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plication of the diversity condition will be clarified by the following lemma.
Being a complete characterization, we will also use it in proving the con-
verse implication, namely, that part (ii) of the theorem implies part (i). The
proof of the lemma below relies on Lemma 3.5. It therefore holds under the
assumption that for any distinct a, b ∈ A there is an I such that a �I b.

Lemma 3.13 For every list (a, b, d, e) of distinct elements of A, there exists
I ∈ J such that

a �I b �I d �I e iff conv({wab, wbd, wde}) ∩ RM
− = ∅ .

Proof: There exists I ∈ J such that a �I b �I d �I e iff there exists I ∈ J

such that wab · I, wbd · I, wde · I > 0. This is true iff there exists a probability
vector p ∈ ∆(M) such that wab · p,wbd · p, wde · p > 0.

Suppose that wab, wbd, and wde are column vectors and consider the |M |×
3 matrix (wab, wbd, wde) as a 2-person 0-sum game. The argument above
implies that there exists I ∈ J such that a �I b �I d �I e iff the maximin
in this game is positive. This is equivalent to the minimax being positive,
which means that for every mixed strategy of player 2 there exists d ∈ M

that guarantees player 1 a positive payoff. In other words, there exists I ∈ J

such that a �I b �I d �I e iff for every convex combination of {wab, wbd, wde}
at least one entry is positive, i.e., conv({wab, wbd, wde}) ∩ RM

− = ∅. �
This completes the proof that (i) implies (ii). �

Part 2: (ii) implies (i)

It is straightforward to verify that if {�I}I∈QM
+
are representable by

{wa}a∈A as in (∗∗), they have to satisfy Axioms 1-3. To show that Axiom 4
holds, we quote Lemma 3.13 of the previous part. �
Part 3: Uniqueness

It is obvious that if ŵa = αwa+u for some scalar α > 0, a vector u ∈ RM ,
and all a ∈ A, then part (ii) of the theorem holds with the matrix ŵ replacing
w.
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Suppose that {wa}a∈A and {ŵa}a∈A both satisfy (∗∗), and we wish to
show that there are a scalar α > 0 and a vector u ∈ RM such that for all
a ∈ A, ŵa = αwa + u.

Choose a = e (a, e ∈ A, e satisfies we = 0). From the uniqueness part of
Lemma 3.5 there exists a unique α > 0 such that (ŵa− ŵe) = α(wa−we) =
αwa. Define u = ŵe.

We now wish to show that, for any b ∈ A, ŵb = αwb+u. By definition of
α and of u, this equality holds for b = e and for b = a. Assume, then, that
a = b = e. Again, from the uniqueness part of Lemma 3.5 there are unique
γ, δ > 0 such that

(ŵb − ŵa) = γ(wb − wa)

(ŵe − ŵb) = δ(we − wb) .

Summing up these two with (ŵa − ŵe) = α(wa − we), we get

0 = α(wa − we) + γ(wb − wa) + δ(we − wb)

= α(wa − we) + γ(wb − we) + γ(we − wa) + δ(we − wb).

Thus

(α− γ)(wa − we) + (γ − δ)(wb − we) = 0 .

and, since we = 0,

(α− γ)wa + (γ − δ)wb = 0 .

Since wa = (wa−we) = 0, wb = (wb−we) = 0, and (wa−we) = λ(wb−we)
if 0 = λ ∈ R, we get α = γ = δ. Plugging α = γ into (ŵb− ŵa) = γ(wb−wa)
proves that ŵb = αwb + u. �

This completes the proof of the Theorem 3.1.
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Proof of Proposition 3.2 – Insufficiency of A1-3:

We show that without the diversity axiom representability is not guar-
anteed. Let A = { a, b, d, e } and |M | = 3. Define the following vectors in
R3:

wab = (−1, 1, 0); wad = (0,−1, 1); wae = (1, 0,−1);
wbd = (2,−3, 1); wde = (1, 2,−3); wbe = (3,−1,−2) ,
and wxy = −wyx and wxx = 0 for x, y ∈ A.

For x, y ∈ A and I ∈ J define: x �I y iff wxy · I ≥ 0 .
It is easy to see that with this definition the axioms of continuity and

combination, and the completeness part of the ranking axiom hold. Only
transitivity requires a proof. This can be done by direct verification. It
suffices to check the four triples (x, y, z) where x, y, z ∈ A are distinct and in
alphabetical order. For example, since 2wab + wbd = wad, a �I b and b �I d

imply a �I d.
Suppose by way of negation that there are four vectors inR3, wa, wb, wd, we

that represent �I for all I ∈ J as in Theorem 3.1. By the uniqueness of rep-
resentations of half-spaces in R3, for every pair x, y ∈ A there is a positive
real number λxy such that λxywxy = (wx − wy). Further, λxy = λyx.

Since (wa − wb) + (wb − wd) + (wd − wa) = 0 , we have λab(−1, 1, 0) +
λbd(2,−3, 1) + λda(0, 1,−1) = 0 . So, λbd = λda, and λab = 2λbd. Similarly,
(wa−wb)+(wb−we)+(we−wa) = 0 implies λab(−1, 1, 0)+λbe(3,−1,−2)+
λea(−1, 0, 1) = 0, which in turn implies λab = λbe and λea = 2λbe. Finally,
(wa−wd)+ (wd−we)+ (we−wa) = 0 implies λad(0,−1, 1)+λde(1, 2,−3)+
λea(−1, 0, 1) = 0. Hence, λad = 2λde and λea = λde .

Combining the above equalities we get λad = 8λda, a contradiction.
Observe that in this example the diversity axiom does not hold. For

explicitness, consider the order (b, d, e, a). If for some I ∈ J, say I = (k, l,m),
b �I d and d �I e, then 2k − 3l + m > 0 and k + 2l − 3m > 0. Hence,
4k − 6l + 2m+ 3k + 6l − 9m = 7k − 7m > 0. But e �I a means m− k > 0,
a contradiction. �



Chapter 4

Conceptual Foundations

This chapter deals with the conceptual and epistemological foundations of
case-based decision theory. The discussion is most concrete when CBDT is
juxtaposed with the two other formal theories of reasoning. We begin with a
comparison of CBDT with EUT. We then proceed to compare CBDT with
rule-based systems. We argue that, on epistemological grounds, CBDT is
more naturally derived than the two other approaches.

12 CBDT and Expected Utility Theory

We devote this section to several remarks on the comparison between CBDT
and EUT, and to our views concerning their possible applications and philo-
sophical foundations. For the purposes of this discussion we focus on the
most naive, and simplest version of CBDT, namely, U -maximization.

12.1 Reduction of theories

While CBDT is probably a more natural framework in which one may model
satisficing behavior, EUT can be used to explain this behavior as well. For
instance, assume that we observe a decision maker who never uses certain acts
available to her. By ascribing to her an appropriately chosen prior beliefs,
we may describe this decision maker as an expected utility maximizer. In

99
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fact, it is probably possible to provide an EUT account of any application
in which CBDT can be used, by using a rich enough state space and an
elaborate enough prior on it. Conversely, one may also simulate an expected
utility maximizer by a U -maximizer whose memory contains a sufficiently
rich set of hypothetical cases.1 Indeed, let there be given a set of states
of the world Ω and a set of consequences R. Denote the set of acts by
A = RΩ = {a : Ω → R}. Assume that the agent has a utility function
u : R → R and a probability measure µ on an algebra of subsets Ω. (For
simplicity we may consider a finite Ω.) The corresponding case-based decision
maker would have a hypothetical case for each pair of state of the world ω

and act a:

M = {((ω, a), a, a(ω)) | ω ∈ Ω, a ∈ A}

Letting the similarity of the problem at hand to the problem (ω, a) be
µ(ω), U -maximization reduces to expected utility maximization. (Naturally,
if Ω or R are infinite one would have to extend CBDT to deal with an infinite
memory.) Furthermore, Bayes’ update of the probability measure may also
be reflected in the similarity function: a problem whose description indicates
that an event B⊂Ω has occurred should be set similar to degree zero to any
hypothetical problem (ω, a) where ω ∈ B.

Since one can mathematically embed CBDT in EUT and vice versa, it
is probably impossible to choose between the two on the basis of predicted
observable behavior.2 Each is a refutable theory given a description of a
decision problem, where its axioms set the conditions for refutation. But in
most applications there is enough freedom in the definition of states or cases,
probability or similarity, for each theory to account for the data. Moreover, a
problem that is formulated in terms of states has many potential translations

1As mentioned above, U ′′-maximization can simulate expected utility maximization
without introducing hypothetical cases explicitly.

2Matsui (2000) formally proves an equivalence result between EUT and CBDT. His
construction does not resort to hypothetical cases.



12. CBDT AND EXPECTED UTILITY THEORY 101

to the language of cases and vice versa. It is therefore hard to offer real world
phenomena that conform to one theory but that cannot be explained at all
by the other. It is even harder to imagine a clear-cut test that will select the
“correct” theory.

To a large extent, EUT and CBDT are not competing theories; they are
different conceptual frameworks, in which specific theories are formulated.3

Rather than asking which one of them is more accurate, we should ask which
one is more convenient. The two conceptual frameworks are equally pow-
erful in terms of the range of phenomena they can describe. But for each
phenomenon, they will not necessarily be equally intuitive. Furthermore, the
specific theories we develop in these conceptual frameworks need not provide
the same predictions given the same observations. For instance, assume that
a theorist observes a collection of phenomena that could be classified as sat-
isficing behavior. She can explain all the data observed whether she uses
EUT or CBDT as her conceptual framework. But the language of CBDT
will be more conducive to observing this pattern and to forming a theory of
satisficing for future predictions. Needless to say, there are large classes of
phenomena for which the language of EUT will be the more natural, which
will also generate more successful predictions. Hence we believe that there is
room for both languages and for the two conceptual frameworks that employ
these languages.

12.2 Hypothetical reasoning

Judging the cognitive plausibility of EUT and CBDT, one notes a crucial
difference between them: CBDT, as opposed to EUT, does not require the
decision maker to think in hypothetical or counterfactual terms. In EUT,
whether explicitly or implicitly, the decision maker considers states of the
world and reasons in propositions of the form “If the state of the world
were ω and I chose a, then r would result”. In U -maximization no such

3See the discussion in Section 2.
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hypothetical reasoning is assumed.

Similarly, there is a difference between EUT and CBDT in terms of the
informational requirements they entail regarding the utility function: to con-
sciously implement EUT, one needs to know the utility function u, that is,
its value for any consequence that may result from any act. For U - (or U ′-)
maximization, on the other hand, it suffices to know the u-values of those
outcomes that were actually experienced.

The reader will recall, however, that our axiomatic derivation of CBDT
involved preferences between acts given hypothetical memories. It might ap-
pear therefore that CBDT depends on hypothetical reasoning just as EUT
does. But this conclusion would be misleading. First, one has to distinguish
between elicitation of parameters by an outside observer, and application of
the theory by the decision maker herself. While elicitation of parameters such
as the decision maker’s similarity function may involve hypothetical ques-
tions, a decision maker who knows her own tastes and similarity judgments
need not engage in any hypothetical reasoning in order to apply CBDT. By
contrast, hypothetical questions are intrinsic to the application of EUT.

Second, when states of the world are not naturally given, the elicitation
of beliefs for EUT also involves inherently hypothetical questions. Classical
EUT maintains that no loss of generality is involved in assuming that the
states of the world are known, since one may always define the states of the
world to be all the functions from available acts to conceivable outcomes.
This view is theoretically very appealing, but it undermines the supposedly
behavioral foundations of Savage’s model. In such a construction, the set of
conceivable acts one obtains is much larger than the set of acts from which
the decision maker can actually choose. Specifically, let there be given a set
of acts A and a set of outcomes X. The states of the world are XA, that
is, the functions from acts to outcomes. The set of conceivable acts will be
A ≡ X(XA), that is, all functions from states of the world to outcomes. Hence
the cardinality of the set of conceivable acts A is by two orders of magnitude
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larger than that of the actual ones A. Yet, using a model such as Savage’s,
one needs to assume a (complete) preference order on A, while in principle
preferences can be observed only between elements of A. Differently put,
such a canonical construction of the states of the world gives rise to prefer-
ences that are intrinsically hypothetical and is a far cry from the behavioral
foundations of Savage’s original model.

In summary, when there is no obvious mapping from the formal state
space to real-world scenarios, both EUT and CBDT rely on hypothetical
questions or on contingency plans for elicitation of parameters. The Savage
questionnaire to elicit EUT parameters will typically involve a much larger
set of acts than the corresponding one for CBDT. Importantly, the Savage
questionnaire contains many acts that are hard to imagine. Furthermore,
when it comes to application of the theory, CBDT clearly requires less hy-
pothetical reasoning than does EUT.

12.3 Observability of data

In order to view choice behavior as observable, EUT needs to assume that
the states of the world are known to an outside observer. Correspondingly,
CBDT needs to assume that cases are observable in this sense. It might
appear that states of the world are part of the objective description of the
decision problem, whereas cases in the decision maker’s memory are entirely
subjective and cannot be directly observed. This would indeed be true if one
were to use EUT only in problems where states are naturally defined, and to
apply CBDT to all cases in a person’s memory. But, as argued above, EUT is
often applied to situations where states are not given. In these situations it is
not obvious what are the states conceived of by the decision maker. Further,
CBDT can be applied only to cases that are objectively known, say, cases
that were published in the media. With such applications, choice behavior in
the EUT model would appear to rely on unobservable data, whereas behavior
in the CBDT model would be based on sound, objective data. Thus, there
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is nothing inherent to states or to cases that makes one concept more easily
observable than the other.

12.4 The primacy of similarity

We argue that any assignment of probabilities to events, and therefore any
application of EUT, relies on subjective similarity judgments in one form
or another. Consider first the “classical” approach, according to which, for
example, equal probabilities are assigned to the sides of a die about to be
rolled. Evidently, such an assignment, justified by Laplace’s “principle of
insufficient reason”, is based on perceived similarity between any two pos-
sible outcomes. The “frequentist” approach uses empirical frequencies to
determine probabilities. It thus relies on the concept of repetition, namely,
on the idea that the same experiment is repeated over and over again. But
what counts as a repetition of the same experiment is a matter of subjective
judgment. Consider the example of medical data. Suppose that one asks
one’s doctor what is the probability of success of a certain medical proce-
dure. One would hardly be happy with empirical frequencies that pertain to
all patients who have ever undergone the procedure. Rather, one would like
to know what are the empirical frequencies in a sub-population of patients
with similar characteristics such as age and gender. But if one obtains too
specific a definition of “similar patients”, one might be left with an empty
database, since no two human bodies are absolutely identical. It follows that
there is a subjective element in the judgment of similar cases over which one
would like to compute empirical frequencies. In principle, this observation
applies to any application of the frequentist method. When using repetitions
of a toss of a coin over and over again, one implicitly assumes that the con-
ditions under which the coin is tossed are identical. But no two instances
can be completely identical. Rather, one resorts to subjective judgment to
determine what conditions are similar enough to be viewed as identical. Fi-
nally, using a subjectivist approach of assigning subjective probabilities by
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responding to de Finetti’s or Savage’s questionnaires one again has to assume
that different binary decisions can be made under identical conditions.

Indeed, very little can be said about single instances in life. One never
knows what would the history of the world have been had different events
taken place, or had different choices been made. Our ability to discuss coun-
terfactuals in an intelligent manner, as well as our ability to assign proba-
bilities to events, relies on our subjective similarity judgments. We therefore
conclude that the notion of similarity is primitive. It lies at the heart of
probability assignments, as well as at the heart of induction (as we argue in
the Chapter 7). While we do not attempt to defend the particular way in
which CBDT makes use of similarity between cases, we maintain that the
language of CBDT is more basic than the language of EUT (or the language
of rule-based systems).

12.5 Bounded rationality?

There is a temptation to view EUT as a normative theory, and CBDT – as
a descriptive theory of “bounded rationality”. We maintain, however, that
normative theories should be constrained by practicality. Theoretically, one
may always construct a state space. Further, Savage’s axioms appear very
compelling when formulated relative to such a space. But they do not give
any guidance for the selection of a prior over the state space. Worse still, in
many interesting applications the state space becomes too large for Bayesian
learning to correct a “wrong” prior. Thus it is far from clear that, in complex
problems for which past data are scarce, case-based decision making is any
less rational than expected utility maximization.

Using the definition of rationality proposed in Section 2, there may be
many situations in which decision makers who do not follow EUT would not
wish to change their behavior even after being confronted with its analysis.
Consider, for instance, the example of military intervention in Bosnia dis-
cussed in Section 4. Suppose that a decision theorist addresses President
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Clinton and suggests that he be rational and that he use expected utility
theory rather than analogies to past cases. Clinton may say, “Fine, I see
your theoretical point. But how should I form a prior over this vast state
space?” In absence of a practical way to generate such a prior, Clinton may
not be embarrassed by the fact that he bases his decision on analogies to the
Vietnam and the Gulf wars. He may well choose to follow the same decision
procedure even if he agrees that Savage’s axioms make sense. More generally,
we believe that, as long as one employs a definition of rationality that relates
to reasoning, and not only to behavior, one may find cases in which CBDT
is be more rational than is EUT.

13 CBDT and Rule-Based Systems

In this section we compare CBDT to rule-based systems from an epistemo-
logical viewpoint, and proceed to offer a conceptual derivation of CBDT.
That is, we argue for a particular epistemological position, and show that
the theory presented above is a natural application of this position for the
problem of decision making under uncertainty.

13.1 What can be known?

In philosophy and in artificial intelligence (AI) it is common to assume that
general rules of the form “For all x, P (x)” are objects of knowledge. Some
rules of this form may be considered analytic propositions, which are true
by definition. Yet, many are synthetic propositions, and represent empirical
knowledge.4 Knowledge of such a proposition is supposedly obtained by
explicit induction, that is, by generalization of particular cases that can be
viewed as instances of the proposition.

4By “synthetic” propositions we refer to non-tautological ones. While this distinction
was already rejected by Quine (1953), we still find it useful for the purposes of the present
discussion.
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Explicit induction is a natural cognitive process. It is particularly com-
mon for people to convey knowledge by formulating rules. Yet, as was already
pointed out by Hume, explicit induction does not rely on sound logical foun-
dations. Hume (1748, Section IV) writes,

“... The contrary of every matter of fact is still possible; because
it can never imply a contradiction, and is conceived by the mind
with the same facility and distinctness, as if ever so conformable
to reality. That the sun will not rise to-morrow is no less in-
telligible a proposition, and implies no more contradiction than
the affirmation, that it will rise. We should in vain, therefore,
attempt to demonstrate its falsehood.”

Hume claims that synthetic propositions are not necessarily true. Useful
rules, which have implications regarding empirical facts in the future, can-
not be known.5 Explicit induction suggests that such rules are nevertheless
objects of knowledge. Because unwarranted generalizations may be refuted,
explicit induction raises the problem of knowledge revision and update. Much
attention has been devoted to this problem in the recent literature in philos-
ophy and AI. (See Levi (1980), McDermott and Doyle (1980), Reiter (1980)
and others.) The Humean alternative to this problem will attempt to avoid
induction in the first place, rather than performing it and then dealing with
the problems it poses. Following this line of thought, knowledge representa-
tion should confine itself to those things that can indeed be known. Facts, or
cases can be known, while rules can at best be conjectured. In this approach,
knowledge revision in unnecessary. While rules can be contradicted by other
rules or by evidence, cases cannot contradict each other.

Admittedly, even cases may not be objectively known. Terms such as
“empirical knowledge” and “knowledge of a fact” prove elusive to define.

5Quine (1969a) writes, “... I do not see that we are further along today than where
Hume left us. The Humean predicament is the human predicament”.
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(See, for instance, Moser (1986) for an anthology on this subject.) Further-
more, if we take Hanson’s (1958) view that observations may be theory-laden,
we might find that the very formulation of the cases that we allegedly ob-
serve may depend on the rules that we believe to apply. If this is the case,
one cannot know or even represent cases as independent of rules. Moreover,
even if one could, such a representation would not solve the epistemological
problem, since cases cannot be known with certainty any more than rules
can.

We are sympathetic to both claims, but we tend to view them as issues of
secondary importance. We believe that the theoretical literature on episte-
mology and knowledge representation may benefit, and indeed has benefited
from drawing distinctions between theory and observations, and between the
knowledge of a case and that of a rule. As argued in Section 3, philosophy, be-
ing a social science, cannot expect models to be more than “approximations”,
“metaphors”, or “images”. Namely, we should not expect philosophical mod-
els to provide a complete and accurate description of reality. In this spirit,
we choose to employ a conceptual framework in which cases can be known,
and can be observed independently of rules or theories.

13.2 Deriving case-based decision theory

Assume, then, that cases are the object of knowledge. How should they be
described, and how are they used in decision making? In this subsection we
argue for the particular model of CBDT presented in Chapter 2.

First, we maintain that the two questions are intrinsically linked. The
choice of knowledge representation has to be guided by the use one makes of
knowledge. Focusing on our final goal, namely, to provide a theory of decision
making, we take the view that knowledge is ultimately used for action. Thus,
we should choose a way to represent cases in anticipation of the way they
will be used in decision making. Hence the formal structure of a case should
reflect its decision making aspect, if such exists.
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Assume, first, that all cases tell stories of past decision. When considering
such a case, it is natural to set our clocks to the time at which decision
occurred. At that point, the past was whatever was known to the decision
maker at the time when she was called upon to act. This may be referred
to as the decision problem. The present was the act chosen by the decision
maker. The future, at the time of decision, was what resulted from the
choice. This is referred to as the outcome. Thus, the description of a case as
a triple of decision problem, act, and outcome, is a natural way to organize
knowledge of cases for the purposes of decision making.

As mentioned in Section 6, there are cases that do not explicitly involve
any decision making, yet are relevant to future decisions. For instance, de-
ciding whether or not to go on a trip to the country, and observing clouds
in the sky, it is relevant that yesterday cloudy skies were followed by rain.
Using the notion of hypothetical cases, one may translate such a case, which
does not involve any choice, to a case that does: one might imagine that, had
one gone on a trip yesterday, when the sky was cloudy, the trip would have
been a disaster. Alternatively, one may suppress the act in the description
of the case, and think of the “problem” simply as the “circumstances” that
were followed by an outcome. Formally, one may assume that in any decision
problem there is at least one act that is available, say, “do nothing”, and thus
fit cases that involve no decisions into our framework.

Circumstances are the conditions under which an outcome has been ob-
served. Presumably, a case is relevant only to cases that have similar circum-
stances. In other words, the circumstances of a past case help us delineate its
scope of relevance. But some cases have no such qualifications. For instance,
Hume’s sun rises every morning. A case of the sun rising in the past does not
involve a set of circumstances. We may thus suppress the decision problem,
or represent it by an empty set of circumstances, and find that the resulting
case is relevant to all future cases.

It appears that only the outcome, namely, a description of what hap-
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pened, is essential for a case to be informative. The problem and the act
may or may not be present. When they are, they may be jointly viewed
as antecedents, whereas the outcome is the consequent. The distinction be-
tween the problem and the act is along the line drawn by control: those
circumstances that were not under the decision maker’s control are referred
to as the problem, and those that were – as the act.

How are the cases used in decision making, then? Again, we resort to
Hume (1748) who writes,

“In reality, all arguments from experience are founded on the sim-
ilarity which we discover among natural objects, and by which we
are induced to expect effects similar to those which we have found
to follow from such objects. ... From causes which appear similar
we expect similar effects. This is the sum of all our experimental
conclusions.”

As quoted above, Hume argued against explicit induction, by which one
formulates a general rule. Instead, he suggested that people engage in im-
plicit induction: they learn from the past regarding the future by employing
similarity judgments. The “causes” to which Hume refers are the circum-
stances we mention above, the combination of the decision problem and the
act. The “effect” corresponds to our outcomes. Hence our description of
a case may be taken as a formalization of Hume’s implicit structure, with
the further specification allowing a distinction between problems and acts.
When observing phenomena over which one has no control, this distinction is
trivial, and our notion of a problem coincides with “circumstances” and with
Hume’s “cause”. But when we focus on decision making and on the way in
which one may affect circumstances and thereby – also outcomes, dividing
circumstances into problems and acts seems natural.

Moreover, when considering a current decision problem, the distinction
between problems and acts is a quintessential of rational choice: one has to
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know what is under one’s control and what is not, which variables are decision
variables and which are given. As mentioned in Section 5, however, when
learning from the experience one has with past problems, the distinction
between problem and act might be blurred. What seems to be relevant is
the circumstances that they jointly constitute, where the question regarding
future problems would be whether one can bring about similar circumstances.

We assume that cases are objectively known. By contrast, the similarity
function is a matter of subjective judgment. Where does one derive it? How
do and how should people measure similarities? We do not offer any general
answers to these questions. But one might hope that the questions will be
better defined, and the answers easier to obtain, if we know how similarity
is used. That is, we should first ask ourselves, what would we do with a
similarity function if we had one?

A well-known procedure that employs similarities is the “nearest neigh-
bor” (NN) approach applied to classification problems. (See Fix and Hodges
(1951, 1952), Royall (1966), Cover and Hart (1967), and Devroye, Gyorfi,
and Lugosi (1996)). In these problems a “classifier” is faced with an in-
stance that belongs to one of several possible categories. Based on examples
of correct categorizations of past instances, the classifier has to guess the
classification of the present one. The simplest nearest neighbor algorithm
suggests choosing the category to which belongs the most similar instance
among the known examples. k-NN algorithms would consider the k most
similar cases, and choose the category that is most common amongst them.
This corresponds to a majority vote among the k most similar past instances,
and it is also generalized to a weighted majority vote, where more similar
known examples get a higher weight in the voting scheme.

Viewed merely as a classification system, we argue that one has to use all
cases rather than a few nearest neighbors. When only one nearest neighbor
is used, the algorithm appears rather extreme: should one most similar case
single-handed outweigh any number of slightly less similar ones? Indeed,
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this is the main theoretical reason to consider k-NN approaches. But for any
k > 1, the weight assigned to a past instance depends not on its intrinsic
similarity to the new one, but also on that of other instances. This can be
shown to result in violations of the combination axiom of Section 9: it is
possible that a k-NN system would provide an identical classification given
two disjoint databases of examples, but a different one given their union. It
seems logical that each case would be relevant for the new classification to
a degree that is independent of other cases. Thus, one may wish to use all
neighbors, near or far, in each problem. They might be weighted by their
similarities. Indeed, this would result in the prediction rule discussed in
Section 7.6

But how does one generate a decision making procedure based on these
ideas? As mentioned in Section 7, classification and prediction are decision
problems of a very special type, in which the decision maker’s choices do not
affect eventualities. Thus, by definition, each past case provides a correct
answer, namely, the eventuality that has actually occurred, and each possi-
ble decision can be evaluated in relation to this correct answer. By contrast,
in the general problem of decision making under uncertainty, acts affect out-
comes. Considering a past case, one knows what resulted from the act that
was actually chosen, but one does not know what would have resulted from
other acts that could have been chosen. Thus, there is no “correct” choice,
and there is no database of examples to learn correct or optimal choices from.
If the decision maker is satisfied with the outcome she has experienced in sim-
ilar cases in the past, she might take the same decision in the new one as well.
But what would a nearest neighbor approach prescribe if the decision maker
finds her choice in similar cases truly disappointing? She would probably

6Using all known examples may prove to be inefficient from a computational point
of view. This difficulty may be overcome by using only examples whose similarity to
the present instance is above a prespecified threshold. Such a solution is equivalent to
rounding off low similarity values to zero, and it may thus render the problem tractable.
The key point, however, is that the decision whether to use a given example depends only
on its own similarity value, and not on the relative ranking of this value.
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choose a different act than the one she has chosen. But which one? And how
does the decision maker decide whether the most similar cases involved good
or bad choices on her part?

It follows that we need to employ some notion of utility, measuring de-
sirability of outcomes. It is the interaction between utility of outcomes and
similarity of circumstances that should determine whether one would like to
repeat the choice made in similar cases. Combining this notion with the
arguments above for using all cases in each problem, one comes up with the
CBDT decision rules suggested in Chapter 2. These functions evaluate every
act for each problem. Moreover, the impact that a case has on the decision
is independent of other cases that may or may not exist in memory.

13.3 Implicit knowledge of rules

Jane and Jim are two decision makers who face the same problem: they are
thirsty, and they see an automatic vending machine for soft drinks. Jane is
a case-based decision maker, while Jim is a rule-based one. Jim knows the
rule, “if coins are put into a vending machine and a button is pushed, a can
comes out”. Jane has no knowledge of such general rules. But she has many
past cases in memory, in which she has put some coins in a machine, pushed
a button, and got a can. Based on this knowledge, Jane chooses to put some
coins in and push a button.

Jane and Jim would probably seem identical in their behavior to an out-
side observer. When Jane lets the coins drop into the appropriate slot she
has an air of self-confidence that would make an outside observer believe that
she knows what the outcome of her act is going to be. It appears as if Jane
knows the same rule as does Jim. Jane might not have such a rule explic-
itly formulated in her mind, and she might not even be able to formulate it
should we ask her about it. But she behaves as if she knew such a rule, and,
as such, exhibits implicit knowledge of this rule. This implicit knowledge is
the result of the process we refer to as “implicit induction”.
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Next assume that Jane walks confidently toward the machine, drops the
coins in the slot, pushes a button, and observes that nothing happens. No
can, no money. Jane is surprised. She evidently had some expectations
regarding the outcome of her act, and these were proven wrong. Jane now
has to reconsider her choice. She will probably find that, given the new case,
the act of dropping coins has a low U -value. Consequently, she is likely to
choose another act (the new U -maximizer), such as “try another machine”.

Suppose now that the same unfortunate occurrence happens to Jim. Jim
is not only surprised to find that the machine does not deliver. Jim has a
problem with his knowledge base. Evidently, one of the rules he believed in
is false. Is it that “if coins are put into a vending machine and a button is
pushed, a can comes out”? Or perhaps he made a mistake in identifying the
machine, and the rule that is wrong is “large colorful boxes with buttons on
them are vending machines”? Jim has to decide whether to retracts one or
more rules, or to refine it, in order to render the rules and the observations in
his knowledge base consistent. On top of this non-trivial task, Jim still has
to cope with thirst. Thus, both Jane and Jim have to do something about
their predicament, and the set of alternative choices they have is identical.
But Jim looks for another machine in a state of mental commotion, trying to
put his knowledge base in order. Jane looks for another machine with peace
of mind.

There are many databases of cases that can be thought of as correspond-
ing to certain rules. These databases can be described either by cases or
by rules, where the latter enjoy the advantage of parsimony. But there are
other databases in which rules do not provide a good description of the data.
In general, rules are but rough approximations of databases, and in many
instances they provide unsatisfactory descriptions thereof. In such instances
case-based knowledge representation is found to be less pretentious and more
flexible than rule-based representation. Specifically, case-based representa-
tion does not need to deal with inconsistencies, and it deals in a continuous
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and graceful manner with situations that are on the borderline between the
realms of applicability of different rules.

13.4 Two roles of rules

Mary tells John, “Sarah is always late”. Thus, she conveys information in
the form of a general rule. Let us distinguish between two scenarios: first,
assume that John has never met Sarah. In this scenario, the rule that Mary
relates to John is a parsimonious description of many cases that are known
to Mary but not to John. In the second scenario, John knows Sarah just
as well as does Mary. In this situation, the rule that Mary relates does not
tell John about cases that were unknown to him. Rather, it may draw his
attention to a certain regularity in the cases in his memory.7

Case-based decision makers who do not know rules might still use them
as convenient tools for the transfer of information. But rules can have two
different roles: they can summarize many cases,8 and they can point out
similarities between cases. As our example suggests, there is nothing in the
rule itself that characterizes its specific role. Rather, whether a rule conveys
cases or similarities would depend on the context: the state of knowledge of
the communicators (and their knowledge thereof). For instance, most people
learn that “objects are drawn to the ground” as an explicit rule when they
already have a very clear implicit knowledge thereof. Telling this rule to a
child of six years of age does not add much to the child’s set of cases that is
not already there. But it does help the child see the similarity between many
cases and use it for generalizations.

In both roles, rules may contradict each other. As parsimonious descrip-
tions of cases, one rule may summarize one set of cases, while another rule
describes another set. Similarly, as cues for similarity, two rules may point
out two different patterns that are simultaneously evident in the same set of

7The same statement might also insinuate that Mary is upset, and this may be the
only new information that Mary is trying to convey. We ignore this possibility here.

8Riesbeck and Schank (1989) refer to rules in this capacity as “ossified cases”.
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cases. Such rules may be thought of as proverbs. They do not purport to
be literally true. Rather, their main goal is to affect similarity judgments.
In this capacity, the fact that rules tend to contradict each other poses no
theoretical difficulty. Indeed, it is well known that proverbs are often con-
tradictory.9

To sum, a CBDT model may use rules. A rule may be a summary of
cases or a feature that is common to many cases and that can thus help
define the similarity function. In the CBDT model, however, rules are not
taken literally and they may well contradict each other, or be inconsistent
with some cases.

9The notion of a “rule” as a “proverb” also appears in Riesbeck and Schank (1989).
They distinguish among “stories”, “paradigmatic cases”, and “ossified cases”, where the
latter “look a lot like rules, because they have been abstracted from cases”. Thus, CBR
systems would also have “rules” of sorts, or “proverbs”, which may, indeed, lead to con-
tradictions.



Chapter 5

Planning

14 Representation and Evaluation of Plans

14.1 Dissection, selection, and recombination

CBDT describes a decision as a single act that directly leads to an outcome.
In many cases of interest, however, one may take an act not for its immediate
outcome, but in order to be in a position to take another act following it.
In other words, one may plan ahead. In this section we extend CBDT to a
theory of case-based planning.

The formal model of CBDT distinguishes between problems, acts, and
results. When planning is considered, the distinction between problems and
results is blurred. The outcome of today’s acts will determine the decision
problem faced tomorrow. Thus the formal model of case-based planning will
not distinguish between the two. Rather, we employ a unified concept of a
“position”, which also can be viewed as a set of circumstances. A position
might be a starting point for making a decision, that is, a problem, but also
as the end result, namely, an outcome. We will therefore endow a position
with (i) a set of available acts (in its capacity as a problem) and (ii) a utility
valuation (when considered an outcome). Part of the planning process will
be the decision, whether a certain position should be a completion of the
plan, or a starting point for additional acts.

117
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The basic premise of our model is that planning is case-based, but that
it is carried out for each problem separately. That is, as in the single-stage
version of CBDT, the decision maker has only her memory to rely on in
planning her actions. But she does not have to restrict her attention to those
plans that she has used, or learned of, in their entirety. Rather, she can use
various parts of plans she knows of and recombine them in a modular way
for the problem at hand.

Consider the following example. Mary owns an old car, and she would
like to buy a new one. She has a friend, John, who has recently sold a used
car, similar to her own, for $4,000. By the similarity of the cars and the
recency of the sale, Mary imagines that she, too, can get $4,000 for her old
car. Naturally, the new car will be more expensive. While its sticker price is
rather high, Mary heard that another acquaintance of hers, Jim, managed to
get it for $9,000. Since Mary wants to get a car of the same make and model,
she believes that she, too, can get it for the same amount. It is therefore left
to figure out how to have that amount. If Mary succeeds in selling her old
car, she will need additional $5,000. But this should not be a problem. Or
at least so says her friend Sarah. Indeed, last week Sarah just walked into
the bank and walked out with a $5,000 loan which she used for some home
renovation.

With all this information available to her, Mary devises her plan. She
will first sell her old car, which should fetch $4,000, just like John’s car did.
Then she’ll get a $5,000, as did Sarah. Finally, she should be able to get her
desired car for $9,000, as did Jim.

Figure 5.1 illustrates Mary’s plan as a graph. A node in this graph repre-
sents a position, that is, a set of circumstances that are relevant to an agent,
before or after making a decision. Arcs denote acts that may be chosen by
agents, namely, possible decisions. The arc corresponding to an act leads
from the position node at which it was taken to the position node it yielded.
The arcs on top are part of Mary’s memory, while those at the bottom are
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part of her plan.

John sold his car

John had
an old car

John had
$4,000

Sara had
$x

Sara had
$x+$5,000

Jim had
$y

Jim had
$y-$9,000
and a new car

Sarah applied
for a loan

Jim bought a
new car

apply for a loansell old car buy new car

have old car have $4,000 have $9,000 have new car

Plan

Memory

Figure 5.1: Planning as dissection, selection and recombination

Memory arcs need not be isolated. They may be parts of involved and
elaborate stories. For instance, John might have sold his car as part of his
plan to take a trip around the world. Sarah took the loan to renovate her
home, which might have been part of her plan to sell it and move elsewhere,
and so forth. The cases that are depicted above as part of memory are
therefore assumed to have been selected from entire stories stored in memory.

The point of this example is that, in order for a case-based planner to
come up with a plan such as Mary’s, she does not need to know of anyone
who has done this entire sequence of acts. It suffices that, for each act
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in each position, she knows of someone who has done a similar act in a
similar position. According to this view, the essence of planning is dissection,
selection, and recombination. Thinking involves analyzing stories, namely,
sequences of cases, and coming up with new combinations of their building
blocks. Planning is case-based in the sense that only similarity to known
cases can serve as a basis for plan construction and evaluation. But a case-
based planner is smarter than a case-based decision maker in that the former
can span a wider range of plans than those that were actually tried in the
past.

14.2 Representing uncertainty

Next consider the incorporation of uncertainty. While Mary’s plan seems
very reasonable, it might be wise on her part to consider various eventualities.
What happens if she does not succeed to sell her old car for $4,000? After
all, she can attempt to sell the car, but she cannot be sure of the outcome.
And what will happen if her loan application is denied? In short, uncertainty
is present.

The standard approach to describe decision problems of this nature em-
ploys decision trees. According to this approach, we are supposed to intro-
duce chance nodes at this point, and allow an act to lead to a chance node,
which, in turn, may lead to several position nodes. The distinction between
chance nodes and decision nodes, or between states and acts, is fundamental
to rational decision making, and may well be the most important cornerstone
of decision theory. Confounding acts and states is probably one of the worst
sins a theorist can commit, and it leads to such problems as choosing one’s
beliefs, or to entertaining beliefs over acts. Yet it seems as if we intend to
commit this sin.

The reason is that we seek to model decision situations in which decision
makers may have very poor knowledge of the potential scenarios that might
ensue from each given decision. In such problems, as in the one-stage version
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of CBDT, one has to specify how attractive is a choice about which little or
no information exists. Hence default values play an important role in our
theory. In the plan evaluation rule suggested below, each position will have
a utility index, that may be interpreted as the desirability of being in this
position indefinitely (and with certainty). Every position will be assigned a
weight, and plans will be evaluated by the weighted average of the utility
function. Thus, even if the decision maker plans to act at a given position,
the utility of this position will play a role in the evaluation of the plan.
Modeling this feature in a standard decision tree would make it cyclical: one
of the outcomes of an act will be the position at which it was taken. We find
it more convenient to suppress chance nodes and retain the acyclic nature of
the tree.

We therefore model uncertainty simply by allowing more than one arc
to leave a given position for a certain act. The plan tree we get might be
thought of as a decision tree in which a chance move was integrated with the
decision move preceding it. Thus potential cycles collapse into single nodes,
and one retains a simpler mathematical structure.

Going back to our example, what does Mary plan to do if she doesn’t
manage to sell her car for $4,000? She might reason as follows: if I get at
least $3,000, I might still proceed with the previous plan, but I will borrow
more money from the bank. It stands to reason that, if they were willing to
lend $5,000 to Sarah, they will lend me $6,000,1 and the cost of the loan will
still not be prohibitive. But if I get something between $2,000 and $3,000
for my car, I can’t really get the car I want. I will go ahead with the general
plan, and borrow up to $6,000, but I will buy a less expensive car. Finally,
if I do not get even $2,000, I will just drop the whole idea.

We illustrate this plan in Figure 5.2. To simplify the graphical exposition,
we assume that the old car can only fetch one of three prices: $2,000, $3,000,

1Mary might also know of another case, in which Carolyn got a loan of $6,000 to pay
her dentist.
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and $4,000. For simplicity we also suppress the role of memory in the graph.
However, every arc should be viewed as supported by known cases, as in
Figure 5.1.

have $4,000 have $9,000 have new car

sell car

sell car

sell car
have $3,000

get a $5,000 loan

get a $6,000 loan

get a $6,000 loan

have $9,000

have $8,000

buy new car

buy new car

have $2,000

have new car

have a newer car

buy less expensive car

Figure 5.2: Uncertainty represented by multiple arcs

Observe that three arcs correspond to the act “sell car” at the initial
position. The plan, however, deals with four contingencies: the three prices
mentioned in the graph, and prices that are lower than $2,000. If only such
offers are received, Mary will just forget about the idea of getting a new
car. This would mean staying at the initial position. One may therefore
assume that at each position and for each act there is also an arc leading
from that position to itself. For simplicity we suppress these arcs, and deal
with acyclic graphs. But when we come to evaluate a plan we will recall that
any position may also be viewed as a terminal node. Observe also that the
acts and positions are only sketchily described above. For instance, the act
“sell car” should be described as “offer to sell old car for $4,000”. Finally,
one notes that the top two branches of the plan seem to be identical from
a certain point onwards. In this example, this is only due to our imprecise
description of the positions: in the top branch Mary will be richer by $1,000,
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and this is supposed to be reflected in the description of the position. But
in other examples one should expect to find plan paths coinciding, and there
is little doubt that in actual planning it is much more efficient to consider
general directed acyclic graphs rather than trees. For the purposes of the
theoretical study of rules for plan evaluation, however, we restrict attention
to trees despite the wastefulness of this representation.

14.3 Plan evaluation

How should Mary evaluate this plan? We assume that she has a payoff as-
sessment for each position. This function should reflect, say, the desirability
of staying in the initial position with her old car, or of being stuck with no
loan and no car, and so forth. Each position will then be assigned a weight,
and the plan will be evaluated by the weighted sum of the payoffs. Thus,
the weight associated with the initial position should reflect the support that
memory lends to the prospect of not being able to sell the old car for $2,000
or more. These weights naturally depend on the plan. If, for instance, Mary
compares the plan above to another plan in which she does not attempt to
sell her car at all, the weight of the initial position in the second plan will be
higher than in the first.

We now turn to the formal model. Let P be a finite and non-empty set of
positions. We assume that it is endowed with a binary relation � ⊂ P × P ,
interpreted as “can follow”. Assume that � is a partial order, namely, that
it is transitive and irreflexive. Let A denote a finite and non-empty set of
acts. For p ∈ P , let Ap ⊂ A be the set of acts available at p. We introduce
a0 ∈ A, interpreted as “do nothing”, that is, as the “null act”, and assume
that a0 ∈ Ap for all p ∈ P . A case is a triple (p, a, q) where p, q ∈ P ; a ∈ Ap;
q � p. The decision maker is assumed to know of past cases, constituting
her memory M , and to imagine future cases that might occur. The set of
cases imagined by the decision maker is denoted by C. The decision maker
is at an initial position p0 ∈ P . The set of imagined cases C defines a graph
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on P , with arcs

Ĉ ≡ {(p, q) ∈ P 2|∃a ∈ Ap s.t. (p, a, q) ∈ C} .

Assume that this graph is a tree whose root is p0. Under this assumption,
cases in C can be identified with arcs in this graph. A plan is a function
N : P → A such that N(p) ∈ Ap ∀p. Without loss of generality we assume
that a plan does not prescribe any action at a position that is considered
terminal. That is, N(p) = a0 whenever p is �-maximal. For a plan N , let
PN ⊂ P be the positions that are consistent with N (not including the initial
position):

PN ≡
{
p ∈ P

∃k ≥ 1, ∃p1, .., pk ∈ P s.t., ∀0 < i < k − 1,
(pi,N(pi), pi+1) ∈ C, where pk = p

}

A utility function is a real-valued function defined on positions. It will
prove convenient to normalize it so that the utility of the initial position is
zero. Formally, we define a utility function to be u : P\{p0} → R.

A support function S : C → R+ assigns a weight to each arc, such that,
for every (p′, a′, p) ∈ C and every a ∈ Ap,∑

(p,a,q)∈C
S((p, a, q)) ≤ S((p′, a′, p))

Note that only one arc (p′, a′, p) leads to any position p. The value
S((p, a, q)) is interpreted as the support memory lends to the future case
(p, a, q) if act a is to be taken at position p. (In a Bayesian interpretation,
S((p, a, q)) would be the probability of the case (p, a, q) conditioning on a
plan that prescribes, among other choices, to take a at p. Given the plan,
however, S reflects ex-ante probabilities, i.e., S((p, a, q)) is not conditional
on arriving at p.)
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A support function S and a plan N induce a weight function wN
S : PN →

R+ defined by

wN
S (p) = S((p′, N(p′), p))−

∑
(p,N(p),q)∈C

S((p,N(p), q)) (∗)

where (p′, N(p′), p) is the unique arc leading to p, and p′ ∈ PN∪{p0}. Observe
that, if N,N ′ are two plans and p ∈ PN ∩ PN ′, it follows that

wN
S (p) +

∑
q∈PN ,q�p

wN
S (q) = wN ′

S (p) +
∑

q∈PN ′ ,q�p

wN ′
S (q) = S((p′, N(p′), p)) .

That is, if two plans prescribe the choice of acts that may lead to a given
position p, then these two plans induce the same total weight on the sub-tree
emanating from p. The plans may, however, differ in the weights they induce
for specific positions in this sub-tree.

Conversely, every collection of weight functions {wN : PN → R+}N that
satisfies

wN (p) +
∑

q∈PN ,q�p

wN(q) = wN ′
(p) +

∑
q∈PN ′ ,q�p

wN ′
(q) (•)

whenever p ∈ PN ∩ PN ′ , defines a unique support function S satisfying (∗)
by

S((p′, N(p′), p)) = wN (p) +
∑

q∈PN ,q�p

wN(q) . (∗∗)

We assume (and later axiomatize) the following planning rule: given
memory M and an initial position p0 ∈ P , the planner may be ascribed
a support function S ≡ SM,p0 , such that, given any payoff function u, she
ranks plans according to

U(N) = UM,p0,u(N) =
∑
p∈PN

wN
S (p)u(p) .
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In this formulation, as well as in the axiomatization that follows, M is an
abstract index. Thus it can be a set of cases, but also a set of rules, a data
base of empirical frequencies, or anything else. If M is indeed a collection of
cases, one may further postulate that the support function is derived from
similarity to past cases in an additive manner:

S((p, a, q)) =
∑

(p′,a′,q′)∈M
s((p, a, q), (p′, a′, q′))

for some case similarity function s. Moreover, one may derive the additive
formula axiomatically in an analogous way to our results from Chapter 3.
In this case, the formula above is a straightforward extension of CBDT in a
single-stage problem.

Observe that uncertainty is reflected in our model by the fact that a
position and an act may evolve into several other positions. But the model
also lends itself easily to situations of ignorance, namely, situations where the
decision maker has but a vague concept of the possible eventualities. This
is captured by the fact that the plan evaluation scheme may assign some
weight to the payoff at a position even if one plans to act in it. In this sense,
a position is taken to be the default for whatever may happen when an act is
taken at it. The default value at the initial position is normalized to zero, and
is therefore absent from the formula. But the payoff at any other position
appears in the formula with a corresponding weight. The entire formula may
be viewed as a linear function of default values.

14.4 Discussion

In what ways do our plans differ from Bayesian decision trees? Superficial
differences are the following: (i) Bayesian decision trees distinguish between
decision nodes and chance nodes, whereas plan trees allow both the planner
and so-called Nature to act at every position; and (ii) In a Bayesian decision
tree payoff is only assessed at the terminal nodes, whereas in a plan tree it
is assessed at every position.
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These differences are mostly notational. One may embed our model in
a Bayesian decision tree: one only has to introduce a “chance node” after
every act at every position, and allow each position to lead immediately
to a corresponding terminal node whose ex-ante probability is that posi-
tion’s weight. Despite this formal equivalence, we believe that plan trees are
closer to the way people conceive of plans, and may therefore be more useful
than Bayesian decision trees for descriptive and normative purposes alike. In
particular, plan trees are better suited to describe the dynamic process by
which a plan evolves. Typically, a decision maker is only aware of certain
cases when she plans. As her plan is being executed, she might think further
ahead, be reminded of additional cases, or learn new information. The way
people think about plans does not admit a clear, static distinction between
decision nodes and terminal nodes. Rather, this distinction is dynamic: a
set of circumstances that was thought of as terminal yesterday might be the
beginning of a new story today.

Is it rational to develop plans in a piecewise manner, rather than thinking
them through? Indeed, our model describes people who think ahead several
steps, and then treat positions as if they were terminal nodes. But this is
often the only way possible. In complex environments, such as a game of
chess, one cannot even imagine the entire Bayesian decision tree. Given this
constraint, one may not be embarrassed to learn that one has not charted
the entire tree. In other words, partial planning may well pass our rationality
test of Section 2 on grounds of feasibility.

Planning trees, where weights are assigned to positions, can also be inter-
preted temporally: consider first a planning tree whose positions are linearly
ordered. One may think of wN

S (p) as the time the planner will be in posi-
tion p (rather than the probability that the terminal outcome be p). More
generally, wN

S (p) may be the (discounted) expected time of being at p. Our
notion of a “position” is also closely related to the notion of a “state” in
the literature on Markov chains and dynamic programming, as well as in
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the planning literature. Indeed, dynamic programming models also do not
distinguish between a “decision node” and an “outcome”. Planning trees,
however, are acyclic and do not assume any stationarity.

15 Axiomatic Derivation

15.1 Set-up

We devote this section to an axiomatic derivation of the plan evaluation rule
presented in Section 14. We assume that, given every payoff function u, there
is a preference relation �u on plans. By referring to {�u}u, we implicitly
assume that planners can meaningfully express preferences between pairs of
plans given various payoff functions, and not only given their actual function.
Thus, the planner is assumed to be able to say, “I plan to sell my house and
buy a condo; but if taxes were lower, I would plan not to sell the house”.

This set-up deviates from the revealed preference paradigm. First, we
expect planners to express preferences on what they will do if a certain posi-
tion is reached in the future. Then we also require that they condition these
preferences on new, imagined payoffs. We believe that such a deviation from
the revealed preferences paradigm is inherent to the formal study of plan-
ning. Plans often are not carried out for a variety of reasons. In particular, a
planner may find, upon reaching a position, new information that makes her
choose a different path than she has previously planned to take. Therefore,
one cannot restrict oneself to the planner’s actual choices and has to resort
to cognitive and introspective data.

To simplify notation, we will assume that preferences are defined on payoff
vectors rather than on plans. That is, given a payoff function u and a plan
N , we identify N with the restriction of u to PN , which is an element of
FN ≡ RPN . Formally, we impose the following axiom: for every two plans
N, Ñ , and every two payoff functions u, u′, if

u(p) = u′(p) for all p ∈ PN ∪ PÑ ,
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then

N �u Ñ ⇔ N �u′ Ñ .

Denote F =
⋃

N FN and define �′⊂ F×F as follows: for x ∈ FN , y ∈ FÑ ,

N = Ñ , x �′ y if there exists a (by the axiom above, for all) payoff function
u such that

u(p) = x(p) ∀p ∈ PN , u(p) = y(p) ∀p ∈ PÑ ,

and

N �u Ñ.

Thus �′ ranks any two vectors x ∈ FN , y ∈ FÑ , N = Ñ such that

x(p) = y(p) for all p ∈ PN ∩ PÑ .

We will assume without loss of generality that N = Ñ implies that
PN\PÑ = ∅. (In particular, PN = ∅ for all N .) That is, we assume that
the set of imagined cases is rich enough so that each of two distinct plans
reaches positions that the other does not. This assumption, however, is only
made for notational convenience. Many interesting applications will involve
situations in which the decision maker does not have any idea what would
be the outcome of a given act in a given position. Rather than dealing with
absence of arcs, we model these situations by arcs (imagined cases) with zero
support.

We say that P̂ ⊂ P is (�-) null if for all x, x′, y, y′ ∈ F such that

x(p) = x′(p); y(p) = y′(p) for all p ∈ P̂ ,

we have x � y ⇔ x′ � y′.
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15.2 Axioms and result

In the following we start with a relation �′ that ranks utility vectors cor-
responding to different plans. We will define � to be its transitive closure.
Thus � may compare two vectors x, y ∈ FN that describe the utility derived
from the same plan N , if there exists another vector z ∈ FÑ for Ñ = N that
may indirectly compare x and y.

Let � ⊂F × F satisfy the following axioms:

A1 Order: � is reflexive and transitive, and whenever x ∈ FN , y ∈ FÑ ,
N = Ñ , x � y ⇔ x �′ y.

We define !,�,≺,≈ as usual. Implicit in the following axioms is the
assumption that a utility function is given, and that the vectors x, y ∈ FN

are already measured on a utility scale.

A2 Continuity and Comparability: For every two distinct plans N, Ñ ,
and every x ∈ FN , the sets {y ∈ FÑ |y � x} and {y ∈ FÑ |y ≺ x} are open in
FÑ . If PÑ\PN is non-null, they are also non-empty.

A3 Monotonicity: For every two plans N, Ñ , and every x, z ∈ FN , y ∈ FÑ ,
if x(p) ≥ z(p) ∀p ∈ PN , then z � y implies x � y and y � x implies y � z.

A4 Separability: For every two plansN, Ñ , and every x, z ∈ FN , y, w ∈ FÑ ,
if x ≈ w then x � y iff x+ z � y + w.

A5 Consequentialism: For every two plans N, Ñ , and every x ∈ FN ,
y ∈ FÑ , if for every p ∈ PN ∩ PÑ for which N(p) = Ñ(p) it is true that
x(q) = y(q̃) for all q � p, q ∈ PN and all q̃ � p, q ∈ PÑ , as well as x(p) = y(p),
then x ≈ y.

A6 Non-Triviality: There exist two plans N, Ñ such that PN and PÑ are
non-null, and N(p0) = Ñ(p0).

Axioms A1, A2, A3, A4, and A6 are rather standard. (See Gilboa and
Schmeidler (1995).) A5 is a new axiom that captures the intuition that plans
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only matter to the extent that they affect outcomes. If two plans are bound
to yield the same utility, they are bound to be equivalent.

Theorem 5.1 Assume that � satisfies A6. Then the following are equiva-
lent:

(i) � satisfies A1-A5;

(ii) There is a support function S such that, for every two plans N, Ñ , and

every x ∈ FN , y ∈ FÑ ,

x � y iff U(x) ≥ U(y)

where, for x ∈ FN

U(x) =
∑
p∈PN

wN
S (p)x(p) .

Furthermore, in this case S (hence also wN
S ) is unique up to multipli-

cation by a positive number.

Note that wN
S is uniquely derived from S by (∗) of Subsection 14.3.

15.3 Proof

That (ii) implies (i) is obvious. We prove the converse. Consider an act
a ∈ Ap0

. Let [Na] be the set of plans that prescribe act a at position p0. We
claim that PN is null for some N ∈ [Na] iff it is null for all N ∈ [Na]. Indeed,
assume that PN is null for N ∈ [Na] and consider N ′ ∈ [Na]. By A6 there
exists a plan Ñ such that PÑ is non-null and Ñ ∈ [Na]. By A2 there exists
y ∈ FÑ such that y ≈ x for all x ∈ FN . Consider an arbitrary z ∈ FN ′ .
Let z′, z′′ ∈ FN ′ be constant vectors that equal the minimal and maximal
value of z, respectively, throughout FN ′. By A5, z′, z′′ are equivalent to the
corresponding constant vectors in FN and hence also to y. A3 implies that
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z ≈ y. This being true for all z ∈ FN ′, we conclude that PN ′ is null. We can
therefore distinguish between sets [Na] where PN is null for all N ∈ [Na], and
sets [Na] where PN is null for no N ∈ [Na]. We refer to the former as sets of
null plans. Observe that, by A5, all null plans are equivalent.

Next choose a plan Na ∈ [Na] for each set that consists of non-null plans.
By A6 there are at least two such sets. Note that FNa ∩ FNb

= ∅ for a = b.
Restricting attention to F̂ =

⋃
Na

FNa, we find that � satisfies all the ax-
ioms of the representation theorem of Appendix B in Gilboa and Schmei-
dler (1995). It follows that there exist non-negative and non-zero vectors of
weights sNa on PNa such that, for all x, y ∈ F̂ , x � y iff U(x) ≥ U(y), where,
for x ∈ FNa, U(x) =

∑
p∈PNa

wNa(p)x(p). Further, the vectors are unique up
to multiplication by a positive number.

Consider a plan N ′
a ∈ [Na] where N ′

a = Na. Applying the same logic to
the collection {N ′

a} ∪ {Nb}b
=a we obtain representation by weights {wN ′
a} ∪

{ŵNb}b 
=a for all vectors in F̂ ′ =
⋃

b
=a FNb
∪FN ′

a
. By uniqueness, there exists

a λ > 0 such that λŵNb = wNb for b = a. By transitivity and A6, {λwN ′
a} ∪

{wNb} induces a representation on all ⋃b FNb
∪ FN ′

a
. Continuing inductively,

we obtain that for every non-null plan N there exists a non-negative and
non-zero vector of weights wN on PN such that, for all x, y ∈

⋃
N non−null FN ,

x � y iff U(x) ≥ U(y), where, for x ∈ FN , U(x) =
∑

p∈PN
wN (p)x(p).

Further, the vectors are unique up to multiplication by a positive number.

We wish to show that for every pair of non-null plans, N,N ′, wN and wN ′

satisfy

wN(p) +
∑

q∈PN ,q�p

wN (q) = wN ′
(p) +

∑
q∈PN′ ,q�p

wN ′
(q) (•)

for every p ∈ PN ∩ PN ′. Consider p ∈ PN ∩ PN ′, and the following utility
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function u:

u(p) = 1;

u(q) = 1 whenever q follows p inN or in N ′ ;

u(q) = 0 otherwise.

Let x ∈ FN and y ∈ FN ′ be the vectors induced by u. By A5, x ≈ y. Hence
(•) follows.

Finally, we extend the representation to null plans. Define w(p) = 0 for
all p ∈ PN where N is null. We have already established that all x ∈ FN are
equivalent to a certain y ∈ FÑ where Ñ is non-null. Since x ≈ 2x we can use
A4 to conclude that y ≈ 2y, and U(y) = 0 follows. This completes the proof
of Theorem 5.1.
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Chapter 6

Repeated Choice

16 Cumulative Utility Maximization

16.1 Memory-dependent preferences

The rule of U-maximization was suggested in Section 4 as a way to cope
with uncertainty. But it can also be differently interpreted: rather than
viewing the aggregation of past experiences in U as providing information
regarding uncertain payoffs, it can be viewed as a dynamic model of changing
preferences. To highlight this aspect of U-maximization, let us focus on a
case with no uncertainty, and where the decision maker encounters a sequence
of problems that are, according to her subjective judgment, identical. That
is, for each act i ∈ A there exists a unique outcome ri ∈ R such that only
cases of the form (·, i, ri) may appear in the decision maker’s memory with
i as their second component. Further, the similarity function between any
two problems is constant, say, 1.

Examples of such decisions abound. Every day Mary has to decide where
to go for lunch. The problems she is facing on different days are basically
identical. Moreover, every choice she makes would lead to a payoff that may
be assumed known.1 John decides every morning whether he should drive to

1One may assume that the payoff is uncertain, but is drawn from the same distribution
every time an act is chosen. As mentioned below, our results extend to the stochastic

135



136 CHAPTER 6. REPEATED CHOICE

work, use public transportation, or walk. In short, many everyday decisions
are of this type. Our goal is to analyze the pattern of choices that would
result from U-maximization in these problems.

The general model of U-maximization reduces to a simple process gov-
erned by few parameters: the decision maker has a cumulative index of sat-
isfaction for each possible act i, denoted Ui, which depends on past choices.
In every period, a maximizer of the satisfaction index is chosen. As a re-
sult of experiencing the outcome associated with the act, say, consuming the
product, the satisfaction index of the act is updated. In the simplest version
analyzed here, the update is additive, deterministic, and constant. That is,
a number ui is added to Ui whenever i is chosen (and Ui is unaffected by a
choice of j = i). If it is positive, the alternative appears to be better the more
it has been chosen. If negative, the alternative is less desirable as a result of
experiencing it. The decision maker is implicitly assumed to be aware of Ui,
but not necessarily of ui.

Consider a decision maker for whom all alternatives appear equally desir-
able at the outset. As observed in Section 4, if there is at least one alternative
i whose payoff exceeds the aspiration level, namely, ui > 0 , then, as soon
as one such alternative is chosen, it will be chosen forever, and the decision
maker may be said to be satisficed in the sense of Simon (1957). If, however,
all alternatives have negative ui’s, the decision maker will never be satis-
ficed. A decision maker with a low aspiration level, namely, one for which
ui > 0, would tend to like an alternative more, the more it was chosen in the
past, thus explaining habit-formation. By contrast, a high aspiration level
implies that the decision maker would appear to be bored with alternatives
she recently experienced, and would seek change.

Suppose that Mary can choose between a Pizza place and a Chinese
restaurant for lunch. Let us assume that uPizza = −1 and that uChinese = −2,
and that the initial U value is zero for both alternatives. It is easy to see

version of the model.
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that, asymptotically, Mary will choose the Pizza place twice as frequently as
she will the Chinese restaurant. Because she has a relatively high aspiration
level, she does not stick to one lunch option forever. Moreover, the u-values of
the alternatives determine the limit relative frequencies of choice: the latter
are inversely proportional to the former. We later prove that this result holds
in general.

One may interpret the vector of relative frequencies of choices as a bundle
in neoclassical consumer theory, that is, as a vector of quantities of products.
Viewed thus, if the aspiration level of the individual is low, she is easily
satisficed and will select a corner point as an aggregate choice, as if she
had a convex neoclassical utility function over the space of bundles. This
corner point may not be optimal in the usual sense, namely, it may not
be a maximizer of ui. If, however, the aspiration level is relatively high,
the consumer will keep switching among the various products. The relative
frequencies with which the various products are consumed will converge to a
limit, which will be an interior point, as if the individual were maximizing a
concave neoclassical utility over the bundle space.

According to this interpretation, tastes, and thus decisions, are intrinsi-
cally context- or history-dependent. The decision maker does not attempt to
maximize the function u. This function is only the rate by which U changes
as result of experience. u may be interpreted as an index of instantaneous
utility. But it is U , the cumulative satisfaction index, that the decision maker
maximizes. Thus, U is the utility function. Whereas it changes as a function
of history, it does so at a constant rate, given by u.

16.2 Related literature

Before presenting the formal model, we mention some related literature. Our
discussion of small, repeated decisions may bring to mind Herrnstein and
Prelec’s “melioration theory”. (See Herrnstein and Prelec (1991).) Indeed,
the small decisions we study are very close to what they call “distributed
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choice”. Yet, our focus is different from theirs. Melioration theory deals
primarily with choices that change intrinsically as a result of experience.
In examples such as addictive behavior, or other problems relating to self-
discipline (regarding work, savings, and the like), the payoff associated with
an act depends on how often it has been chosen in the past. By contrast, we
assume that the instantaneous utility of act i, ui, is constant. Our decision
maker may not wish to have the same meal every day; but there is no change
in the pleasure derived from it as in the case of addiction, nor are there
any long-term effects as in the case of savings. Further, melioration theory
compares actual behavior to an optimum, defined by the highest average
quality that can be obtained if inter-period interaction is taken into account.
We study more commonplace phenomena, in which no such interaction exists.
Correspondingly, in our model there is no well defined optimum, and, at least
when high aspiration levels are involved, we do not deal with patently sub-
optimal choice. Finally, the decision rules in the two models differ. Whereas
melioration theory uses average, ours employs sums.

Our model is similar to the learning model of Bush and Mosteller (1955)
in that, in every period, the outcome of the most recent choice is compared
to an aspiration level, and the choice is reinforced if (and only if) its out-
come exceeds the aspiration level. However, there are two main differences
between these models. First, Bush and Mosteller are motivated by learning;
thus, in their model past experiences serve mostly as sources of information,
rather than determinants of preferences. Second, their model is inherently
random, where a decision maker’s history is summarized by a probability
vector, describing the probability of each choice. By contrast, in our model
the choice is deterministic. Stochastic choice is useful to summarize hidden
variables. But our goal here is to expose the decision process, and we focus
on the deterministic implications of our basic assumptions.

Gilboa and Pazgal (1996, 2000) extend the present model by assuming
that the rate of change of Ui, namely, ui, is a random variable, whose dis-
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tribution depends only on the act i. They also conduct an empirical study
of the random payoff model. Finally, the basic model suggested here was
applied to electoral competition in Aragones (1997). She found that change-
seeking behavior on the part of the voters gives rise to ideological behavior
of the competing parties.

16.3 Model and results

Let the set of alternatives be A = {1, 2, . . . , n}. For i ∈ A, denote the rate of
the change of the utility function of i by ui. Since the interesting case will be
that of negative rates of change, it will prove convenient to define ai = −ui.
For a sequence x ∈ A∞, define the number of appearances of choice i ∈ A in
x up to stage t ≥ 0 to be

F (x, i, t) = #{1 ≤ j ≤ t|x(j) = i} ,

and let U(x, i, t) denote the cumulative satisfaction index of alternative i ∈ A

at that stage:

U(x, i, t) = F (x, i, t)ui .

For a vector u = (u1, . . . , un) let S(u) denote the set of all sequences of
choices that are stagewise U -maximizing. That is,

S(u) = {x ∈ A∞| for all t ≥ 1, x(t) ∈ argmax
i∈A

U(x, i, t− 1)} .

Of special interest will be the relative frequencies of the alternatives, denoted

f(x, i, t) =
F (x, i, t)

t

and their limit

f(x, i) ≡ lim
t→∞

f(x, i, t) .
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(We will use this notation even if the limit is not guaranteed to exist.) Omis-
sion of the index of the alternative will be understood to refer to the corre-
sponding vector:

f(x, t) = (f(x, 1, t), . . . , f(x, n, t))

f(x) = (f(x, 1), . . . , f(x, n)) .

Finally, denote

Y = {u = (u1, . . . , un) | ∀i ui = 0}
V = {u = (u1, . . . , un) | ∀i ui < 0} .

We can now formulate our first result:

Proposition 6.1 Assume that u ∈ Y . Then:

(i) for all x ∈ S(u), f(x) exists;

(ii) There exists x ∈ S(u) for which f(x) is one of the extreme points of
the (n−1)-dimensional simplex iff this is the case for all x ∈ S(u), and
this holds iff ui > 0 for some i ∈ A;

(iii) f(x) is an interior point of the (n − 1)-dimensional simplex iff ui < 0
for all i ∈ A;

(iv) if u ∈ V (i.e., ai > 0) for all i ∈ A, then for all x ∈ S(u) f(x) is given
by

f(x, i) =

∏
j 
=i aj∑

k∈A
∏

j 
=k aj
;

(v) for every interior point y in the (n−1)-dimensional simplex there exists
a vector u ∈ V , unique up to a multiplicative scalar, such that f(x) = y

for all x ∈ S(u).
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Remark: In the case that some utility values do vanish (u /∈ Y ), this result
does not hold. Consider, for instance, the extreme case where ui = 0 for all
i ∈ A. Then we get S(u) = A∞ and, in particular, f(x) need not exist for
every x ∈ S(u). Furthermore, one may get the entire (n − 1)-dimensional
simplex as the range of f(x) when it is well defined.

When we aggregate choices over time, relative frequencies can be inter-
preted as quantities defining a bundle of products in the language of con-
sumer theory. With this interpretation in mind, this result shows that low
aspiration levels (positive ui’s) are related to extreme solutions of the con-
sumer’s aggregate choice problem, whereas high aspiration levels (negative
ui’s) give rise to interior solutions. Similarly, high and low aspiration levels
may explain change seeking behavior and habit formation, respectively.

Proposition 6.1 also shows that the interpretation of the instantaneous
utility function u as “inverse frequency” holds in general: assume that all
utility indices are negative, and consider two alternatives i, j ∈ A. The limit
relative frequencies with which they will be chosen (for all x ∈ S(u)) are in
inverse proportion to their utility levels:

f(x, i)
f(x, j)

=
aj
ai
=

uj

ui

.

For example, if n = 3, u1 = −1, u2 = −2, and u3 = −3, alternative 1 will
be chosen twice as frequently as alternative 2, and 3 times as frequently as
alternative 3. It follows that the relative frequencies of choice will converge
to (6/11, 3/11, 2/11). Thus the instantaneous utility of an alternative, ui,
has a different meaning than the utility value in standard choice theory, or
in neoclassical consumer theory. On the one hand, the fact that alternative
2 has a lower utility than alternative 1 does not imply that the former will
never be chosen. It will, however, be chosen less often than its substitute.
On the other hand, the utility indices do not merely rank the alternatives;
they also provide the frequency ratios, and are therefore cardinal.

Proposition 6.1 may be viewed as an axiomatization of the instantaneous
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utility function u. Explicitly, for any choice sequence x ∈ A∞ the following
two statements are equivalent: (i) there is a vector u ∈ V such that x ∈ S(u);
(ii) f(x) exists, it is strictly positive, and x ∈ S(u) for any u ∈ V satisfying
uifi = ujfj for all i, j ∈ A. Thus the function u can be derived from observed
choice, and it is unique up to a multiplicative scalar.

We also find that any point in the interior of the simplex may be the
aggregate choice of a cumulative utility decision maker for an appropriately
chosen instantaneous utility function. While it is comforting to know that
the theory is general enough in this sense, one may worry about its meaning-
fulness. Are there any choices it precludes? The following result shows that
in an appropriately defined sense, very few sequences are compatible with it.

Proposition 6.2 Assume that u ∈ Y . Then:

(i) if ui > 0 for some i ∈ A, then S(u) is finite;

(ii) if ui < 0 (i.e., ai > 0) for all i ∈ A, then

|S(u)| =
{
n! if ai/aj is irrational for all i, j ∈ A

ℵ otherwise

(iii) denote

S− =
⋃
u∈V

S(u)

S+ =
⋃

u∈Y \V
S(u) .

Let p = (pi)i∈A be some probability vector on A, and let λp be the in-
duced product measure on A∞(endowed with the product σ-field). Then
S− is an uncountable subset of a λp-null set, whereas S+ is finite, and
if p is not degenerate, S+ is a λp-null set.
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Thus there are uncountably many sequences of choices that are U -maximizing.
Yet part (iii) of the proposition states that, overall, the set S ≡ S− ∪ S+

is “small” by any of the reasonable measures defined above. Furthermore,
it is easy to verify that finitely many observed choices may often suffice to
conclude that they cannot be a prefix of any sequence in S.

To sum, the repeated choice theory presented here is non-vacuous. On the
contrary, it is too easily refutable. However, Gilboa and Pazgal (1996) show
that, if the ui’s as well as the initial values U(·, i.0) are random variables,
one may choose their distributions so that every finite sequence of choices
would have a positive probability. Yet, they also show that, with probability
1, there will be limit frequencies of choice as in the deterministic case, where
the limit frequencies are inversely proportional to the expected instantaneous
payoffs.

16.4 Comments

Fading Memory In this section we assume that the similarity function is
constant. However, there are other ways in which one might model the fact
that a problem is repeatedly encountered. For instance, the weight assigned
to past cases may decrease exponentially with time, reflecting the fact that
past cases may be forgotten, that they are deemed less relevant, or that their
impact on future choices is diminishing with time. Incidentally, such a model
does not require that the decision maker remember more than one number
per alternative. (See Aragones (1997).)

The Interpretation of Aspirations The notion of “aspiration level” in this
model need not be taken literally. Consider, for instance, the choice of a
piece of music to listen to. A decision maker may listen to “Don Giovanni”
three times as often as to “Turandot”. In our model, the former would
have a utility of −1, while the latter – of −3. Yet it would be wrong, if not
blasphemous, to suggest that these works do not achieve the decision maker’s
aspiration level. In this case, zero utility level may better be interpreted as



144 CHAPTER 6. REPEATED CHOICE

a “bliss point”. Thus, negative utility values need not conjure up sour faces
in one’s mind. They may also describe perfectly content decision makers
who merrily and gingerly alternate choices to keep their lives interesting.
On the other hand, a satisficed decision maker need not be happy in any
intuitive sense. For instance, consider a consumer who often suffers from
acute headaches. If she is loyal to a certain brand of medication, she is
satisficed according to our model. Yet she is by no means happy.2

16.5 Proofs

Proof of Proposition 6.1: First assume that ui > 0 for some i ∈ A. After
at most (n− 1) choices of alternatives with negative utility, one with ui > 0
is chosen. From that point on, that alternative is the unique U -maximizer
and is chosen for ever. Hence in this case f(x) exists for all x ∈ S(u), and
it is one of the extreme points of the (n − 1)-dimensional simplex. Note,
however, that it need not be the same for all such x’s.

Let us now consider the case of ui < 0 (i.e., ai > 0) for all i ∈ A. At
stage t ≥ 0 alternative i is weakly preferred to j iff

U(x, i, t) = F (x, i, t)ui ≥ F (x, j, t)uj = U(x, j, t)

or, equivalently, F (x, i, t)ai ≤ F (x, j, t)aj .
Hence for every stage t ≥ 0, regardless whether i is to be chosen at it or

not, we have

F (x, i, t) ≤ aj
ai
F (x, j, t) + 1 .

Thus, for t ≥ 1 we obtain

f(x, i, t) ≤ aj
ai
f(x, j, t) +

1
t
.

2Eva Gilboa-Schechtman has pointed out to us that the interpretation of zero utility
level is likely to differ between pleasure seeking activities (such as going to a concert) and
pain avoidance activities (such as taking a medication).
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For t ≥ n none of the frequencies vanishes, and it follows that

∃ lim
t→∞

f(x, i, t)
f(x, j, t)

=
aj
ai

.

With finitely many alternatives, this also implies that f(x) exists. Fur-
thermore, we find that it is independent of x. Finally, it follows that

f(x, i) =

∏
j 
=i aj∑

k∈A
∏

j 
=k aj
.

To sum, we have proven that f(x) exists in both cases, hence (i) is proven.
If there is an alternative i with ui > 0, only extreme points could be limit
frequencies; on the other hand, if ui < 0 for all i ∈ A, only interior points can
be chosen. Thus the existence of one x ∈ S(u) for which f(x) is an extreme
point implies that for some alternative i, ui > 0, hence for all x ∈ S(u) f(x)
is an extreme point of the simplex. This concludes the proof of (ii). Claims
(iii) and (iv) were explicitly proven above.

We are left with claim (v), i.e., that for every interior point y in the (n−
1)-dimensional simplex there exist negative utility indices (ui)i∈A such that
f(x) = y for all x ∈ S(u), and that these are unique up to a multiplicative
scalar. Let there be given such a point y = (y1, . . . , yn). Define ui = −ai =
−∏

j 
=i yj . For all i, j ∈ A, yi/yj = aj/ai. It follows that f(x) = y for all
x ∈ S(u). Furthermore, this equation shows that the utility (ui)i∈A is unique
up to multiplication by a positive scalar. This completes the proof. �
Proof of Proposition 6.2: In light of the preceding analysis, (i) is im-
mediate. Consider the case ui < 0 for all i ∈ A. If ai/aj is irrational for
all i, j ∈ A, after the first n stages, where each alternative is chosen once,
U -maximization determines the choice uniquely. Thus there are n! sequences
in S(u). If, however, ai/aj is rational for some i, j ∈ A, say ai/aj = l/k for
some integers l, k ≥ 1, after exactly l choices of alternative j and k choices
of i, there will come a stage where both i and j are among the maximizers
of U . The choice at this stage is arbitrary, and therefore there are at least
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two different continuations that are consistent with U-maximization. Since
for every choice made at this point there will be a similar one after 2l choices
of alternative j and 2k choices of i, there are at least 4 such continuations at
this stage. By similar reasoning, there are at least

|{0, 1}N | = ℵ

sequences in S(u). Since ℵ is also an upper bound on |S(u)|, (ii) is estab-
lished.

We need to show (iii). First consider S−. Denote

Sp = {x ∈ A∞|∃f(x) = p} .

By the strong law of large numbers, λp(Sp) = 1. Hence λp(S−\Sp) = 0. It
therefore suffices to show that λp(S−∩Sp) = 0. First consider the case where
pi/pj is irrational for all i, j ∈ A. Then S−∩Sp is finite and of measure zero.
Next assume that pi/pj = l/k for some integers l, k ≥ 1. In this case S−∩Sp

is uncountable, but it is a subset of the event in which for every m ≥ 1, the
(ml+ 1)-th appearance of j occurs after the mk-th appearance of i, and the
(mk + 1)-th appearance of i occurs after the ml-th appearance of j. Since
at every point there is a positive λp-probability of a sequence of (mk + 1)
consecutive appearances of i, this event is of measure zero.

Finally, the set S+ is finite. Furthermore, it is λp-null unless p is a
degenerate probability vector. This completes the proof of the proposition.
�
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17 The Potential

17.1 Definition

In this chapter we re-consider the decision process described in Section 16
as a maximization of a function that is defined on the simplex of relative
frequencies. This analysis serves two purposes. First, it allows us to compare
the asymptotic behavior of the dynamic process to neoclassical consumer
theory, which is atemporal. Second, it provides a useful theoretical tool. In
particular, we employ the potential to study the effect of act similarity in
repeated choice.

For a choice vector x ∈ A∞, let xi ∈ At be the t-prefix of x. Let · denote
vector concatenation. Denote the set of all prefixes by A∗ =

⋃
t≥0A

t. For a
function ϕ : A∗ → R, xi ∈ At, and i ∈ A, define

∂ϕ

∂i
(xi) = ϕ(xi · (i))− ϕ(xi) .

That is, ∂ϕ
∂i
is the change in the value of ϕ that will result from adding i to

the choice vector xi. Denote by Ui : A∗ → R the U-value of alternative i.
That is, Ui(xt) = U(x, i, t). Then ui may be viewed as the derivative of Ui

with respect to experiencing alternative i:

∂Ui

∂i
(xt) = ui

for all xt ∈ A∗. Similarly, for j = i,

∂Ui

∂j
(xt) = 0 .

Suppose we wish to measure the well-being of the decision maker at a
certain time. One possibility to do so is by the sum of all past experiences.
Define Q : A∗ → R by

Q(xt) =
t∑

r=1

Ux(τ)(xτ−1)
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for xτ ∈ A′. A U -maximizing decision maker may be described as maximizing
her Q function at any given time t. Furthermore, Q is uniquely defined (up
to a shift by an additive constant) by

∂Q

∂i
(xt) = Ui(xt)

for all xi ∈ A∗ and i ∈ A. Hence Q is a single function, such that the utility
of alternative i, Ui, is its derivative with respect to i. It thus deserves the
title the potential of the utility.

In certain ways, the potential is closer to the utility function in neoclas-
sical consumer theory than either U or u are. Both u and U are defined for
a single alternative, whereas the neoclassical function is defined for bundles.
Correspondingly, if past experiences linger in the decision maker’s memory,
neither U nor u may qualify as measures of overall well-being, while the neo-
classical utility does. By contrast, the potential function Q is defined for
bundles (implicit in the vector xt), and may be interpreted as a measure of
well-being.

Furthermore, since

∂Q

∂i
= Ui and

∂Uj

∂j
=

{
ui i = j

0 i = j
,

we get

∂2Q

∂j∂i
=

{
ui i = j

0 i = j
.

If we were to define convexity and concavity of Q by its second derivatives,
we would find that Q is concave if ui < 0 (for all i ∈ A) and convex if
ui > 0. Indeed, we have found earlier (see Proposition 6.1) that negative u
values induce limit frequencies of choice that are also predicted by a concave
neoclassical utility function, while positive u values correspond to a convex
one. Thus the potential parallels the neoclassical utility function also in



17. THE POTENTIAL 149

terms of the relationship between concavity/convexity and interior/corner
solutions.

¿From a mathematical viewpoint the potential is a rather different crea-
ture from the neoclassical utility function. While the former is defined on
choice sequences, the latter is defined on bundles. However, since all per-
mutations of a given sequence are equivalent in terms of the behavior they
induce, a sequence may be identified with the relative frequencies of the al-
ternatives in it. It follows that, after an appropriate normalization, we may
re-define the potential on the simplex of bundles.

17.2 Normalized potential and neo-classical utility

Formally, for x ∈ A∞ and t ≥ 0, recall that F (x, i, t) denotes the number of
appearances of i in x up to time t. Let T (x, i, k) stand for the time at which
the k-th appearance of i in x occurs, that is,

T (x, i, k) = min{t ≥ 0|F (x, i, t) ≥ k} .
This function will be taken to equal ∞ if the set on the right is empty.
However, for the case ui < 0, T will be finite. We obtain

Q(xt) =
t∑

τ=1

U(x, x(τ ), τ − 1)

=
n∑

i=1

F (x,i,t)∑
k=1

U(x, i, T (x, i, k)− 1)

=
n∑

i=1

F (x,i,t)∑
k=1

(k − 1)ui

=
1
2

n∑
i=1

uiF (x, i, t)[F (x, i, t)− 1] .

Recall that f(x, i, t) is the relative frequency of i in x up to time t. Thus,

Q(xt)
t2

=
1
2

n∑
i=1

uif(x, i, t)[f(x, i, t)− 1
t
] .
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For a point f = (f1, . . . , fn) in the (n − 1)-dimensional simplex, define the
normalized potential to be

q(f) =
1
2

n∑
i=1

uif
2
i .

Then, for large enough t,

Q(xt)
t2

≈ q(f(x, t)) .

At any given time t ≥ 0, the decision maker has a value for the normalized
potential, and behaves as if she were trying to (approximately) maximize it.
To be precise, the decision maker chooses an alternative so as to maximize
Q(xt+1), or, equivalently, to maximize Q(xt+1)/(t + 1)2. However, in the
long run this is approximately equivalent to maximization of the normalized
potential q. Considering the optimization problem

MAX q(f)

s.t.
n∑

i=1

fi = 1

fi ≥ 0 ,

it is straightforward to check that, should it have an interior solution (relative
to the simplex), the solution must satisfy

fiui = const .

Indeed, Proposition 6.1 shows that, if ui < 0 (for all i ∈ A), there is an
interior solution satisfying the above condition. Furthermore, it shows that
the “greedy”, or “hill climbing” algorithm implemented by our decision maker
converges to this solution.

At this point it is tempting to identify the (normalized) potential with
the neoclassical utility. However, some distinctions should be borne in mind.
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First, the neoclassical utility is assumed to be globally maximized by a one-
shot decision. The potential is only locally improved at every stage. Should
the potential be convex, for instance, our decision maker may be satisficed
without optimizing it. Second, the neoclassical utility is assumed to be max-
imized given the budget constraint. By contrast, the local improvement of
the potential is unconstrained. In Gilboa and Schmeidler (1997b) we intro-
duce prices into the model in a way that retains this feature, namely, that
lets the consumer follow the gradient of greatest improvement, where prices
and income are internalized into the evaluation of possible small changes.

Yet, as long as prices and income are ignored, and if the potential is
concave, our model may be viewed as a dynamic derivation of neoclassical
utility maximization. Specifically, a neoclassical consumer who happens to
have a concave, quadratic, and additively separable utility function over the
simplex of frequencies will end up making the same aggregate choice as the
corresponding unsatisficed cumulative utility consumer. Our theory thus
provides an account of how such a consumer gets to maximize her utility.

Starting with a neoclassical utility, and adopting the identification of
quantities with frequencies, one may suggest a hill-climbing algorithm as a
reasonable dynamic model of consumer optimization, independently of our
theory. From this viewpoint, the cumulative utility model provides a cogni-
tive interpretation of the gradients considered by the optimizing consumer.

17.3 Substitution and Complementarity

Consider a consumer who chooses a daily meal out of {beef, chicken, fish}.
Suppose that she likes them to the same degree, but that she seeks change.
Say,

ubeef = uchicken = ufish = −1 .

If the consumer judges beef as closer to chicken than fish is, after having
chicken she might prefer fish to beef. To capture these effects, we introduce
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a similarity function between products, sA : A × A → [0, 1], that reflects
the fraction of one product’s instantaneous utility that is added to another
product’s cumulative satisfaction index.

Specifically, every time product i is consumed, sA(j, i)ui is added to Uj ,
for every product j, with sA(i, i) = 1. For instance, suppose that

sA(beef, chicken) = sA(chicken, beef) = 1

where the other off-diagonal sA values are zero. For these similarity values,
when the choice set is {chicken, fish} or {beef, fish}, the relative frequen-
cies of consumption are (1/2, 1/2). However, for the set {beef, chicken, fish},
they may be (1/4, 1/4, 1/2) rather than (1/3, 1/3, 1/3), as would be the case
in the absence of product similarities. In fact, in this example beef and
chicken are practically identical, and we can only say that the frequencies of
{beef -or-chicken, fish} will converge to (1/2, 1/2).

One interpretation of the product-similarity function is that it measures
substitutability: the closer are two products to be perfect substitutes, the
higher is the similarity between them, and the greater will be the impact
of consuming one on boredom with another. If the similarity between two
products is zero, they are substitutes in the sense that both can still be
chosen in the same problem, but the consumption of one of them does not
affect the desirability of the other.

Next suppose that the recurring choice in our model is a purchase decision,
rather than a consumption decision. In each period the consumer chooses a
single product, but she also has a supermarket cart, or kitchen shelves, which
allow her eventually to consume several products together. Having bought
tomatoes yesterday and cucumbers today, the consumer may have a salad.

Following this interpretation, it is only natural to extend the product-
similarity function to negative values in order to model complementarities.
If the product-similarity between, say, tea, and sugar is negative, (and so are
their utilities), having just purchased the former would make the consumer
more likely to purchase the latter next.
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Recall that the instantaneous utility function u may be interpreted as the
consumption-derivative of U :

∂Ui

∂i
= ui .

In the presence of product-similarity, when product i is chosen, Uj is changed
by sA(j, i)u(i). That is,

∂Uj

∂i
= sA(j, i)ui .

Combining the above, the similarity function is the ratio of derivatives of the
U functions:

sA(j, i) =
∂Uj/∂i

∂Ui/∂i
.

Using the potential function, we may write

∂Uj

∂i
=

∂2Q

∂j∂i
= sA(j, i)ui =

∂Uj/∂i

∂Ui/∂i
· ∂Ui

∂i

sA(j, i) =
∂2Q/∂j∂i

∂2Q/∂i2
.

The neoclassical theory defines the substitution index between two prod-
ucts as the cross derivative of the utility function (with respect to prod-
uct quantities). By comparison, the product similarity function is the cross
derivative of the potential function, normalized by its second derivative with
respect to one of the two. Furthermore, if we define substitutability between
two products i and j as the impact consumption of i has on the desirability
of j, namely sA(j, i)ui, it precisely coincides with the cross derivative of the
potential. This reinforces the analogy between the potential in our model
and the neoclassical utility.

In the presence of product similarity, the consumer’s choice given a se-
quence of past choices xt will not depend on the order of the products in xt,
though the potential generally will. The U -value of product i is

U(x, i, t) =
t∑

τ=1

sA(i, x(τ ))ux(τ) =
n∑

j=1

F (x, j, t)sA(i, j)uj
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which depends only on the number of appearances of each product in xt.
However, the value of the potential is

Q(xt) =
t∑

τ=1

U(x, x(τ), τ − 1) =
t∑

τ=1

τ−1∑
v=1

sa(x(τ), x(v))ux(τ)(v) .

It is easy to see that the potential will be invariant with respect to per-
mutations of xt iff

sA(j, i)ui = sA(i, j)uj ∀i, j ∈ A

that is, iff

∂2Q

∂j∂i
=

∂2Q

∂i∂j
∀i, j ∈ A .

Note that this is the appropriate notion of symmetry in this model: the
product similarity function itself may be symmetric without guaranteeing
that the impact of consumption of i on desirability of j equals that of j on
i. Rather, we define symmetry by sA(j, i)ui = sA(i, j)uj, that is, by the
equality of the cross-derivatives of the potential. Under this assumption,

Q(xt) =
1
2

n∑
i=1

uiF (x, i, t)[F (x, i, t)− 1] +
n∑

i=2

i−1∑
j=1

sA(i, j)ujF (x, i, t)F (x, j, t) .

Since sA(i, i) = 1 for all i ∈ A we get

Q(xt)
t2

=
1
2

∑
i,j∈A

sA(i, j)ujf(x, i, t)f(x, j, t)− 1
2t

n∑
i=1

uif(x, i, t) .

Hence Q(xt)
t2

can be approximated by the normalized potential defined on the
simplex by

q(f) =
1
2
fSf τ ,
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where f = (f1, . . . , fn) is a frequency vector and the matrix S is defined by
Sij = sA(i, j)uj .

Suppose that S is negative definite. In this case the hill-climbing algo-
rithm implemented by a cumulative utility consumer will result in maximiza-
tion of the normalized potential. Hence, if we start out with a quadratic and
concave neoclassical utility u, it defines a matrix S for which the correspond-
ing cumulative utility consumer behaves as if she were locally maximizing
u. Furthermore, for any function u that can be locally approximated by a
quadratic q, local u-maximization would result in similar choices to those of
the cumulative utility consumer characterized by q.

Since S is symmetric, it can be diagonalized by an orthonormal matrix.
That is, there exists an (n × n) matrix P with P t = P−1 such that P tSP

is diagonal, with the eigenvalues of S along its main diagonal. Since the
matrix P can be thought of as rotation in the bundle space, we may offer
the following interpretation: the consumer is deriving utility from n “basic
commodities”, which are the eigenvectors of S, and their u-values are the
corresponding eigenvalues. (These would be negative for a negative definite
S.) One such commodity may be, for instance, a certain combination of tea
and sugar. However, the consumer can only purchase the products tea and
sugar separately. By choosing the right mix of the products, it is as if the
basic commodity was directly consumed.3

According to this interpretation, there is zero similarity between the basic
commodities; that is, there are no substitution or complementarity effects
between them. These effects among the actual products are a result of the
fact that these products are ingredients in the desired basic commodities.

3Note that the analogy to the additively separable case is not perfect. Specifically, the
constraint that the sum of frequencies be 1 is also rotated. Hence the negative eigenvalues
are not related to frequencies as directly as in Section 16.



156 CHAPTER 6. REPEATED CHOICE



Chapter 7

Learning and Induction

This chapter studies several ways in which case-based decision makers learn
from their experience. First, we discuss aspiration level adjustment and
their impact on behavior. We then proceed to discuss examples in which the
similarity function is also learned. Finally, we conclude with some comments
on inductive reasoning.

18 Learning to Maximize Expected Payoff

18.1 Aspiration level adjustment

The reader may find decision makers who maximize the function U less ra-
tional than expected utility maximizers. The former satisfice rather than
optimize. They count on their experience rather than attempt to figure out
what will be the outcomes of available choices. They follow what appears
to be the best alternative in the short run rather than plan for the long
run. They use whatever information they happened to acquire rather than
intentionally experiment and learn from a growing experience.

There are many applications for which we find this boundedly rational
image of a decision maker quite plausible, and it can even pass the rationality
test proposed in Section 2. Especially in novel situations, people often find
it hard to specify the space of states of the world in a satisfactory way, let
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alone to form a prior over it. Many if not most of the decisions taken by
governments, for instance, are made in complex environment that have not
been encountered before in precisely the same way.

It is therefore not surprising that the commandments of EUT, appealing
as they are, are hard to follow. One does not have enough trials to figure
out all the possible eventualities, not to mention their frequencies. Further,
there is little value in investing in learning and experimentation, because
the knowledge acquired will be obsolete before it gets to be used. Similarly,
planning carefully for the long run may prove a futile endeavor.

However, when the environment is more or less fixed, and the situation
may be modeled as a repeated choice problem, case-based decision makers do
appear to be a little too naive and myopic. While we argue (see Section 12)
that CBDT is not designed for these situations to begin with, we show here
that the irrational and shortsighted aspect of CBDT is, for the most part,
an artifact of the implicit assumption that aspiration levels do not change.

Indeed, the basic formulation of CBDT in Section 4 normalized the util-
ity function in such a way that the utility ascribed to an untried alternative,
namely, the aspiration level, was zero. While this normalization can be per-
formed for each choice situation separately, there is no reason to assume
that it can be done for all of them simultaneously, that is, that the aspira-
tion level does not change over time, or as a result of past experiences. In
this section we propose two properties of aspiration-level adjustment rules,
which we find descriptively plausible in general. We show that in the special
case of a repeated choice problem, these properties also guarantee optimality.
Thus, these properties can also be supported on normative grounds. While
there are many rules that may guarantee optimal choice in this special case,
we hope to convince the reader that the rules discussed here are also fairly
intuitive.
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18.2 Realism and ambitiousness

We assume that the aspiration level is adjusted according to a rule that is
both realistic and ambitious. Realism means that the aspiration level is set
closer to the best average performance so far experienced. Ambitiousness can
take one of two forms: it may simply imply that the initial aspiration level is
high; alternatively, it may be modeled as suggesting that the aspiration level
is increased in certain periods.

More precisely, we model realism by assuming an adaptive rule that sets
the new aspiration level at a certain weighted average of the old one and the
maximal average performance so far encountered. Thus, if all the acts that
were attempted in the past failed to perform up to expectations, the latter
will have to be scaled down. Conversely, if the aspiration level is exceeded
by the performance of certain acts, it is gradually increased.1

While we do not provide an axiomatic derivation of this property, we
would like to motivate it from several distinct viewpoints. First, suppose
that we read the aspiration level as an answer to the question, What can
you reasonably hope for in the current problem? If a moderately rational
decision maker is to provide the answer, some adaptation of the aspiration
level to actual performance seems inevitable. Second, realism appears to be
a plausible description of people’s emotional reactions: people seem to be
able to adapt to circumstances. For simplicity, we do not distinguish here
between scaling-up and scaling-down. For our purposes it suffices that over
the long run the aspiration level is adjusted. Third, one might argue for
the optimality of realism. As we show in this section, adjusting aspiration
levels in realistic and ambitious way leads to expected payoff maximizing
choices. That is, we show that the combination of realism and ambitiousness
is behaviorally optimal. But realism has an emotional justification as well.

1As will be clear in the sequel, the specific adjustment rule is immaterial; it is crucial,
however, that it is gradually pushing the aspiration level towards the actual best average
performance.
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If we interpret the aspiration level emotionally, when it is set too high the
decision maker is bound to be disappointed. Thus, if one were to choose an
aspiration level (say, for one’s child), one would like to set it at a realistic
level.2

The ambitiousness property may have two separate (though compatible)
meanings: static ambitiousness simply states that the initial aspiration level
is relatively high. A high initial aspiration level reflects the fact that our
decision maker is aggressive, and entertains great expectations. Whether the
decision maker’s initial aspiration level is high enough will depend on a vari-
ety of psychological, sociological, and perhaps also biological factors. While
our optimism assumption may not be universally true, it is not blatantly im-
plausible either. (See Shepperd, Ouellette, and Fernandez (1996) for related
empirical evidence.)

The second meaning that the ambitiousness assumption may take is dy-
namic: that is, that the decision maker never quite loses hope. Specifically,
we will assume that in certain decision periods, the aspiration level is set to
exceed the best average performance by a certain constant. In order to make
this compatible with realism, we will allow these decision periods to become
more and more infrequent. (As a matter of fact, for the optimality result we
will require that the update periods have a limit frequency of zero.) That is,
the longer is one’s memory, the less does one tend to increase the aspiration
level in this somewhat arbitrary manner. However, dynamic ambitiousness
requires that these update periods never end. Regardless of the memory’s
length, a dynamically ambitious decision maker still sometimes stops to ask,
Why can’t I do better than that?

As in the case of static ambitiousness, the claim of this assumption to

2Continuing this line of reasoning, it would seem that lowering aspirations well below
what could realistically be expected may increase happiness even further. But this would
result in sub-optimal choices, as will be clear in the sequel. Moreover, this option may not
be psychologically feasible in the long run. For a more detailed discussion of these issues,
see Gilboa and Schmeidler (1996b).
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descriptive validity can be qualified at best. Indeed, we are not trying to claim
that all decision makers are realistic but ambitious, just as we do not believe
that all people necessarily choose optimal acts in repeated problems. The
main point is that the properties of realism and ambitiousness correspond
to some general intuition, and they make sense beyond the special case in
which a certain problem is encountered over and over again. It is reassuring
to know that in this special case these general properties also guarantee
optimal choice.

18.3 Highlights

The repeated problem we discuss in this section is akin to the multi-armed
bandit problem (see Gittins (1979)): the decision maker is repeatedly faced
with finitely many options (“arms”), each of which is guaranteed to yield an
independent realization of a certain random variable (with finite expectation
and variance). Our results are as follows: first assume that the decision
maker is realistic and statically ambitious. Then, given the distributions
governing the various arms, and any probability lower than 1, there exists a
high enough initial aspiration level such that, with this probability at least,
the limit frequency of the expected-utility maximizing acts will be 1. Thus
the initial aspiration level depends both on the given distributions and on
the desired probability with which this frequency will indeed be 1.

Our second result assumes a decision maker who is realistic and dynam-
ically ambitious. We prove that for any given distributions, and any initial
aspiration level, the limit frequency of the optimal acts will be 1 with proba-
bility 1. This is a stronger statement than the previous one. It is guaranteed
that almost always the best acts will be almost-always chosen, and that the
same algorithm obtains optimality for any given distributions. Thus, dy-
namic ambitiousness is safer than static ambitiousness. Roughly, it is more
important not to lose hope than to have great expectations.

The intuition behind both results can be easily explained in the deter-
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ministic case. Suppose that every time an act is chosen, it yields the same
outcome. For the first theorem, assume that the decision maker starts out
with a very high aspiration level. Thus all options seem unsatisfactory, and
the decision maker switches from one to another, as prescribed by CBDT
in case of negative utility values. Specifically, in this case the frequencies of
choice are inversely proportional to the utility values, as shown in Chapter
6. Hence, a high aspiration level prods the decision maker to experiment
with all options with approximately equal frequencies. But the aspiration
level cannot remain high for long. As time goes by it is updated towards
the best average performance so far encountered. In the deterministic case,
the average performance of an act is simply its instantaneous utility value.
Thus, in the long run the aspiration level tends to the maximal utility value.
Correspondingly, an act that achieves this value is almost satisficing, and the
set consisting of all these acts will be chosen with a limit frequency of 1.

Next consider a dynamically-ambitious decision maker in a similar set-
up. Such a decision maker may have started out with too low an aspiration
level; thus she may be choosing a sub-optimal act, while the aspiration level
is being adjusted upward towards the utility value of this act. However, if
at some point the aspiration level is set above this utility value, this act is
no longer satisficing, and the decision maker will try a new one. In the long
run all acts will be tried out, and the aspiration level will be realistically
adjusted towards the maximal utility value. As opposed to the case of static
ambitiousness, the aspiration level does not converge to this value, since it is
pushed above it from time to time. Yet, these periods are assumed to have
zero limit frequency, and thus the optimality result holds.

The general cases of both results, in which the available acts yield stochas-
tic payoffs, are naturally more involved, but the proofs follow the same basic
intuition.

We note here that both realism and ambitiousness are crucial for the
optimality results. If our decision maker is realistic but not ambitious, she
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may well choose a sub-optimal act forever. In this case her choice is random
in the following sense: an act is randomly selected at the first stage, and
then it is chosen for ever. On the other hand, if the decision maker is, say,
statically ambitious but not realistic, then all choices seem to her almost
equally unsatisfactory. In this case the choice is close to random in the sense
that all acts will be chosen with approximately the same frequency. (See
Chapter 6.) By contrast, the combination of the two guarantees that all acts
will be experimented with, but also that in the long run experimentation will
give way to optimal choice.

In a sense, our results may be viewed as explaining the evolution of opti-
mal (expected-utility maximizing) choice: a case-based decision maker who
is both realistic and ambitious will learn to be an expected-utility maximizer.
These results only hold if the decision problem is repeated long enough in the
same form. But this is precisely the case in which EUT seems most plausible,
that is, when history is long enough to enable the decision maker to figure
out what are the states of the world, and to form a prior over them based
on their observed frequencies. Furthermore, a case-based decision maker is
more open minded than an expected utility maximizer. While the latter may
have a-priori beliefs whose support fails to contain the true distribution, the
former does not entertain prior beliefs, and thus cannot be wrong about
them.

In the context of optimization problems, one may view our results as re-
inforcing a general principle by which global optimization may be obtained
by local optimization coupled with the introduction of noise. The anneal-
ing algorithms (Kirkpatrick, Gellatt, and Vecchi (1982)) are probably the
most explicit manifestation of this principle. Genetic algorithms (Holland
(1975)) are another example, in which the adaptive process leads to a local
optimum of sorts, and the cross-over process allows the algorithm to explore
new horizons. Yet another example of the same principle may be found in
evolutionary models in game theory such as Foster and Young (1990), Kan-
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dori, Mailath, and Rob (1993) and Young (1993). In these models, a myopic
best-response rule may lead to equilibria that are Pareto dominated (“local
optima”), even in pure-coordination games. But the introduction of muta-
tions provides the “noise” that guarantees (in such games) a high probability
of a Pareto-dominating equilibrium (a “global optimum”). From this view-
point, one may interpret our results as follows: the realistic nature of the
aspiration-level adjustment rules induces convergence to a local optimum,
namely, to a high frequency of choice of the best acts among those that were
tried often enough. Ambitiousness plays the role of the noise, which prods
the decision maker to choose seemingly sub-optimal acts, and, in the long
run, to converge to a global optimum.

Annealing algorithms simulate physical phenomena; genetic algorithms
and evolutionary game theory models are inspired by biological metaphors;
by contrast, our process is motivated by psychological intuition. As men-
tioned above, we find this intuition valid beyond the specific model at hand.

18.4 Model

We now turn to the formal model. Let A = {1, 2, . . . , n} be a set of acts
(n ≥ 1). For i ∈ A let there be given a distribution Fi on R (endowed with
the Borel σ-algebra), to be interpreted as the (conditional) distribution of
the utility yielded by act i whenever it is chosen. We assume that Fi has
finite expectation and variance, denoted µi and σi, respectively.

The underlying state space will be a subset of

S0 = (R×A×R)N

whereN denotes the natural numbers. A state ω = ((H1, a1, x1), (H2, a2, x2), . . . ) ∈
S0 is interpreted as follows: for all t ≥ 1, in period t, the aspiration level is
Ht at the beginning of the period, an act at is chosen, and it yields a payoff
of xt. It will be convenient to define, for every t ≥ 1, the projection functions

Ht, xt : S0 → R and at : S0 → A
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with the obvious meaning.
Next we define a function C : S0 × A× N→ 2N to be the set of periods,

up to a given period, in which a given act was chosen, at a given state. That
is,

C(ω, i, t) = {j < t|aj(ω) = i} .

We are also interested in the number of times a certain act was chosen up
to a given period. Therefore, we define a function K : S0×A×N→ N∪{0}
by

K(ω, i, t) = #C(ω, i, t) .

We are mostly interested in the relative frequencies of the decision maker’s
choices. It will be convenient to define a function f : S0 × A× N→ [0, 1] to
measure relative frequency up to a given time, that is,

f(ω, i, t) =
K(ω, i, t)

t
.

Dropping the period index will refer to the limit:

f(ω, i) = lim
t→∞

f(ω, i, t) .

Finally, we extend this notation to subsets of A: for D ⊂ A we define

f(ω,D, t) =
∑
i∈D

f(ω, i, t)

f(ω,D) = lim
t→∞

f(ω,D, t) .

We now turn to define the CBDT functions in this context. Let U :
S0 × A×N→ R be defined by

U(ω, i, t) =
∑

j∈C(ω,i,t)

[xj(ω)−Ht(ω)] .

That is, U is the cumulative payoff of an act, measured relative to the
current aspiration level Ht. Observe that past outcomes xj (for j < t) are
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re-evaluated in light on the new aspiration level Ht. Since the similarity
function is assumed to be identically 1, this definition coincides with the
function U of Chapter 2.

We will also use the notation

V (ω, i, t) =
U(ω, i, t)
K(ω, i, t)

.

(Thus, “V (ω, i, t) is well defined” means “K(ω, i, t) is positive.”) As in the
case of U , this definition coincides with the function V of Chapter 2 because
the similarity of any two problems is assumed to be 1. Since the values of
both U and V depend on the aspiration level Ht, it is convenient to have
a separate notation for the absolute average utility of each act. Thus we
denote

X(ω, i, t) =

∑
j∈C(ω,i,t) xj(ω)

K(ω, i, t)
.

Note that X(ω, i, t) is well defined whenever V (ω, i, t) is and that

X(ω, i, t) = V (ω, i, t) +Ht(ω) .

We now wish to express the fact that the decision maker considered is
a U-maximizer. We do it by restricting the state space as follows: define
S1 ⊂ S0 by

S1 = {ω ∈ S0 | at(ω) ∈ argmax
i∈A

U(ω, i, t) ∀t ≥ 1} .

Similarly, we further restrict the state space to reflect the fact that the
aspiration level is updated in an adaptive manner. First define, for t ≥ 2
and ω ∈ S0, the relative and absolute maximal average performance to be,
respectively,

V (ω, t) = max{V (ω, i, t) | i ∈ A, K(ω, i, t) > 0}
X(ω, t) = max{X(ω, i, t) | i ∈ A, K(ω, i, t) > 0} .
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Next, for a given α ∈ (0, 1) and H1 ∈ R we finally define the state space to
be

Ω = Ω(α,H1) =
{
ω ∈ S1

∣∣∣∣ H1(ω) = H1 and for t ≥ 2
Ht(ω) = αHt−1(ω) + (1− α)X(ω, t)

}
.

Endow S0 with the σ-algebra generated by the Borel σ-algebra on (each
copy of) R and by the algebra 2A on (each copy of) A. Let Σ = Σ(α,H1) be
the induced σ-algebra on Ω. Finally, we turn to define the underlying prob-
ability measure. Given Ω and Σ, a probability measure P on Σ is consistent
with (Fi)i∈A if for every t ≥ 1 and i ∈ A, the conditional distribution of xt
that it induces, given that at = i, is Fi, and, furthermore, xt is independent
(according to P ) of the random variables H1, a1, x1, . . . , Ht−1, at−1, xt−1, Ht.
Notice that distinct measures on Σ that are consistent with (Fi)i∈A can only
disagree regarding the choice of an act at where argmaxi∈A U(ω, i, t) is not
a singleton.

18.5 Results

Our first result is:

Theorem 7.1 Let there be given A = {1, . . . , n}, (Fi)i∈A as above, α ∈ (0, 1)
and ε > 0. There exists H0 ∈ R such that for every H1 ≥ H0 and every
measure P on (Ω(α,H1),Σ(α,H1)) that is consistent with (Fi)i∈A,

P ({ω ∈ Ω | ∃f(ω, argmax
i∈A

µi) = 1}) ≥ 1− ε .

The theorem guarantees that, if we focus on those states ω at which
there is a limit choice frequency for the set of expected utility maximizers,
and it equals 1, this set is measurable and it has arbitrarily high probability
provided that the initial aspiration level is high enough.

Note that Theorem 7.1 cannot guarantee an aspiration level that is uni-
formly high enough for all given distributions (Fi)i∈A. Indeed, it is obvious
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that any initial aspiration level may turn out to be too low. By contrast,
our second result guarantees optimality for all given distributions, regardless
of the initial aspiration level and with probability 1. The assumption that
drives this much stronger conclusion is that the aspiration level is “pushed
up” every so often. That is, that in a certain set of periods, which is infinite
but sparse (i.e., has a limit frequency of zero), the aspiration level is not
adjusted by averaging its previous value and the best average performance
value; rather, in these periods it is set to be at some level above the best
average performance value, regardless of the previous aspiration level.

Formally, we define a new probability space as follows. Let there be
given H1 ∈ R and α ∈ (0, 1) as above. Assume that NA ⊂ N and h > 0 are
given. NA is interpreted as the set of periods in which the decision maker
is ambitious. The number h should be thought of as the increase in the
aspiration level. Define

Ω = Ω(α,H1,NA, h)

=

ω ∈ S1

∣∣∣∣∣∣
H1(ω) = H1 and for t ≥ 2

Ht(ω) = X(ω, t) + h if t ∈ NA

Ht(ω) = αHt−1(ω) + (1− α)X(ω, t) if t /∈ NA

 .

Next define Σ = Σ(α,H1, NA, h) to be the corresponding σ-algebra. Simi-
larly, a measure P on Σ is defined to be consistent with (Fi)i∈A as above.

We can now state:

Theorem 7.2 Let there be given A = {1, . . . , n}, (Fi)i∈A as above, α ∈
(0, 1), H1 ∈ R, NA ⊂ N and h > 0. If NA is infinite but sparse, then for
every measure P on (Ω(α,H1, NA, h),Σ(α,H1, NA, h)) that is consistent with
(Fi)i∈A,

P ({ω ∈ Ω | ∃f(ω, arg max
i∈A

µi) = 1}) = 1 .
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18.6 Comments

Hybrid of Summation and Average As briefly mentioned above, the deci-
sion rule we use here is a hybrid: our decision makers choose acts by U -
maximization; however, when it comes to adjusting their aspiration levels,
they use the maximal V value. This apparent inconsistency calls for an
explanation.

Following the discussion in Section 4 and Chapter 6, we would like to sug-
gest the following interpretation. In general, memory affects one’s decisions
in two ways: first, as a source of information, which is especially crucial for
decisions under uncertainty; second, as a primary effect in a dynamic choice
situation. Memory helps one to reason about the world, but it also changes
one’s tastes.

Thus, there are two fundamental questions to which memory is key: first,
“What do I want to do now?” and second, “What do I think of this act?”
In answering the first question, memory plays a dual role: as a source of
information and as a factor affecting preferences. In answering the second,
memory only serves as a source of information. Correspondingly, we would
like to suggest that U offers an answer to the first, whereas V – to the second.

Consider the following example: every day Mary has to choose a restau-
rant. She chooses a U -maximizer. Assume that her aspiration level is high
and that she therefore exhibits change seeking behavior. Assume next that
Mary has a guest, and he asks her which is the best restaurant in town,
namely, which restaurant should one go to if one has only one day to spend
there (with no memory). Then, according to this interpretation, Mary will
recommend a V -maximizing, rather than a U -maximizing act. Asked why
she is not choosing this restaurant herself, Mary might say, Oh, I was there
just yesterday. Having visited it recently, Mary attaches to the restaurant
a relatively low U value. But the very fact that the restaurant was recently
chosen need not change its V value.

The optimality rule discussed in this paper is therefore not as inconsistent
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as it may appear at first glance: our decision makers are U -maximizers in
their choices. This means that memory enters their decision considerations
not only as a source of information. With a high aspiration level, this also
allows them to keep switching among the alternative acts, and to continue
trying acts whose past average performance happened to be poor. On the
other hand, asking themselves, “What can I reasonably hope for?” or “What
choice would I recommend to someone who hasn’t tried any of the options?”
they base their answers on V -maximizing acts. As we have shown, adjusting
their aspiration level based on the maximal V value also colors past experi-
ences differently. In the long run, the dissatisfaction with V -maximizing acts
decreases, and thus their relative frequency tends to 1.

The above notwithstanding, it certainly makes sense to consider two sim-
pler alternatives. The first, “U -rule”, prescribes that decisions will be made
so as to maximize U , and that the aspiration level will be adjusted according
to U as well. The second is the corresponding “V -rule”. Both rules seem
sensible, but none of them guarantees optimal choice in the long run. Using
the U -rule, the aspiration level need not converge. (As a matter fact, it is not
obvious what is the right way to define the aspiration level adjustment rule
in this case.) Using the V -rule, the decision maker may never retry certain
alternatives that happened to have particularly low realizations in the first
few periods. We omit the simple examples.

Infinitely Many Acts The discussion in this section focused on finitely many
alternatives. Considering generalizations to large sets of acts, one would like
to take into account the fact that infinitely many acts are typically endowed
with additional structure. For instance, prices and quantities may be modeled
as continua, which also have a metrizable topology. It is natural to reflect this
topology in an act similarity function. For instance, having set a price at $20,
a seller may have some idea about the outcomes that are likely to result from
a price of $20.01. Since these two acts are similar, past experience with one
of them enters the evaluation of another. Given a compact metric topological
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space of acts and a similarity function that is monotone with respect to the
metric, and assuming continuity of u, one would expect a similar optimality
result to hold.

Other Adjustment Rules Our results do not hinge on the specific aspiration
level adjustment rule. First, the aspiration level need not be adjusted in
every period, and the adjustment periods do not have to be deterministically
set. All that is required is that there be infinitely many of them with a high
enough probability. Similarly, the realistic adjustment need not be done by
a weighted average with fixed weights. The conclusion of Theorem 7.1 will
hold whenever the following two conditions are satisfied. (i) The adjustment
process guarantees convergence, that is, that for all a, b ∈ R and ε > 0, if
X(ω, t) ∈ (a, b) for all t ≥ T1 for some T1, then there exists T2 such that for
almost all t ≥ T2, Ht(ω) ∈ (a− ε, b+ ε). (ii) The adjustment is not too fast:
for all R ∈ R and all T0 ≥ 1 there is a number H0 such that for all H1 > H0

and all t ≤ T0, Ht > R. Similarly, the conclusion of Theorem 7.2 holds under
the following conditions: (i) the adjustment process guarantees convergence
as above; and (ii) the aspiration level increases over an infinite but sparse set
of periods. Neither the increase h nor the set of increase periods NA need
be deterministic or exogenously given. Both may depend of the state ω, on
past acts, and on their results. It is essential, however, that, for each ω, h
be bounded away from zero (and not too large), and that NA be infinite but
sparse.

Finally, one may assume that in the periods of ambitiousness, the aspi-
ration is set so as to exceed (by h) its own previous value, rather than the
maximal average performance level.

Retrospective Evaluation Note that when the aspiration level is updated in
our model, the u value of past experiences is also updated. That is, outcomes
that have been obtained in the past are re-evaluated according to the newly
defined aspiration level. Thus we implicitly assume that the decision maker
can reflect upon the outcomes themselves, sometimes realizing that they were



172 CHAPTER 7. LEARNING AND INDUCTION

not as unsatisfactory as they seemed at the time.

Alternatively, one may assume that only the utility value of past experi-
ences is retained in memory, and that the original evaluation of an outcome
will be forever used to judge the act that led to it. Our first result does
not hold in this case, since a very high initial aspiration level may make an
expected utility maximizing act have a very low U value, to the extent that
it may never be chosen again. While one may argue for the psychological
plausibility of the alternative assumption, it seems that it is “more rational”
to re-evaluate outcomes based on an adjusted aspiration level, rather than
compare each outcome to a possibly different aspiration level. At any rate,
the second result holds under the alternative assumption as well: having
infinitely many periods in which the expected utility of any act is a nega-
tive number bounded away from zero guarantees that all acts will be chosen
infinitely often with probability 1.

Games Pazgal (1997) has shown that if realistic but ambitious case-based
decision makers repeatedly play a game of common interest, they will con-
verge to the optimal play. His definition of realism is slightly different from
the one we use here, in that the players are assumed to update their aspi-
ration levels toward the best payoff encountered. Thus it implicitly assumes
that the players know that the game is of common interest.

18.7 Proofs

Proof of Theorem 7.1: A few words on the strategy of the proof are
probably in order. The general idea is very similar to the deterministic case
described above: let the initial aspiration level be high enough so that each
act is chosen a large enough number of times, and then notice that the aspi-
ration level tends to the maximal expected utility. In the deterministic case,
each act should be chosen at least once in order to get its average performance
X equal to its expectation. In the stochastic case, more choices are needed,
and a law of large numbers will be invoked for a similar conclusion. Thus
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the initial aspiration level should be high enough to guarantee that each of
the acts is chosen enough times to get the average close to the expectation.

If the supports of the given distributions Fi were bounded, one could
find high enough aspiration levels such that all possible realizations of all
possible choices seem similarly unsatisfactory. This would guarantee that, as
long as the aspiration level is beyond a certain bound, all acts are chosen with
similar frequencies, and therefore all of them will be chosen enough times for
the law of large numbers to apply. However, these distributions need not
have a bounded support. They are only known to have a finite variance.
Thus the proof is slightly more involved, as we explain below.

Let us first assume, without loss of generality, that for some r ≤ n,

µ1 = µ2 = · · · = µr > µr+1 ≥ · · · ≥ µn .

Furthermore, we assume that r < n. (The theorem is trivially true other-
wise.) Next denote

I = argmax
i∈A

µi = {1, 2, . . . , r}

δ =
µ1 − µr+1

3
.

The number δ is so chosen that, if the average values are δ-close to the
corresponding expectations, then the maximal average value is obtained by
a maximizer of the expectation.

We now turn to find the number of times that is needed to guarantee,
with high enough probability, that the averages are, indeed, δ-close to the
expectations. Given ε > 0 as in the theorem and i ∈ A, let Ki ≥ 1 be
such that: for every k ≥ Ki and every sequence of i.i.d random variables
X1

i ,X
2
i , . . . , X

k
i , each with distribution Fi,

Pr(

∣∣∣∣∣1k
k∑

j=1

(Xj
i − µi)

∣∣∣∣∣ ≤ δ) ≥ (1− ε)1/2n
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where Pr is the measure induced by the distribution Fi. Notice that such Ki

exists by the strong law of large numbers. (See, for instance, Halmos (1950).)
Let K = maxi∈AKi.

We now turn to the construction of the initial aspiration level. As ex-
plained above, we would like to be able to assume that the Fi’s have bounded
supports, in order to guarantee that each act is chosen at least K times. We
will therefore find an event with a high enough probability, on which the
random variables xt are, indeed, bounded.

We start by finding, for each i ∈ A, bounds bi, bi ∈ R such that, for any
random variable Xi distributed according to Fi,

Pr(bi ≤ Xi ≤ bi) ≥ (1− ε)1/4nK

where Pr is some probability measure that agrees with Fi. Notice that such
bounds exist since Fi has a finite variance. Without loss of generality assume
also that bi > µi + 2δ for all i ∈ A. Next define

b = min
i∈A

bi and b = max
i∈A

bi .

The critical lower bound on the aspiration level (for the “experimenta-
tion” period, during which every act is chosen at least K times) is chosen to
be

R = 2b− b .

Let us define, for every T ≥ 1, the event

BT = {ω ∈ Ω|∀t ≤ T, b ≤ xi(ω) ≤ b}.

Notice that, since the given measure P is consistent with (Fi)i∈A, P (BT ) ≥
(1 − ε)T/4nK . Hence, provided that T is not too large, BT will have a high
enough probability. In order to show that T need not be too large to get
enough (≥ K) observations of each act, we first show that, on BT and with
sufficiently high aspiration level, the first T choices are more or less evenly
distributed among the acts:
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Claim 7.1 Let there be given T ≥ n, and ω ∈ BT . Assume that for all
t ≤ T , Ht(ω) > R. Then for all i, j ∈ A and all t such that n ≤ t ≤ T ,

K(ω, i, t) ≤ 2K(ω, j, t) .

Proof: Assume the contrary, and let t0 be the minimal time t such that
n ≤ t ≤ T and

K(ω, i, t0) > 2K(ω, j, t0)

for some i, j ∈ A. Notice that K(ω, a, n) = 1 for all a ∈ A, hence t0 > n. It
follows from minimality of t0 that at0−1(ω) = i, i.e., that i was the last act
chosen.

Consider the following bounds on the U values of the two acts:

U(ω, i, t0 − 1) ≤ K(ω, i, t0 − 1)(b−Ht0−1(ω))

U(ω, j, t0 − 1) ≥ K(ω, j, t0 − 1)(b−Ht0−1(ω)) .

The optimality of i at stage t0 − 1 implies

U(ω, i, t0 − 1) ≥ U(ω, j, t0 − 1) ;
K(ω, i, t0 − 1)(b−Ht0−1(ω)) ≥ K(ω, j, t0 − 1)(b−Ht0−1(ω)) .

Recalling that Ht0−1(ω) > R ≥ b ≥ b, this is equivalent to

K(ω, j, t0 − 1)
K(ω, i, t0 − 1) ≥

b−Ht0−1(ω)
b−Ht0−1(ω)

.

By minimality of t0 we know that

K(ω, j, t0 − 1)
K(ω, i, t0 − 1) =

1
2
.

We therefore obtain

b−Ht0−1(ω) ≤ 2(b−Ht0−1(ω))
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which implies

Ht0−1(ω) ≤ 2b− b = R ,

a contradiction. �

We now set T0 = 2nK, and will prove that, as long as the aspiration level
is kept above R, after T0 stages, each act will be chosen at least K times on
the event BT0. Formally,

Claim 7.2 Let there be given ω ∈ BT0 and assume that Ht(ω) > R for all
t ≤ T0. Then for i ∈ A,

K(ω, i, T0) ≥ K .

Proof: If K(ω, i, T0) < K for some i ∈ A, then by Claim 7.1, K(ω, j, T0) <
2K for all j ∈ A. Then we get

T0 =
∑
j∈A

K(ω, j, T0) < 2nK = T0 ,

which is impossible. �

We finally turn to choose the required level for the initial aspiration level.
Choose a value

H0 = H0(ε) > b+ 2(
1
α
)T0(b− b)

and let us assume for the rest of the proof that H1 ≥ H0. We verify that this
bound is sufficiently high in the following:

Claim 7.3 Let there be given ω ∈ BT0, and assume that H1 ≥ H0. Then for
all t ≤ T0, Ht(ω) > R.

Proof: For all 1 < t ≤ T0,

Ht(ω) ≥ αHt−1(ω) + (1− α)b
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or

Ht(ω)− b ≥ α(Ht−1(ω)− b) .

Hence

Ht(ω)− b ≥ αt(H1 − b) > 2αt(
1
α
)T0(b− b) ≥ 2(b− b)

Ht(ω) > 2b− b = R . �

Combining the above, we conclude that, for H1 ≥ H0, K(ω, i, T0) ≥ K

for all ω ∈ BT0 and all i ∈ A. Furthermore, for a measure P , consistent with
(Fi)i∈A,

P (BT0) ≥ (1− ε)T0/4nK = (1− ε)1/2 .

We now define the event on which the limit frequency of the expected-
utility maximizing acts is 1: let B⊂BT0 be defined by

B =

{
ω ∈ BT0

∣∣∣∣∣∀t ≥ T0, ∀i ∈ A,

|X(ω, i, t)− µi| < δ

}
.

By the choice of K and the independence assumption, we conclude that
P (B|BT0) ≥ (1− ε)1/2. Hence P (B) ≥ (1− ε).

The proof of the theorem will therefore be complete if we prove the fol-
lowing:

Claim 7.4 Assume that H1 ≥ H0 and let P be a measure on (Ω(α,H1),Σ(α,H1))
that is consistent with (Fi)i∈A. Then, for P -almost all ω in B,

∃f(ω, I) = 1 .
(Recall that I = argmaxi∈A µi.)

Proof: Given ω ∈ B and ξ > 0, we wish to show that, unless ω is in a
certain P -null event (to be specified later), there exists a T = T (ω, ξ) such
that for all t ≥ T ,

f(ω, I, t) ≥ 1− ξ .
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It is sufficient to find a T = T (ω, ξ) such that for some i ∈ I, for all
t ≥ T , and for all j ∈ I,

K(ω, j, t)
K(ω, i, t)

=
f(ω, j, t)
f(ω, i, t)

≤ ξ

n(1− ξ)
.

We remind the reader that for all t ≥ T0 and all a ∈ A we have

|X(ω, a, t)− µa| ≤ δ .

Also, since HT0(ω) > R > µ1, for all t ≥ T0 we have

Ht(ω) > µ1 − δ = µr+1 + 2δ .

That is, the aspiration level will be adjusted towards the average perfor-
mance of one of the expected-utility maximizing acts, and will be bounded
away from the expected utility and from the average performance value of
sub-optimal acts.

We will need a uniform bound on Ht(ω). To this end, note that for all
a ∈ A and t ≤ T0, X(ω, a, t) < R, by definition of the set BT0 . For t ≥ T0,
the same inequality holds since X(ω, a, t) < µa + δ < ba ≤ R. Since Ht+1(ω)
is a convex combination of Ht(ω) and X(ω, t) = maxa∈AX(ω, a, t) < R, we
conclude that for all t ≥ 1, Ht+1(ω) ≤ max{Ht(ω), R}. By induction, it
follows that for all t ≥ 1, Ht(ω) ≤ H1.

Let O(ω)⊂A be the set of acts that are chosen infinitely often at ω. That
is,

O(ω) = {a ∈ A|K(ω, a, t) −→∞ as t→∞}.

We would first like to establish the fact that some expected utility maxi-
mizing acts are indeed chosen infinitely often. Formally,

Claim 7.5 O(ω) ∩ I = ∅.
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Proof: Let T̃ ≥ T0 be such that for all t ≥ T̃ , at(ω) ∈ O(ω). Assume the
contrary, i.e., that O(ω) ∩ I = ∅. (In particular, at(ω) ∈ I for all t ≥ T̃ .)
For all t ≥ T̃ ≥ T0 we also know that

X(ω, j, t) < Ht(ω)− δ

for all j ∈ I. Hence, for j ∈ I,

U(ω, j, t) = K(ω, j, t)V (ω, j, t) = K(ω, j, t)[X(ω, j, t)−Ht(ω)] < −δK(ω, j, t) .

This implies that U(ω, j, t)→ − ∞ as K(ω, j, t) → ∞. Thus, for all j ∈
O(ω)\I,

U(ω, j, t) −→
t→∞

−∞ .

On the other hand, consider some i ∈ I⊂(O(ω))c. Let L satisfy L > K(ω, i, t)
for all t ≥ 1. Then

U(ω, i, t) = K(ω, i, t)V (ω, i, t) = K(ω, i, t)[X(ω, i, t)−Ht(ω)] > L(b−H1) .

It is therefore impossible that only members of Ic would be U -maximizers
from some T̃ on. �

We now assume that for all a ∈ O(ω), X(ω, a, t) −→
t→∞

µa. By the strong
law of large numbers, this is the case for all ω ∈ B apart from a P -null set.
Choose ζ > 0 such that

ζ <
ξδ

6n(1− ξ)

and let T1 ≥ T0 be such that for all t ≥ T1 and all i ∈ O(ω) ∩ I,

|X(ω, i, t)− µ1| < ζ .

For all t ≥ T1 we also conclude that

|X(ω, t)− µ1| < ζ
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(where, as above, X(ω, t) = maxa∈AX(ω, a, t)). It follows that the aspiration
level, Ht+1(ω), which is adjusted to be some average of its previous value
Ht(ω) and X(ω, t), will also converge to µ1. To be precise, there is T2 ≥ T1

such that for all t ≥ T2,

|Ht(ω)− µ1| < 2ζ .

We wish to show that there exists T (ω, ξ) such that for all t ≥ T (ω, ξ),
all i ∈ O(ω) ∩ I and all j ∈ I the following holds:

K(ω, j, t)
K(ω, i, t)

≤ ξ

n(1− ξ)
.

It will be helpful to start with:

Claim 7.6 For all t ≥ T2, all i ∈ O(ω) ∩ I and all j ∈ I, if ai(ω) = j, then

K(ω, j, t) <
ξ

2n(1− ξ)
K(ω, i, t) .

Proof: Let there be given t, i and j as above. Observe that

U(ω, i, t) = K(ω, i, t)V (ω, i, t) = K(ω, i, t)[X(ω, i, t)−Ht(ω)] ≥ −3K(ω, i, t)ζ

while

U(ω, j, t) = K(ω, j, t)V (ω, j, t) = K(ω, j, t)[X(ω, j, t)−Ht(ω)] ≤ −K(ω, j, t)δ .

The fact that at(ω) = j implies that U(ω, j, t) ≥ U(ω, i, t). Hence

−K(ω, j, t)δ ≥ −3K(ω, i, t)ζ
K(ω, j, t) ≤ 3ζ

δ
K(ω, i, t) .

However, the choice of ζ (as smaller than ξδ
6n(1−ξ)) implies that

3ζ
δ

<
ξ

2n(1− ξ)
.
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We have thus established that

K(ω, j, t) <
ξ

2n(1− ξ)
K(ω, i, t)

for any t at which j is chosen (i.e., at(ω) = j). �

We proceed as follows: let T3 ≥ T2 be such that for all t ≥ T3, at(ω) ∈
O(ω). Let T4 ≥ T3 be large enough so that for all t ≥ T4, a ∈ O(ω) and
c ∈ O(ω),

K(ω, c, t) ≤ ξ

n(1− ξ)
K(ω, a, t) .

Finally, let T5 > T4 be such that for all a ∈ O(ω),K(ω, a, T5) > K(ω, a, T2).
We now have

Claim 7.7 For all t ≥ T5, all i ∈ O(ω) ∩ I and all j ∈ I,

K(ω, j, t) ≤ ξ

n(1− ξ)
K(ω, i, t) .

Proof: Let there be given t, i and j as above. If j ∈ O(ω), the choice of T4

concludes the proof. Assume, then, that j ∈ O(ω). Then, by choice of T5, j
has been chosen since T2. That is,

T t
j ≡ {s|T2 ≤ s < t, as(ω) = j} = ∅ .

Let s be the last time at which j was chosen before time t, i.e., s = maxT t
j .

Note that

K(ω, j, t) = K(ω, j, s + 1)

and

K(ω, i, t) ≥ K(ω, i, s+ 1) .

Hence it suffices to show that

K(ω, j, s+ 1) ≤ ξ

n(1− ξ)
K(ω, i, s+ 1) .
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By Claim 7.6 we know that

K(ω, j, s) ≤ ξ

2n(1− ξ)
K(ω, i, s) .

Since s ≥ T2 ≥ T0, K(ω, j, s) ≥ K ≥ 1. This implies ξ
2n(1−ξ)K(ω, i, s) ≥ 1.

Next, observe that

K(ω, j, s+ 1) = K(ω, j, s) + 1 ≤ ξ

2n(1− ξ)
K(ω, i, s) + 1

≤ ξ

2n(1− ξ)
K(ω, i, s) +

ξ

2n(1− ξ)
K(ω, i, s)

=
ξ

n(1− ξ)
K(ω, i, s) =

ξ

n(1− ξ)
K(ω, i, s+ 1) .

This concludes the proof of Claim 7.7. �

Thus T5 may serve as the required T (ω, ξ). As a matter of fact, our claim
regarding T5 is slightly stronger than that we need to prove regarding T (ω, ξ).
The latter should have the inequality of Claim 7.7 satisfied for some i ∈ I,
while the former satisfies it for all i ∈ O(ω) ∩ I, while Claim 7.5 guarantees
that this set indeed contains some i ∈ I.

At any rate, Claim 7.7 completes the proof of Claim 7.4, which, in turn,
completes the proof of the theorem. �

Proof of Theorem 7.2: The general idea of the proof, as well as the proof
itself, is quite simple: as long as the aspiration level is close to the average
performance of an expected utility maximizing act, the proof mimics that
of Theorem 7.1. The problem is that the decision maker may “lock in” on
sub-optimal acts, which may be almost-satisficing or even satisficing, and not
try the optimal acts frequently enough. However, the fact that the decision
maker is ambitious infinitely often (in the sense of setting the aspiration level
beyond the maximal average performance) guarantees that this will not be
the case. Thus, the fact that NA is infinite ensures that every act will be
chosen infinitely often. On the other hand, the fact that it is sparse implies
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that these periods of ambitiousness will not change the limit frequencies
obtained in the proof of Theorem 7.1.

In the formal proof it will prove convenient to take the following steps:
we will restrict our attention to the event at which all acts that are chosen
infinitely often have a limit average performance close to their expectation.
On this event we will show that the expected utility maximizers among those
acts have a limit choice frequency of 1. Finally, we will show that all acts
are chosen infinitely often, whence the result follows.

We adopt some notation from the proof of Theorem 7.1. In particular,
assume that for some r < n,

µ1 = µ2 = · · · = µr > µr+1 ≥ µr+2 ≥ · · · ≥ µn

and denote

I = argmax
i∈A

µi = {1, 2, . . . , r} .

We will also use

O(ω) = {a ∈ A|K(ω, a, t) −→
t→∞

∞}

and the new notation

I(ω) = argmax{µi|i ∈ O(ω)} .

We would like to focus on the event

B = {ω ∈ Ω|∀i ∈ O(ω), X(ω, i, t) −→
t→∞

µi }.

Since A is finite, the strong law of large numbers guarantees that P (B) = 1
for any consistent P . Thus it suffices to show that for every ω ∈ B, f(ω, I) =
1. We do this in two steps: we first show that f(ω, I(ω)) = 1, and then –
that I(ω) = I.

Claim 7.8 For all ω ∈ B, ∃f(ω, I(ω)) = 1.
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Proof: Let there be given ω ∈ B, and denote µ = µi for some i ∈ I(ω).
Given the proof of Claim 7.4 in Theorem 7.1, it suffices to show that for
every ζ > 0, |Ht(ω)− µ| < ζ holds for all t ∈ N0 where N0 ⊂ N is sparse.

Let ζ > 0 be given, and assume without loss of generality that ζ < δ =
µ−µi

3 for all i ∈ I(ω) and that ζ < h. Let T1 be such that for all t ≥ T1 and
all i ∈ O(ω),

|X(ω, i, t)− µi| < ζ/2 .

Let T2 ≥ T1 be such that for all t ≥ T2, i ∈ O(ω) and j ∈ O(ω),
X(ω, i, t) > X(ω, j, t). Thus, for t ≥ T2, if t ∈ NA, Ht(ω) is adjusted towards
X(ω, t), which equals X(ω, i, t) for some i ∈ O(ω), where the latter is close
to µ. Since for t ∈ NA Ht(ω) is set to X(ω, t) + h, there exists T3 ≥ T2 such
that for all t ≥ T3,

|Ht(ω)− µ| < 2h .

We now wish to choose a number k, such that any sequence of k periods
following T3, at which Ht(ω) is adjusted “realistically”, that is, as an average
of Ht−1(ω) and X(ω, t), will guarantee that it ends up ζ-close to µ.

Let k > logα(ζ/4h). Define

NA ⊕ k =
{
t ∈ N

∣∣∣∣t = t1 + t2 where

t1 ∈ NA and 0 ≤ t2 ≤ k

}
.

Note that for t ≥ T3, if t ∈ NA ⊕ k, i.e., if t is at least k periods after the
most recent “ambitious” update, we have

|Ht(ω)− µ| < ζ .

Setting N0 = (NA ⊕ k) ∪ {1, . . . , T2} (and noting that it is sparse) com-
pletes the proof. �

Claim 7.9 For all ω ∈ B, I(ω) = I.
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Proof: It suffices to show that O(ω) = A for all ω ∈ B. Assume, to the
contrary, that for some ω ∈ B, j ∈ A and L ≥ 1, K(ω, j, t) ≤ L for all t ≥ 1.
Let i ∈ O(ω). For any t ∈ NA,

U(ω, i, t) = K(ω, i, t)V (ω, i, t) = K(ω, i, t)[X(ω, i, t)−Ht(ω)] < −hK(ω, i, t) .

Let T4 ≥ T3 be such that for all t ≥ T4, at(ω) = j. Recall that for all t ≥ T4,
Ht(ω) < µ+ 2h. Consider t ∈ NA such that t ≥ T4. Then

U(ω, j, t) = K(ω, j, t)V (ω, j, t) = K(ω, j, t)[X(ω, j, t)−Ht(ω)] > −LC

where C = µ + 2h −X(ω, j, T3). That is, U(ω, j, t) is bounded from below.
Since for a large enough t ∈ NA, U(ω, i, t) is arbitrarily small for all i ∈
O(ω), we obtain a contradiction to U-maximization. Thus we conclude that
O(ω) = A. This concludes the proof of the claim and of the theorem. �



186 CHAPTER 7. LEARNING AND INDUCTION

19 Learning the Similarity Function

19.1 Examples

Sarah wonders which of two new movies, a and b, she should see tonight.
Let us consider her choice given two memories. In the first, M1, there is only
one case: Jim saw movie a and liked it. In the second, M2, there are several
cases involving other movies (but not a or b). It turns out that there are
many movies that, in M2, were seen by both Sarah and Jim, but none that
they both liked.

Given memory M1, Sarah is likely to decide to see movie a. After all,
all that she knows is that Jim liked it, and this is more than can be said of
movie b. Given memory M2, in which neither a nor b appear, Sarah is likely
to be indifferent between the two movies. But given the union of M1 and
M2, Sarah may conclude that she has no chance of liking movie a, precisely
because Jim did like it, and opt for movie b.

This is a direct violation of the combination axiom of Chapter 3.3 It is
therefore a phenomenon that cannot be captured by W -maximization. The
reason is that the combination axiom implicitly assumes that the algorithm
by which one learns from cases, and the support that a case c provides to
choice a do not change from one memory to another. But in the example
above one learns how to learn from experience. Specifically, memory M2

suggests that Sarah and Jim have very different tastes, and the fact that he
liked a movie (M1) should detract from its desirability in Sarah’s eyes, rather
than enhance it.

To consider another example, assume that Mary has to choose a car.
Cars are either green or blue, and they are of make 1 or 2. Mary had a good
experience with a green car of make 1 (G1), and a bad experience with a blue
car of make 2 (B2). Now she has to choose between a green car of make 2
(G2) and a blue one of make 1 (B1). Both are similar to some degree to both

3This example is based on an example suggested to us by Sujoy Mukerji.
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past cases. Specifically, each new choice shares the color attribute with one
case and the make attribute with the other. Hence the choice between G2 and
B1 entails an implicit ranking of the attributes in the similarity judgment.
Indeed, if Mary is three years old, she is likely to base her similarity judgment
mostly on color. But if Mary is thirty years old, she is likely to put more
weight on the make of the car than on its color in judging similarity. Namely,
she would consider G2 similar to B2, and B1 – similar to G1, and prefer B1
to G2.

The reason that the adult Mary puts more weight on the make attribute
than on the color attribute is that past experience shows that the make of
the car is a better predictor of quality than the car’s color. In other words,
past cases are used to define the similarity function, which, in turn, is used to
learn from these cases about the future. For concreteness, assume that Mary
has six cases in her memory. In the first four she has used red (R) and white
(W) cars both of make 3 and of make 4. The last two are cases G1 and B2
discussed above. We would like to consider her preference between G2 and B1
given three different memories. In the table below, each column corresponds
to a problem-act pair, and each row describes a possible history, specifying
the utility of the outcome that was experienced in each case. Observe that
Mary cannot choose among rows in this table. Rather, given a possible
memory, represented by a row, she is asked to choose between G2 and B1.

possible
memories Problem-act pairs

R3 R4 W3 W4 G1 B2
x 1 -1 1 -1 1 -1
y 1 1 -1 -1 -1 1

x+ y 2 0 0 -2 0 0

In memory x, past cases with other makes (3 and 4) and other colors
(R and W) can be summarized by the observations that cars of make 3 are
good, and that cars of make 4 are bad, regardless of color. This indicates
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that make is a more important attribute than is color. Further, this example
corresponds to the history we started with: G1 was a good experience, while
B2 was a bad one. Thus it makes sense that history x would give rise to
preferring B1 to G2. Memory y, by contrast, differs in two ways. First,
the first four cases are consistent with the simple theory that all red cars
are good, and all white cars are not, regardless of the make. Second, the
experiences in G1 and in B2 are the opposite of their counterparts in the
story above: now G1 ended up in a bad experience while B2 resulted in
success. Thus memory y supports the child’s similarity function, and this,
in turn, favors B1 to G2, since B1 is of the same color as the car involved in
the good experience B2.

Consider now a hypothetical memory generated by the sum of the util-
ity vectors, x + y. This summation corresponds to a memory from which
one cannot infer much about the relative importance of the color and make
attributes. Moreover, the history of G1 and B2 makes them completely equiv-
alent. Hence, even if one knew what similarity function to use, by symmetry
one would have to be indifferent between G2 and B1.

Thus, under both x and y, a reasonable decision maker such as Mary
would prefer B1 to G2. But given the memory x + y, she is indifferent
between them. Assuming that the payoff numbers are measured on a utility
scale, this is a contradiction to U ′-maximization. Specifically, the formula

U ′(a) = U ′
p,M (a) =

∑
(q,b,r)∈M

s((p, a), (q, b))u(r) . (•)

implies that if a is preferred to b given a set of cases {(qi, bi, ri)}i, and
if a is preferred to b given the cases {(qi, bi, r′i)}i, then the same preference
should be observed given the cases {(qi, bi, r′′i )}i when u(r′′i ) = u(ri) + u(r′i).
This additivity condition trivially holds when the similarity function is fixed,
but it need not hold when the similarity function is learned from experience.
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Generally, we distinguish between two levels of inductive reasoning in the
context of CBDT. “First order” induction is the process by which similar past
cases are implicitly generalized to bear upon future cases, and, in particular,
to affect the decision in a new problem. CBDT, as presented above, attempts
to model this process, if only in a rudimentary way. “Second order” induction
refers to the process by which the decision maker learns how to conduct first-
order induction, namely, how to judge similarity of problems. The current
version of CBDT does not model this process. Moreover, it implicitly assumes
that it does not take place at all.

19.2 Counter-example to U-maximization

It may be insightful to explicitly see how second-order induction may also
violate U-maximization. Consider the following example: this afternoon,
John wants to order tickets to a concert, and he can do it either by phone
(P) or by accessing a Web site (W). He would like to minimize the time and
hassle of the process. John’s experience is as follows. He has once ordered
tickets to a ballet by phone (at a different hall) in the afternoon, and the
procedure was short and efficient. He has also ordered tickets to a concert (at
the same hall) by the Web, and this experience was also painless, but then
John made the transaction at night. John is aware of the fact that different
halls vary in terms of the phone and internet services they offer. He is also
aware of the fact that the time of day may greatly affect his waiting time.
Thus, the decision problem boils down to the following question: should
John assume that ordering tickets for the concert hall in the afternoon is
more similar to doing so at night, or to ordering tickets for a ballet in the
afternoon? That is, which feature of the problem is more important: the hall
where the show is performed or the time of day?

In the past, John has also ordered tickets, both by phone and through the
Web, for movie theaters. He has plenty of experience with movie theaters
1 and 2, where he ordered tickets in the morning and in the evening, with
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varying degrees of success. John does not view his experience with movie
theaters as relevant to the concert hall. But this experience might change the
way he evaluates similarities. For concreteness, let us compare two scenarios,
both represented by the matrix below. In this matrix, columns stand for
decision problems encountered in the past, whereas rows – for acts chosen.
The problems are assumed distinct. “M1” stands for ordering tickets to
movie theater 1 in the morning; “E2” – for movie theater 2 in the evening,
and so forth. “AB” stands for ordering tickets to the ballet in the afternoon,
and “NC” – to the concert hall at night. The numerical entries in the matrix
represent the payoffs obtained when an act was chosen in a given problem,
that is, the values of the function u, and blank entries mean that the act
corresponding to the row was not chosen in the problem corresponding to
the column. For the purposes of U -maximization, we may think of the blank
entries as zero payoffs.

In the first scenario, John’s experience with phone orders is represented
by the vector x, where 1 stands for short wait, −1 – for long wait, and his
experience with Web orders is represented by the vector y. In the second
scenario, the history of phone orders is given by the vector z, and that of
Web orders – by w. The vector d does not represent an act in our story
and will only be used to facilitate the algebraic description. Observe that it
would be incoherent to compare, say, the vectors x and z, since both have
non-blank values in certain columns, whereas only one act can be chosen in
a given past problem. By contrast, vectors x and y can be the histories of
two different acts in a given memory, and so can vectors z and w.

Consider the first scenario, where John has to choose between using the
phone, with history x, and using the Web, with history y. John’s experience
with movie theaters clearly indicates that the morning is a better time to
place an order than is the evening. This particular fact is not of great help
to John, who has to order tickets in the afternoon. Moreover, John is now
ordering tickets to a concert, rather than to a movie, and it may well be the
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case that movie fans are on a different schedule than are concert audience.
Still, John might infer that the time of day is a more important attribute
than is the particular establishment. John’s experience with halls include
a success with a phone call made in the afternoon for ballet tickets, and a
success with a Web order made at night for concert tickets. The former might
be taken to suggest that the afternoon is a good time to call, favoring P to
W. The latter tentatively offers the generalization that the concert hall Web
system works fine, favoring W to P. Which of the two recommendations is
more convincing? Given the experience with movie theaters, which supports
generalizations based on the time of day rather than on the establishment,
John is likely to give more weight to the afternoon order at the ballet and
prefer a phone call, namely, choose an act with history x over one with history
y.

By contrast, in the second scenario John faces a choice between an act
with history z and an act with history w. Both histories suggest that movie
theater 1 has an efficient ordering service, whereas movie theater 2 does not.
Again, this information per se is not very useful when ordering tickets to a
concert, which is in a hall having nothing to do with either movie theater.
But this piece of information also indicates that establishments do differ from
each other, while the time of day is of little or no importance. This conclusion
would imply that John should rely on his night experience at the concert hall
more than on his afternoon experience at the ballet, and opt for a Web order,
namely, choose an act with history w over one with history z.

act
profiles Problems

M1 M2 E1 E2 M1 M2 E1 E2 AB NC
x (P) 1 1 -1 -1 1
y (W) -1 -1 1 1 1
z (P) 1 1 -1 -1 1
w (W) -1 -1 1 1 1

d -1 1 -1 1
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However, this preference pattern is inconsistent with U-maximization for
any fixed similarity function s. Indeed, for every s, since z − x = w− y = d,
we have

U(z)− U(x) = U(w)− U(y) = U(d)

implying

U(x)− U(y) = U(z)− U(w) .

That is, x is preferred to y if and only if z is preferred to w, in contradiction
to the preference pattern we motivated above.

Similar examples may be constructed, in which the violation of U -maximization
stems from learning that certain values of an attribute are similar, rather
than that the attribute itself is of importance. For example, instead of learn-
ing that the establishment is an important factor, John may simply learn
that the concert hall is similar to the ballet theater.

In the previous subsection we generated a counter-example toW -maximization
by a direct violation of the combination axiom. For concreteness we have also
constructed counter-examples to U ′- and to U -maximization. Indeed, all
these functions are additively separable across cases, whereas second-order
induction renders the weight of a set of cases a non-additive set function.
Several cases, taken in conjunction, may implicitly suggest a rule. Hence the
effect of all of them together may differ from the sum of effects of each one,
considered separately. Differently put, the “marginal contribution” of a case
to preferences depends not only on the case itself, but also on the other cases
it is lumped together with.4

4A possible generalization of CBDT functions that may account for this phenomenon
involves the use of non-additive measures, where aggregation of utility is done by the
Choquet integral. (See Schmeidler (1989).)
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19.3 Learning and expertise

The distinction between the two levels of induction may also help classify
types of learning and of expertise. A case-based decision maker learns in
two ways: first, by introducing more cases into memory; second, by refining
the similarity function based on past experiences. Knowing more is but one
aspect of learning. Making better use of known cases is another. Correspond-
ingly, the notion of expertise combines knowledge of cases and the ability to
focus on the relevant analogies.

Knowledge of cases is relatively objective. By contrast, knowledge of the
similarity function is inherently subjective.5 Correspondingly, it is easier to
compare people’s knowledge of cases than it is to compare their knowledge
of similarity. It is natural to define a relation “knows more than” when cases
are considered: a person (or a system) knows more cases than another if
the memory of the former is a superset of that of the latter. The concept
of “knowing more” is more evasive when applied to the similarity function.
In hindsight, a similarity function that leads to better decision making can
be viewed as better or more precise. But it is difficult to provide an a-priori
formal definition of “having a better similarity function”. It is relatively easy
to find that an expert has a vast database to draw upon. It is harder to know
whether she makes the “right” analogies when using it.

In Section 13 we discussed the two roles that rules may play in a case-
based knowledge representation system. These two roles correspond to the
two types of knowledge and to the two levels of induction. The first role, of
summarizing many cases, conveys knowledge of cases. First-order induction
suffices to formulate such rules: given a similarity function, one generates a
rule by lumping similar cases together.6 The second role, of drawing attention

5True, even “objective” cases and alleged “facts” may be described, construed, and
interpreted in different ways. But they are still closer to objectivity than are similarity
judgments.

6Notice, however, that this is first-order explicit induction, that is, a process that
generates a general rule, as opposed to the implicit induction performed by CBDT.
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to similarity among cases, conveys knowledge of similarity. One needs to
engage in second-order induction to formulate such rules: the similarity has
to be learned in order to observe the regularity that the rule should express.

These distinctions may have implications for the implementation of com-
puterized systems. A case-based expert system has to represent both types
of knowledge. As a result of programming necessity, cases will typically be
represented by a database, whereas similarity judgments might be implicit
in the software. The discussion above suggests that such a distinction is also
conceptually desirable. For instance, one may wish to use one expert’s knowl-
edge of cases with another expert’s similarity judgments. It might therefore
be useful to represent cases in a way that is independent of the similarity
function.

Finally, we remind the reader that in Section 13 we argued that case-
based systems enjoy a theoretical advantage when compared to rule-based
systems: case-based knowledge representation incorporates modifications in
a smooth way. This advantage exists also in the presence of second-order
induction. Second-order induction may induce updates of similarity values,
and this may lead to different decisions based on the same set of cases. But
this process does not pose any theoretical difficulties such as those entailed
by explicit induction.
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20 Two Views of Induction: CBDT and Sim-
plicism

20.1 Wittgenstein and Hume

Case-based decision making involves implicit first- and second-order induc-
tion. To what extent can it serve as a model of inductive reasoning or induc-
tive inference? How does it compare with explicit induction, namely, with
the formation of rules or general theories? This section is devoted to a few
preliminary thoughts on these questions.

How do people use past cases to extrapolate the outcomes of present
circumstances? Wittgenstein (1922, 6.363) suggested that people tend to
engage in explicit induction:

“The procedure of induction consists in accepting as true the
simplest law that can be reconciled with our experiences.”7

The notion of simplicity is rather vague and subjective. (See, for instance,
Sober (1975) and Gärdenfors (1990).) Gilboa (1994) suggests employing
Kolmogorov’s complexity measure for the definition of simplicity. In this
model, a theory is a program that can generate a prediction for every instance
it accepts as input. It is then argued, as a descriptive theory of inductive
inference, that people tend to choose the shortest program that conforms to
their observations. This theory is referred to as “simplicism”. Its prediction
is well defined given a programming language. Yet the choice of language is
no less subjective than the notion of simplicity. Indeed, simplicism merely
translates the choice of a complexity measure to the choice of the appropriate
programming language.

By contrast, our starting point is Hume’s claim that “from similar causes
we expect similar effects”. That is, Hume offers an alternative descriptive

7Observe that this statement has a descriptive flavor, as opposed to the normative
flavor of Occam’s razor.
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theory of inductive reasoning, namely, that the process of implicit induction is
based on the notion of similarity. Thus, Hume may be described as referring
to implicit induction, based on the (vague and subjective) notion of similarity,
whereas Wittgenstein may be viewed as defining explicit induction, based on
the (vague and subjective) notion of simplicity.

It is tempting to contrast the two views of induction. One way to do so is
by choosing a formal representation of each theory. As an exercise, we here
take Wittgenstein’s view of explicit induction as modeled by simplicism, and
Hume’s view of implicit induction as modeled by CBDT, and study their
implications in a few simple examples. Two caveats are in order: first, any
formal model of an informal claim is bound to commit to a certain inter-
pretation thereof; thus the particular models we discuss may not do justice
to the original views. Second, both similarity and language are inherently
subjective notions. Hence, the formal models we discuss here by no means
resolve all ambiguity. Even with the use of these models, much freedom is
left in the way the two views are brought to bear on a particular example.
Yet, we hope that the analysis of a few simple examples might indicate some
of the advantages of both views as theories of human thinking.

20.2 Examples

Consider a simple learning problem. Every item has two observable at-
tributes, color and shape. Each attribute might take one of two values. Color
might be red (R) or blue (B) whereas shape might be a square (S) or a circle
(C). The task is to learn a concept, say, of “nice” items, Σ, that is fully
determined by the attributes. Formally, Σ is a subset of {RS,RC,BS,BC}.
We are given positive and/or negative examples to learn from. An example
states that one of RS, RC, BS, or BC is in Σ (+) or that it is not (−). We
are asked to extrapolate whether a new item is in Σ, based on its observable
attributes (again, one of the pairs RS, RC, BS, or BC). The set of examples
we have observed, namely, our memory, may be summarized by a matrix, in
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which the symbol “+” stands for “such items are in Σ”, the symbol “−”
stands for “such items are not in Σ”, and a blank space is read as “such
items have not yet been observed”. Finally, a “?” would indicate the next
item we are asked about. For instance, the matrix

1 S C

R +

B ?

describes a database in which a red square (RS) is known to be nice, and
we are asked about a blue circle (BC).

Let us proceed with this example. Knowing only that a red square is
nice, would a blue circle be nice as well? Not having observed any negative
examples, the simplest theory in any reasonable language is likely to be “All
items are nice”, predicting “+” for BC. Correspondingly, if we assume that
all items bear some resemblance to each other, a case-based extrapolator will
also come up with this prediction.

Next consider the matrices

2 S C

R + −
B ?

3 S C

R − +

B ?

In matrix 2, the simplest theory would probably be “an item is nice if and
only if it is a square”, predicting that BC is not in Σ. The same prediction
would be generated by CBDT: since BC is more similar to RC than it is
to RS, the former (non-nice) example would outweigh the latter (nice) one.
Similarly, simplicism and CBDT will concur in their prediction for matrix 3,
predicting that BC is nice. We also get similar predictions for the following
two matrices:
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4 S C

R +

B − ?

5 S C

R −
B + ?

However, the two methods of extrapolation might also be differentiated.
Consider the matrices

6 S C

R + ?

B −

7 S C

R +

B ? −

The observations in both matrices are identical. The simplest rule that
accounts for them is not uniquely defined: the theory “an item is nice if and
only if it is red”, as well as the theory “an item is nice if and only if it is
a square” are both consistent with evidence, and both would be minimizers
of Kolmogorov’s complexity measure in a language that has R and S as
primitives. (As opposed to, say, their conjunction.) Each of these simplest
theories would yield a positive prediction in one matrix and a negative one
in the other. By contrast, assuming that color and shape are symmetric,
the CBDT classification would leave us undecided between a positive and a
negative answer in both matrices.

In matrices 6 and 7 the prediction provided by CBDT appears more
satisfactory than that of simplicism. In both matrices the evidence for and
against a positive prediction is precisely balanced. Simplicism comes up with
two equally simple but very different answers, whereas CBDT reflects the
balance between them. Since CBDT uses quantitative similarity judgments,
and produces quantitative evaluation functions, it deals with indifference
more graciously than do simplest theories or rules. In a way that parallels
our discussion in Section 13, we find that CBDT behaves more smoothly at
the transition between different rules.
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It is natural to suggest that simplicism be extended to a random choice
among all simplest theories, or an expected prediction of a theory chosen
randomly. Indeed, in matrices 6 and 7 above, if we were to quantify the pre-
dictions and take an average of the predictions of the two simplest theories,
we will also be indifferent between a positive and a negative prediction. But
once we allow weighted aggregation of theories, we would probably not want
to restrict it to cases of indifference. For instance, suppose that a hundred
theories, each of which has Kolmogorov complexity of 1,001 (say, bits), agree
on a prediction, but disagree with the unique simplest theory, whose complex-
ity is 1,000. It would be natural to extend the aggregated prediction method
to this case as well, allowing many almost-simplest theories to outweigh a
single simplest one. But then we are led down the slippery path leading to
a Bayesian prior over all theories, which is a far cry from simplicism.

An example of more pronounced disagreement between CBDT and sim-
plicism is provided by the following matrix.

8 S C

R + +

B − ?

The simplest theory that accounts for the data is “an item is nice if and
only if it is red”, predicting that a blue circle is not nice. What will be the
CBDT prediction? Had RS not been observed, the situation would have
been symmetric to matrices 6 and 7, leaving a CBDT predictor indifferent
between a positive and a negative answer. However, the similarity between
RS and BC is positive, as argued above. (If it were not, CBDT would not
yield a positive prediction in matrix 1.) Hence the additional observation
tilts the balance in favor of a positive answer.

Observe, however, that the derivation of the CBDT prediction in matrix
8 relies on additive separability. That is, we only allow CBDT to employ
first-order induction. But if we extend CBDT to incorporate second-order



200 CHAPTER 7. LEARNING AND INDUCTION

induction, the three observations in matrix 8 do indicate that color is a more
important attribute than is shape. If this is reflected in the weight that the
similarity function puts on the two attributes, BC will be more similar to
BS than to RC. If this difference is large enough, the fact that a blue square
is not nice may outweigh the two nice red examples.

Second-order induction can also be defined in the context of simplicism.
A simplicistic predictor chooses simplest theories given a language, but she
can also learn the language, in an analogous way to learning the similarity
function in CBDT. Consider Mary of Section 19 again. We have argued that,
as compared with children, most adults learn to put less emphasis on color
as a defining feature of a car’s quality. In both models, this type of learning
falls under the category of second-order induction: in CBDT, as we have
seen, it would be modeled by changing the similarity function so that the
weight attached to color in similarity judgments is reduced. In simplicism,
it would be captured by including in the language other predicates, and
perhaps dispensing with “color” altogether. Observe that in this respect,
too, the quantitative nature of CBDT may provide more flexibility than the
qualitative choice of language in simplicism.

To sum, CBDT appears to be more flexible than does simplicism. Implicit
induction seems to avoid some of the difficulties posed by explicit induction.
Yet, modeling only first order induction is unsatisfactory. It remains a chal-
lenge to find a formal model that will capture Hume’s intuition and allow
quantitative aggregation of cases, without excluding second-order induction
and refinements of the similarity function.
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