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PREFACE 
 

It is a great pity that I have to write these few paragraphs on the 

last book by Emil Ginsburg when he, as first author, is no longer with us. 

Emil considered science and the opportunity to do science as one of the 

major values and pleasures one may have in life. He was a very critical 

person and very demanding of others, especially of his friends; they repaid 

him with love. His inability to make the compromises necessary for the 

routine of scientific life in the Soviet was a challenge to him, requiring a 

lot of spirit and courage and making him a standard of integrity.  

         He was one of the first investigators in the former USSR who 

understood the theoretical and practical limitations of the classical 

biometrical genetics approach to quantitative traits, built on the statistical 

concept of heritability, and considered Mendelian analysis to be a 

promising alternative. For many years, we could hardly find anyone else to 

support either side of our opposing views when we discussed quantitative 

genetics together. Unlike me, he considered segregation analysis to be an 

important tool for unraveling the genetic basis of quantitative variation, 

whereas I was more biased toward marker analysis as a major tool.  

 Emil’s contribution to pedigree analysis is very impressive.  He 

developed a unified approach to genetic analysis, allowing for the 

simultaneous treatment of data on qualitative and quantitative characters, 

for either controlled crosses or samples from populations with arbitrary 

family structures. His method allowed for linkage, viability disturbances, 

competition, differential penetrances, etc., with the possibility of testing 

hypotheses about gene action (major gene, combination of major gene and 

polygenes). Some of his results established the basis for the original 



 

algorithms implemented in a software package for pedigree analysis, 

MAN.                                           

 One of Emil’s major interests was the genetics of quantitative 

variation. The analysis of quantitative traits was for many decades 

considered one of the most difficult fields of genetics. Basically, the 

situation has not much changed with the evolving genome paradigm and 

genomic technologies. The subject of this book is the theoretical 

foundation of pedigree analysis, with complex (quantitative) traits being its 

major focus, especially in the context of human genetics. It can be 

considered as an attempt to discuss  in a comprehensive fashion the basic 

concepts and notions of pedigree analysis, a thorough inspection of its 

applicability and limitations, and the corresponding statistical 

methodologies and challenges. The subjects reviewed and discussed 

include pedigree sampling, likelihoods on pedigrees, parameterization 

problems and model comparisons, various formulations of complex trait 

analysis on pedigrees (continuous, binary, longitudinal), model-based vs. 

model-free linkage analysis, perspectives on and limitations of the genetic 

dissection of complex traits, etc. Emil made valuable contributions to 

many of these problems, which are only partly reflected in this book.  I 

believe that this book will be very helpful to those engaged in both 

research and teaching of quantitative genetics.  

 

 

Abraham Korol 

Professor of Genetics 

Institute of Evolution, University of Haifa 



 

 

 

A fairly complete draft of this book was written by Emil Ginsburg 

before his death, our contribution being one of rephrasing, clarifying and 

updating what were essentially his ideas. Nevertheless, we have tried hard 

to keep the spirit of Emil’s writing. This has been no easy task. Emil was 

not a native English speaker and his desire to explain each idea as 

precisely and comprehensively as possible sometimes resulted in lengthy 

phrases and sentences that were difficult to understand. On the one hand, 

we did not want to completely change everything; and on the other hand, 

we wanted to clarify as much as possible the phrases and terminology Emil 

used. We hope we have succeeded in making this body of theoretical 

work, especially the whole new way of viewing pedigree ascertainment (a 

topic that was first investigated by Weinberg almost a hundred years ago), 

including the selective inclusion of pedigree data in the dataset that is 

eventually analyzed, accessible to a wider audience. In this book, those of 

us who have studied and contributed to the theory of pedigree analysis will 

find much to ponder over. We always enjoyed discussing pedigree analysis 

with Emil; and we fervently hope that our work on this book will help 

keep alive his incisive contributions to the topic. 

 

Robert C. Elston. Ida Malkin. 

 

Cleveland, Ohio, August 2005. Tel Aviv, September 2005 
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 10 

INTRODUCTION 
 

 Let us define the inheritance of a trait as the mechanism by which 

the joint phenotypic distribution of that trait in members of any pedigree 

can be explicitly described. If the inheritance of a trait is known, it is 

possible to make a probabilistic prediction about the joint co-variation and 

co-segregation of its phenotypic characteristics in pedigree members in 

future generations. The study of trait inheritance is called pedigree 

analysis because the inheritance of the trait being studied is made 

explicit by collecting and studying a sample of pedigrees. We assume 

that the interdependence between the phenotypic characteristics of the 

members in each sampled pedigree implicitly reflects the real 

inheritance of the trait being studied. 

 Most widely used is genetic pedigree analysis, in which a 

description of the trait inheritance is made assuming that the main 

factors underlying this inheritance are genes – the DNA segments 

positioned on the chromosomes and transmitted from parent to offspring in 

accordance with Mendelian laws.  

 When describing the trait inheritance, we suppose that the genes 

involved in the control of this trait can be unambiguously identified, and 

that their separate and joint phenotypic distributions can be predicted for 

each environmental condition. This knowledge can be further used in 

practice to predict later disease development in a patient, to find the 

optimal treatment he/she should be given, etc. In other words, the trait 

inheritance is defined in such a way that, using phenotypic data on other 

pedigree members, we can determine the physiological status expected in 

an individual to be completely characterized by his/her specific genetic 
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make-up and environment. At present we are far from such knowledge, 

although various techniques (biochemical, molecular, mathematical, etc.) 

are being actively used to obtain it.  

 A widely used approach to study the inheritance of a particular 

function of an organism is to describe it with the use of mathematical-

genetic models. The initial stage of this modeling requires the choice of 

one or several traits describing the biological function to be studied. Then 

mathematical-genetic models for the inheritance of these traits are 

formulated and tested, using pedigree samples collected from a particular 

population. The pedigree comes to the attention of the researcher as a 

structured subset of its members, this structure being determined by 

the relationships among the pedigree members. As already stated, we 

suppose that the pedigree implicitly contains details of the trait’s mode 

of inheritance through the co-variation and co-segregation of the trait 

characteristics among the pedigree members. Using specially 

constructed statistical tests, a formal model of trait inheritance is tested 

and either rejected or accepted as a satisfactory description of the mode of 

inheritance. If accepted, the model thus constructed is used to solve 

practical problems that are directly suggested by the model’s ability to 

make predictions. The basic factors of the trait inheritance formulated by 

such a model are the same as they are in any other technique: the genes 

controlling the trait inheritance, their phenotypic distribution in different 

environmental conditions, etc.  

Being only one of many approaches, pedigree analysis results in a 

detailed description of the trait inheritance when combined with other, less 

formal, methods of study - such as physiological, cytogenetic and 

molecular-genetic methods. Only by combining the information obtained 
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by different techniques can we obtain an adequate and (relatively) 

complete description of the inheritance, which can then be later used in 

various applications. 

Until recently, a distinction has been made between two versions of 

pedigree analysis, segregation analysis and linkage analysis. In the former, 

the genetic model of the trait inheritance is constructed using the pedigree 

sample, which by assumption contains the necessary information about the 

true trait inheritance, expressed implicitly through the joint phenotypic co-

segregation in the collected pedigree members. In the latter, linkage 

analysis, the purpose has been to localize in specific chromosomal 

segments the putative gene(s) established in the segregation analysis. This 

distinction in purpose of these two types of analysis was accompanied by 

differences in the sampling design used to collect the pedigree sample and 

in the statistical techniques used.  

 Recent advances in pedigree analysis have caused us to reconsider 

this comparatively simple scheme. First of all, we have come to appreciate 

that segregation analysis is a procedure with very limited capabilities. 

Although a genetic model for the trait inheritance can be formulated and 

statistically tested using a pedigree sample, and a determination made 

whether or not to accept what is found as an adequate mathematical-

genetic description of the trait inheritance, the result can be trusted only if 

the trait is under relatively simple genetic and environmental control – or, 

to be more correct, if the function phenotypically characterized by the trait 

under study is controlled by genes and environmental factors in a 

relatively simple manner. However, most human characteristics, especially 

those describing the human organism as a whole and directly related to an 

individual’s physiological status and his/her health, are not inherited in a 
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simple fashion. Their genetic and environmental control is so complicated 

that it is hardly conceivable that a simple genetic model can adequately 

describe their inheritance.  

The second advance that has substantially changed the classical 

scheme of pedigree analysis is the successful completion of the Human 

Genome Project, providing a large number of DNA marker loci all along 

the human genome. Accordingly, the direction of pedigree analysis has 

shifted. Using the possibilities presented by the results of the Human 

Genome Project, the main productive technique of pedigree analysis has 

become linkage analysis. As was noted by Rao (1998, p.2), “…whereas 

linkage analysis has been used in the past merely to map genes that were 

already known to exist, linkage analysis of complex traits serves a dual 

purpose: first, to prove the very existence of a trait gene, and then to map 

it”.  

 This change in the formulation of the pedigree analysis problem 

has been accompanied by a corresponding change in the design of 

pedigree samples and in formulating genetic models, and in the statistical 

methods used. Elston (1998) distinguished model-based and model-free 

pedigree analyses. In the first, we formulate models of the trait inheritance 

and the sampling procedure that are used, while in the second the analysis 

proceeds without such explicit models. The complementary nature of these 

two methods of pedigree analysis, and how they relate to each other, is a 

problem that has to be clearly formulated and solved. Moreover, the very 

construction of a genetic model describing the inheritance of a 

multifactorial trait under study becomes different from that used in earlier 

segregation analysis. Usually, the analysis results in the construction of a 

complex compound genetic model, which, rather than describing the trait 
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inheritance as a whole, results in a set of component genetic models each 

describing the phenotypic effects of the different genes that control trait 

being studied. These component models are then combined, taking into 

account the possible pleiotropic gene effects and common environmental 

factors modifying their phenotypic distributions. This is a much more 

complicated task, but it appears to be the only way to describe in an 

adequate fashion the multifactorial traits that are currently being studied. 

 Thus model-free and model-based analyses are used to solve 

different problems: the first is directed towards establishing the very 

existence of genes taking part in the trait control and identifying them by 

localizing their positions on chromosomal segments (with whatever 

accuracy the set of marker loci used can provide), while the second is 

directed towards constructing a mathematical-genetic model describing the 

inheritance of the trait (the joint distribution of phenotypes in the pedigrees 

analyzed) and towards testing that model on the pedigree sample. 

Currently, attempts are being made to develop a practical strategy to unite 

these two kinds of pedigree analysis in a complementary way, for example 

by using the results of the model-free approach to improve, i.e., to make 

more effective, the prognostic capabilities of the mathematical-genetic 

model for the inheritance of the trait under study.  

 In what follows, we consider the theoretical aspects of pedigree 

analysis, concentrating mostly on defining its basic concepts, on a detailed 

description of the situations when these concepts can be properly used, and 

on ways of formulating pedigree analysis problems. 



 15

1.  BASIC DEFINITIONS 

1.1. Population 

 The process of determining the inherited characteristics of 

individuals in subsequent generations takes place, and therefore can be 

studied, on large groups of individuals more or less separated from one 

another.  

 Let us define a population as an “inwardly connected” and 

“outwardly isolated” set of individuals sharing a common range of 

environmental conditions. The inward connectivity means that there is 

a non-zero probability that any pair of individuals of opposite sex will 

have descendents in future generations of that population. The 

outward isolation means that this probability is substantially less for 

an individual from one population and any other individual from a 

different population. Each population is characterized by its 

relationship structure, meaning that a specific relationship 

“connection” exists for each pair of individuals (parents and offspring, 

siblings, cousins of different lineages, and so on up to unrelated or 

individuals with unknown relationship, if there are any such that 

exist). 

 The characteristics of each population, its size, its relationship 

structure, its particular mating structure - in short, all the population 

characteristics that distinguish it from other such populations - are usually 

fully determined by its origin and later history, including all demographic, 

social, cultural and other processes. 
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1.2. Trait - phenotype 

The trait is defined as any characteristic describing a certain 

biological function of the persons in the study population. How to 

characterize this function is usually determined by the instruments 

available to the investigator. In some cases, the method of characterizing 

the function is almost uniquely determined (height, weight, etc). In other 

cases, the same function can be described by different traits. The 

instrument that is adopted usually has no direct connection with the 

biological, in particular the genetic, nature of the function being studied. 

This is why its characterization by a particular trait is also termed 

phenotypic (from the Greek word meaning “appearance”), and any 

individual characteristic is called a phenotype. 

Depending on the manner in which the characteristic is measured 

(whether a categorical description or a continuous measurement) the trait 

can be qualitative, in particular binary, quantitative (discrete or 

continuous), or complex. In the first case, the function is described by a set 

of categories or types, while in the second a numerical measure of the 

biological function is introduced. Both qualitative and quantitative traits 

can be observed or measured as a single value, or be represented by a 

vector of results, numerical or categorical, of several observations and/or 

measurements. A complex trait is represented by an array of qualitative 

and/or quantitative traits, each obtained as a single observation 

(measurement) or as a function of several observations.  
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1.3. Gene, genotype 

 Inheritance can be defined as a set of correlations between the 

degree of two individuals’ relationship and their level of phenotypic 

similarity (Galton, 1888; Pearson, 1920). 

In genetics, the concept most often used to describe inheritance is 

the gene. Presently, molecular, biochemical and cytogenetic studies have 

produced such a complicated and multi-semantic construction called 

“gene” that it is doubtful whether a complete and exhaustive definition of 

this term can be reasonably proposed. In the limited context of our present 

considerations, the following definition can be considered satisfactory: 

 A gene is a hereditary unit that has the following three 

necessary properties: 

 (i) The gene is represented by a certain chromosomal segment (from 

this originates the second, almost equivalent term, genetic locus).  

(ii) The gene is transmitted from parents to offspring according to 

Mendelian rules of segregation (nowadays what is transmitted is often 

termed an allele, to distinguish it from the locus; and  

(iii) The gene takes part in the control of the trait’s inheritance. 

For the sake of convention, we shall call the chromosomal 

segment that takes part in the trait’s phenotypic control a gene, and 

its chromosomal position a locus - often known on the basis of a 

nearby marker locus. 

 Thus the gene is defined here as a Mendelian factor controlling the 

inheritance of a trait. From an information point of view, the gene can be 

considered to be an instruction (written in a special four-letter alphabet) by 

which an organism constructs a certain phenotype during its ontogenesis. 

There can be more than one version of the same instruction and these 
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versions are called the alleles of the gene. We can think of genes as 

factors in the sense that heat is a factor, and alleles are the levels of 

such a Mendelian factor in the sense that hot and cold are levels of the 

factor heat. Alleles, that represent different instructions not manifested at 

the phenotypic level (i.e. that are unobservable), are called isoalleles. Note 

that whether or not we can detect an allele is directly determined by the 

manner in which we phenotypically characterize the function we are 

studying. For example, two alleles may be distinguished on an 

electrophoregram but, at the same time, could be considered as isoalleles 

when compared at the level of the whole organism.  

 The specific function of each gene is determined by its set of 

alleles. Each individual has his/her genotype regarding the trait under 

consideration, which is defined as the sub-set of allele pairs (for 

diploid organisms) at each locus taking part in the control of the trait. 

 Let us assume by definition that a gene takes part in the control of 

the trait’s inheritance if, and only if, at least one substitution of the 

gene’s alleles in the diploid genotype leads to a discernible change in 

the trait’s distribution (a different set of trait value for a quantitative 

trait, or different phenotypic variants for a qualitative trait). By this 

definition, monomorphic genes having only one allele (or any number of 

alleles isoallelic to one another) do not take a part in the control of the 

trait, even if it is known that products of these genes are necessary links in 

the biochemical chain of synthesis that results in the phenotype.  

 To make the above definitions correspond to the molecular 

organization of a real gene, it is helpful to present the latter as follows. The 

gene can be described as the structured sequence of two antiparallel 

nucleotide strands in a configuration that forms a double helix. A 
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homologous pair of nucleotides forms the basic DNA unit – the base pair 

(bp). Each gene contains the specific bp sequences that determine its 

beginning and end. Between the beginning and the end are two types of bp 

sequences alternating with each other, exons and introns that determine the 

specific gene function. The exon is the portion of the bp sequence that is 

translated into protein, while the intron is not a translated sequence and is 

usually removed by splicing. The exon is often considered as determining 

the gene’s function, but it has lately been found that intronic sequences can 

also determine function. 

 The length of the Human genome is about 3,200 megabases (Mb; 1 

Mb = 1,000 bp). It contains approximately 30,000 named and unnamed 

genes and many intergenic DNA sequences. A fraction of about 1.5% 

performs the coding functions that are somehow manifested in the gene’s 

intracell or intercell activity, or expressed at the phenotypic level. 

Noncoding sequences of genes include control regions, such as promoters, 

operators, and terminators, as well as intron sequences. 

 Genes differ from one another in their size. The average size of a 

gene is 27 kb. The small β-Globin gene is 1.6 kb in length and contains 3 

exons each with an average length of 150 bp, and introns with an average 

length of 490 bp. For the large Distrophin gene, these parameters are: 

2,400 kb, 79 exons of on average 180 bp length, and introns each 

approximately 30,000 bp long.  

 Certain regions of intergenic DNA are highly polymorphic; they 

contain a number of tandem repeats, short sequences repeated one after 

another multiple times. Also in the gene sequence are single nucleotide 

polymorphisms (SNPs) that occur as often as about every 

200 bp in the human genome, i.e. approximately 27kb/200bp = 135 per 
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gene of average length. Taking into account that only about 1% of its DNA 

sequence affects the function of the gene, the polymorphic gene contents 

may or may not result in a change of phenotype. Different molecular 

contents of the gene sequences are expressed as alleles of the gene. If they 

are not recognizable phenotypically, they should be considered as 

isoalleles.  

 There are specific loci called markers used in linkage analysis to 

establish the position on the chromosomes of trait genes of interest. These 

markers can be defined as genes often themselves having no clear 

phenotypic expression, but with known chromosomal positions 

(determined in a previous study). Currently, mostly single nucleotide 

polymorphisms (SNPs) are used as marker loci. However, the presence or 

absence of other specific DNA sequences found by molecular techniques 

are also widely used, for example, restriction fragment length 

polymorphisms (RFLPs) and variations in the number of short tandem 

repeat polymorphisms (STRPs) in specific chromosomal regions, also 

known as microsatellites. The accuracy of any gene mapping study clearly 

depends on the particular set of marker loci used, including their 

chromosomal positions. In this connection, it should be noted that the 

length of a trait gene is usually much larger than that of marker loci, 

including RFLPs, STRPs and even shared haplotypes (see section 10.4). 

This means that “fine-scale” gene mapping can be performed in linkage 

analysis, if the molecular technique used provides us with the possibility of 

identifying marker loci within the limits of the trait gene being studied.  

 Thus, from the above very schematic description of molecular gene 

structure, it follows that the way we have defined a gene – the Mendelian 

factor, the compact discrete unit successively positioned with other such 
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units along a chromosome and responsible for the hereditary process – 

represents a certain idealization of the term. However, this idealized 

definition serves our purpose quite satisfactorily when we consider 

pedigree analysis problems. 

1.4. Genotype-phenotype correspondence 

 We have given above an operational definition of genes that take 

part in the control of a trait: if an allele substitution in the diploid genotype 

results in a recognizable change in the trait distribution (by the method of 

phenotypic characterization used), then alleles of this gene should be 

included in the trait genotype. However, the question of how (through 

what molecular, cytological and physiological processes) this genotypic 

control is realized has not been raised. At this stage, any generalization of 

ontogenetic regularity that could be used in a formal description of the 

genotype-trait correspondence does not yet appear to be possible. Without 

such knowledge, the correspondence can be defined only 

phenomenologically. This means that, for each genotype, we have to 

introduce a probability distribution of possible phenotypic manifestations 

of this genotype (trait values for a quantitative trait or phenotypic variants 

for a qualitative trait). This distribution gives only a more or less adequate 

approximation of the results of the whole highly complicated ontogenetic 

process that leads from the genotype to the observed trait. 

Let X = {x} be a set of possible phenotypic characteristics (binary, 

qualitative, or quantitative, discrete or continuous). Denote by Xn = 

{x1,...,xn}, ∈ix X, the set of phenotypes observed on the n members of a 

pedigree, and by f(Xn|Gn) the joint probability (density) of the set of 

phenotypes Xn, i.e. on the n members of the pedigree, conditional on their 
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given set of genotypes Gn = {g1,...,gn}, gi ∈ G, where G is the set of 

genotypes that are involved in controlling the trait being studied. This 

probability describes the genotype-phenotype correspondence. If there is 

no other common factor (besides these genes) causing the trait co-variation 

among relatives, then f(Xn|Gn) = ∏f(xi|gi) where f(x|g) is the probability 

that phenotype x is manifested by an individual with genotype g; for a 

quantitative continuous trait, this probability describes the residual 

distribution about a genotype-specific mean of the trait x in individuals 

with the given g, caused by all factors influencing the trait except the 

genotype. Note again that f(x|g) and f(Xn|Gn) are introduced only as an 

approximate phenomenological description of the genotype-phenotype 

correspondence, and no molecular or cytological mechanism is taken into 

account in their definition.  

1.5. Genetic model of inheritance 

 Define a genetic model for the inheritance of a trait as the 

following three distributions determined on the two sets defined above: 

θ = { )|(),,|(),,( 2121 nn GXfgggPggp | X,G},                (1.1) 

where p(g1,g2) is the joint population distribution of genotypes in spouse 

pairs determined by the population mating structure; P(g|g1,g2) is the 

conditional probability that an offspring receives genotype g from parents 

having genotypes g1 and g2 - the core of the genetic inheritance; and 

f(Xn|Gn) is the joint distribution of the phenotypes of the n pedigree 

members given their set of genotypes Gn. 

Each of these three distributions is determined, first by its type (the 

particular mathematical form, e.g. binomial, Poisson, Gaussian, n-variable 

normal, etc.) and second by an array of parameters specific to this type of 
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distribution. These parameters are called genetic model parameters or 

genetic parameters. 

The model (1.1) represents the most complete formal description of 

the mode of trait inheritance. Its particular form is justified as follows. 

First, this model is intended to describe the trait inheritance in the 

particular population, given its specific way of forming spouse pairs. 

Second, this model defines the process of transmission of the parental 

alleles to offspring – the core of genetic inheritance. Last, this model 

defines how the genotypes jointly manifest the observed (measured) traits. 

The three distributions of the model represent three physically different 

and complementary aspects of the inheritance process.  

Given the model θ, the joint distribution of phenotypes in members 

of any collected pedigree can be unambiguously expressed as:  

∑ θθ=θ
nG nnnn GXfGPXf ),|()|()|( , 

where P(Gn|θ) is the joint probability of the subset of genotypes, Gn = 

{g1,...,gn}, in the n pedigree members determined by the population 

distribution p(g1,g2) and the transition probabilities P(g|g1,g2). Elston and 

Stewart (1971) called these latter probabilities transition probabilities 

because they have the Markov property of not depending on the genotypes 

of ancestors in previous generations, which we can think of as previous 

“states” visited in an evolutionary process. The only difference from the 

usual Markov process is that each individual’s genotype depends on two, 

rather than one, genotypes in the previous generation. They reserved the 

term transmission probability for the probability that an individual with a 

given genotype transmits a particular allele (or, more generally, haplotype) 

to an offspring. Later authors have unfortunately used the term 
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transmission probability for these two quite different probability 

distributions. 

 As we can see, the main concept, underlying model (1.1), is the 

specifically structured set G of discrete objects, genotypes that determine 

the trait inheritance. This is why the model is called genetic. 

1.6.  Genetic analysis 

 The mode of inheritance of a trait can be determined if, and only if, 

we can define an algorithm by which it is possible to predict, with a certain 

degree of accuracy, the phenotypes of offspring on the basis of the 

phenotypes of their relatives in previous generations and also, perhaps, of 

certain environmental conditions in which the inherited potentials of these 

offspring will be manifested. We do not specify here the manner in which 

the algorithm should be constructed - in other words, no limitation is 

introduced on the construction of the models describing the inheritance 

process.  

 A phenomenological description of the trait inheritance combines 

all those algorithms whose construction includes no assumption about a 

particular inheritance mechanism. This way of describing inheritance is the 

simplest ideologically and was the one first proposed.  Galton (1889) 

introduced a linear statistical approximation for the dependence of the trait 

values of an offspring on those of his/her parents. Further development of 

the linear statistical methods led to some more complicated versions of this 

description (e.g., in the form of a joint n-variable normal distribution of the 

trait values in members of a pedigree) without changing its main 

characteristic – the total absence of any particulars of the hereditary 

mechanism being included in the algorithm. The construction, mutual 
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comparison and selection of (in a certain sense) the best phenomenological 

algorithm can be defined as a particular case of inheritance analysis. 

 Genetic analysis is another particular case of inheritance analysis, 

but in which the dependence between the trait manifestations (values) of 

relatives are formulated in terms of factorial genetics, including concepts 

of the gene, genotype, Mendelian rules of gene transmission across 

generations and the phenomenologically introduced genotype–phenotype 

correspondence. 

 Formally, genetic analysis can be defined as follows (Ginsburg, 

1984; Ginsburg and Livshits, 1999). Let θ = {θi} be a set of a priori 

constructed hypothetical genetic models that differ from one another 

in their genotypic set, G, and in the types of the three component 

model distributions and/or the values of the genetic parameters. 

Introduce an operator Ω that establishes a particular order of 

preference for the all models in θ with respect to the collected pedigree 

data {Xn}: 

Ω(θ|{Xn}) = θ
~  = {θ1, θ2, θ3, ...} ,                      (1.2) 

where θ
~  is the re-ordered set of models in which θ i is at least 

preferable to θ j (in a certain sense, determined by an explicit form of 

the Ω operator) for any i< j.  

 Based on this ordering θ
~ , genetic analysis is defined as the 

choice of the first ranked model as supposedly the best mathematical-

genetic descriptor of the inheritance of the trait being studied.  
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1.7. Pedigree analysis 

 The starting point of any genetic analysis is the empirical data that 

implicitly contain information about the genetic nature of the trait 

analyzed. These data can be represented by two different types of datasets. 

 The first represents the results of a hybridization experiment that 

has the following main features. Initially, two so-called pure lines that are 

phenotypically different are crossed. The genetic “purity” of the crossed 

lines is not always unambiguously defined. In some experiments, each line 

is obtained by a prolonged close inbreeding accompanied by casting away 

individuals phenotypically different from a certain standard. In this case, 

we hope that the resultant line consists of individuals having the same 

homozygous genotypes, at least for genes in any way connected with the 

trait being studied. In other cases, the hybridized “lines” have not been 

obtained by this inbreeding technique, but represent two heterogeneous 

sub-populations that (i) differ from one another by some subset of traits, 

and (ii) exhibit phenotypic variability of these traits that is negligible 

within each sub-population. It is again assumed that each of the crossed 

sub-populations is homozygous for genes controlling the trait subset (i.e. 

that they are non-segregating lines with respect to the trait). 

 The lines are hybridized to produce first-generation hybrids. In 

different hybridization schemes, individuals from the latter can be crossed 

with one another to produce second-generation hybrids, or with individuals 

from one of the parental lines (backcrosses). Several other generations can 

be obtained according to the chosen hybridization plan. The data observed 

(measured) on individuals from these generations are then the basis for 

genetic hybrid analysis. 
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 The second type of empirical data subjected to genetic analysis 

comprises pedigree data. The information about the specific genetic 

control of the trait is implicitly represented by the joint phenotypic 

distribution of the pedigree members’ phenotypes, the subset of observed 

individuals having certain relationships with one another and segregating 

their phenotypes across generations in a dependent manner.  

For a pedigree, the joint distribution and transmission of 

phenotypes across generations, together with the usual supposition that the 

genotypes of the pedigree founders are a representative sample of 

genotypes from the same population, provides the empirical description of 

the inheritance of the trait under study.  

The empirical basis of pedigree genetic analysis is a sample of 

pedigrees. 

1.8. A note on phenotypic characterization 

 It is necessary to clarify one of the problems of genetic analysis, 

namely, the manner in which the phenotypes of individuals are 

characterized - the trait definition. The genetic analysis of qualitative 

(binary) traits is distinguished from the genetic analysis of quantitative 

traits. While this sub-division is convenient methodologically because a 

different model formulation is needed for the different trait types, it is not 

critical from a genetic point of view.  

 In the mid-forties, there was the widespread belief among 

geneticists that the genetic nature of qualitative traits differs substantially 

from that of quantitative traits. First, this difference was defined as the 

difference in the number of genes taking part in the trait control and in the 

magnitudes of their effects. In particular, it was stated that quantitative 

traits are controlled by a large number of genes distributed independently 
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and each having a small additive effect on the trait value. This idea was 

derived from the following seemingly unconnected set of facts. First, 

Fisher (1918), in his demonstration that no contradiction exists between 

the discrete nature of genes (Mendelian factors) and the continuous 

variation of measured traits, introduced the concept of the average allele 

effect and of additive genetic variance. Second, Wright (1968) had 

successfully used a linear statistical technique to describe trait co-variation 

among relatives. Third, it is well known that the binomial distribution can 

be well approximated by the normal distribution, given a large number of 

possible combinations. Thus, assuming that a large number of minor genes 

are responsible for the co-variation of trait values in relatives, an additive 

polygenic model was constructed for quantitative trait inheritance using 

such parameters as heritability, genetic correlations etc. (see, for example, 

Mather and Jinks, 1982). Ginsburg and Nikoro (1982) made a detailed 

analysis of the basic concepts and methods of this theory and showed that 

1) the assumptions underlying the additive polygenic model are too 

restrictive with respect to our current level of knowledge of the 

mechanisms underlying the genetic control of phenotypic variation, and 2) 

these assumptions are in principle untestable on the basis of usual pedigree 

samples. 

Next, statements about the specific nature of genes controlling 

quantitative traits appeared. It was assumed that these genes are not 

structural, like those controlling the qualitative traits, but are of some 

specific nature, mostly polygene modifiers taking various forms at the 

different stages of genetic development. For example, the discovery of 

heterochromatin provoked the assumption that the polygenes controlling 

quantitative traits were located in heterochromatin chromosomal segments. 
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Successful studies of the molecular regulation of gene activity in some 

microorganisms led to another hypothesis, that the quantitative trait genes 

are regulatory genes. Next, it was assumed that the polygenes are 

represented by special DNA repetitions, or that they can be in the form of 

disperse mobile DNA elements, or of special gene-enhancers, etc. A 

special abbreviation has even been accepted for them, QTL – quantitative 

trait loci (Geldermann, 1975). As was to be expected, each new hypothesis 

about the specific polygenic nature of the QTL appeared at the very 

beginning of studying the new phenomenon and, with progress, the 

corresponding hypothesis has not been disproved, but rather tacitly buried. 

 It is clear that confusing two different classifying factors has 

caused the appearance of this list of hypotheses. The first factor is the 

method of phenotypic characterization, which was chosen and then 

accepted regardless of the particular nature of the genes controlling the 

trait under study. The second factor is the genetic control of the trait, 

including both the number of genes and the particular type of DNA 

involved. It was wrongly assumed that if the trait is descriptive and 

typologically defined, then it should be determined by simple structural 

genes; while if the phenotypic characterization was made by some 

measuring instrument, then the control of the corresponding quantitative 

trait becomes too complicated to be attributed to the effect of structural 

genes.  

 It is now well known that there are qualitative, in particular binary, 

traits that have complicated inheritance. The widely used binary 

characterization “affected-unaffected” applied to some diseases is 

typologically determined, based on a specific set of symptoms. For 

diseases with a complex etiology, the special term “multifactorial” was 
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introduced, meaning that (i) there is a number of environmental factors 

affecting the development and further manifestation of the disease (the so-

called risk factors), and (ii) the genetic potential for the disease is expected 

to be determined by several different genes because, under the present set 

of methods used for the analysis of trait inheritance, it was found 

impossible to reduce their genetic control to be the effects of one or two 

genes. On the other hand, there are quantitative traits, such as the activity 

of some enzymes that are controlled by one or two well-known structural 

genes.  
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2. SAMPLE SPACE 

2.1. True pedigrees 

Any particular pedigree study implicitly defines the population 

under study as a set of discrete units, true pedigrees. We define a true 

pedigree to be such that the relationship connecting any pair of its 

members can be determined, and there is no other individual whose 

relationship with any of these pedigree members can be established. 

Some of the true pedigree members may not be available for observation 

but, as we shall show, their existence can be established. Let τ denote both 

the structure (i.e. the relationships) and the phenotypes (trait values, 

discrete or continuous) associated with the members of a true pedigree.  

The set of all pedigrees defined in this way constitutes what we 

shall call the population under study, in contrast to the real population 

from which these true pedigrees are formed. This basic concept of 

pedigree analysis has still not received a clear and proper explanation (but 

see an attempt to clarify this problem in Thompson, 1986) and so we 

discuss this definition here in some detail.  

To start with, let us stress that it is quite natural, given that the 

sampled objects are pedigrees, to consider the set of true pedigrees {τ} to 

be a population from which the pedigrees are sampled. However, we call 

the pedigrees in this population under study “true” pedigrees to distinguish 

them from the pedigree structures that occur in the actual sample, which 

represent the sampled parts of the true pedigrees.  

Let us now define the correspondence between the real 

population from which the pedigree samples are collected and the 

population of true pedigrees under study. This correspondence is 
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determined by two kinds of factors. The first is determined by the 

specific population, its origin and its history, including demographic, 

social, political and other processes. These are factors that are usually 

uncontrolled and, what is important, unknown - and, therefore, 

cannot be properly documented. Said mathematically, the real 

population is mapped into a set of disjoint true pedigrees whose structures 

are limited by a set of factors, usually unknown, that makes it impossible 

to establish and document all the relationships that connect members of the 

real population.  

The second kind of factors determining the population of true 

pedigrees is more subjective. Pedigree analysis begins with the 

definition of a sampling design introduced by the investigator when the 

study is at the planning stage. This design determines which pedigrees 

are to be sampled from the set of true pedigrees, and how. Practical 

execution of this design requires that we use an instrument, with 

which we can learn the structure of the true pedigree from which a 

sampled pedigree comes. We shall call the instrument used to do this a 

questionnaire.  

Thus, for any real population, these two sets of factors determine 

the population of true pedigrees {τ} from which the pedigrees for analysis 

are sampled. Depending on the factors determining the structures of the 

true pedigrees and on details of the sampling design (i.e. how the 

questionnaire is defined), different sets {τ} can be formed from the same 

real population. Note that the implicit way in which {τ} is formed means 

that no attempt is to be made to draw up a complete list of true pedigrees. 

This is not only unnecessary, but also, in practice, impossible for a large 

population. This set can nevertheless be defined in principle; at least, the 
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structure of the true pedigree from which each particular sampled pedigree 

comes, and hence is included in the pedigree sample analyzed, can be 

learned by using the questionnaire. 

Consider now the results of a pedigree analysis. Because the 

pedigrees are sampled from the set {τ}, the analysis result, i.e., the genetic 

model providing the most accurate description of the trait inheritance, is 

applicable and relevant to only this set {τ}. It may or may not be relevant 

to the real population because, as follows from the above considerations, 

there is no one-to-one correspondence between the real population and the 

set of true pedigrees under study. This means that we study the trait 

inheritance in the population {τ} rather than in the real population. It is 

usually assumed that {τ} represents the real population in which the 

investigator performs the study, so that the analysis results may also be 

applicable to this real population, if {τ} represents it adequately. However, 

the adequacy of such a representation is not in general guaranteed. Thus, 

although the results of any pedigree analysis should be applicable to the 

population {τ} by definition, applicability of the results to the real 

population is not the problem that is solved. 

  Consider the following two examples. In the first, a more or less 

isolated population is under study. After some thorough questioning and 

rechecking of answers (including, if necessary, paternity testing and other 

techniques), it is possible to reconstruct the relationships among all (or a 

large number of) the living members of this population, forming in such a 

way a single true pedigree that adequately represents the population. Many 

such attempts to reconstruct true pedigrees have been reported, for 

example by Bonné et al. (1970) for the Habbanite isolate of Jews, and by 

Neel (1978) for the Yanomama Indians of the Amazon rain forest. Clearly, 
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any analysis result (segregation and/or linkage) that is obtained on 

pedigree samples collected from such true pedigrees, adequately 

reconstructed, is equally applicable to both the {τ} population and the real 

population.  

In the second example, the sampling design dictates that only 

sibships are to be sampled. In this case, all relationships outside each 

sibship are consciously neglected. The {τ} population consists of the 

sibships that can be formed from members of the real population using the 

questionnaire and, therefore, each analyzed sample consists of sibships. In 

this case, we may doubt whether the analysis results (e.g., the genetic 

model of inheritance chosen), applicable by definition to this particular {τ} 

population, can be applied to the real population. Between these two 

extremes there can be a large number of intermediate sampling designs 

that determine how the {τ} population is formed to “represent” the real 

population, with different degrees of completeness and, therefore, allowing 

different interpretations of how the analysis results relate to the real 

population.  

To sum up these considerations, we note that the real population, in 

which the study is performed, gives rise to a population of true pedigrees 

{τ}, and the definition of this new population depends both on properties 

of the real population being studied and on the sampling design introduced 

by the investigator. By definition, the trait inheritance is studied in the 

population {τ} from which the pedigree samples are collected. The 

analysis results are also applicable to this {τ} population. Extrapolating 

these results to the real population is not always justifiable, but would be 

justifiable in many particular cases. Using the questionnaire, we can 

determine the structure of any true pedigree from which a sampled 
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pedigree is collected. Without any questionnaire, no pedigree can be 

sampled. We therefore propose here that, when the questionnaire is used to 

determine the availability of pedigree members for study so that a pedigree 

sample can be collected, it is designed to collect at the same time the 

information, indicated below, necessary to correct the pedigree likelihood 

for the sampling procedures used. 

2.2.  Measures of model similarity 

The sampling design the investigator established at the outset 

determines which pedigrees should be sampled and how. The design 

determines the sampling procedures used in the process of pedigree 

collection. 

The sampling procedures S generate a sample space of pedigrees 

that can be in principle sampled from the {τ} population. Evidently, for 

each sampled pedigree (X,C), having phenotypic content X and the 

structure C, there exists at least one such true pedigree τ that satisfies 

(X,C) ⊆ τ. Different procedures generate different sample spaces for the 

same population {τ}. A more detailed formulation of the sampling 

procedure and how it is modeled will be given below.  

The pedigree sample, collected from the particular sample space, is 

used to distinguish the set of genetic models preliminarily formed in the 

set θ from which the “best” is chosen as the pedigree analysis result. The 

only operational way to introduce a measure of similarity between models 

is to use their phenotypic expression, namely, their accuracy in describing 

the pedigree distribution. Let )|( θτΦ  be the distribution of the true 

pedigrees {τ} generated by the particular genetic model θ. Thus, the 

information measure  
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Iij = ∑ τ∈τ θτΦθτΦθτΦ}{ 0 )|()]|(/)|(ln[ ji  

defines the relative similarity of models θi and θj to θ0 in the population 

{τ}, where θ0 is the true mode of trait inheritance 

Given the particular sampling procedures S used in the process of 

pedigree collection, each model θi generates its specific distribution 

)|,( i
S CXP θ  of derivative pedigrees from the sample space defined by S 

and, therefore,  

∑ ∈
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measures the similarity of θi to θ0 in comparison with θj in the sample 

space generated by S.  

Each of these information measures, Iij and S
ijI , is positive if θi is 

more similar to θ0, negative if it is less similar, and equal to zero if θi and 

θj describe the pedigree (true or derivative) distribution with exactly the 

same accuracy. Different definitions of the sample space and different 

probability distributions for the derivative pedigrees could result in 

different signs for the information measures Iij and S
ijI . It is assumed here 

that, for each pair of probability models, θi and θj are absolutely 

continuous with regard to one another in the sense defined by Kullback 

(1959, ch. 2, section 2).  

Thus, the pedigree analysis result is defined to be adequate if the 

model of trait inheritance having the first rank in θ provides the most 

accurate description of the pedigree distribution, even if the formulation of 

this model differs from the true one, and this difference may cause 

inconsistent estimators of some model parameters.  
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This definition seems reasonable because of the following. Sawyer 

(1990) showed that parameters of a genetic model of trait inheritance, as 

well as the nuisance parameters of a sampling model, can be consistently 

estimated only if these models are formulated correctly, meaning that they 

describe at least the most important features of the trait inheritance and 

sampling processes. If this is not the case, the parameter estimates are 

doomed to be more or less biased asymptotically. This bias is in practice 

indeterminable for most cases, which substantially limits the possibility of 

adequately interpreting any analysis results. The relation that these results 

of Sawyer bear to the above definition of pedigree analysis can be 

discussed as follows. 

1) In practice, the set θ of trait inheritance models that are to be 

compared with one another in the process of pedigree analysis is quite 

limited. The main limiting factor is that of model complexity, expressed 

partially in the number of parameters that need to be estimated from 

pedigree data with usually limited information. This is why most often 

monogenic (major gene) models of trait inheritance are currently used in 

segregation and linkage analyses. This is also why it seems hardly 

reasonable to expect to find that the true model of trait inheritance, θ0, is 

included in set θ - because the true genetic and environment control of the 

trait inheritance is usually (much) more complicated than what can be 

formulated as a testable model. This means that all the models in the set θ 

differ from θ0 and all of them are doomed to produce inconsistent 

estimators of their parameters. The model providing the “most accurate” 

description of the pedigree (true or derivative) phenotypic distribution is 

usually not the true one, and is chosen among others that also differ from 

θ0. It is important to stress that, for each particular set θ that is formed, it is 
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in practice impossible to evaluate how similar to θ0 the chosen model is, 

whether in its construction (the three distributions defined on the given set 

of genotypes, G), or in its accuracy in providing a formal description of 

the mode of inheritance.  

2) It is well known that, for finite-size samples, the maximum 

likelihood estimators of model parameters are usually biased, more or less. 

This is true for any particular model of trait inheritance, including the true 

one, θ0. Moreover, for finite-size samples, consistent estimators are not 

necessarily less biased than inconsistent ones - at least, as yet the opposite 

has not been proved. This holds until the sample size increases up to a 

level that the asymptotic properties considered by Sawyer become true, 

this level being in practice indeterminable. Thus, the bias in estimators of 

the trait inheritance model should be considered an unavoidable annoyance 

of pedigree analysis. It seems reasonable to become reconciled with it and 

to agree that the particular estimates of each of the model parameters bear 

only a secondary importance as soon as the choice of the “best” model 

from the given set θ is correctly made. Being genetic parameters, they 

keep their genetic relevance and the estimates can be interpreted in terms 

of the genetic model only after the model is determined, i.e., accepted as 

the analysis result. 

Here and below, a pedigree analysis result will be called correct if 

the model chosen from θ for describing the trait inheritance (the analysis 

result) is the one that is most similar to the true inheritance model, even if 

the chosen model cannot be characterized by consistent parameter 

estimators. As follows from Sawyer (1990), the analysis result would be 

not only correct, but also consistent, if the true model of the trait 
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inheritance, θ0, is included in the set of tested models  (which we hardly 

expect to occur in practice). 

2.3. Sampling procedure and pedigree subsets 

Let us define the sampling procedure as a combination, 

),,( ψεα=S , of three separate sub-procedures, the pedigree ascertainment 

α, the pedigree extension ε, and the pedigree inclusion ψ. Below, each of 

these sub-procedures is considered in some detail.  

Here we will consider only ascertainment through probands (a 

term first introduced in the English language by Fisher, 1934). A proband 

is defined here as an individual who, because of his/her characteristics, 

is ascertained (not necessary independently of other such individuals) 

and becomes the cause of his/her pedigree entering the sample for 

study. (It should be carefully noted that this definition differs from the 

usual one that requires independent ascertainments as part of the 

definition of a proband). For each true pedigree, let us define a subset of 

its members who could potentially become probands by reason of how, 

independently of their phenotypes, the probands are defined. Typically, a 

geographic area or a catchment area of one or more hospitals defines this 

subset. Let τp be the subset of potential probands in the true pedigree τ, 

both their relationships determining the subset structure C(τp) and its 

phenotypic content X(τp). Using the terminology due to Elston and Sobel 

(1979), this subset is called the proband sampling frame (PSF) of the 

pedigree. We shall use the term proband combination (PC) to denote a set 

of persons who simultaneously cause the pedigree to enter the sample for 

study – without any implication that they do so independently. For a 

pedigree with np =|τp| PSF members, 12 −pn
 is the maximum number of 
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actual PCs that can be formed and ascertained in the sampling process. 

The initially ascertained part of a pedigree, its PC, is then extended by 

incorporating other members of the true pedigree into the sample. The PC 

constitutes an obligate part of any sampled pedigree, but the pedigree can 

also contain other non-proband members, who may differ for the different 

PCs. The set {τp} of subsets of potential probands in the true pedigrees is 

the second characteristic of the studied population that determines the 

ascertainment design.  

Let C and C1 be the structures of a sampled pedigree and its 

initially ascertained part, the PC, and X and X1, respectively, be sets of 

phenotypes observed on members of these two structures: C⊇C1 and 

X⊇X1. By C2 = C\C1 we shall denote the complementary structure of the 

subpedigree collected in the extension process. We assume that the 

pedigree extension (intrafamilial sampling) does not distinguish the τp 

members of the true pedigree from other τ members. By definition, (X,C) 

⊆ τ, and (X1,C1) ∈ τp. Further, let (Xp,Cp) = (X,C) ∩ τp be the subset of 

sampled potential probands (the sampled part of the pedigree PSF), 

denoting both their relationships to each other and their phenotypes. It is 

always assumed that the PC is an obligate part of this subset. By 

definition, (X1,C1) ⊆ (Xp,Cp) ⊆ τp. Fig. 1 illustrates these definitions. 

Thus, any particular sampling event initiated by the pedigree 

ascertainment divides all members of each sampled pedigree, (X,C), into 

three distinctly different categories (Fig. 1): (X,C) = (X1,C1) + 

(Xp,Cp)\(X1,C1) + (X,C)\(Xp,Cp), where the first is the PC – the initially 

ascertained unit; and the two others, sampled in the process of pedigree 

extension, are: the sampled potential probands in (Xp,Cp)\(X1,C1) that have 

not realized their potentials (have not become probands), and the 
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individuals in (X,C)\(Xp,Cp) who just cannot become probands under the 

given ascertainment scheme.  

Assume further that there is selective inclusion of the ascertained, 

and further extended, pedigrees in the sample that is subjected to pedigree 

analysis. The inclusion of each pedigree in the sample analyzed could be 

determined by requiring it to meet a condition in the following way. In 

each pedigree, define a substructure Ca ⊆ C in such a way that some 

characteristics of its members affect the probability of including this 

pedigree in the sample that is analyzed (Fig. 1A). These characteristics 

may have nothing in common with the studied phenotype, or they may 

include the phenotypes (they may contain, for example the marker data 

collected for linkage analysis – see below). One possible version of this 

condition is to analyze only pedigrees having parents not exceeding a 

certain age, or living only inside a prescribed district. In this case, the 

phenotype data do not define the inclusion process. Another condition 

could be that at least one parent should be “affected”. (The fact that a 

parent is affected would not be connected with the ascertainment process if 

the ascertainment is performed via offspring probands). In both these 

examples, the additional substructure Ca contains all pairs of spouses in the 

sampled pedigree. If the inclusion condition is somehow related to the 

number of affected members in the sampled pedigree, then, evidently, Ca ≡ 

C. Denote by Xa the set of phenotypes observed on the members of this 

substructure, Ca (this set can be empty). We assume that, for a given 

pedigree, there is only one substructure Ca uniquely determined by the 

sampled pedigree structure C, although the converse is not true: different 

pedigree structures can contain the same substructure Ca. Note that this is 

not the case for the sampled PSF structure: different structures Cp may be 
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Figure 1. 
A. Schematic representation of the true and sampled pedigree

substructures. τ - the true pedigree; τp – the true pedigree PSF; C –
the sampled pedigree structure; C1 – the initially ascertained PC
(proband combination); C2 – the complementary part sampled in the
process of pedigree extension;  Cp – the sampled part of the pedigree
PSF; Ca – the pedigree substructure responsible for inclusion of the
pedigree in the sample analyzed. See details in sections 2.3. 

B. Example illustrating the schematic representation. The
members included in the pedigree are marked by the same hatching as
used in Fig.1.A.  
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associated with the same pedigree C. Clearly, Ca can overlap with Cp (and 

even with C1), so that there can be some pedigree members whose 

phenotypes affect the pedigree ascertainment and at the same time 

determine whether the pedigree is to be included in the sample that is 

analyzed. 

Thus we assume that, to be sampled (more accurately, to be 

included in the sample subjected to pedigree analysis), the pedigree should 

first be ascertained in accordance with a specified proband ascertainment 

scheme; then it should be extended according to a given extension rule; 

and then it is censored according to whether the phenotypes in its 

predefined substructure Ca are compatible with the specified condition. 

Operationally, it is not necessary for the second and third stages of this 

sampling process to be separated from one another. Sometimes, the 

specified condition can be checked in parallel with the extension process. 

In this case, the intrafamilial sampling stops as soon as the condition is not 

fulfilled, e.g., a nuclear family is encountered that contains less than 2 

affected members. However, note that this can lead to a substantial 

difference in the sampling result. If the condition (e.g., at least two 

affected members in each nuclear family) is included in the extension 

model, then the pedigree extension is stopped but the collected pedigree is 

left in the sample to be analyzed. If, on the other hand, this condition is a 

part of the inclusion model, then the collected pedigree is excluded from 

the sample analyzed. That is why these two procedures, which yield 

different sampling results, should be considered separately.  

2.4. Example 

 To make the above definition more understandable, consider the 

following example. Let there be a set of true pedigrees each consisting of 
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13 individuals, with relationships determined by the graph drawn in Fig. 

1B. Assume that only men under a certain age can be probands, and 

individuals 4, 5, 7 and 12 satisfy this condition. This means that the true 

pedigree is represented by the set τ = {1,2,...,13}, while the ascertainment 

procedure defines its PSF as the subset τp = {4,5,7,12}. There are 24-1 = 

15 different PCs that could cause the ascertainment event.  

The sampled pedigree structure C is determined by the initially 

ascertained PC and the extension rule determining what relatives of these 

PC members are to be observed, and in what order. Assume that the 

extension model is formulated as follows. Observe all first-degree relatives 

of members of the ascertained PC. Consider each member of the observed 

part of the pedigree as a pointer, if his/her still unobserved first-degree 

relatives are available for observation (Lalouel and Morton, 1981). If the 

pointer’s phenotype happens to be of a certain a priori defined type, then 

his/her first-degree relatives are to be observed, including in this way one 

additional nuclear family into the sampled pedigree. Otherwise, relatives 

of this pointer are not to be observed. Let us denote this “extension” type 

as x+, and the alternative type as x−. If a quantitative continuous trait is 

considered, the extension is made if the trait value in the pointer belongs to 

the trait interval x+, otherwise no extension is made through this pointer. 

Assume that, by this definition, individuals 1, 2 and 10 can be pointers as 

soon as they are sampled.  

Fig. 2 shows some of the pedigrees that can be sampled if the PC 

contains either proband 4 or proband 5, or both of them. In each case, the 

extended pedigree part, C2, is determined by the phenotypes of the 

pedigree pointers: whether each of them belongs to the “extension” type 

(denoted by +), or not (–).  
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Finally, let the inclusion rule be as follows. The sampled pedigree is 

included in the analysis only if each nuclear family collected at the first 

extension stage, i.e., the nuclear family containing the actual proband(s), 

has at least one parent with a phenotype of the “inclusion” type z+ and it is 

not included otherwise. In this case, each of the sampled pedigrees in Fig. 

2 has the same subset Ca = {1,2}, and would be included in the analyzed 

sample only if either pedigree member 1 or 2, or both of them, have the 

“inclusion” phenotype z+. As we can see, the sampling procedure 

 
Figure 2. Structures of the 6 pedigrees that can be sampled from the
true pedigree presented in Fig.1.B through a proband combination
consisting either of only the 4th member, or of only the 5th, or of both
of them. The sampled structures depend on the pointers’ phenotypes.
See details in sections 2.4. 
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considered here: (i) is proband dependent (PD – a term defined by Vieland 

and Hodge 1995), because the sampled pedigree structure depends on the 

ascertained PC, (ii) contains a trait-dependent pedigree extension, and (iii) 

contains trait-dependent pedigree censoring. 

2.5. Planned and employed procedures 

 The sample space, i.e., the set of pedigrees that can be sampled 

from the set of true pedigrees {τ}, is defined by two conditions. An 

objective condition determines the population of true pedigrees, while a 

subjective condition is defined by the initially introduced sampling design 

that determines the set of pedigrees that can be collected for the analysis.  

In this connection, the following should be noted. There is a 

difference between the planned sampling procedures and the ones actually 

employed. In practice, there are a number of various social-demographic 

factors in the population under study that affect the exact fulfillment of the 

planned sampling design. Usually, it is impossible to make a complete list 

of these factors because they are unknown. Thus, for each initially planned 

sampling design, there is a set of different possible sampling procedures 

that could in practice be actually employed. Which one happens to be 

employed in each particular case is unknown and, therefore, cannot be 

explicitly defined when the sampling procedures are formulated according 

to the sampling design introduced above. The only possible way to 

describe the sampling process in formal terms is to formulate the sampling 

design as initially planned, neglecting the (unknown) procedures of 

pedigree collection that are actually employed in the particular realization 

of the pedigree collection.  
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Thus, the formulation of the sampling procedures defined above 

(the pedigree ascertainment, extension and censoring) can be made using 

the initially planned sampling design and sampling procedures, but not 

using the unknown procedure that are in fact used in practice. 

2.6. Adequate sampling 

Here we introduce the definition of an adequate sampling 

procedure – one of the basic items underlying the theory of pedigree 

analysis. 

Among the possible sampling procedures, let us single out one that 

is special or, to be more accurate, degenerate, S0 = (α0,ε0,ψ0), which we 

will call here the zero-sampling procedure and define as follows. Let the 

initially ascertained PC be not related, either directly or indirectly, with the 

trait studied, so that the probability of ascertaining any part of the 

pedigree, ),,,|( 011 ατ pCXascP , does not depend on the trait content of 

this part or on the phenotypes of any other sampled or true pedigree 

members. It terms of the ascertainment probability, this means in turn that, 

without loss of generality, we can put: ),,,|( 011 ατ pCXascP  ≡ 1. Let the 

pedigree extension model, ε0, also be trait-independent, so that any 

initially sampled sub-pedigree is further extended incorporating all 

relatives available for observation regardless of their phenotypes and with 

a random (trait-independent) stopping rule. Lastly, let no trait-dependent 

censoring occur in the degenerate inclusion procedure ψ0, which means 

that we can assume, without any loss of generality, ),,|( 0ψaa CXinclP  ≡ 

1. In sum, under S0 any (X,C) is randomly selected from those true 

pedigrees that contain this sub-pedigree. Thus, the sample space contains 
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any sub-pedigrees that can be carved out from the given set of true 

pedigrees, including all the true pedigrees themselves. The pedigree 

distribution generated on this sample space is defined as: 

)|,( 00 θCXPS  = ∑ τ∈τ θτΦ}{ 0 ),,|( CXi . 

 Let us assume that, for each particular set, 0S
ijI  > 0 if, and only if, 

Iij > 0. This means that the ranks of the models in θ are the same whether 

obtained by using Iij on the true pedigree set {τ}, if this set is obtainable 

for observation, or by using 0S
ijI  on the pedigree set generated by the 

zero-sampling model S0. In turn, this means that the pedigree analysis 

performed on the samples obtained without any special sampling 

procedure (ascertainment, extension and inclusion) provides correct 

results; i.e., from the a priori formed set θ it always chooses the model that 

is most similar to the true model θ0.  

 The sample space generated by any other, non-zero, sampling 

procedure differs from that generated by S0. We see from the above 

description of the sampling sub-procedures, ascertainment α, extension ε, 

and inclusion ψ, only S-specific sub-pedigrees are carved out from the true 

pedigrees {τ}. This is why the following definition of adequate sampling is 

now introduced: 

The sampling procedure S is adequate if, for any pair of models in 

θ, it provides 0>S
ijI  if, and only if, 00 >S

ijI , which, taking into account 

the previous assumption, means if, and only if, Iij > 0. 

This means that only those S are adequate, i.e., are permitted to be 

used in pedigree analysis, that provide exactly the same ranking order of 
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the genetic models in the given θ as would be obtained for the zero-

sampling procedure or for the set of true pedigrees. Thus adequacy means 

that the genetic model chosen under sampling procedure S (the pedigree 

analysis result) is expected to be the same (up to the accuracy of the 

statistical operations performed) as that which would be chosen on the 

basis of the true pedigrees, were they available for observation. This way 

of formulating the condition of adequacy is sufficient, but not necessary 

because, strictly speaking, we are only interested in the model most similar 

to θ0 being ranked first in order to provide the correct result of a pedigree 

analysis; ranks of other models in θ are of no interest to us. 

Even after introducing the concept of an adequate sampling 

procedure, we are still unable to list the necessary conditions that need to 

be fulfilled in order to formulate such a procedure. However, we can point 

out some obvious conditions that make the sampling procedure inadequate.  

First among these is any sampling procedure that is explicitly based on a 

model of how the trait is inherited. Except for the zero-sampling 

procedure, the component sub-procedures are usually determined by the 

phenotypic contents of certain pedigree subsets - the pedigree PSF, the set 

of pointers determining the pedigree extension, and/or the phenotypes of 

the members responsible for inclusion of the pedigree in the sample 

analyzed. However, the dependence of these sub-procedures on the 

phenotypic content of these subsets in no way implies their dependence on 

the trait inheritance model. Up to now, we are lucky in that we have not 

yet met a sampling procedure that depends on the trait inheritance model, 

e.g., on the major gene frequency or on genotype penetrance. It is clear 

that such a model would induce a bias in ranking the inheritance models 
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tested and, therefore, the analysis result would also be expected to be 

biased. 

On the other hand, even if the sampling procedure does not depend 

on the mode of inheritance, it could still provide inadequate results if it is 

in some sense not coordinated with the mode of inheritance. Consider, for 

example, the heterogeneity that occurs when there is polygenic control of 

low and intermediate trait values, while a major gene mutation causes 

large trait values. Such a mixed model of trait control could occur quite 

often. In this case, if it is mostly probands who have large trait values that 

cause the pedigree ascertainment, then we can expect major gene models 

to be chosen more frequently as the result of any analysis. Although such a 

result would not be incorrect, it would not provide a completely 

satisfactory description of the mode of trait inheritance.  

These two examples show that a complete definition of an adequate 

sampling procedure (and its modeling) is hardly possible; but this, of 

course, does not make our definition unnecessary. 



 51

3. PEDIGREE LIKELIHOOD 
 

Pedigree analysis is performed on sampled pedigrees collected 

from the set of true pedigrees {τ}. The subset of pedigrees that in principle 

can be sampled is defined by the sampling design planned at the outset of 

the study by the investigator. This subset is called the sample space. It is 

generated by the sampling procedures defined by the sampling design (the 

pedigree ascertainment, the intrafamilial extension, and the selective 

inclusion in the sample analyzed). We now derive a probability model for 

a pedigree that can be sampled.  

3.1. Component probabilities  

 The ascertainment process is modeled by ),,,|( 11 ατ pCXascP , the 

probability (mass or density) of the pedigree being ascertained given its 

PC and the particular model of ascertainment α. We assume that this 

probability does not depend on the model of trait inheritance. However, it 

is determined by the subset τp of potential probands in the true pedigree 

from which the ascertainment takes place. Accordingly, 1 - 

),,,|( 11 ατ pCXascP  is the probability that the particular PC, (X1,C1), 

formed from the given τp would not cause the pedigree to be ascertained. 

Let ),,,|,( 1122 εθCXCXP  be the probability of collecting the 

pedigree complement, (X2,C2), of the initially ascertained PC. In addition 

to the probabilistic correspondence between the complementary structure 

and phenotypes of its members, determined by the trait model of 

inheritance θ ⊆ θ, this probability is determined by the model ε (and its 
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parameter(s), if specified) of the pedigree extension. Some modeling 

details of this extension will be considered below. Accordingly, 

)|,(),,,|,(),|,( 111122 θεθ=εθ CXPCXCXPCXP   

is the probability of a sampled pedigree having the structure C and 

phenotypic content X. Here, )|,( 11 θCXP  is the joint probability of 

phenotypes in the PC members given the model θ. As we can see from 

these definitions, the probability ),|,( εθCXP  is defined only if the 

initially ascertained substructure  C1  is defined for each C. 

Finally, let ),,|( ψaa CXinclP  be the probability that the pedigree 

is included in the sample subjected to analysis if it contains the particular 

subset of phenotypes Xa in the pedigree substructure Ca. This probability 

can depend on some parameter(s), ψ, modeling the inclusion procedure. 

The inclusion probability can then be determined as: ),,|( ψaa CXinclP  = 

1 if at least one Ca member is of the “inclusion” type, and = 0 otherwise. 

This probability could also be defined in another way. For example, 

following the approximation proposed by Stene (1977, 1978) the 

probability can be formulated as ),,|( ψaa CXinclP  = const⋅kψ, where k is 

the number of Ca members that are of the “inclusion” type, and ψ (≥ 0) is a 

parameter that determines how the probability of pedigree inclusion 

depends on this number. Let us consider some special cases of this 

inclusion scheme. For example, the case ψ = 0 could be called “complete” 

inclusion when all pedigrees having a substructure Ca containing at least 

one member of the inclusion type have the same probability of being 

included in the sample; and ψ = 1 could be called “single” inclusion when 

the probability of inclusion is proportional to the number of members in Ca 

who are of the inclusion type.  
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3.2. General form of the pedigree likelihood 

The probability (mass or density) that the pedigree is of type (X,C) 

with its particular PC (X1,C1), conditional on having been sampled, is 

called the pedigree likelihood and can be expressed as: 

),,,|,,( ψαεθsmplCXP = 

),,,|(
),,|(),,,|(),|,( 11

ψαεθ

ψατεθ

smplP
CXinclPCXascPCXP aa

p  ,   (3.1) 

where the normalizing coefficient  

),,,|( ψαεθsmplP =

),,|(),,,|(),|,(),( 11
1

ψατεθ aa
CX CC p CXinclPCXascPCXP

p
∑ ∑ ⊆

 

defines the sample space for the given sampling procedures; it is the 

probability that at least one pedigree is sampled, i.e., ascertained under the 

given ascertainment model α, further extended in accordance with the 

extension model ε, and then censored according to the model ψ.  

Note that ),,,|(),,,|,,( ψαεθ=ψαεθ∑ CPsmplCXPX , which 

means that, in general, the distribution of the sampled pedigree structures 

depends on details of the sampling procedure (and the way it is modeled) 

and, if the execution of this procedure is determined by phenotype values 

in the sampled pedigrees, this distribution may depend on the model of 

inheritance being studied. 

Thus, on the given sample space generated by sampling procedure 

S, we express the likelihood of a pedigree (X,C) as the probability that it 

can be collected from the set of true pedigrees {τ}; and a specific 

likelihood is determined for each model of trait inheritance tested: 

)|,( i
S CXP θ  = ),,,|,,( ψαεθismplCXP . 
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3.3. Sample likelihood  

Most generally, pedigree analysis is performed on a sample of 

pedigrees {(Xk,Ck)} each of which is ascertained, extended and censored in 

accordance with its own specific sampling procedure  Sk. As a particular 

case, all the pedigrees in the sample could be sampled using the same 

sampling scheme (Sk = S), but this is not necessary. Some of the pedigrees 

may be collected purely randomly, some may be ascertained through 

probands and extended regardless of the phenotypes of their members, and 

others may be extended using some phenotype-dependent procedure. If, as 

is usually the case, the pedigrees are sampled independently of one 

another, then the sample likelihood is simply the product of the likelihoods 

for the pedigrees included in the analysis (or equivalently the sum of their 

log-likelihoods): 

),,,|)},({( ψαεθikk CXL  = ),(]),|,([ kkk CXN

k
kk

S CXP∏ εθ  = 

∏ 












=

k k

a
k

a
kpkkkkk

kCkXN

smplP
CXinclPCXascPCXP

,
),,,|(

),,|(),,,|(),|,(
),(

11

ψαεθ

ψατεθ

 

where N(XkCk) is the number of sampled pedigrees having the same 

(Xk,Ck), i.e., the same PC, (X1k,C1k), the same subset of collected potential 

probands (Xpk,Cpk), the same subset censoring the pedigree inclusion 

(Xa
k,Ca

k), and the same subset of observed members who cannot be 

probands and do not affect the inclusion procedure, 

(Xk,Ck)\[(Xpk,Cpk)∪(Xa
k,Ca

k)]. For a quantitative continuous trait, it is most 

probable that N(Xk,Ck) = 1 for each sampled pedigree. Each pedigree 

likelihood should be conditioned on the specific sampling procedure used 

to collect it. From a formal point of view, the choice of a particular 
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condition for the pedigree likelihood is equivalent to the choice of the 

specific sample space on which the probability of this sampled pedigree is 

defined. As we see, pedigrees whose likelihoods are defined on different 

sample spaces can be present in the same sample (Note, in this connection, 

the statement made to the contrary by Hodge and Vieland, 1996). The only 

common requirement for all the sampled pedigrees is that the model of the 

trait inheritance be the same. 
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4. GENETIC MODELS FOR QUANTITATIVE TRAITS 
 

 The general definition of a genetic model of trait inheritance given 

above is given in detail by explicit formulation of its component 

distributions defined in (1.1), p(g1,g2), P(g|g1,g2), and f(Xn|Gn). Clearly, 

models describing the inheritance of different traits should be formulated 

differently. In this chapter and the next, we review and compare the 

traditional ways of formulating the genetic model for quantitative traits, 

whether continuous or discrete, and for qualitative (binary, affected-

unaffected) and complex traits.  

 In what follows, in order to simplify our considerations of the main 

operations involved in pedigree analysis, namely, the formulation of a 

mathematical-genetic model, the probabilistic description of the pedigree 

sample to be analyzed (the sample likelihood), and the formation of the set 

of models to be tested, we will use the simplest version of the genetic 

model, which we call the major gene (MG) model. This model explicitly 

includes two kinds of effects, the effect of a diallelic gene called MG, 

which forms a three-component genotypic set G, and all the other effects 

involved in the trait control that determine the joint phenotypic distribution 

among members of the sampled pedigree. As will be clear from the 

discussion below, this use of the simplest model in developing the theory 

in no way leads to a loss of generality of the conclusions we come to. 

4.1. Population characteristics  

The first distribution determining the genetic model (1.1) is the 

genotypic distribution of pairs of spouses. This is a characteristic of the 

population in which the inheritance of the trait is being studied. This does 

not mean that other model characteristics cannot be considered as being 
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relevant to the population structure. The population is determined by its 

specific gene pool, which implies population specificity of the set G. 

Particular environmental conditions, as well as the population’s history, 

determine the trait distribution.  

The distribution p(g1,g2), where g1 and g2 are the genotypes of two 

spouses, is determined by the genotype frequencies and by the type of 

assortative mating occurring with respect to the trait under consideration. 

Under panmixia, 
21

),( 21 gg ppggp = , where pg is the population 

frequency of genotype g. For a single gene with two alleles, A1 and A2, the 

set G contains only three possible genotypes, A1A1, A1A2 and A2A2, which 

we can number g = 1, 2 and 3, respectively. The Hardy-Weinberg 

distribution of these genotypes is given by: pg = p2, 2p(1-p) or (1-p)2 for g 

= 1, 2 or 3, respectively, where p is the population frequency of allele A1. 

For any other genotype set (not MG) that follows an equilibrium 

distribution, each genotype frequency is proportional to the product of 

frequencies of the alleles constituting the genotype. 

 Assortative mating is a very complex process governed by a 

number of physical and social characteristics of the mates. Here, we define 

only that part of the general assortative mating effect that can be ascribed 

to the joint distribution of the spouse genotypes, with regard to a given 

genetic model describing the trait inheritance.  

Formally, any assortative mating effect is expressed in genetic 

model terms as the inequality: 
21

),( 21 gg ppggp ≠ . A particular 

formulation and parameterization of the assortative mating effect for 

quantitative traits can be proposed as follows (Ginsburg et al., 1986). 

Assume that the probability of mating between a pair of individuals with 

genotypes gi and gj (gi , gj ∈ G) is proportional to a factor 
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q(gi)q(gj)Ψ(gi,gj), where q(gi) = 
igp  if the i-th spouse has no parents 

included in the analyzed pedigree (founder), and q(gi) = P(gi|gm,gf) if gm  

and gf are genotypes of the parents of the i-th member. The proposed 

assortative mating factor is of the form: Ψ(gi,gj) = exp[η(
ji gg µ−µ )2/ 2

µσ ] 

where η is the coefficient of non-random mating; gµ  is the genotypic 

value of genotype g, and 2
µσ = ∑ µ2

ggp - [ ∑ µggp ]2 is the genotypic 

variance. The normalizing factor for a pedigree likelihood is calculated for 

the whole pedigree instead of for each pair of spouses included in the 

pedigree.  

Hasstedt (1995) proposed another parameter measuring the 

assortative mating effect, φ, - the correlation between the genotypic values 

in spouses. In nuclear pedigrees, for a given p and gµ , there is one-to-one 

correspondence between the coefficient η and this correlation, φ, as 

expressed by the equation: 

]),(/[]),([ 222 ∑ ∑∑ µ−µµ−µµ=φ
i j

i
ji

ji
g g

jig
gg

ggji ggpggp , 

where ∑µ=µ ),( jig ggp
i

; gi, gj = 1, 2, 3.  

 However, for a pedigree of more complex structure that includes 

several nuclear pedigrees, the correlation φ (but not η) depends on the 

number of “inner” spouses (i.e. not founders) and on their particular 

positions in the pedigree. Thus, the correspondence between η and φ 

becomes ambiguous, depending on the structure of pedigrees under 

consideration. This is the penalty for not being able to formulate 

),( 21 ggp  independently of the pedigree structure. 
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4.2. Transmission probabilities 

Each offspring genotype g is formed from two parental 

haplotypes (ξ,η) or (η,ξ), where ξ,η ∈ {h} – the set of haplotypes from 

which offspring genotypes can be formed. We now introduce the 

transmission probability, )|( gP ξ , the probability that an individual 

having genotype g ∈ G produces the haplotype ξ∈ {h} in the 

formation of his/her offspring genotypes (Elston and Stewart, 1971). By 

definition, 1)|(}{ =ξ∑ ∈ξ h gP  for any possible g. 

Using these transmission probabilities, we can express the second 

distribution defining the genetic model (1.1), i.e., the distribution of 

offspring genotypes given the genotypes of their parents, or transition 

probabilities, P(g|g1g2), as follows. For each g = (ξ,η) = (η,ξ)  

=),|( 21 gggP  

)]|()|()1()|()|([),(
1221 gPgPgPgP

F
ηξδηξηξυ

ξη−+= ,     (4.1) 

where: 1) δab is the Kronecker product symbol, used here to take into 

account the fact that homozygous genotypes transmit only one possible 

haplotype to their offspring; 2) υ(ξ,η) is a coefficient intended to take into 

account any departure from random association in the formation of the 

offspring genotype from the gametes obtained from the parents; and 3) the 

normalizing factor F is defined for the given pair of parental genotypes 

(g1g2). 

 This formulation of trait inheritance, the transmission of the genes 

from parents to offspring, can hardly be proposed in a general form 

because of (usually unknown) infringement of the classical Mendelian 

rules of gene transmission during gametogenesis and formation of the 
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offspring genotypes. Clearly, distribution (4.1) is determined by 

parameters that include both those determining transmission probabilities 

and parameters for the association of parental gametes in the offspring 

genotype. The most common assumption, used as an approximation, is that 

we have random mating and Hardy-Weinberg genotypic proportions. 

4.3. Continuous quantitative trait 

For a continuous quantitative trait, the conditional distribution of 

trait values among individuals having the same genotype g, f(x|g), is 

usually assumed (after transformation, if necessary) to be normal with 

expectation gµ  (genotypic value) and residual variance σ g
2 . This residual 

phenotypic variation is caused by all the factors (genetic and 

environmental), other than the genes defined in the model G, which is the 

main factor responsible for the trait inheritance, that somehow affect the 

value of the trait under study. The residual co-segregation of the trait 

values in relatives is caused by two factors. First, potential minor-genes 

that are involved in the trait control, but have not been identified in the 

model explicitly as main genes controlling the trait variation, produce an 

interdependence of trait values among relatives sharing the same alleles of 

these minor genes. Second, common familial environmental (household) 

factors that influence the trait produce correlated modifications of the trait 

value in members of the same pedigree.  

Usually, the n-variable normal approximation is used as the joint 

distribution of trait residuals f(Xn|Gn) of the n members of a pedigree, the 

residual of the i-th individual being defined as xi - igµ , where xi is his/her 

trait value and 
igµ is the genotypic value of his/her genotype gi ∈ G. This 
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distribution is determined by an n×n symmetric covariance matrix 

{ ijgg r
ji

σσ }, where 2
igσ , 2

jgσ are the residual variances of genotypes gi, 

gj ∈ G and rij is the pairwise correlation coefficient between the residuals 

of relatives i and j . It should be stressed that the normal form of the 

distribution is only a more or less suitable approximation to describe the 

joint residual co-variation. After an appropriate transformation of the trait 

value it is often good enough, being justified by the central limit theorem 

of probability theory, and it is good operationally because during many 

decades statisticians have used it for various applications. However, the 

assumption of normality without a transformation can be unsatisfactory for 

a particular continuous quantitative trait. For this reason, allowing for a 

transformation such as the Box and Cox (1964) power transformation 

should be included as part of the model and tested. 

The model parameterization of the n-variable normal distribution 

can be made in various ways, as follows.  

First, the pairwise correlation  matrix R can be parameterized in 

terms of variance components as has been incorporated in the program 

package PAP (Hasstedt, 2002) with the model parameters being polygenic 

heritability h2 and shared environmental factors ci
2. The number of shared 

environmental components is unrestricted. Each corresponds to a group of 

individuals who share a particular environmental effect. For example, all 

the members of nuclear family they may share a household effect, and in 

addition there may be sharing of spouses-specific and/or sibling-specific 

environmental effects.  The resulting correlation matrix has in general non-

zero elements for each pair of pedigree members. “Exact computation of 

the likelihood when the model includes correlations between pedigree 
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members requires summing over the probabilities of all combinations of 

genotypes for pedigree members; exact calculation requires too much 

computer time for pedigrees sizes exceeding about ten members” 

(Hasstedt, 2002). 

 In a second way of parameterization, which is also available in 

PAP, the pairwise correlations determining the R-matrix are taken to be 

the model parameters, with the following assumptions (Hasstedt, 2002, p. 

30):  

1) Only three types of correlations are introduced, namely, between 

spouses, r, between parents and offspring, b, and between sibs, e.  

2) The residual correlation between any given pair of relatives (spouses, 

siblings, etc.) is the same regardless of either the particular position of this 

pair in the pedigree under consideration or of the pedigree structure.  

3) The correlation between any pair of pedigree members not belonging to 

the same nuclear family equals zero. 

 However, for a sample of pedigrees with substantially different 

structures, it was shown (Ginsburg, 1997) that the last two conditions do 

not allow for minor-gene residual co-variability among relatives and lead, 

in particular, to non-interpretable values of partial correlations between 

the trait residuals of some pairs of relatives. Partial correlation between 

the trait residuals of two pedigree members means here the correlation 

after “partialling out” their correlations with the residuals of all other 

pedigree members. Just as the pairwise correlation coefficient between 

residuals of individuals i and j describes their general joint behavior, the 

partial correlation describes their joint behavior when the residuals of all 

other pedigree members, other than i and j, are held fixed.  
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 Assume, for example, that independently distributed genes with 

additive effect are responsible for the non-major-gene residual co-variation 

between pairs of relatives. For a panmictic population, under pure 

polygenic inheritance the three pairwise correlations are expected to be: r 

= 0.0, b = 0.5 and e = 0.5 (see, e.g., Thompson, 1986, Chapter 6). The 

corresponding partial correlations, ρ between spouses, β between parents 

and offspring and ε between sibs, when calculated for a nuclear pedigree 

with 3 offspring are, respectively, -0.600, 0.447 and 0.00. As can be seen, 

while ε corresponds exactly to its expected value (no correlation between 

sibs when the parental genotypes are fixed), the large negative partial 

correlation between spouses that would be required if a polygenic 

component is not included in the model can hardly be interpreted. 

Consider, for example, the simplest extension of the nuclear pedigree - 

including grandparents, the parents of one of the two parents, into the 

pedigree - thus forming a 7-member pedigree. The above three residual 

correlations and a zero correlation between pedigree members who do not 

belong to the same nuclear pedigree (e.g. grandchild-grandparent) would 

form a negatively-determined correlation matrix and, therefore, no 7-

variable normal distribution exists with these parameter values. The same 

is true for more complicated pedigree structures. These examples show 

that any approximate model for the residual co-variation should be 

formulated with care, to provide the possibility of a reasonable 

interpretation for the genetic model parameters.  

 Ginsburg (1997) proposed an other (third) way of parameterization 

in which the partial correlations between pedigree members are used as 

model parameters. Three assumptions, analogous to that of Hasstedt, are 

applied here to the partial correlation coefficients instead of to the pairwise 
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correlation coefficients.  Correspondingly, three partial correlations are 

introduced as the model parameters: ρ between spouses, β between parents 

and offspring and ε between sibs.  Conditions 2 and 3, but formulated in 

terms of the partial correlations, allow for the possibility of minor-gene 

residual co-variation among relatives. In particular, if the minor-gene 

genotype of an individual is fixed, no genotypic partial correlation is 

expected between residuals among his/her offspring or between his/her 

parents and siblings. The same is true for any partial minor-gene 

correlation between siblings, for fixed genotypes of their parents. The 

pairwise correlations between residuals of spouses, parent and offspring, 

or siblings, as well as those of any other pair of relatives, are expressed as 

functions of ρ, β and ε and depend, additionally, on the pedigree structure 

and on the position within the pedigree of each pair of relatives. In 

particular, the pairwise correlation between any pair of relatives does not 

necessarily equal zero, even if these relatives belong to different nuclear 

pedigrees. So conditions 2 and 3 (now formulated in terms of the partial 

correlations) seem more justified if there is minor-gene residual co-

variation among relatives, if familial environmental factors cause the 

residual co-variation between relatives, then these conditions seem 

justifiable in this case as well.  

When pedigrees of the same structure are under consideration, the 

two last parameterizations are equivalent, because one correlation triplet 

(r, b, e) has a one-to-one correspondence with a correspond triplet (ρ, β, 

ε), which follows from the formulae: 
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r        (4.2) 
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where ρij and rij are, respectively, the partial and pairwise correlations 

between residuals in the i-th and j-th pedigree members. The correlation 

matrix R was determined above; the matrix P  has non-diagonal (ij) 

elements equal to - ρij, while its diagonal elements equal 1. However, 

when pedigrees of different structure form the sample being analyzed, the 

difference in the choice of the parameter triplet for the model parameters 

can be important, at least in order to interpret the genetic model. 

 The program package S.A.G.E. (2004) includes the regressive 

models due to Bonney (1984) which, when the pedigrees are nuclear 

families, can include as a special case residual correlations as expected 

under polygenic inheritance. For more extended pedigree structures, these 

models do so approximately. In particular, the class D regressive model 

assumes that, conditional on the major genotypes and the phenotypes of 

the two parents, the residual correlation between the phenotypes of any 

pedigree member and a previous ancestor is zero. The grandparent-

grandchild residual correlation, for example, is then the square of the 

parent-offspring residual correlation, in contrast to half the parent-

offspring correlation (which is what is expected under polygenic 

inheritance). 

4.4.  Trait covariates  

The model formulated above describes the joint variability of 

quantitative trait values among members of a pedigree without any 

reference to trait covariates, i.e., other characteristics of the pedigree 

members that, if observed, give additional information about the 

transmission of the trait across generations. Two groups of covariates 

should be distinguished. The first group contains those traits that have 
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common genes pleiotropically responsible for variation in another 

phenotype but also, indirectly, for the variation of the trait being studied. 

Their effects can be tested by a specially designed bivariate analysis - see 

below, section 5.3). The second group includes covariates that are not 

genetically transmitted or, at least, that share no genes in common with the 

trait being studied. Among these latter, an individual’s sex and age are the 

most important. Many quantitative traits, such as body measurements, 

plasma concentrations of lipids or hormones, etc., show significant sex 

differences and change substantially with age and aging. Age-dependency 

may occur in quite different ways, this being a function of the nature of the 

trait and of the age interval studied. For example, bone traits related to 

aging (e.g., bone mineral density, or the metacarpal cortical index) hardly 

change between adolescence and the mid-forties, but then gradually 

decrease until death. Body height, on the other hand, increases until early 

adulthood and then remains virtually the same, although there is thereafter 

a gradual decrease with age. The serum concentration of many hormones, 

for instance parathyroid hormone, increases until adulthood and then 

gradually decreases with age.  

Some models of inheritance of anthropometric traits incorporating 

various genotype-sex-specific interactions with age have been well 

described (e.g. Pérusse et al., 1991; Comuzzie et al 1995; Cheng et al, 

1998). It is of special interest to mention the genotype-dependent effect of 

various covariates (age, sex, hormones, etc), also included as regression 

parameters in the regressive models of Bonney (1984) (the models were 

called regressive models because they include regression on the same 

phenotypes of previous relatives, just as autoregressive models include as 

parameters the regression on previous values of the same trait).  These 
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models were successfully used in several studies of quantitative traits, 

including anthropometrics (e.g. Borecki et al, 1993; Mahaney et al, 1995; 

Lecomte et al., 1997). These publications can be referred to for details. 

 The simplest way to account for age and sex effects on inter-

individual trait variation is the regression adjustment of the trait values for 

age and sex effects made prior to any pedigree analysis. The better way is 

to incorporate the age and sex effects explicitly into a penetrance function 

determining the MG effect, or any other genetic model, and this permits us 

to account for genotype-specific effects. In this approach, age and sex 

determine the trait inheritance model together with the other genetic 

parameters. Below, we consider a MG model that explicitly formulates 

genotype-sex-age interaction. 

 Let xgst  be the trait value in an individual having MG genotype g, 

sex s (m - male, f - female) and age t (t > 0) . The following linear model is 

assumed for this trait: 

xgst = µgst + ξ = µgs + ϕgs(t) + ξ, 

where µgst is the expected trait value of individuals having the same g, s 

and t; ξ is the trait residual not affected by the MG, sex or age; µgs is the 

expected trait value of individuals having genotype g and sex s, and ϕgs(t) 

is a function describing the genotype-sex specific age dependence of the 

trait value of these individuals; ν ϕt gst t( ) =∑ 0, where vt is the frequency 

of individuals having age t. 

 Ginsburg (1997) proposed several genotype-sex specific functions 

of age. Here, we consider one particular formulation of ϕgs(t) that is of 

special anthropological interest and can be used to approximate age 

dependent changes in bone anatomy: 
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ϕgs(t) = ags[t(1 - δ(Tgs)) + Tgs δ(Tgs) - t gs ],                      (4.3) 

where ags is a slope coefficient measuring the rate of change in the trait per 

year; Tgs is a genotype-sex specific threshold, introduced in such a way 

that the trait increases (or decreases, if ags < 0) linearly with age after the 

latter exceeds this threshold, while it stays constant, with the value 

 ags(Tgs - t gs ), at early ages; δ(Tgs) = 0 if t ≥ Tgs and = 1 otherwise, and 

t gs = tv T vt gs
t

T

t
t

Tgs gs
+∑ − ∑

= =0 0
1( ) , which follows from the condition 

ν ϕt gst t( ) =∑ 0.  

4.5. Example 

The above formulation of a covariate effect on the outcome of an 

inherited quantitative trait can be illustrated as follows. The metacarpal 

cortical index (CI) is the ratio of the combined cortical thickness to the 

total diameter of the bone. It serves as an indirect measure of bone mass 

and can be used in the prediction of osteoporosis. We tested whether 

genetic control of CI variation in large samples of pedigrees from 

Chuvashia, Russia (Karasik et al., 2000) can be satisfactorily described by 

a MG model of inheritance that includes (relatively) large gene effects and 

effects of other secondary genes and environmental factors. The trait 

shows quite pronounced age and sex dependence of the individual’s 

genotype in determining phenotype. Thus, according to the above 

formulation of the genetic model, three main pleiotropic effects of the 

major gene were formulated. The first was major gene control of the 

baseline level of the CI, the second was the age at onset of involutive bone 

changes (i.e. the inflection point), and the third was the rate of decrease of  
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Figure 3. Dependence of the metacarpal cortical index (CI) on
genotype, sex and age (from Karasik et al., 2000).  
 For each genotype, A1A1, A1A2 and A2A2, separately for males
and females, the dependence of the genotypic value on age as given by
formula (4.3) is shown. The CI values are shown in standardized units
.See details in section 4.5.  
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the CI with age (i.e. the slope coefficient). The analysis showed that this 

complex model of CI inheritance can be statistically accepted. Non-major-

gene effects shared by pedigree members (residual familial correlations) 

were found to be statistically non-significant. About 73% of the inter-

individual variation in CI was attributable to the effects explicitly included 

in the model. 

Figure 3 shows schematically the results obtained. Without 

dwelling on particulars of the analysis performed and any numerical 

results, we can summarize the main findings as follows. All the effects 

included in the model were found to be statistically significant (except the 

residual correlations). A difference was found in the inflection points 

between the different genotypes in males and females. A similar difference 

was found between the slope coefficients. Because this model was 

accepted in not just a single study, but also confirmed in other studies as a 

satisfactory model of CI inheritance, this result can be quite reasonably 

interpreted in biological terms and be of practical (predictive) interest. 

4.6. Quantitative discrete trait 

It is well known that individuals differ from one another in the 

thickness of their hair, and that this difference is not infrequently inherited. 

Consider this as a quantitative discrete trait expressed as the number of 

hair follicles per square unit of homogenous skin area. The distribution of 

this trait can be quite satisfactorily approximated by a Poisson distribution, 

i.e., the probability of observing exactly x follicles is given 

by ( | )
!

x

P x e
x

λλλ −= , where λ is the expected number of follicles per square 

unit of homogenous skin studied.   
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If there is no residual correlation between the number of hair 

follicles of relatives, the joint distribution of phenotypes in members of the 

pedigree, given their genotypes, is expressed as 

),|( λnn GXf =∏ =
n
i iixP1 )|( λ =

1 !

i
i

x
n i
i

i

e
x

λλ −

=∏ , where λi is the 

expectation of the follicle number in the i-th pedigree member. However, 

to take account of a possible correlation between relatives in the density of 

the follicles, the model should be formulated in a more sophisticated form. 

In particular, this can be done as follows. Assume that the expected follicle 

density in pedigree members, λi, has an n-normal distribution with 

variance-covariance matrix defined as in the previous section through 

partial correlations between spouses, parent-offspring and sibs. In this 

case, the joint distribution of phenotypes in pedigree members, given their 

particular genotypes, can be expressed as 

=),,,( εβρnn GXf  

nnn
n
i ii ddgggNxP λλεβρλλλ ...),,;,...,,|,...,()]|([ 12111∫ ∏ =

=  , 

where the integration goes over all possible follicle numbers in each 

pedigree member. 

4.7. Parameterization problems 

In formulating the diallelic MG model above, we have attempted to 

make the model as general as possible, but keeping unaltered the structure 

of the model definition (1.5). Assuming that only one gene is responsible 

for the genetic control of the trait, other factors affecting the major 

genotype manifestation were described in terms of the joint residual 

phenotypic distribution among members of the pedigree. The residual 
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variation was assumed to be influenced by many factors that are not major 

genotypes, and that are not specified in detail. The following explicit 

formal assumptions were made: 1) We allowed each major genotype to 

manifest a (normal) trait distribution with a specific expectation, µg, and 

variance, σ2
g. 2) We described each genotype by a genotypic mean value, 

µg, that depended on sex and age - the genotype-sex specific slope 

coefficient, ags, measuring the rate of change in the trait per year - and by a 

genotype-sex specific threshold, Tgs, assuming that the genotypic value 

linearly increases (or decreases) with age after age exceeds this threshold. 

3) We introduced assortative mating described by the parameter η. 4) We 

modeled the common household specific conditions causing co-variation 

of the trait residuals in pairs of relatives by the partial correlations between 

residuals in spouses, ρ, in parent and offspring, β, and in siblings, ε.  

This does not make the assumption that no genes other than the 

putative major gene take part in the control of this trait. We assumed only 

that the effects of other genes are such that they can be adequately 

described by an n-variable normal distribution of residuals. Such a 

formulation of the model limits our ability to describe the trait inheritance 

to a genetic model that has a reasonable number of genetic parameters. It 

would in principle be possible, for example, to construct a MG model 

with, say, three alleles, or a two-gene two-allele model. The genetic trait 

variation would then be controlled by 6 monogenic genotypes in the first 

case, or by 10 digenic genotypes in the second case (we do not assume that 

cis- and trans- double heterozygous genotypes have the same phenotypic 

distributions). Accordingly, keeping the model as general as possible, the 

number of genotype-dependent model parameters (genotypic values, slope 

coefficients, etc) would have to be substantially increased.  
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Each model of trait inheritance is tested on a particular pedigree 

sample of given size and structure. Clearly, the information this sample 

implicitly contains about the trait inheritance (expressed through the joint 

phenotypic distribution of its members) is limited. At the same time, a 

necessary part of pedigree analysis is estimation of the model parameters, 

which is difficult to achieve with any accuracy if the number of parameters 

is too large. If this were the case all the other statistical operations of the 

analysis would also be performed with insufficient accuracy, affecting the 

result of the analysis at the final stage.  

Because we have a most general formulation for the genetic model, 

it seems justifiable to introduce some constraints on the model parameters 

that would result in a simpler model, with the number of parameters to be 

estimated being in line with the information available in the sample being 

analyzed. However, in general, this model simplification is not a procedure 

that can be unambiguously defined. An approach to this problem that can 

be statistically justified is to use the likelihood ratio to test the null 

hypothesis that the simpler model is not significantly worse in describing 

the trait inheritance (see more details in section 8.3). However, such a test 

is expected to have low power, if only because of the large number of 

parameters that need to be estimated under the general model. At the same 

time, other non-statistical ways of simplifying the model can hardly be 

justified in practice. The assumptions implied by reducing the number of 

model parameters are most often made, without any serious justification, 

in order to simplify the model and, therefore, the calculation of the 

pedigree likelihood. 

Thus, formulation of the genetic model, and in particular its 

parameterization, should be coordinated with the pedigree sample on 
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which the model is tested. This is why, for reasonably informative 

pedigree samples, for the most part simple versions of (for example, MG) 

genetic models are usually considered for testing. However, some 

theoretical investigations point to the need to include more complicated 

models in pedigree analysis in order to increase the power of linkage tests 

(see, for example, Risch, 1990a, b, c; Dizier et al., 1993; Schork et al. 

1993; Dizier et al., 1996), even at the cost of requiring a substantially 

larger sample size.  
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5. THE VARIETY OF TRAITS  
 

The wide diversity of phenotypes that can characterize the 

biological function under study (collected with questionnaires) necessarily 

leads to the formulation of a corresponding variety of genetic models for 

the inheritance of the traits.  

5.1 Binary trait 

A binary trait is defined when each individual can be more or less 

accurately classified into one of only two phenotypic classes, expressed, 

for example, as affected or unaffected. In section 1.8, we stressed the 

independence of two different classifying factors, namely, the method used 

to characterize the phenotypes of individuals and the mode of inheritance 

of the trait. The genetic model for a binary trait would appear to be very 

simple. But the way an individual is characterized phenotypically is in no 

way determined by the true genetic, ontogenetic and environmental effects 

that lead to the binary phenotype. It is determined only by the available 

instrumentation - the questionnaire used. A binary trait can be controlled 

by a single gene more or less separate in its action from that of other 

individual genes (a MG model), by several genes each with relatively large 

effect on the phenotype (an oligogenic model), by polygenes (a term that 

needs precise definition), by epigenes, and/or by non-genetic 

environmental factors. Thus, formulation of a genetic model for the 

inheritance of a binary trait is not a simpler, but in fact a more difficult, 

task than for a quantitative trait. 

By definition, the first two distributions that define the genetic 

model (1.1), namely p(g1,g2) and P(g|g1,g2), are formulated with no direct 

connection to the type of trait being studied, so the formulation of these 
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distributions made in sections 4.1 is applicable for binary traits also. What 

is specific to binary traits starts when we introduce a correspondence 

between the genotypes of the pedigree members and their phenotypic 

distributions.  

The simplest model for binary trait inheritance assumes that each 

individual phenotypically manifests its genotype independently of the 

phenotypes of his/her relatives, though not necessarily uniquely. If the 

model does not include clearly formulated non-genetic factors that affect 

these distributions, the genotype–phenotype correspondence is expressed 

by the genotype penetrance: the probability w that the given genotype will 

have the affected phenotype. Accordingly, 1 – w is the probability that this 

genotype will have the unaffected phenotype. In this case, the joint 

distribution of phenotypes of the pedigree members, conditional on their 

subset of genotypes, is represented by the product: f(Xn|Gn) = 

∏ =
n
i ii gxf1 )|( , where f(xi|gi) = w(gi) if the phenotype of the i-th pedigree 

member, xi, is specified as affected, and f(xi|gi) = 1- w(gi) otherwise.  

In most cases, the genotype–phenotype correspondence for a 

binary trait would not be adequately formulated in this simple form. The 

inheritance of a trait observed under a dichotomous classification of 

individuals can be very complicated and, therefore, sometimes needs a 

very complicated, even sophisticated, formulation of the model.  

 In the last few decades, these complicated genetic models have 

often been constructed using an underlying quantitative trait (the so-called 

liability) model. It is assumed that during ontogenesis, under the control of 

the genotype, the specific environment and the specific influence of the 

closest relatives, each individual forms an underlying quantitative trait, or 

liability. This genotype expression cannot be accurately measured for 
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reasons that are unrelated to the nature of the trait. Instead, a threshold is 

added as part of the model: if the underlying quantitative liability of an 

individual, formed as a result of multifactorial effects, exceeds a certain 

given threshold t, this individual is specified as affected; and otherwise 

he/she is considered to be unaffected (Mendel and Elston, 1974). Ginsburg 

and Axenovich (1986) considered the case where the threshold t is not 

given (i.e. not previously found, for example in some preliminary 

statistical analysis of pedigree or population data) but is rather included as 

an additional parameter of the genetic model, t (∈θ). 

This approach to constructing complicated models for binary trait 

inheritance has some technical aspects in its practical application that are 

still not solved. Let Xn be a set of phenotypes on the n members of a 

pedigree, and f(Xn|θ) be the pedigree likelihood generated by model θ. 

Assume that the pedigree members have formed (according to the 

formulated model for quantitative trait inheritance) their underlying 

quantitative traits Yn. In this case, the pedigree likelihood for the binary 

trait studied would be expressed as: 
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where the integral limits are defined as follows: ci = t and di = ∞ for the 

case when the i-th pedigree member is classified as affected, and ci = - ∞ 

and di = t when the i-th pedigree member is classified as unaffected.  

The underlying model can be formulated in such a way that the 

genotype–phenotype correspondence, f(Yn|Gn,θ), is given as an n–variable 

normal conditional on the given subset of genotypes in the pedigree 
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members. One of the methods of approximating the multivariate normal 

integral (5.1) was considered by Rice et al, (1979) in an application to 

multifactorial quantitative traits. However, the construction of genetic 

models for the multifactorial control of a binary trait in this manner still 

needs further development. The same is true for any qualitative trait where 

the individuals in the population under study are divided into more than 

two types. In the simple monogenic model, more than two penetrances 

need to be defined for each genotype, while for the multifactorial model 

we need more than one threshold. Karunaratne and Elston  (1998) 

proposed a multivariate logistic model to allow for correlations in a binary 

trait across family members. 

5.2. Complex traits 

Quite expectedly, difficulties arise in formulating the geneticmodel 

when individuals are identified in a complex manner, i.e., each is 

characterized by an array of differently observed characteristics (according 

to the instrumentation employed), such as binary, qualitative or 

quantitative, discrete or continuous. Reasonable genetic modeling of these 

complex traits is hardly possible in most cases. This is why two 

approaches are used. The first is to analyze each of the component traits 

separately, find the “best” model describing its inheritance, and then try to 

combine these models into a single compound model describing the 

inheritance of the complex trait. The main problem in doing this is how to 

take account of the fact that the putative major genes found in these 

separate analyses of the component traits may be not only linked with one 

another, but some of them could also be the same genes that 

pleiotropically control a subgroup of these component traits. Mostly, when 

such complex traits describe multifactorial diseases, this approach seems 
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to be the only one that can be used for segregation analysis, even though it 

appears to be very difficult, tiresome and cannot guarantee results that can 

be used to solve practical problems -  in particular to make predictions. 

The alternative approach for the genetic study of such complex traits is to 

use linkage analysis, in an attempt to find the chromosomal locations of 

the genes that take part in the control of each component trait, identify 

these genes, and only then construct a compound genetic model for the 

complex trait. 

In practice, however, it is possible to use an approach that we shall 

call “preliminary reduction” to study the genetics of such complex traits. 

Livshits et al. (1998) studied the genetic control of human adiposity, in 

particular the inheritance of a set of 22 adiposity measures on each 

pedigree member. The pedigree samples were collected from the 3 

ethnically and geographically different populations of Kirghizstan, 

Turkmenia and Chuvasha. Among the set of adiposity traits that were 

directly measured were skinfold thicknesses and circumferences, and also 

additionally some constructed indices. Because they are characteristics of 

the same biological subsystem, these traits are expected to be under the 

pleiotropic control of genes somehow responsible for the development of 

adiposity, together with the additional involvement of environmental 

influences. This is why, to simplify the analysis, a phenomenological 

analysis of these traits was initially performed. Using the matrix of genetic 

correlations (obtained under a polygenic model as described by Hazel and 

Lush, 1942) the 22 traits were subjected to principal component analysis. 

In each sample that was studied, 4 principal components were retained that 

showed negligible genetic correlations with one another. This 

transformation to principal components was interpreted as forming new 
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quantitative traits of adiposity that are controlled by non-overlapping 

groups of genes. This reduction further permitted a separate analysis of 

each of the 4 new traits and, for each of them, the acceptance of a most 

parsimonious MG model (see details in section 8.3). Combining these 

results, a four-gene genetic model of adiposity was proposed (of course, in 

the sense that such a complicated construct as adiposity was defined in the 

study). 

To justify this reduction approach, it seems reasonable to note the 

similarity of the results obtained in the three ethnically and geographically 

different populations of Kirghizstan, Turkmenia and Chuvasha. In each of 

the 3 samples, 4 genetic factors (principal components) were found that 

had an almost identical biological interpretation, namely, the amount of 

subcutaneous fat, the total body obesity, the pattern of distribution of 

subcutaneous fat and the distribution of central adiposity.  

Let us note that this example of constructing a compound 

oligogenic model of trait inheritance uses the so-called additive-polygene 

theory of quantitative trait inheritance that was so fashionable in the early 

stages of genetic analysis. The term “genetic correlation” between traits 

means the correlation between the first trait in a parent and the second in 

an offspring, and vice versa. Interpretation of this in genetic terms is valid 

only under strict conditions (Ginsburg and Nikoro, 1973a, 1973b, 1982) 

that are hardly justified for quantitative traits at the current level of our 

genetic knowledge. Thus, strictly speaking, the compound model was 

constructed using a preliminary transformation of the traits, 

phenomenological in nature, that has very little in common with the joint 

genetic control of the traits. This does not mean, of course, that other, 

more genetically based methods, cannot be constructed. 
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5.3. Bivariate models 

 A particular case of a complex trait is a bivariate trait, in which 

each observed pedigree member is described by two traits each of which 

can be either qualitative or quantitative.  

 In defining the genetic model, let the set of possible trait 

phenotypes X be represented by the two sets Y and Z, for each of the two 

traits, respectively. Next, to make the genetic model as general as possible 

with no limitation on the number of genetic parameters, assume that there 

exist two major genes each controlling its own specific trait. Thus, the 

distributions p(g1,g2) and P(g|g1,g2) are to be parameterized by 1) two 

population frequencies p and q of alleles A1 and B1 of the two genes and 

by the disequilibrium parameter D determining the joint population 

distribution of their alleles, and 2) the recombination fraction ρ between 

these major loci. 

 We can formulate the genotype-phenotype correspondence as 

follows. Let each trait be described by a MG model in which f(Yn|G1n) and 

f(Zn|G2n) are given in one of the forms considered above, where G1n and 

G2n are the sets of major genotypes on the n pedigree members for the first 

and second trait, respectively. Then, f(Yn,Zn |Gn) defines the distribution of 

the 2n phenotypes observed on the n pedigree members given their 

particular set of two-locus genotypes Gn and can be expressed, for 

example, by a 2n-variable normally distributed with 2n×2n matrix of 

partial correlations having the form: 

RY W 
W RZ 

 

where RY and RZ are the matrices of partial correlations between relatives 

defined for each of the traits and W is a diagonal n×n matrix with the same 
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diagonal elements ω - the partial correlation between residuals of the  two 

traits in each pedigree member. The variance-covariance matrix for this 

2n-variable normal distribution can be easily expressed using the formulas 

given in the previous chapter. 

5.4 Longitudinal model 

 It is not uncommon to study the effect of sex and age on the 

ontogenetic development of human characteristics by performing a 

longitudinal study, i.e. to use sequentially repeated trait observations made 

on the same individual, in order to learn about the specific dynamics of, 

for example, a certain disease; or, pooling the individuals into groups (by 

sex, by living condition, etc.) in order to learn about the effects of these 

group on these dynamics. Usually, such longitudinal studies have been 

performed statistically by including the genetic effects on phenotype 

development only indirectly, for example, when the groups that are 

compared are sampled from ethnically different populations. 

 Let us consider how a genetic model of inheritance can be 

formulated and estimated on a pedigree sample, explicitly accounting for 

the specific genotype-sex effect on the development  of the trait with age. 

Let each pedigree member be observed not once, but several times (not 

necessarily at the same times for the different pedigree members), and in 

this way be described by a subset of phenotypes {xi(ti)} where ti  denotes 

the particular age at which the trait is observed on the i-th pedigree 

member. Let us denote by X(T)n the set of these subsets for a pedigree with 

n members. Because only one trait is under study, the most parsiomonious 

genetic model is the MG model, described for a quantitative trait in the 
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previous chapter. Thus, the only problem is to formulate properly the 

genotype–phenotype correspondence, f[X(T)n|Gn].  

 Before formulating this, consider a special situation in which the 

person collecting the pedigree data observes the pedigree sample for a 

second time after a certain interval of time. In this case, each pedigree 

member is described by two phenotypes observed with the same time 

interval between them. Considering these two phenotypes as observations 

of two different traits, the bivariate MG model described in the previous 

section should be quite applicable in this situation also. The partial 

correlation between residuals of the two traits in each pedigree member, ω, 

represents here the partial correlation between residuals of two 

sequentially observed phenotypes of the same trait. 

 In the general case, this partial correlation is expected to depend on 

the time interval between the successive observations: we express it as 

ω(|t2 – t1|), where t1 and t2 are at the ages at the time of the two 

observations. In the same way, we should represent the partial correlations 

between spouses by ρ(|t2 – t1|), between parent and offspring by β(|t2 – t1|), 

and between siblings by ε(|t2 – t1|). It is reasonable to assume that all of 

these correlations are decreasing functions of the age interval and, to 

introduce a minimal number of new parameters, they can each be 

formulated, for example, as a linear function, av(1–bv|t2 – t1|), or an 

exponential function, avexp(-bv|t2 – t1|). Here, av = 1, ρ, β or ε (defined for 

the observations on relatives obtained at the same age), and the bv are 

coefficients determining how the partial correlations decrease with 

increasing time interval between the pair of trait observations; v = 1, 2, 3 

and 4 for the functions ω(|t2 – t1|), ρ(|t2 – t1|), β(|t2 – t1|), and ε(|t2 – t1|), 

respectively. In this particular (phenomenological) formulation of the 
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residual distribution conditional on the given set of genotypes in the 

pedigree members, f[X(T)n|Gn], only four parameters bv, v = 1,…,4, have 

been added, to be estimated together with all the other model parameters 

as defined, for example, in the previous chapter for a quantitative trait.  

If ki denotes the number of successive observations on the i-th 

pedigree member, the n-member pedigree is described by K = ∑ =
n
i ik1  

phenotypes. For a quantitative trait, the joint distribution of their residuals 

could be approximated by a K-variable normal with a K×K matrix of 

partial correlations constructed using the above functions defined on the 

age intervals.  

 Table 5.1. Matrix of partial correlations between the 7 

phenotypic longitudinal observations made on a 4-member family. 

 1 2 3 4 5 6 7 

1 1.0 ω(5) ω(10) ρ(5) β(15) β(0) β(15) 

2  1.0 ω(5) ρ(0) β(20) β(5) β(20) 

3   1.0 ρ(5) β(25) β(10) β(25) 

4    1.0 β(20) β(5) β(20) 

5     1.0 ω(15) ε(0) 

6      1.0 ε(15) 

7       1.0 

Notes: The age difference between the observations is given in 

parentheses. See explanation is in the text. 

 

To illustrate, consider as an example a four-member pedigree (two 

parents numbered 1 and 2 and two offspring numbered 3 and 4) and 

assume that the following longitudinal trait observations were made: 
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x1(30), x1(35), x1(40), x2(35), x3(15), x3(30), x4(15); a total of 7 phenotypes 

ordered as they are written here, for the 4-member family. As can be seen, 

parent 1 was observed 3 times, at ages 30, 35 and 40, parent 2 and sibling 

4 were observed only once, while offspring 3 was observed twice. Table 

5.1 shows the partial correlations between all these observations. The 

variance-covariance matrix of the 7-variable normal distribution can be 

obtained from the matrix of partial correlations given in Table 5.1. 

5.5. Other formulations 

The way of constructing genetic models considered above is 

specifically intended to describe in a formal fashion differently defined 

traits, but is not the only one possible, of course. Different formulations 

and parameterizations of genetic models were proposed by Bonney 

together with his co-authors and followers (Bonney, 1984, 1988; Bonney 

et al., 1988; Demenais, 1991; Demenais et al., 1992). Initially, Bonney’s 

formulation was intended to produce models for binary traits with non-

genetic correlations between the phenotypes of relatives. Instead of the 

three independent component distributions clearly defined and separately 

formulated, as given in the genetic model definition (1.1), the regressive 

models for binary traits tried to introduce a set of formally equivalent 

parameters that determine the mode of inheritance. Each parameter, the 

allelic frequency, genotypic value, correlation between residuals, 

transmission probability and so on, was included in the model as a logistic 

factor. However, when compared with the traditional model, one of the 

versions of which was described above in chapter 4, it was discovered that, 

although intended initially to have the same biological interpretation, the 

parameters determining regressive models differ in meaning from the 

traditional parameters. Then, Demenais (1991) made an attempt to 
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reconcile these two ways of model formulation and showed that this is 

possible if the three component distributions of the genetic model (1.1) are 

defined and formulated separately to take into account particular details of 

the population genotype distribution, the specific mode of transmission 

and the specific genotype–phenotype correspondences. The multivariate 

logistic model developed by Karunaratne and Elston (1998) is another 

formulation, incorporated into the program package S.A.G.E (2004). 

5.6. Control of heterogeneity  

 Let us define genetic heterogeneity of the trait inheritance as the 

case where not all the phenotypes from the set X have the same genetic 

control (Whittemore and Halpern (2001). Although observed in the same 

way (measured by the same instrumentation) these phenotypes can be the 

result of different genes. These genes could be involved in the trait control 

because of a special environmental condition, because of other minor 

genes involved in the trait control, etc. As a result, different individuals 

who manifest the same phenotypically described trait would be doing so as 

a result of the effects of different genes, i.e., their traits would be 

differently inherited, and our formulation of the model of inheritance 

should explicitly account for this fact.  

The easiest way to do it is to sort the pedigree data phenotypically 

prior to their analysis, i.e., to form homogenous pedigree sub-samples, 

assuming that the true genetic control of the trait is the same within each 

sub-sample of pedigree members being analyzed. At the same time, 

different sub-samples are assumed to have different genetic control of the 

trait being studied. In this way, performing an analysis of the pedigree data 

in all sub-samples separately, and then combining the results, there is hope 
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that the heterogeneity of trait inheritance would be adequately described 

by not one, but several, genetic models.  

Unfortunately, this simple way of studying the heterogeneity of 

genetic control is rarely possible in practice, especially at the early stages 

of studying the trait inheritance. At further developed stages, after some 

information about the heterogeneity has been obtained, it is sometimes 

possible to distinguish pedigrees in which the trait is controlled by two 

different large effect genes, pedigrees where the trait is controlled by 

polygenes, or by phenocopies, or pedigrees where no genes are involved in 

the control – there is pure environmental control of the trait variation. 

Clearly, this phenotypic distinction between the sub-samples implicitly 

assumes that there are different traits, differently inherited but 

phenotypically defined in the same manner, when using the same 

typological or measuring technique. It is reasonable to expect that these 

traits would be further distinguished by more adequate phenotypic 

characterization. In his review, Rao (1998) among others has discussed 

this way of dissecting multifactorial traits. 

This real heterogeneity of the genetic control of a trait should not 

be confused with complicated, but not heterogeneous, genetic control. The 

simplest example of this can be formulated as follows. Let the inheritance 

model of the trait include a large effect gene and this gene mutation 

(allele) causes extremely large trait values in individuals who have it, 

while low and moderate trait values are shown by individual genotypes not 

having this particular allele. In this case, members of the same pedigree 

can simultaneously manifest large trait values in those having genotypes 

with this specific allele and low or moderate values in those whose 

genotypes do not have it. It is evident that the unambiguous construction 
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of sub-samples to be separately analyzed is then hardly possible, even if a 

number of special stipulations are made. We need to construct a rather 

complicated model for this trait inheritance, explicitly formulating the 

distribution f(Xn|Gn) of different trait values that can be manifested by 

different individual genotypes. 

 

5.7. On the genotype-phenotype formulation 

 In the last two chapters, examples of genetic model formulation 

were considered for differently defined traits, i.e., for the different 

phenotypic descriptions of the biological function being studied.  

Once the phenotypic characteristics of this function have been 

established, the core of each genetic model is the specifically constructed 

set of genotypes, G, that determine the trait genetic control through their 

particular population distribution, their transmission from parents to 

offspring, and their phenotypic distributions.  

The formulation of the first two component distributions of (1.1), 

i.e., the distribution of genotypes in spouses and the transmission of 

genotypes from generation to generation, could be made quite 

straightforwardly as soon as the set G is determined. This formulation is 

the same for any phenotypic description of the trait(s) being studied. 

However, a natural ambiguity in the model formulation arises as soon as 

the third component of model (1.1) is introduced, namely the joint 

distribution of phenotypes on pedigree members given their genotype 

combination, f(Xn|Gn). In the last two chapters, examples of how to 

formulate this distribution were given for variously defined traits, 

quantitative, continuous and discrete, qualitative (binary), and complex. In 

each case, the mathematical model includes a set of parameters each 
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having a clear genetic interpretation. The formulated genetic model allows 

us to write down the joint probability of phenotypes on the members of 

each given pedigree.  

Clearly, other formulations of the distribution f(Xn|Gn) are quite 

possible. In some cases, the justification of the particular chosen form of 

f(Xn|Gn) could be made traditionally, as, for example, the n-variable normal 

distribution for a quantitative continuous trait, representing the result of 

the central limit theorem of probability theory. In other cases, this choice 

could be justified by results of some preliminary investigations of the trait 

under study. However, in each case the third component distribution in the 

genetic model formulation should be considered as an approximation to 

the form of the genotype-phenotype correspondence, the level of 

approximation being unknown. Taking into account the evident ambiguity 

in this formulation, it seems reasonable to consider a set of genetic models 

having the same first two component distributions, p(g1g2) and P(g| g1g2), 

and differently formulated f(Xn|Gn) covering a possible range of genetic 

models. 
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6. THE CORRECTED PEDIGREE LIKELIHOOD 
 

In statistics, the likelihood technique is the one that is most 

developed asymptotically. Accordingly, this technique is the one most 

widely used to solve statistical problems when complex empirical data are 

analyzed. In contrast to the pure mathematical accuracy of the asymptotic 

results that have been obtained, practical rules indicating how to use this 

technique for solving complex statistical problems on finite-size samples 

are still far from satisfactory, and need substantiation and further 

investigation in general, as well as in each particular case.  

The basic concept of this technique is the likelihood for the data to 

be analyzed. In the general case, the likelihood is the probability of the 

data defined on a particular sample space, whether using some explicitly 

formulated model or not. In pedigree analysis, this is the pedigree 

likelihood constructed under a previously formulated genetic model. 

Because it is the probability (mass or density) of the pedigree data to be 

analyzed, the likelihood must be defined to be positive and normalized on 

the sample space determined by the sampling design that was initially 

introduced. The problem of defining the sample space was considered in 

chapter 2. Here, we consider the methods of adequately, but not 

necessarily uniquely (for the given sample space), defining the pedigree 

likelihood. 

6.1. Likelihood calculability 

 Sawyer (1990) considered pedigrees as discrete sampling units, 

neglecting their inner substructures. He showed that estimators of the 

genetic model obtained from a pedigree sample are asymptotically 

unbiased if the model corresponds exactly to the true mode of inheritance 
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of the trait being studied, including the procedures used in the process of 

sample collection. This correspondence can be described in more detail by 

the following conditions that are necessary and sufficient to make the 

pedigree likelihood (3.1) adequate and, in particular, calculable: 

C1 Each model of inheritance is formulated explicitly and the 

formulation corresponds to the true mode of inheritance. The only 

possible unknowns are the model parameters θi. 

C2 The two pedigree substructures C1 and C2 are identified. The model 

of pedigree extension ε is known and provides an explicit and 

correct expression for ),,,|,( 1122 εθCXCXP ; only some 

parameters determining the extension model are possibly unknown. 

C3 The pedigree PSF, i.e., the subset of potential probands in the true 

pedigree from which the sampling was performed, is identified. 

The ascertainment model is given in a form that provides an 

explicit and correct expression for the ascertainment 

probability ),,,|( 11 ατ pCXascP . The only possible unknowns are 

the ascertainment parameters α.  

C4 The population distribution of the PSFs, τp, is known. 

C5 The pedigree subset XaCa that determines the inclusion of the 

pedigree in the sample analyzed is identified. The model for this inclusion, 

ψ, is known in enough detail to  formulate the inclusion 

probability ),,|( ψaa CXinclP , but parameter(s) of this expression  might 

be unknown. 

As we can see, the first condition means that the genetic model 

should correspond exactly to the true mode of inheritance of the trait being 

studied, including the genes controlling the trait, their phenotypic effects 
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manifested in different environmental conditions, etc. Only the parameters 

of the formulated model are to be estimated from the pedigree sample. 

This estimation of the genetic model is the main goal of the analysis. The 

other conditions, C2 - C5, define the sampling procedures used to collect 

the pedigree sample. These sampling models are a nuisance; they are 

estimated, together with the genetic model of inheritance, and are used 

only to account for the particular sampling process. If the formulated 

conditions are true, the estimator of the model being tested is 

asymptotically unbiased.  

At the same time, if the genetic model is formulated differently 

from the true mode of trait inheritance, or if the sampling procedures 

(ascertainment, extension and/or inclusion) do not accurately reflect the 

real sampling process, the analysis result is doomed to be asymptotically 

biased, which means there will be asymptotically biased estimation of the 

genetic description of the trait inheritance. The important point is that the 

bias, its magnitude and direction, depends on the particular models (the 

genetic model and the sampling model) used in the analysis. Thus, 

incorrect ranking of the inheritance models in θ is to be expected, and we 

will not be able to interpret unambiguously the results of the analysis. 

To the extent that strict fulfillment of these conditions does not 

occur in practice, likelihood (3.1) will be of limited use. To understand the 

main difficulties in fulfilling these conditions, we now consider some 

details of modeling the sampling procedures. 

6.2. Pedigree extension 

The model of pedigree extension determines how the pedigree 

complement, (X2,C2) = (X,C) \ (X1,C1), is to be sampled, given the initially 
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ascertained PC. Collecting for observation any available relatives from the 

true pedigree, regardless of their characteristics or other factors, represents 

the special degenerate extension model, ε0. The only version of a directed 

pedigree extension that is usually considered is sequential intrafamilial 

sampling (Cannings and Thompson, 1977; Thompson and Cannings, 

1979). This assumes that, at each stage of data collection, the decision 

about what additional part of the true pedigree should be observed is made 

using the data already collected up to the current stage and some limitecd 

information about the true pedigree, e.g., the existence and availability for 

observation of the closest relatives of already observed individuals (The 

pointer extension considered in section 2.4 represents a particular case of 

this sequential procedure; the very existence of these still unobserved 

relatives cannot be established without the questionnaire that was 

introduced above). 

 Let us consider some general principles of how the extension 

process can be formulated. Denote the part of the pedigree collected at all 

n previous stages [X(n),C(n)], and the part of the pedigree collected at the n-

th extension stage [X(n),C(n)]. Here, [X(1),C(1)] ≡ (X1,C1) and [X(n+1),C(n+1)] = 

[X(n),C(n)] ∪ [X(n+1),C(n+1)]. Let us assume that, for each particular true 

pedigree τ, at the n-th extension stage the extension model ε allows only 

one possible decision about extending the pedigree data already collected. 

In other words, for the given true pedigree, there is only one unique part of 

the pedigree on which further data are to be collected, [X(n+1),C(n+1)] 

(including as a special case no part). In principle, it is possible to define a 

randomized extension model where, at each extension stage, we permit 

several extensions of the already collected sub-pedigree, and we make the 

choice among them using a random number generator. Here, we only 
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consider deterministic procedures ε. We represent the extended sub-

pedigree as the union of the extensions made during all the extension 

stages: (X2,C2) = (X,C)\(X1,C1)= U 2
)()( ],[=n

nn CX .  

 Now consider a subset of true pedigrees, all having the same sub-

pedigree [X(n),C(n)], that has been already collected under the extension 

model ε, i.e., the same PC and the same extension [X(n),C(n)] \ (X1,C1). 

Depending on its particular information content, the k-th of these true 

pedigrees proposes its next specific extension [Xk
(n+1),Ck

(n+1)]. On the 

universe of all such extensions, the conditional probability 

),,,|,( )()(
)1()1( εθ++

nn
nn CXCXP  is defined as the proportion of the 

particular extensions [X(n+1),C(n+1)] that are acceptable under model ε. By 

definition, 

∑
++

=εθ++

],[
)()(

)1()1(
)1()1(

1),,,|,(
nn CX

nn
nn CXCXP , 

where the sum goes over all extensions of [X(n),C(n)] in the population 

possible under the given model ε.  

Consider next the subset of true pedigrees from which it is possible 

to collect the extension (X2,C2) = (X,C)\(X1,C1). It seems reasonable to 

assume that the same extension can be collected, in different ways and at 

different stages, from different true pedigrees. For example, structure 5 in 

Fig. 2 can be collected in different ways. Let the PC contain two probands, 

C1 = {4,12}. Then the pedigree structure having C2 = 

{1,2,3,5,8,9,10,11,13} can be sampled through different extension stages 

when either pointer 2 or pointer 10, or both, belong to the extension type 

x+. 
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Let w denotes a particular sequence by which the given pedigree 

extension (X2,C2) = (X,C)\(X1,C1) can be collected. In this case, 

=),,,,|,( 1122 wCXCXP εθ  

),,,|,(
1

)()(
)1()1( εθ∏

=

++=
w

ww
ww

n
nn

nn CXCXP  

is the probability of collecting extension X2C2, given the extension model ε 

and the particular extension sequence w. Accordingly,  

 

∑ εθ=εθ
w

wCXCXPCXwPCXCXP ),,,,|,(),|(),,,|,( 1122221122 , 

where ),|( 22 CXwP  is the population relative frequency of that particular 

sequence w by which the extension (X2,C2) can be collected. This 

probability is determined by the population distribution of true pedigrees. 

Evidently, 1),,,|,(),( 112222
=εθ∑ CX CXCXP , where the sum goes over 

all extensions of the initially ascertained (X1,C1) that can be made in the 

given population {τ}, including all the ways in which the extension is 

made under the given extension model ε.  

Let us introduce two kinds of pedigree extension: trait-independent 

and trait-dependent. In the former, at each extension stage the decision 

about how to extend the sub-pedigree [X(n),C(n)] collected so far is made 

independently of the phenotypic content X(n) of this sub-pedigree, as well 

as of the phenotypes of all other members of the true pedigree. In this case, 

the structure of the pedigree extension C2 does not depend on the trait 

model and the following factorization is correct: 

),,,|,( )()(
)1()1( εθ++

nn
nn CXCXP  =  

),,|( )1()(
)1( θ+

+
nn

n CXXP ),|( )(
)1( ε+

n
n CCP ,  (6.1) 
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where the first factor on the right hand side is the joint probability of 

phenotypes in the pedigree extension given the pedigree structure (both 

that previously collected and the extension). This probability is fully 

determined by the trait model. The second factor is the probability of the 

particular extension structure C(n+1), which, as we have assumed, does not 

depend on the phenotypes of the pedigree members already collected (nor, 

therefore, on the trait model), but does depend on other particulars of the 

extension procedure (relationships with the individuals already collected, 

availability etc). In this case, ),,,|,( 1122 εθCXCXP  ),,|( 12 θ∝θ CXXP , 

i.e., the probability of collecting the pedigree complement X2C2 is 

proportional to the joint probability of the phenotypes in the pedigree 

extension X2, given the extended structure C2 and the pedigree PC. This 

proportionality means that the left and right hand sides differ from one 

another by a factor that is independent of θ. Otherwise, when the extension 

model is such that the structure of a newly collected pedigree part depends 

on the phenotypes of already observed pedigree members, the pedigree 

extension is trait-dependent and expression (6.1) is incorrect (Hodge and 

Boehnke, 1984). 

 It should be noted that mixed extension procedures, including both 

trait-independent and trait-dependent stages, are possible. In the above 

example (section 2.4), at the first stage all available first-degree relatives 

of the ascertained probands are to be collected, while next collected should 

be the first-degree relatives of only extension-type pointers.  

 We have made the above probabilistic description of the pedigree 

extension process in a somewhat general form in order to show that the 

correct detailed formulation of this process is not a simple task. With an 

explicitly defined extension model, sometimes the probability 
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),,,|,( 1122 εθCXCXP  can be expressed correctly using only the observed 

data (X2,C2) and (X1,C1). In the example considered in section 2.4, all the 

intermediate steps in the formulation of ),,,|,( 1122 εθCXCXP  were 

skipped as unneeded: the pedigree is extended if it contains a pointer who 

is of the extension type. In other cases, more detailed knowledge is needed 

about the true pedigree from which the sampling is performed, and/or 

about the distribution of some parts of the true pedigrees. Up to now, we 

have only considered the simplest versions of the extension model in 

pedigree analysis, either in its classical form or in sequential pedigree 

collection (Cannings and Thompson, 1977; Thompson and Cannings, 

1979; Lalouel and Morton, 1981). Below, considering the various 

possibilities for the sampling correction of the pedigree likelihood, we 

shall assume that the pedigree extension model is given in such detail that 

the probability ),,,|,( 1122 εθCXCXP  can be correctly formulated using 

the available data (see condition C2 in section 6.1).  

6.3. Models of proband ascertainment 

After Weinberg’s (1912) publication, a number of quite thorough 

investigations were performed in this field. The ascertainment-model-

based (AMB) pedigree likelihood (mostly for sibships) was formulated by 

introducing various explicit expressions for ),,,|( 11 ατ pCXascP . Here we 

consider the main possibilities for ascertainment modeling. 

Each ascertainment event divides the set of potential probands of 

the true pedigree, its PSF, into three component parts (Fig. 1): τp = (X1,C1) 

+ (Xp,Cp)\(X1,C1) + τp\(Xp,Cp), where, as defined above, (X1,C1)  is the PC 

identified in the sampled pedigree; (Xp,Cp)\(X1,C1) is the subset of sampled 

potential probands who did not become probands; and τp\(Xp,Cp) is the 
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subset of unsampled potential probands about which nothing is known 

except that they did not become part of the PC. The first two components 

are represented in the observed data, while the third comprises unobserved 

data, not being part of the sampled pedigree. In the proband ascertainment 

model, we assume that all the members of τp take part in the ascertainment 

procedure. It so happens that, by chance and because of their phenotypes, 

some of them (those forming the sub-structure C1) became the PC, while 

the others did not. 

Thus, the probability of ascertainment, ),,,|( 11 ατ pCXascP , is the 

joint probability that, given the set of potential probands or PSF, (X1,C1) 

became the PC, while the other potential probands of the true pedigree, 

τp\(X1,C1), including both those sampled, (Xp,Cp)\(X1,C1), and those not 

sampled, τp\(Xp,Cp), did not become part of the PC: 

=),,,|( 11 ατ pCXascP  

)]|),(\),(\),()Pr[( 111,1 ατ ppppp CXCXCXCX ∩∩= ,     (6.2) 

where A  denotes that no potential proband from the subset A becomes 

part of the PC. This probability is defined for each given τp with its 

specific structure C(τp), and phenotypic content X(τp). By definition:  

∑ ∑
τ⊆ ⊆

=τ∩∩
)(

1111
1

1]),(\),(\),(),Pr[(
pp pCC CC

ppppp CXCXCXCX , 

where the second sum goes over all C1, including the empty one, while by 

definition the pedigree is ascertained only if C1 is not empty. This equality 

should hold for any given phenotypic content X(τp) of τp.  

In general, any particular formulation of probability (6.2) should 

take explicit account of how members of the pedigree PSF jointly give rise 

to the pedigree PC. Without dwelling upon the possible formulations of the 
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probability (6.2), we note that, traditionally, it is often formulated in its 

more or less simplified form, in terms of the so-called π-model of 

ascertainment, the most general formulation of which was given by Elston 

and Sobel (1979). Let πi = π(xi,βi) denote the probability that the i-th 

member of the true pedigree becomes a proband, this member having 

phenotype xi and some additional characteristics βi, such as sex, age, place 

and duration of residence, etc. Clearly, πi = 0 for any pedigree member not 

belonging to the pedigree PSF. Assume that πi does not depend on the 

individual’s position in the structure τp, nor on the phenotypes and proband 

statuses of other members of τp (i.e. there is no “interaction” between 

members of the given PSF during the ascertainment process – this is the 

main independence assumption of the π-ascertainment scheme). However, 

πi does depend on the individual’s phenotype, and this probability may be 

different for males and females, it may also change with an individual’s 

age if people of a certain age range enter the catchment area more 

frequently than others, etc. Importantly, given the potential proband’s 

phenotype, the probability that he/she becomes an actual proband does not 

depend on the trait model θ. Thus, assuming independent ascertainments 

(single if |C1| = 1, or multiple if |C1| > 1), probability (6.2) can be 

expressed as: 

),,,|( 11 ατ pCXascP = 

∏ ∏
∈ τ∈

π−π=
1 1\)(

)1(
Ci CCj

ji
p

∏∏ ∏
τ∈∈ ∈

π−π−π=
ppp CCk

k
Ci CCj

ji
\)(\

)1()1(
1 1

,  (6.3) 

 

where the first two factor products on the right hand side are determined 

by the sampled pedigree data, while the factor ∏ τ∈ π−
pp CCk k\)( )1(  is 
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determined by the unsampled subset of potential probands in the true 

pedigree. This last factor does not depend on the trait model, but it does 

depend on the result of sampling, both the ascertainment and the 

extension, because it is different for different structures of the sampled part 

of the PSF  Cp; and, of course, it is determined by the true set τp (which is 

usually unknown, but which could be learnt from the questionnaire).  

 In the classical π-scheme for a binary trait, it is assumed that 

 πi ≡ π for each affected member of τp and πi = 0 otherwise. In this case, 

definition (6.3) reduces to bkb −π−π )1( , where b is the number of 

probands and the other k affected PSF members, if the pedigree PSF is not 

sampled in its entirety, comprise k1 who are observed in the process of 

pedigree sampling and k2 = k – k1 who are unobserved. Initially, this 

simplified form of ascertainment probability was proposed for sibship data 

and it was later applied (correctly or not, depending on the assumed and 

actually performed ascertainment procedure) to complex pedigrees 

characterized by a binary trait. Note, in addition, that this binomial 

expression is not multiplied by a combinatorial coefficient because it is the 

probability of ascertaining this particular pedigree, not any pedigree 

having the same b and k. When the probands have not been identified, the 

approximate ascertainment probability k)1(1 π−−  was proposed for all 

pedigrees having at least one proband among k affected PSF members (see 

a note on this approximation in Ewens and Shute, 1986).  

Independence of becoming probands by members of the pedigree 

PSF seems too idealized a situation and, in practice, more complicated 

multiplex forms of ascertainment take place. Hodge and Vieland (1996) 

proposed a proband configuration as the predefined subset of relatives 
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(e.g., two siblings, father and his son etc.) that jointly cause the pedigree 

ascertainment (although independently of other such configurations in the 

pedigree). Let πij = π(xiβi, xjβj) be the probability that the (ij)-th 

configuration causes the pedigree ascertainment. In this case, the 

multiplicative form (6.3) of the ascertainment probability is assumed to 

hold true not for separate members of the PSF, but for the predefined 

configurations that can be formed by members of the given τp (or of the 

whole true pedigree when τp ≡τ). 

6.4. Pedigree likelihood – sample space 

 For the given population of true pedigrees {τ}, any particular 

sampling procedure S = (α,ε,ψ) determines the sample space – the 

universe of pedigrees that in principle could be sampled and, therefore, 

analyzed. The pedigree likelihood is defined on this space as the 

probability (density) of sampling this pedigree under the given model of 

trait inheritance. It is evident that there is not just one way to define this 

probability. The core of any likelihood definition is, of course, the joint 

distribution of phenotypes on the pedigree members, which is fully 

determined by the analysis model of trait inheritance. However, for this 

likelihood to adequately reflect not only the genetic model, but also the 

specific mode of sampling, and in order to keep the probabilistic nature of 

the likelihood, the latter should contain a formal description of the 

sampling procedure and should be normalized. Traditionally, this 

normalization for the sampling procedure is called likelihood correction 

(e.g. for ascertainment). The normalizing denominator in the likelihood 

definition (3.1) is the probability of the sample space on which the explicit 
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form of the likelihood correction is defined for the sampling procedure S 

that is used. 

6.5. Ascertainment correction 

As defined above, the pedigree sampling includes three distinct 

sub-procedures, the pedigree ascertainment, its extension and censoring. 

We have assumed that all particulars of the extension procedure are 

already taken into account when the probability of the extended pedigree 

part, ),,,|,( 1122 εθCXCXP , is explicitly formulated. If this is not so, then 

all other considerations become meaningless. Thus, we consider below the 

methods of likelihood correction for the other two specific sub-procedures 

of pedigree ascertainment and censoring.  

For the moment, only the ascertainment correction will be 

considered, assuming there is no selective inclusion, in the sample to be 

analyzed, of the pedigrees that have been already ascertained and 

extended. In other words, we shall assume that the subset (Xa,Ca) is empty 

and, therefore, the pedigree likelihood in this case can be expressed as in  

(3.1) with ),,|( ψaa CXinclP ≡ 1.  

Bearing in mind the above details of the ascertainment procedure, 

it becomes clear that likelihood (3.1) cannot usually be calculated, because 

conditions C3 and C4 (see section 6.1) are not fulfilled. Indeed, if the 

pedigree PSF is not sampled in its entirety (C3), it is impossible to 

calculate ),,,|( 11 ατpCXascP . Moreover, even if the pedigree PSF is 

known, the denominator of (3.1) cannot be found without knowing the 

population distribution of PSFs (C4). Therefore it is justifiable to talk about 

the insolvability (intractability is the term used by Vieland and Hodge, 

1995, who first noted this) of the ascertainment problem. Additionally, it 
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should be noted that this statement has no connection with the inclusion 

procedures. The latter can be very diverse in their formulation, while 

pedigree ascertainment through probands can be at least accurately 

formulated in the form of (6.2) or (6.3). 

6.6. Conditioning on the PSF structure 

Assume that, in the process of pedigree sampling (or even before 

this process starts), a survey is conducted of the true pedigree population, 

using the questionnaire defined above, inquiring about pedigree structures. 

This would not be exceptionally unusual in practice. If certain 

characteristics by which potential probands are defined (e.g., belonging to 

the catchment area) are determined by this questionnaire, then the structure 

C(τp)\Cp of the unobserved members of the pedigree PSF can be learnt for 

each sampled pedigree; also, if needed, we can determine the structure 

relating to those pedigree members who are not potential probands, but 

who nevertheless provide information about the relationships between the 

observed pedigree members and the unobserved PSF members. This 

means that the sampled pedigree is now extended and is represented by the 

structure C ∪ C(τp), which includes the previously sampled structure and 

the substructure C(τp)\Cp identified by the questionnaire. By doing this, the 

structure of the true pedigree PSF, C(τp), becomes known regardless of 

what particular PC was ascertained and how it was further extended.  

In this case, it seems natural to formulate the pedigree likelihood 

conditional on the given PSF structure as follows. Consider a dummy 

pedigree (X,C) ∪ τp, which contains the sampled (ascertained and 

extended) pedigree, (X,C), and, additionally, the PSF of the true pedigree 

from which the sampling was performed but that has not been included in 
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the sampling process. In this extended pedigree, the structure of the added 

PSF part, C(τp)\Cp, has been identified by using the questionnaire, while its 

phenotypic content, X(τp)\Xp, is unknown. The probability of this dummy 

pedigree, ],|),[( εθτ∪ pCXP , can only be found if the population 

distribution of τp is known, which is hardly expected to occur in practice.  

Let ],),(|),[( εθττ∪ pp CCXP  be the probability of observing this 

dummy pedigree given its PSF structure and the trait inheritance and 

extension models. Then the probability that the pedigree is (X,C) and is 

sampled, given the PSF structure, can be expressed as  

],,),(|,,[ αεθτ pCsmplCXP = 

= ),,,|(],),(|),[( 11\)( ατεθττ∪∑ τ pXX pp CXascPCCXP
pp

= 

= ×∑
pp XX

pppp CXCCXXPCXP
\)(

],,,\)(|\)([),|,(
τ

θττεθ

 
),,,|( 11 ατ pCXascP× .       (6.4) 

In the particular case that the ascertainment probability can be 

represented in its multiplicative form (6.3), (6.4) can be expressed as 

 

),,,(),,,,|(),|,( 11 αθαεθ CXRCXCXascPCXP pp ,       (6.5) 

where ),,,,|( 11 αpp CXCXascP =∏ ∏∈ ∈ π−π
1 1\ )1(Ci CCj ji p

 is the 

probability that only the substructure C1 contains probands while the 

sampled complement Cp\C1 does not, and  

),,,( αθCXR ×= ∑
pp XX pppp CXCCXXP\)( ],,,\)(|\)([τ θττ  

∏ ∈
−×

pp CCk k\)( )1(τ π  
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 is the probability that the added PSF structure Cp\C1 contains no proband 

given the sampled pedigree data, X. 

If we have an explicit model for the ascertainment probability (6.2) 

or (6.3), both expressions (6.4) and (6.5) are calculable, because the 

conditional probability of phenotypes on members of the added part of the 

PSF, ],,,\)(|\)([ θττ CXCCXXP pppp  can be calculated – it is 

determined solely by the trait inheritance model. Note that expressions 

(6.4) and (6.5) are results of the usual way of handling missing pedigree 

data, i.e., summing over all possible phenotypes for the members of the 

unobserved part of the PSF under the given model of trait inheritance. 

 The denominator of the likelihood is the probability of sampling at 

least one pedigree from the true ones having a PSF of the given structure. 

It can be expressed as: 

=],,),(|[ αεθτ pCsmplP  

= ∑ ∑
⊆ ∪

×∪
)( )()](,[1 1

],),(|),[(
p pCC XCCX

pp CCXP
τ τ

εθττ  

),,,|( 11 ατ pCXascP× =     (6.6) 

 

= ∑ ∑
⊆ ∪

×∪
)( )()](,[1 1

],),(|)(),[(
p pppCC XCCX

pppp CXCXP
τ τ

εθττ  

                                                ),,,|( 11 ατ pCXascP× = 

 

= ∑∑
⊆

×
)(

11
)( 1

),,,|(]),(|)([
pp CC

p
X

pp CXascPCXP
ττ

ατθττ  

∑
⊆

×
)()( 1

],),(|[
pp CCC

pp CCP
τ

εθτ , (6.7) 
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where:  

1) the first sum in (6.6) goes over those PCs that can be ascertained from 

the given PSF, and the second sum goes over all those (X,C) that can be 

extended from the given PC, which is denoted by C(C1), and over possible 

phenotypes in the added structure C(τp)\Cp;  

2) when obtaining (6.7), we took into account that by definition Xp∪X(τp) 

≡ X(τp) for any Cp⊆ C(τp) and, also by definition, ),,,|( 11 ατ pCXascP  is 

not dependent on the particular sampled Cp. Note, now, that 

1],),(|[)()( 1
=εθτ∑ τ⊆ pp CCC pp CCP  for any given extension model ε, 

which follows from the normalization of the probability 

),,,|,( 1122 εθCXCXP  - see section 6.2. In this equality only those Cp are 

considered that include the particular given C1. 

    Thus, (6.7) can be finally expressed as: 
 

= ∑ ∑
τ τ⊆

ατθττ
)( )(

11
1

),,,|(]),(|)([
p pX CC

ppp CXascPCXP  ≡ 

≡ ],),(|[ αθτ pCascP ,                                    (6.8) 

which means that the denominator is the probability of ascertaining at least 

one PC from the PSF having the given structure C(τp), regardless of 

whether or not, and how, this PC is further extended. As can be seen, the 

likelihood denominator (6.8) is quite calculable because, as expected, it 

does not depend on the extension model.  

 Using (6.4) and (6.8) as the numerator and denominator, the 

pedigree likelihood conditional on the PSF structure can be expressed as: 

 

],),(|[
],,),(|,,[

],,),(,|,[
αθτ

αεθτ
=αεθτ

p

p
p CsmplP

CsmplCXP
CsmplCXP = 
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.  (6.9) 

 

This likelihood explicitly uses a particular model for the pedigree 

ascertainment and is called an ascertainment-model-based (AMB) 

likelihood. Expression (6.9) is calculable because the joint probability of 

phenotypes in members of any given pedigree sub-structure is determined 

solely by the trait inheritance model and does not depend on particulars of 

the extension model. The numerator of likelihood (6.9) uses the usual way 

of handling missing pedigree data, X(τp)\Xp, by summing over all 

phenotypes possible on members of the unobserved part of the PSF under 

the given model of trait inheritance (condition C3). Additionally, 

conditioning on the PSF structure allows us to avoid the need to use the 

population distribution of pedigree PSFs (condition C4): the sample space 

consists only of pedigrees whose PSF has the same structure C(τp). 

Moreover, the denominator of (6.9) does not depend on the extension 

model ε. 

This likelihood is expected to yield asymptotically the same 

estimator of the trait inheritance model as likelihood (3.1) because it is 

obtained from it (to be more correct, from the (3.1) version for the 

particular case Ca = ∅) by conditioning, both the numerator and 

denominator, on the same PSF structure, which is assumed to be 

independent of the trait inheritance model.  

Let us remember again that (6.9) was obtained by using the 

following two assumptions: 1) the definition of the potential probands is 
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made independently of the trait under study (e.g., individuals belonging to 

a certain catchment area), and 2) at each stage of the intrafamilial 

extension, no distinction is made between those true pedigree members 

who could become probands but did not do so and those who could not be 

probands by the very definition of probands.  

 We have assumed here that the ascertainment procedure that is 

actually employed is such that the probability ),,,|( 11 ατ pCXascP  can 

depend on the whole pedigree PSF, its structure and its phenotypic 

content. At the same time, as follows from (6.9), the modeled distribution 

of the sampled pedigrees, )|,( θCXPS , uses only the sampled part of the 

pedigree PSF, (Xp,Cp), and the structure (but not the phenotypes) of its 

unsampled part, C(τp)\Cp. This permits us to construct a calculable 

likelihood from which a correct estimator of the trait inheritance model 

can be obtained even if the two conditions C3 and C4, which are in practice 

most unlikely to hold, are not fulfilled.  

6.7. Conditioning on the sampled pedigree structure 

Vieland and Hodge (1996, p. 1073) stated that “in practice the 

likelihoods used in both linkage analysis and segregation analysis are 

always conditioned on the sampled pedigree structure”. However, this is 

not the conditioning discussed here. A likelihood can only be calculated if 

the sampled pedigree structure is known, but this technical information has 

nothing to do with the ascertainment conditioning of the likelihood. The 

latter is intended to solve a quite different problem: to take into account 

the fact that the pedigrees are not sampled at random, but rather according 

to some previously established sampling design. We believe Vieland and 

Hodge have confused the technical problem of calculation with the 



 

 

109

likelihood correction that should account for the specially designed 

sampling procedures. 

 Vieland and Hodge (1995, 1996) considered the case where all 

members of the true pedigree are potential probands, in other words, τp ≡ τ 

for each τ. In this case, the AMB pedigree likelihood can be correctly 

expressed as conditional on the true (not the sampled) pedigree structure – 

the same expression as (6.9) with substitution of τ for τp in both the 

numerator and denominator, and with summation over all phenotypes 

possible for the pedigree members in the substructure C(τ)\C. This 

expression is calculable only if, through the use of the questionnaire, we 

know the true pedigree structure C(τ). Our ability to know this is directly 

related to the meaning of the term “true” pedigree. Vieland and Hodge 

(1995, p. 42) assumed that “we are all (probably) related to one another 

(or, at any rate, to say so is a better approximation to the truth than to 

divide us arbitrarily into small family units)”. Although we do not disagree 

with this statement, we stress that in pedigree analysis the subdivision of 

the real population into family units is a procedure that is far from 

arbitrary. The sampled objects (pedigrees) are determined by the sampling 

design (the questionnaire), and different sampling designs determine 

different {τ} populations from the same real population. 

 Let us note the difference between the true pedigree structure C(τ) 

established through the use of a questionnaire and the structure C of the 

sampled (ascertained and further extended) pedigree. C(τ) is determined 

by the population {τ} and by the study design, not by the ascertained PC 

and the model used to extend the PC. On the other hand, the sampled 

pedigree structure C is directly determined by the sampling procedure 

used. From a true pedigree with a given C(τ), it is possible to sample 
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different sub-pedigrees whose structures are different both in the initially 

ascertained parts and in the resulting extension. Vieland and Hodge (1995) 

stated that ascertainment correction results in a consistent model estimator 

only if the ascertainment is single or, if not, it is proband independent (PI); 

this means that, in the context of the tractability of the ascertainment 

problem, it seems unhelpful to make a distinction between proband 

independent (PI) and proband dependent (PD) sampling, as proposed by 

them. The true pedigree structure C(τ) is PI by definition, while the 

sampled pedigree structure C can be PI or PD, depending on the 

ascertainment and extension procedures used. However, this fact does not 

affect the possibility of constructing a corrected likelihood. In other words, 

PI or PD sampling is not relevant to the possibility of ascertainment 

correction. In the analogue of (6.9) for the case τp ≡ τ, the conditioning 

should be performed on the structure C(τ) and not on the sampled pedigree 

structure, which can depend on the particular PC ascertained. 

 The same is true if, as has been assumed here, the PSF constitutes 

only part of the true pedigree (τp ⊂ τ): likelihood (6.9) is conditioned on 

the structure C(τp) but not on the sampled structure Cp. Clearly, C(τp) does 

not depend on either the ascertained PC or on the extension procedure that 

is employed. Although the sampled pedigree structure is determined by the 

sampling process and can be PI or PD, this fact does not affect the 

possibility of constructing the ascertainment correction for the pedigree 

likelihood.  

The likelihood conditioned on the sampled pedigree structure can 

be especially useful when pedigrees are extended in a trait-independent 

manner, i.e., when the structure of the extended part of the pedigree, C2, is 

independent of the trait model (e.g., when the intrafamilial sampling 
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includes all the members of a true pedigree available for observation). This 

lets us use the joint probability of the phenotypes of the extended part of 

the pedigree ),,,|( 012 εθCXXP , which is determined only by the trait 

model, instead of the more complicated probability 

),,,|,( 1122 εθCXCXP . However, if proband status is still determined by 

individual phenotypes, the likelihood conditioned on the sampled pedigree 

structure, even for the particular case of trait-independent pedigree 

extension, can provide an adequate trait model estimator only under the 

conditions given above.  

6.8. Conditioning on the PSF data  

Likelihood (6.9) explicitly uses a model of pedigree ascertainment. 

However, if particulars of the actual sampling procedures are unknown, 

then this model could be incorrectly formulated, causing in this way an 

asymptotically biased estimator of the trait model of inheritance (Sawyer, 

1990). To avoid the risk of such bias, which in practice cannot be 

determined, Ewens and Shute (1986) and Shute and Ewens (1988a,b) 

proposed the ascertainment-assumption-free (AAF) method of likelihood 

correction for the sampling procedures. Here, we prefer to call it 

ascertainment-model-free (AMF) because it may contain specific 

assumptions about the sampling procedures, but is free from the need of an 

explicit model formulation of the ascertainment procedure.  

Assume that the probability of ascertaining a pedigree is fully and 

completely determined by the PSF data in the true pedigree from which the 

sampling is performed, regardless of the particular PC causing the 

ascertainment. This means that, instead of the explicitly formulated 

function (6.2) or (6.3) determined by a limited set of parameters α, the 
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ascertainment probability is defined as )|( pascP τ  and is the same 

regardless of the particular PC initiating the pedigree sampling. Following 

Ewens and Shute, consider this probability as a parameter and find its 

maximum likelihood estimate )|(ˆ pascP τ  based on the pedigree sample 

analyzed. Substituting this expression )|(ˆ pascP τ  into the sample 

likelihood, it is possible to obtain after some transformation, for the 

extended pedigree XC∪τp that contains not only the ascertained and 

extended parts of the pedigree but also all the data “relevant to sampling”, 

the following expression for the AMF likelihood: 

εθ∝εθτ∪ ,],,|),[( smplCXP p )(
],|),[(

p

p

P
CXP

τ

εθτ∪
= 

=
]),(|)([

],),(|)(),[(
θττ

εθττ∪

pp

pp

CXP
CXCXP

, (6.10) 

i.e., the likelihood is found to be equivalent to (produces the same 

estimators of the models θ and ε as) the probability of the pedigree data 

(X,C)∪τp conditioned on the given PSF, both its structure and its 

phenotypic content. The right hand side of (6.10) is found by dividing both 

the numerator and denominator of this expression by the probability of the 

τp structure, P[C(τp)], which makes this expression calculable because the 

probability ],,\)(|\)([ θττ XCCXXP pppp  is determined by only the 

trait inheritance model. The same result can be obtained using the 

technique of Hodge (1988, see also Kalbfleisch and Sprott, 1970, and the 

note of Sawyer, 1990, p 355).  

 Note that likelihood (6.10) is defined on a parameter space that has 

a larger (sometimes, substantially larger) number of dimensions. 
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Moreover, the ascertainment probability is defined independently of the 

particular PC that is ascertained from the pedigree PSF. This last 

assumption is not in full agreement with, for example, the usually accepted 

binomial π-model of ascertainment (Morton, 1959; Elston and Sobel, 

1979). However, ideologically it is similar to the specific form of the π-

model described as “at least one proband” and formulated as 1 – (1-π)k, 

where k is the number of affected PSF members (see, for example, 

Weinberg, 1927; Haldane 1938; Bailey, 1951). Shute and Ewens (1988) 

pointed out that this latter formulation of the ascertainment probability is a 

“far less efficient approach” (up to dozens of times!) for estimating 

parameters than the usual binomial form (6.2). This conditioning on the 

whole τp data substantially decreases the pedigree information. In 

particular, when all the true pedigree members are “relevant to 

ascertainment”, i.e., when τp ≡ τ and therefore Cp = C, the AMF likelihood 

degenerates to 1, which makes the very process of estimating the trait 

inheritance model useless.  

Taking this into account, (6.10) produces ML estimates of θ 

different from those obtained by the AMB likelihood - at least their 

standard errors are expected to be larger. However, if 1) there is 

insufficient knowledge about the actual ascertainment procedure used for 

sampling the pedigree, i.e., there is a risk of incorrectly modeling the 

ascertainment procedure and, therefore, a risk of non-testable bias in the 

results of the analysis, and if 2) the pedigree PSF, both its structure and 

phenotypic content, is known in its entirety, then it is possible to use the 

AMF likelihood (6.10), which provides an asymptotically unbiased 

estimator of the trait inheritance model. In addition, note that this is an 
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excellent example of robust likelihood formulation: it provides unbiased 

results under minimum assumptions about the sampling procedure. 

Vieland and Hodge (1996) were the first to note that likelihood 

(6.10) is calculable and provides correct estimation of the trait inheritance 

model only if the pedigree PSF is observed in its entirety, both its structure 

and phenotypic content. If this is not the case, i.e., part of the PSF happens 

to be unobserved (e.g., members of the substructure, C(τp)\Cp, which can 

be added if we use a questionnaire, or some other members of the sampled 

PSF Cp), then the conditional probability (6.10) turns out to be undefined: 

the likelihood correction cannot be constructed even if the PSF structure is 

accurately established. This need to have all the PSF members observed 

substantially limits the practical applicability of the AMF likelihood 

(6.10). Thus, formulating the AMF likelihood makes it possible to avoid 

condition C4 (see section 6.1) as in the AMB formulation. However, 

contrary to what happens in the case of AMB formulation, condition C3 

becomes more critical with regard to the observed data. There is no need to 

formulate the explicit ascertainment model, but there is need to observe the 

whole pedigree PSF. If this is not done, the AMF likelihood is undefined; 

however, sometimes it is possible to salvage this robust AMF likelihood 

using an approximate formulation.  

The above note, that the AMF likelihood cannot be accurately 

defined whenever at least one member of the pedigree PSF is not 

observed, does not mean that the idea of the AMF approach cannot be 

salvaged approximately. This idea, to avoid explicit formulation of the 

pedigree ascertainment, could be very useful in many cases. Below, the 

problem of approximate formulation of the pedigree likelihood will be 
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considered in more detail. Here, we consider only one simple and 

practically applicable approximate AMF likelihood, of the form:  

 

],),(,|,[ εθτ pCsmplCXP  ≈
],),(|)(),[(

],),(|)(),[(
εθττ∪

εθττ∪

pppp

pp

CXCXP
CXCXP

, 

where )( pX τ  denotes the modified set of phenotypes in the PSF 

members: it contains the trait values on those PSF members who were 

observed, and the trait expectation for those who were not observed. As 

soon as the PSF structure is known, this likelihood can be easily calculated 

by replacing each missing phenotype on the PSF members by the sample 

mean.  

6.9. Special case of convergent sampling 

Consider a method of likelihood correction for a special way of 

sampling that has been noted several times (Cannings and Thompson, 

1977; Vieland and Hodge, 1995) as an example of it being impossible to 

construct the correct likelihood, not only in the AMB but also in the AMF 

form. Suppose that two PCs, (X11,C11) and (X12,C12) have been 

independently ascertained from different parts of the same true pedigree 

(more precisely, from different parts of the same pedigree PSF). Next, 

suppose both of them have been extended according to some extension 

model. It is possible for these two extension processes to join up, or 

converge, to the same part of this true pedigree – the same individual or 

the same nuclear pedigree - and then the pedigree extension further 

proceeds from this point on. In general, for this case of convergent 

sampling, it is unknown how to jointly formulate both of these extension 

processes in the pedigree likelihood.  
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Strictly speaking, in terms of proband ascertainment, any pedigree 

sampling is convergent as soon as the pedigree PC is formed from more 

than one proband, |C1| > 1. Indeed, in any “registry” scheme, probands are 

ascertained independently of one another, and the discovery that some of 

them are relatives belonging to the same true pedigree is usually made 

only after the extension process begins and then proceeds up to a level that 

is different for different pedigrees. This “convergence” has no effect if the 

extension procedure is simple, e.g., any available pedigree member is to be 

observed. However, in the case of trait-dependent sequential extension, 

formulation of the AMB likelihood for this convergent sampling appears 

to be difficult, if not impossible, in many cases; so the AMF likelihood 

considered above then seems to be the only possibility for likelihood 

correction.  

Let us condition the pedigree likelihood on the whole pedigree sub-

structure X0C0 collected in all subsequent extension stages up to the 

converging one: (X0,C0) ⊇ (X11,C11) and (X0,C0) ⊇ (X12,C12). If (X0,C0) ⊆ 

τp, i.e., this sampled substructure is a part of the PSF, then the SMF 

likelihood (6.10) is adequate for this convergent sampling. If (X0,C0) 

represents a more extended substructure, then the pedigree likelihood 

could be conditioned on the combined sub-pedigree pCX τ∪),( 00  instead 

of on τp. This likelihood is calculable provided that all the information 

necessary to write down the conditional probability 

],),,(|),[( 00 εθτ∪ CXCXP p  is given, regardless of how the converging 

(X0,C0) has been formed. However, it should be noted again that the 

problem of missing data in the pedigree subset (X0,C0) is exactly the same 

as was mentioned above. Conditioned in this way the likelihood is 
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undefined whenver at least one member of the subset C0 has not been 

observed.  

 Summarizing what has been said in the last two sections, the 

following should be stressed once more. There is no formal limitation for 

conditioning the pedigree likelihood on any part of the sampled data, e.g., 

on the sampled pedigree structure or on the part of the pedigree collected 

in the case of convergent sampling. However, if we need to obtain analysis 

results free of sampling bias, then the pedigree likelihood defined on the 

given sample space should properly account for the sampling procedure, 

regardless of whether or not there is any additional conditioning.  

6.10. Likelihood correction of Cannings and Thompson 

 Let us consider now a very special case that occurs when the 

ascertainment likelihood correction is exactly as proposed by Cannings 

and Thompson, (1977; Thompson and Cannings, 1979). They stated that, 

if all the sampled pedigree data are included in the analyzed sample, then 

the likelihood ),,,|,( 1122 εθCXCXP  provides an asymptotically unbiased 

estimator of the genetic model.  

 Let us assume that: 

1) (X1,C1) = (XpCp), which means that no PSF member is collected in the 

process of pedigree extension, i.e., the sampled part of the PSF is 

represented by the initially ascertained subset of probands - in this 

case, ),,,|,( 22 εθpp CXCXP  ≡ ),,,|,( 1122 εθCXCXP ;  

2) given the sampled part of the PSF, (X1,C1) (or (Xp,Cp), which is the 

same in this case), the two trait subsets X2 = X\X1 and X(τp)\X1 are 

distributed independently of one another, which means that  

],,\)(|\)([],,\)(|\)([ 11111 θττ≡θττ XCCXXPXCCXXP pppp . 
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In this case, the pedigree likelihood can be defined as conditional 

on its PC. Summing (6.6) over possible extensions X2C2, the denominator 

can be expressed as: 

∑ αεθτ),( 22
],,),(|,,[CX pCsmplCXP  = 

= ],,),(|,,[ 11 αεθτ pCsmplCXP  = 

= ×),|,( 11 εθCXP  

),,,|(],,\)(|\)([ 11
\)(

111
1

ατθττ
τ

p
XX

pp CXascPXCCXXP
p

∑× = 

= ×),|,( 11 εθCXP  

),,,|(],),(|)([ 11\)( 1
1

ατθτττ pXX pp CXascPXCXP
p

∑× . (6.11) 

Dividing the numerator (6.6) and the denominator (6.11) by 

),,|(],,\)(|\)([ 11
\)(

111
1

ατθττ∑
τ

p
XX

pp CXascPXCCXXP
p

≡ 

≡ ),,,|(],),(|)([ 11
\)(

1
1

ατθττ∑
τ

p
XX

pp CXascPXCXP
p

, 

the pedigree likelihood can be expressed in the following simple form: 

)|,(
),|,(),,,|,(

11
,11 θ

εθ
∝εθ εθ CXP

CXPCXsmplCXP  , 

which is what Cannings and Thompson (1977) proposed and repeatedly 

used (Thompson and Cannings, 1979; Thompson, 1986). It is important to 

stress that this equivalence does not hold whenever either of the two 

conditions formulated above is not fulfilled. Thus, the simple 

ascertainment correction of conditioning the pedigree likelihood on the 

sampled PC can provide consistent estimation of the trait inheritance 

model only in very special situations - the occurrence of which in practice 

would appear to be rather doubtful.  



 

 

119

6.11. Censoring pedigrees 

 Consider now the general case of a sampling sub-procedure where 

not all the sampled pedigrees are included in the sample that is analyzed, 

but only those having the predefined phenotypic content Xa in a certain 

pedigree substructure Ca. There can be various reasons for the selective 

inclusion of pedigrees in the sample subjected to analysis. For example we 

may find, when studying a complex trait, that no simple model 

satisfactorily describes its inheritance; we may believe that this is caused 

by heterogeneity of the sampled data (whether real or caused by a badly 

defined phenotype). In this case, it is natural to form sub-samples for 

separate analysis - for example, we may select out for separate analysis 

pedigrees containing members with some special phenotype.  

To provide a correct estimate of the trait inheritance model, the 

SMB (sampling model based) likelihood of the pedigree that has been 

ascertained, extended and included in the sample that is analyzed can be 

formulated as follows. Its numerator should be the same as in (3.1), 

explicitly including not only the ascertainment, but also the inclusion 

procedure. Its denominator, i.e., the probability of the sample space on 

which the likelihood of the sampled pedigree is defined, depends on the 

particular formulation of the inclusion procedure.  

It was assumed above that all sampled pedigrees having the same 

structure C contain the same substructure Ca. The inclusion condition can 

be, for example, the number of affected members in the sampled pedigree, 

or the existence of at least one spouse pair having previously defined 

phenotypes, or special phenotypes in members of those component nuclear 

pedigrees that contain probands, etc. Therefore, to estimate a trait 

inheritance model that is free of asymptotic bias caused by this sampling 
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sub-procedure, it is sufficient (but not necessary) to use the pedigree 

likelihood conditioned on both structures, the pedigree structure C and the 

structure of the true pedigree PSF:  

],,),(|,[
],,),(|,,[

],,),(,,|,[
αεθτ

αεθτ
=αεθτ

p

p
p CsmplCP

CsmplCXP
CCsmplCXP   (6.12) 

=
∑

∑

∪
∪)( ),,(],),(|)(),[(

),,(],,),(|\)([),|,(
\)(

p

pXpX

XX pp pCXQCXCXP

pCXQCXpCpXpXPCXP

τ τεθττ

τθττεθ
τ

, 

where ),,|(),,,|(),,( 11 ψαττ aa
pp CXinclPCXascPCXQ = . 

This SMB likelihood is calculable whenever the models of the trait 

inheritance and sampling procedures (ascertainment, extension and 

inclusion) are given and the PSF structure is known, i.e., (6.12) can be 

used in the same cases as (6.9). Note in addition that conditioning on the 

sampled structure C necessarily presupposes conditioning on the initially 

ascertained substructure C1. Otherwise, the probability ),|( εθXCP  cannot 

be calculated.  

If the substructure Ca is defined differently, the likelihood 

conditioning can be made less rigorous. For example, let the pedigree PSF 

consist of only children under a certain age, the parents of each ascertained 

proband are obligatorily observed, and the pedigree is included in the 

sample that is analyzed if at least one such parent is affected. In this 

sampling scheme, the substructure Ca relevant to inclusion is uniquely 

determined by the sampled PC and does not depend on the pedigree 

structure collected outside Ca. Thus the pedigree likelihood can be 

conditioned on only the structure Ca (together, of course, with the PSF 

structure), i.e., the denominator of (6.12) can be expressed as  
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∑ ∪
×∪)( ],),(|)(),[(

p
a XX pp

aa CXCXPτ εθττ
 

),,|(),,,|( 11 ψατ aa
p CXinclPCXascP× , 

where =∪ ],),(|)(),[( εθττ pp
aa CXCXP   

∑ ∪= ),(\),( ],),(|)(),[(aa CXCX pp CXCXP εθττ .  

To construct the sampling model free (SMF) likelihood, let us 

introduce the subset of members “relevant to sampling” (RS) as those who 

are either “relevant to ascertainment” or “relevant to inclusion”. This 

subset RS has structure a
pC (τ) = Ca∪C(τp) and phenotypic content a

pX (τ)= 

Xa∪X(τp).  

Reiterating now the arguments that led to the AMF likelihood 

(Section 6.8), it is possible to show that a correct (consistent if θ0 ⊂ θ) 

estimator of the trait inheritance model can be obtained using the SMF 

likelihood conditional on the RS data )](),([ ττ a
p

a
p CX = (Xa,Ca) ∪ τp. This 

can be expressed in the form (6.10) with the following replacements: 
a
pC (τ) instead of C(τp), and a

pX (τ) instead of X(τp). Let us stress once 

again that the problem of missing data on members of a
pC (τ) is the same 

as was mentioned for likelihood (6.10): these missing data make undefined 

the sample space on which the probabilistic measure, the pedigree 

likelihood, should be mathematically defined.  

6.12. Bivariate analysis 

In the above considerations, no special distinction was made 

between the variously defined traits under study. The results obtained for 
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the likelihood formulation hold true for any set X, including qualitative, 

quantitative and complex traits. They are applicable, in particular, to a 

bivariate trait, for which the general model of joint inheritance of two 

traits, Y and Z, is given in section 5.3. Using this model and explicitly 

formulated sampling models, we can construct each of the pedigree 

likelihood functions considered in this chapter.  

However, taking into account that not just one, but two, phenotypes 

are observed on the  pedigree members, some specific changes in the 

formulation of the sampling procedures α, ε and ψ might be needed if each 

of the traits determines these procedures differently. Assume, for example, 

that the pedigree ascertainment is fully determined by the Y-content of the 

true pedigree PSF and not by its Z observations. The ascertainment 

probability is then defined as ),,,,|( 111 ατ pCZYascP  ≡ 

),,,|( 11 ατ pCYascP , where τp is represented by three sets, Y(τp), Z(τp) and 

C(τp). Assume further that the pedigree extension (up to its stopping 

condition) is also determined by the Y-observations of the pedigree 

members already collected. Lastly, assume that the selective inclusion of 

the pedigree in the analyzed sample is determined by predefined Z-

phenotypes of the Ca members, or by a combination of both phenotypes. 

As we can see, in this example the pedigree ascertainment and (sequential) 

extension is governed by one trait, while the inclusion of the collected 

pedigree in the analyzed sample is determined by the second trait also. 

This not infrequently occurs in practice, and the example shows that an 

adequate formulation of the component probabilities in the SMB and SMF 

likelihoods presented above makes them fully adequate for bivariate 

analysis. However, the identification of the subset RS, or at least of its 
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structure a
pC (τ) (for SMB likelihood), is a necessary condition for 

formulation of the pedigree likelihood. 

Once the pedigree likelihood has been formulated, the main goal of 

a bivariate pedigree analysis is to test the hypothesis that the joint 

inheritance of both traits can be described by pleiotropic control of two 

separately observed phenotypes manifested by the same major gene.  

6.13. Illustration 

 The above theory of correcting the pedigree likelihood for the 

sampling procedures employed can be illustrated as follows. If the tested 

genetic model exactly models all the particulars of the true inheritance of 

the studied trait (the genetic model of inheritance and the sampling 

procedures, except, as usual, for the model parameters that are to be 

estimated from the particular pedigree sample), then all the proposed 

pedigree likelihoods (AMB and SMB, AMF and SMF) result in a 

consistent model estimator. This means that these likelihoods provide 

adequate correction for the sampling procedures determined by the 

previously introduced sampling design. No asymptotic bias of the model 

parameters is expected. This fact justified the above theoretical 

construction. At the same time, if the tested model of trait inheritance 

differs from the true one, because the latter is unknown, then the genetic 

model estimator is always more or less biased. The amount of bias 

depends on particulars of how the tested genetic model is formulated.  

 Without dwelling upon numerical details, consider once more the 

example of section 2.4. Pedigree samples were simulated from the sample 

space determined by the sampling design described in 2.4. and for each of 

them the AMB and AMF corrected likelihoods were used to estimate the 
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genetic model parameters. The results obtained can be presented as 

follows. 

The simulated data were for MG control of a quantitative trait with 

the same ascertainment probability π for all PSF members having trait 

values exceeding a previously established threshold. For each simulated 

sample of size n, ML estimates of the trait model parameters were found. 

Using 10,000 replications, the expectation E( θ̂ ) and standard deviation 

σ( θ̂ ) were empirically found for each of these estimators. Fig. 4 shows the 

dependence of the bias, ∆ θ̂ = E( θ̂ )-θ, and standard deviation of the 

estimated allele frequency on sample size. (We use as our example the 

allele frequency because this is the population parameter most affected by 

the bias caused by the sampling procedure that is used).  

As we can see, for finite-size samples all likelihoods produced 

biased estimators of the parameters, as is usual for the maximum 

likelihood technique. However, note what in practice is the important fact 

that the estimation bias is substantially less than the corresponding 

standard deviation of the parameter estimate, and this is especially so for 

small sample sizes. In large samples, the AMB likelihood provides 

unbiased estimators, as expected.  

In this example, it was impossible to use the AMF corrected 

likelihood because some of the pedigree PSF members were not observed 

in their entirety and, therefore, the sample space was undefined. However, 

we tried to salvage the AMF approach in order to correct the pedigree 

likelihood without explicitly formulating the ascertainment model (an 

excellent example of a robust approach that provides an asymptotically 

unbiased genetic model estimator with minimum assumptions about the 

sampling procedure). We used an approximate AMF likelihood of the 
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form (6.8) with the following modifications. The pedigree data were taken 

to be the phenotype for each pedigree member who was observed and the 

trait mean for the pedigree members whose phenotypes were not observed. 

Provided the structure of the PSF is known, this approximate AMF 

likelihood can be easily calculated by replacing each missing phenotype on 

the PSF members by the sample mean. As can be seen in Fig.4, this 

approximate AMF likelihood provided negligible large-sample bias of the 
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Figure 4. Dependence on the sample size of the standard
deviation (1, 2) and bias (3, 4) of the estimator of allele
frequency.  

Pedigree likelihood conditioned on the PSF structure - 1 
and 3; approximate AMF likelihood  - 2 and 4. See details in 
section 6.13.  
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genotypic value estimator: the bias is always smaller than the 

corresponding standard deviation. 

6.14. SMB and SMF formulations 

The above considerations were intended to show how it is possible 

to define a probabilistic measure in the form of the pedigree likelihood on 

the given sample space. It is possible in the AMB, SMB, AMF and SMF 

formulations. In each case, given enough knowledge about the genetic 

model and the sampling procedures determining the particular sample 

space, the proposed likelihood formulations are mathematically correct 

and, therefore, can be used in pedigree analysis.  

The comparative usefulness of the two approaches considered 

above (SMB and SMF) cannot be established unequivocally for all 

possible situations. On the one hand, to venture upon an explicit 

formulation of the ascertainment (sampling) model is reasonable only if 

the real procedure used in the sampling process is known in sufficient 

detail. Any inadequate formulation of the ascertainment model can bring 

about untestable bias in the estimates of the trait inheritance model 

(including in the case of linkage). At the same time, it is well known that 

the field trial conditions of pedigree sampling hardly allow the possibility 

of strictly adhering to any previously established rules. Thus these rules 

can either only be roughly formulated with a relatively simplistic model, or 

an accurate formulation of them may be even impossible, if they are very 

complicated or incidentally violated. On the other hand, the SMF 

approach, although based on being independent of the details of the actual 

sampling procedure, automatically causes a loss (sometimes substantial) of 

pedigree information. As seen from previous sections, the SMF approach 

only appears to be free of the sampling model. In reality, as mentioned 
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above, the model is implicitly formulated. Moreover, in general, the SMF 

approach is applicable only under a rather strict condition: the pedigree 

PSF should be known in its entirety, both structurally and phenotypically, 

and we might doubt whether this can actually occur in many situations. 

However, all the likelihood constructions considered above were 

explicitly based on the main assumption that the collected pedigree data 

are informative. We found it necessary to identify the subset of members 

in the pedigree PSF responsible for the pedigree to be sampled. Otherwise, 

it is impossible to define accurately the sample space to which the sampled 

pedigree belongs and to define the corresponding pedigree likelihood. We 

also found it necessary to identify the subset of pedigree members 

responsible for selective inclusion of the already collected (ascertained and 

extended) pedigrees in the sample that is analyzed. Otherwise, the sample 

space and the pedigree likelihood cannot be accurately defined 

mathematically, at least not in the form of the above formulations. In other 

words, only if we can accurately define the pedigree subsets responsible 

for the particular sampling procedure employed can the above likelihood 

constructions have any probabilistic sense. 

We assumed above that the subset responsible for inclusion of the 

pedigree in the sample analyzed is fully and uniquely determined by the 

sampled pedigree structure Ca ⊆ C. This means that, given an explicitly 

formulated condition of what phenotypic content of this subset should 

determine each particular inclusion, an accurate identification of this 

subset seems to be a quite solvable problem. This is also the case when the 

pedigree PSF is identified using the questionnaire introduced above. The 

PSF needs to be known for all the above likelihood constructions.  



 

 

128 

Practical construction and use of such a questionnaire is not an 

easily solved problem. In some cases, for some pedigrees, it would be 

possible to identify the PSF structure quite accurately; while in others, 

which might be more numerous and more important, such accuracy may 

not be achievable and, therefore, the basic conditions for the above 

likelihood construction cannot be fulfilled. An accurate likelihood 

construction in those cases becomes impossible, and the only way to 

define the likelihood measure on the given sample space is “approximate”. 

Below, we shall consider in some detail the problems of this approximate 

likelihood construction and its impact on the results of a pedigree analysis. 
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7. SAMPLING CORRECTION IN LINKAGE ANALYSIS 

7.1. Linkage problems 

 Two main approaches are recognized in linkage analysis, model-

free and model-based (Elston, 1998). In the former, which often uses 

pedigree data specially designed for this type of analysis, the transmission 

of alleles at a marker locus from generation to generation is directly 

compared with the transmission of the trait phenotype being studied. If 

these two transmission patterns are found to be significantly “associated” 

with one another, then, taking into account the previously established 

design of the study, the hypothesis of no linkage between the marker locus 

and the trait is rejected; otherwise it is accepted. In the latter case, a 

genetic model of joint inheritance of the trait and marker phenotypes is 

used to formulate the likelihood explicitly for each sampled pedigree, and 

the (parametric) null hypothesis H0: ρ = 0.5 of no linkage between the 

marker locus and the trait-controlling locus is tested against the alternative: 

H1: ρ < 0.5, where ρ denotes the recombination fraction between the trait 

and marker loci. If H0 is rejected, then a second stage of the linkage 

analysis is carried out, namely, point and interval estimation of the 

recombination fraction(s).  

 Linkage analysis is performed on pedigrees that are usually not 

randomly sampled, but rather sampled according to a certain scheme that 

is determined by a sampling design previously defined by the investigator 

planning the analysis. For model-based analysis, this fact is taken into 

account through a special correction of the pedigree likelihood obtained by 

conditioning on the particulars of the sampling procedure. If this procedure 

cannot be adequately formulated, then a likelihood correction that has been 
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proposed is to condition on the sampled trait data (Risch, 1984; Clerget-

Darpoux et al., 1986; Elston, 1989; Greenberg, 1989; Clerget-Darpoux and 

Bonaïti-Pellié, 1992; Hodge and Elston, 1994; Wang et al., 2000). Vieland 

and Hodge (1996, p.1073) noted that the problem of ascertainment 

correction in linkage analysis is “fundamentally intractable” “not only for 

lod scores per se, but for any likelihood-based method for linkage or joint 

linkage/segregation analysis”.  

7.2. Basic notation 

 In previous chapters, we considered the general theoretical 

possibility of adequately correcting the likelihood for the sampling 

procedures. It was shown that this correction can be made in some 

practical cases of pedigree analysis. This possibility was shown in a quite 

general form: no special assumptions were made about the ascertainment 

probability; no special assumption was made about the manner of 

intrafamilial pedigree extension (except the possibility of explicitly 

formulating the probability of the extended pedigree 

),,,|,( 1122 εθCXCXP  - the necessary condition for all other sampling 

corrections), and no special conditions were put on determining the 

selective inclusion of the pedigree in the sample analyzed. From this, we 

might expect that, contrary to the statement by Vieland and Hodge (1996), 

the problem of correctly accounting for the sampling procedures in linkage 

analysis can be solved. We shall discuss below in what cases and how it is 

possible to do this. 

 In linkage analysis, each pedigree member is characterized by two 

functionally different traits, the trait describing the biological function 

being studied and the specific so-called marker locus, which usually does 
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not have its own phenotypic manifestation of interest, but for which the 

chromosomal position is known (perhaps from a previous study). Suppose 

that, after analyzing the pedigree sample, we find a statistically significant 

association between the transmission across generations of the phenotypes 

of the trait under study and the marker genotypes. Then linkage between a 

putative locus controlling the trait and the marker locus will have been 

established and we can find the chromosomal position of this putative 

locus by point and interval estimation of the recombination fraction 

between the two loci. 

7.2.1. Joint trait-marker model of inheritance 

 Suppose the trait inheritance can be described by a diallelic 

monogenic model determined by a set of parameters θt, and let A1 and A2 

be the two alleles at the trait locus (the assumption of a single diallelic trait 

locus is made for simplicity only, without loss of generality). Similarly, 

suppose the marker phenotype inheritance is described by a monogenic 

model, but not necessarily diallelic, with parameters θl (population 

frequencies of the marker locus alleles, penetrances of the marker 

genotypes etc.), and let Mm be the m-th allele at the marker locus, m = 

1,…,M. Besides θt and θl, the joint inheritance of the trait and marker is 

described by additional parameters: the recombination fraction(s) ρ, 

determining linkage between the two loci, and the disequilibrium 

parameter(s) D = {Dam}, where Dam = Pr(AaMm) – paqm is the difference 

between the population frequency of the haplotype AaMm and the 

frequency expected when the alleles at the two loci are distributed 

independently; a = 1,2; p1 = Pr(A1) and p2 = 1 - p1 are frequencies of the 

trait alleles; and qm = Pr(Mm) is the frequency of m-th marker allele, ∑mqm 
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= 1. There are only M – 1 independent values of Dam because of the 

constraints D1m = −D2m for any m, and ∑mDam = 0 for any a. 

7.2.2. Pedigree data 

The rest of the notation is similar to that used before: the set {τ} 

determines the population of true pedigrees under study and the set {τp} of 

true pedigree PSFs determines the ascertainment design of the study. The 

sampled pedigree data are specified as follows: X = {xi} and Y = {yi}; i = 

1,…,n, are the sets of trait and marker data, respectively, observed on the n 

pedigree members whose relationships form the pedigree structure C. By 

definition, (X,Y,C) ⊆ τ, where τ is the true pedigree from which the 

sampling was performed. Here we use a triple notation for the sampled 

pedigree to characterize its structure C and its trait X and marker Y 

phenotypic contents. As was defined in section 6.3, we divide these n 

pedigree members into three groups forming three pedigree substructures 

(see Fig. 1):  

- C1 is the proband combination (PC), the substructure of probands who 

caused the pedigree ascertainment - this is the initially ascertained part of 

the pedigree. 

- Cp (⊆ C) is the substructure of sampled pedigree members who could in 

principle be probands because of their characteristics such as age, duration 

of residence, etc. – the sampled part of the pedigree PSF: Cp ⊆ τp. This 

subset necessarily includes the actual probands: C1 ⊆ Cp. By chance, 

members from the complementary substructure Cp \ C1 did not realize their 

proband potentials in this particular ascertainment event. 

- C \ Cp is the subset of pedigree members who could not be probands 

because of the way the probands are defined for this particular pedigree 
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ascertainment design. The trait and marker sets, X and Y, are each divided 

into the three corresponding subsets: X = X1+(Xp\X1)+(X\Xp) and Y = 

Y1+(Yp\Y1)+(Y\Yp). 

 We assume additionally that not all the sampled (ascertained and 

extended) pedigrees are included in the sample that is analyzed. Inclusion 

in the sample is determined by an additional condition: a substructure Ca ⊆ 

C is defined in such a way that the trait and/or marker data of its members 

affect the probability of including this pedigree in the sample analyzed. 

For example, it is known that a pedigree is not informative for linkage if it 

contains no doubly heterozygous parent in at least one of its component 

nuclear families. In this case, Ca could be defined as the subset of all 

parent pairs in the pedigree, and the condition for inclusion would be that 

the ascertained and extended pedigree must have among its Ca members 

some who have trait and marker phenotypes compatible with a doubly 

heterozygous genotype. Denote by Xa and Ya the sets of trait and marker 

phenotypes, respectively, on members of this substructure Ca.  

We consider below the possibility of adequately correcting the 

likelihood in linkage analysis to account for three specific sampling design 

procedures: the pedigree ascertainment, extension and censoring.  

7.3. Component probabilities 

 Let us define the basic probabilities that describe the joint trait-

marker inheritance and the pedigree sampling process. 

 Let ),,,,|,,( ρεθθ DCYXP lt  be the joint probability of the 

pedigree having the structure C and the trait and marker data X and Y, 

respectively. This probability is constructed using an explicitly formulated 

model of joint trait-marker inheritance and a model of pedigree extension. 
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It is evident that the sampled structure C is specified in such a way that the 

initially ascertained pedigree PC, C1, is also identified. Otherwise, the 

probability of the extended part of the pedigree, (X,Y,C)\(X1,Y1,C1), cannot 

be defined. Assuming that the marker phenotypes of the pedigree members 

have no connection with the intrafamilial pedigree extension, the extension 

model can be described as follows. The structure of each newly 

incorporated pedigree part is determined by the structure and trait 

phenotypes of the pedigree members already sampled and, which is not 

infrequently the case, by some knowledge about the true pedigree from 

which the sampling is performed, e.g., the fact that certain of its members 

are available for observation. This information can be obtained by using 

the questionnaire defined above as the necessary instrument for sampling 

the pedigree in the first place. In general, this sequential extension results 

in a trait-dependent pedigree structure. If incorporation of the next 

pedigree members occurs independently of the phenotypes of the 

previously observed members, e.g., all members available for observation 

are included, then the sampled pedigree structure is trait-independent. In 

this case, 

),,,,|,( ρθθ DCYXP lt  ),,,|,,(,,, ρθθ∝ ρθθ DCYXP ltDlt
, 

 by which we mean that the joint probability of the observed data (X,Y) 

conditional on the pedigree structure is equivalent to that not conditioned 

in this manner (regardless of the particular trait-independent scheme of 

pedigree extension actually used), in the sense that both sides achieve their 

maximum at the same values of the parameters θt, θl, D and ρ.  

 In terms of the proband ascertainment scheme, the probability 

),,,|( 11 ατ pCXascP  of ascertaining a pedigree having its particular PC is 

determined by the whole set of potential probands (τp) in the true pedigree 
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from which the ascertainment takes place. This is the probability that the 

PSF members forming the structure C1 simultaneously become probands 

and together cause the pedigree ascertainment, while the other PSF 

members do not realize their proband potentials. Usually, only part of this 

pedigree PSF is sampled. The questionnaire helps us reconstruct the 

unsampled substructure C(τp)\Cp, i.e., to identify its members - but not 

necessarily their phenotypes. If necessary, other unsampled pedigree 

members, providing the relationship connections between C and C(τp)\Cp, 

are also identified.  

 Let ),,,|( ψaaa CYXinclP  be the probability that the pedigree is 

included in the sample subjected to linkage analysis when it contains the 

particular subsets of trait and marker phenotypes Xa and Ya, respectively, 

in the pedigree substructure Ca. Accordingly, ),,,|( ψaaa CYXinclP  = 1 − 

),,,|( ψaaa CYXinclP  is the probability that a pedigree having the subset 

(Xa,Ya,Ca) is not included in the sample analyzed. The inclusion 

probability can depend on some specific parameter(s) ψ modeling this 

procedure.  

Without dwelling upon a possible definition of the inclusion 

condition, i.e., upon the particular formulation of the inclusion probability 

),,,|( ψaaa CYXinclP , let us recall that Stene (1977, 1978) proposed an 

approximate formulation for the ascertainment probability. He assumed 

that this was proportional to the number of affected members in the 

pedigree PSF. Similar to this, the inclusion probability could be 

approximated as: ),,,|( ψaaa CYXinclP  = k)1(1 Ψ−− , where k is the 

number of those pairs of spouses that have at least one member whose trait 

and marker phenotypes are compatible with a doubly heterozygous 
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genotype, and 0≤ψ≤1  is a parameter that determines how the probability 

of pedigree inclusion depends on the number of such spouse pairs. Here, 

the case ψ → 1 can be called “complete” inclusion, when all pedigrees of 

the given structure that have at least one doubly heterozygous parent are 

included in the sample for analysis; and ψ → 0 can be called “single” 

inclusion, when the probability of inclusion is proportional to the number 

of component nuclear families that have at least one doubly heterozygous 

parent.  

7.4. General form of the linkage likelihood 

 Our goal is to consider in more detail the conditions under which 

the pedigree likelihood yields asymptotically unbiased estimates of the 

parameter ρ, the main purpose of linkage analysis. To do this, it is 

necessary to distinguish between two versions of linkage analysis, pure 

linkage analysis and what is often called joint segregation-linkage (JSL) 

analysis, but which in reality is linkage analysis while jointly estimating 

the inheritance model parameters (i.e., there is no segregation analysis in 

the sense of determining whether or not there is major gene segregation, 

but there is estimation of some segregation model parameters). In the first, 

it is assumed that the trait inheritance model θt is given together with its 

parameters. The same is assumed about the models determining 

ascertainment α, and extension ε. Linkage analysis is performed purely to 

estimate ρ, while the parameters D, θl and ψ are considered known. In the 

second version, JSL analysis, the form of the genetic model of trait 

inheritance (usually, but not necessarily, monogenic) is also assumed to be 

known - otherwise, it is not clear what linkage with the given marker locus 

is being estimated - but the parameters θt are assumed to be unknown, and 
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are to be estimated together with α, ε, D, θl, ψ and ρ. Making this 

distinction, the following can be said about the possibility of obtaining a 

consistent estimator of ρ.  

In general, the pedigree likelihood is defined as the probability of 

the particular pedigree data, (X,Y,C), conditional on the pedigree having 

been sampled, i.e., ascertained, extended and included in the sample 

analyzed: 

=ρψαεθθ ),,,,,,,|,,( DsmplCYXP lt  

= 
),,,,,,|(

),,,|(),,,|(),,,,|,,( 11

ρψαεθθ

ψατρεθθ

DsmplP
CYXinclPCXascPDCYXP

lt

aaa
plt , (7.1)      

where the denominator is the probability that the pedigree is sampled, and  

is expressed as the sum of the numerator taken over all pedigree data 

(X,Y,C) possible under the sampling procedure employed. 

 In this general form, the likelihood cannot always be calculated 

using only the sampled data. In particular, the second factor in the 

numerator cannot be calculated because it contains unobserved data in 

C(τp)\Cp, and the denominator cannot be found if the population 

distribution of possible PSFs, τp, is unknown. This caused Vieland and 

Hodge (1996) to note that it is impossible to construct an adequate 

likelihood correction “not only for lod scores per se, but for any 

likelihood-based method for linkage or joint linkage/segregation analysis”. 

As follows from the previous chapters, the real problem lies in not having 

complete knowledge of the ascertainment procedure. There is no 

additional linkage-specific cause of intractability of this likelihood. 
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7.5. SMB likelihood for linkage 

In the previous chapter, it was noted that the SMB pedigree 

likelihood provides a consistent estimator of the trait inheritance model if 

it is conditioned on the whole pedigree substructure, which necessarily 

includes the structure of the subset RS. Its structure is a
pC (τ) = C(τp)∪Ca. 

This holds true for linkage analysis also.  

The structure “relevant to ascertainment”, C(τp), is not known if the 

pedigree PSF is not sampled in its entirety. Only part of this structure, Cp 

⊆ C(τp), is identified in the sampled pedigree and the members of this part 

are phenotypically observed (except possibly for missing observations). 

However, we assume that the questionnaire is used to reconstruct (but not 

to observe phenotypically) the substructure C(τp)\Cp of the PSF members 

not included in the sampled pedigree. In this way, the structure C(τp) of the 

true pedigree PSF becomes known.  

The second component of the structure RS, the structure of the 

subset “relevant to inclusion”, can be different for differently sampled 

pedigrees. However, as was assumed above that, for each given sampled 

structure C, the substructure Ca is uniquely determined whenever the 

procedure for pedigree inclusion is defined.  

Thus, to obtain a pedigree likelihood that yields a consistent 

estimator of the joint trait-marker inheritance model, it is sufficient (but 

not necessary; see the example below) to condition it on the joint structure 

C∪C(τp) of the sampled pedigree structure and the structure learnt from 

the questionnaire:  

=ρψαεθθτ∪ ],,,,,,),(,|,,[ DCCsmplCYXP ltp  
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= 
],,,,,,),(|,[

],,,,,,),(|,,,[
ρψαεθθτ

ρψαεθθτ

DCsmplCP
DCsmplCYXP

ltp

ltp ,                   (7.2) 

where the numerator is the joint probability that the pedigree is (X,Y,C) 

and is sampled (ascertained, extended and included in the analysis), 

conditional on the PSF structure of the true pedigree from which the 

sampling was performed. The denominator is the probability of having the 

sample of structure C collected from a true pedigree having the given PSF 

structure C(τp). The sample space on which likelihood (7.2) is defined is 

the set of all pedigrees having the same structure C ∪ C(τp). Let us find 

explicit expressions for the numerator and denominator, respectively, and 

discuss whether they can be calculated. 

Let the sampled pedigree be (X,Y,C) and let the PSF of the true 

pedigree from which the sampling was performed be τp, with structure 

C(τp) and trait content X(τp). The non-empty part of the PSF having 

structure Cp has been sampled (Cp ⊆ C) and the trait and marker 

phenotypes of its members have been observed, while the other part, 

C(τp)\Cp, has been reconstructed (but not phenotypically observed) using 

the questionnaire, so that the data X(τp)\Xp and Y(τp)\Yp are missing.  

The joint probability that the pedigree is (X,Y,C) and is sampled, 

given the PSF structure, can be expressed as: 

 

],,,,,,),(|,,,[ ρψαεθθτ DCsmplCYXP ltp = 

= ),,,|(),,,,|,,( ψρεθθ aaa
lt CYXinclPDCYXP × 

×× ∑
pp XX

ltpppp DYXCCXXP
\)(

],,,,,,\)(|\)([
τ

ρθθττ  

),,,|( 11 ατ pCXascP× ,    (7.3) 
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where the sum over possible X(τp)\Xp is taken in accordance with the usual 

practice of handling missing data: the members included in the structure 

C(τp)\Cp were not phenotypically observed. This expression is calculable 

because each of its components can be calculated: 

),,,,|,,( ρεθθ DCYXP lt , ),,,|( ψaaa CYXinclP  and 

),,,|( 11 ατ pCXascP  are explicitly given in each model-based linkage 

analysis. The conditional probability 

   ],,,,,,\)(|\)([ ρθθττ DYXCCXXP tlpppp   

depends not only on the trait inheritance model but in general also on joint 

marker-trait model parameters. If the marker and trait loci are linked or are 

in allelic disequilibrium, the marker data Y determine this conditional 

probability together with X.  

The sample space on which the pedigree likelihood is defined 

should be chosen depending on the particular extension and inclusion 

procedures used.  

As we have assumed, in each particular case the structure Ca of the 

pedigree members determining the inclusion of the pedigree in the analysis 

is uniquely determined by the structure of the sampled pedigree. This 

means that conditioning on the sampled pedigree structure, C, 

automatically implies conditioning at the same time on the structure Ca. 

Thus, the sample space can be determined by the following probability 

(the denominator of the likelihood): 

 

],,,,,,),(|,[ ρψαεθθτ DCsmplCP ltp = 

= ∑ ρψαεθθτ
YX

ltp DCsmplCYXP
,

],,,,,,),(|,,,[ = 
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= ∑ ψρεθθ
YX

aaa
lt CYXinclPDCYXP

,
),,,|(),,,,|,,( × 

×× ∑
pp XX

ltpppp DYXCCXXP
\)(

],,,,,,\)(|\)([
τ

ρθθττ  

),,,|( 11 ατ pCXascP× ,    (7.4) 

where the sum goes over all trait and marker data that are possible for the 

given sampled pedigree structure, C, and the structure C(τp)\Cp 

reconstructed using the questionnaire. Note that given C implies given C1, 

the particular PC substructure from which C was extended in accordance 

with model ε. Expression (7.4) is calculable if the model of trait 

inheritance and the models of pedigree sampling (ascertainment, extension 

and inclusion) are given.  

In general, likelihood (7.2) depends on all the parameters 

introduced above that determine the joint trait-marker inheritance and the 

sampling procedures. This means that, provided it can be calculated, this 

likelihood can be used in linkage analysis when only the parameters D and 

ρ are to be estimated, or, in JSL analysis, when nuisance parameters of the 

models of the trait and marker inheritance, θt and θl, and the parameters 

determining the sampling procedures, α, ε and ψ, are to be estimated 

together with D and ρ. Clearly, these estimators are not the same in 

linkage and JSL analyses. For any one particular pedigree sample, they are 

differently biased and have different sampling errors because the 

likelihoods are defined on two different parameter spaces. Likelihood (7.2) 

uses only the sampled data (with the addition of the structure C(τp)\Cp); 

and the ML estimators of the parameters, in particular those of the 

recombination fraction(s) ρ, are asymptotically unbiased and most 

efficient. It is necessary to stress that, should the calculability of (7.2) be in 
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doubt because of a very complicated sampling procedure, this technical 

problem of calculation is completely separate from the problem considered 

here, i.e. whether or not it is in principle possible to formulate an adequate 

sampling correction for the pedigree likelihood.  

7.6. Marker-independent sampling  

It was assumed above that the pedigree ascertainment and 

extension are in no way determined by the marker data. Assume now that 

the inclusion procedure also does not depend on the marker data, i.e., 

),,,|( ψaaa CYXinclP  ≡ ),,|( ψaa CXinclP . For example, the 

ascertained and extended pedigree enters the sample analyzed depending 

only on the number of “affected” pedigree members it contains. In this 

case, the denominator (7.4) of the likelihood (7.2) does not depend on the 

parameters determining the marker inheritance and the joint trait-marker 

distribution, θl, D and ρ, because of the obvious equality: 

∑ ρεθθY lt DCYXP ),,,,|,,(  = ),|,( εθtCXP . 

The numerator (7.3) can now be rewritten as follows 

],,,,,,),(|,,,[ ρψαεθθτ DCsmplCYXP ltp = 

),,,,,(),,|(),,,,|,,( ρθθψρεθθ DYXRCXinclPDCYXP lt
aa

lt= , 

where ),,,,,,( αρθθ DYXR lt = 

= ×∑
pp XX ltpppp DYXCCXXP\)( ],,,,,,\)(|\)([τ ρθθττ

),,,|( 11 ατ pCXascP× . 

Let us consider two special conditions: 1) all members of the 

pedigree PSF have measured trait values, pp XX \)(τ  is empty, and 2) the 

ascertainment procedure is single in the sense that 
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),,,|( 11 ατ pCXascP = ),,|( 11 αCXascP . If condition 1) or 2) is true, then 

),,,,,( ρθθ DYXR lt = ),( tXR θ  does not depend on ρθ ,, Dl  or Y. In this 

case only one component of likelihood (7.2), namely, 

),,,,|,,( ρεθθ DCYXP lt  depends on details of the joint trait-marker 

inheritance. The other components in the numerator and denominator do 

not depend on the parameters θl, D or ρ. Thus, we can then write the 

following equivalences: 

ρθρψαεθθ ,,),,,,,,,|,,( Dlt l
DsmplCYXP ∝  

),,,,|,,(,, ρεθθρθ DCYXP ltDl
∝  (7.5) 

),,,,,,|(
),|,(

),,,,|,,(
,, ρεθθ=

εθ
ρεθθ

∝ ρθ DCXYP
CXP

DCYXP
lt

t

lt
Dl

,   (7.6) 

 

where (7.6) is true because the probability of the condition 

),,,,|,,( ρεθθ∑ DCYXP ltY  = ),|,( εθtCXP  does not depend on the 

parameters θl, D or ρ. This means that, regardless of the procedures 

employed for ascertainment and inclusion (but provided that they are 

marker-independent and condition 1) or 2) is satisfied), the parameters θl, 

D and ρ determining the joint trait-marker inheritance can be estimated 

using the joint probability of the sampled data (7.5), or the conditional 

probability of the marker data given the sampled pedigree structure and the 

trait data (7.6). Neither of these likelihoods needs any explicit formulation 

of the ascertainment and inclusion procedures and, therefore, they avoid 

any bias in linkage analysis results that could be caused by incorrect 

formulation of these procedures. 

We have assumed that the models of trait inheritance θt, and 

pedigree extension ε, are known; for example, these models could have 
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been estimated in a previous segregation analysis. In other words, (7.5) can 

be used only for standard linkage analysis. When either θt or α, or both, 

need to be estimated from pedigree data (JSL analysis), then this 

likelihood is expected to produce asymptotically biased estimators of ρ. 

Because it contains no sampling correction, not only the trait model 

parameters θt are expected to be biased, but so also are all the other 

parameters estimated from the same likelihood together with θt, including 

the estimator of ρ. 

 Likelihood (7.6), however, can also be used in JSL analysis in the 

case that sampling is marker independent and ),,,,,( ρθθ DYXR lt  does not 

depend on ρθ ,, Dl  or Y, because it then follows from conditioning (7.2) 

on the entire trait data. If the sampling is marker-independent, but 

condition 1) or 2) is not true, likelihoods (7.5) and (7.6) produce in general 

asymptotically biased estimators of ρ, although the value of the bias can be 

almost trivial. 

 The pedigree likelihood (7.6) conditional on the pedigree trait data 

has been recommended in a number of publications, although not all of 

them clearly stipulated the necessary condition of having marker-

independent sampling (Risch, 1984; Clerget-Darpoux et al., 1986; Elston, 

1989; Greenberg, 1989; Clerget-Darpoux and Bonaïti-Pellié, 1992; Hodge 

and Elston, 1994; Wang et al., 2000). Vieland and Hodge (1996) noted that 

this likelihood correction follows from the AAF approach of Ewens and 

Shute (1988) if 1) the pedigree sampling is really marker-independent, and 

2) the pedigree PSF is completely known. 
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7.7. Marker-dependent sampling, SMF likelihood  

 To avoid inconsistency of the parameter estimators due to incorrect 

formulation of the ascertainment procedure, Ewens and Shute (1986) 

proposed the ascertainment-assumption-free (AAF) method of correcting 

the pedigree likelihood as used in segregation analysis. They showed that 

the pedigree likelihood conditioned on that part of the pedigree data 

“relevant to ascertainment” provides consistent estimators of the trait 

model parameters, regardless of the particular ascertainment scheme that 

has been used. However, it should be noted that these authors did not 

consider the case where we do not observe all the pedigree members 

relevant to ascertainment. The same approach can be applied to the more 

general sampling procedure that includes pedigree ascertainment, its 

extension, and also selective inclusion of the pedigree in the sample 

analyzed. In this case, it seems reasonable to call the method sampling-

model-free (SMF).  

 Let us re-formulate likelihood (7.1) by substituting, for the product 

of the explicitly formulated ascertainment and inclusion probabilities 

   ),,,|(),,,|( 11 ψατ aaa
p CYXinclPCXascP ,  

the joint probability P[ )(,),( ττ a
p

aa
p CYX ] of the pedigree being 

ascertained and included in the sample analyzed given its subset RS, 

),,()](,),([ aaa
p

a
p

aa
p CYXCYX ∪τ=ττ , its structure and trait and marker 

contents. Assume now that the subset RS fully and uniquely determines 

this probability, although no explicit model of either ascertainment or 

inclusion is introduced. Note that this assumption means that the sampling 

probability is the same for the different PCs that provide the same PSF 

subset. Then, using the Ewens and Shute (1986) technique, i.e., 
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considering this probability as a parameter and replacing it by its ML 

estimator in the likelihood expression, it is possible to obtain the following 

SMF likelihood: 

 

ρεθθρεθθ ,,,,),,,,,|,,( Dlt lt
DsmplCYXP ∝  

],,,,|)(,),([

),,,,|,,(
,,,,

ρεθθττ

ρεθθ
ρεθθ

DCYXP

DCYXP

lt
a
p

aa
p

lt
Dlt

∝  .  (7.7) 

 

This is the probability of the sampled pedigree conditional on its subset 

RS, combining both the pedigree PSF and the “inclusion” data (Xa,Ca). 

This likelihood provides asymptotically unbiased estimators of all the 

parameters determining the joint trait-marker inheritance, Dlt ,,θθ  and ρ, 

and of the extension parameter ε. Usually (see Ewens and Shute, 1986; 

Shute and Ewens, 1988; Hodge, 1988; Sawyer, 1990), the ML estimators 

of parameters obtained from likelihood (7.7) are less efficient (sometimes 

substantially so) than those obtained from the SMB likelihood. This 

likelihood formulation is really robust, providing consistent estimation of 

the genetic model with minimal assumptions about the sampling 

procedure. The sample space on which (7.7) is defined consists of 

pedigrees having the same given content RS, both structurally and 

phenotypically. However, if the subset RS contains some unobserved data, 

the very space on which this conditional probability is to be defined 

becomes undefined and theoretically the SMF likelihood correction cannot 

be constructed.  

 In the case of trait-independent pedigree extension, the simpler 

likelihood can be used instead of (7.7): the conditional probabilities of the 



 

 

147

sampled data (X,Y) given C, and of the data ( aa
p YX ),(τ ) given a

pC (τ), can 

be used instead of the corresponding probabilities in (7.7).  

7.8. Example 

7.8.1. The pedigree data 

The following example illustrates the above statements. Suppose 

the population consists of nuclear pedigrees each having at least 2 

offspring. The phenotypes of the pedigree members are described by a 

binary trait (affected-unaffected) and a marker genotype. The trait is 

controlled by a diallelic locus in such a way that genotype A1A1 always 

has an affected phenotype, denoted 1, while genotypes A1A2 and A2A2 

have an unaffected phenotype, denoted 0, where A1 and A2 are two alleles 

with population frequencies p and 1 - p, respectively. The codominant 

marker locus has two alleles, M1 and M2, with frequencies q and 1 - q, 

respectively. The joint distribution of the trait and marker alleles is 

determined by the disequilibrium parameter D = Pr(A1M1) − pq, and by 

the recombination fraction ρ between the two loci.  

The sampling procedure is defined as follows. The pedigree PSF 

consists of two members, the father and the oldest offspring. If affected, 

each of them becomes a proband with the same probability π 

independently of one another. Thus, the pedigree PC (proband 

combination) can be represented by only the father, by only the oldest 

offspring, or by both. The PC is further extended to include the mother and 

just one as yet unobserved offspring. There are two additional conditions 

for including the pedigree in the sample: 1) the marker genotypes in the 

parents should be M1M2 in the mother and M1M1 in the father (back-
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cross), and 2) the mother should be unaffected, i.e., her phenotypic 

observation is always 0M1M2 (otherwise, the pedigree is not informative 

for linkage). Thus, having in mind the scheme shown in Fig. 1, the 

pedigree PSF is represented by the trait phenotypes on the father and the 

oldest offspring. Here, this PSF is always sampled in its entirety, so: 

(Xp,Cp) ≡ τp; )(τ≡ a
p

a
p XX  and )(τ≡ a

p
a
p CC . The subset controlling 

inclusion, (Xa,Ya,Ca), contains the mother’s trait phenotype and the marker 

genotypes of both parents. The complementary pedigree subset 

(X,Y,C)\( a
p

aa
p CYX ,, ) is represented by the phenotype of at most one 

member – the younger offspring, if sampled – and by the marker 

genotypes of both offspring. 

Table 7.1 presents the 28 different nuclear pedigrees that are 

possible under the sampling scheme just described, their pedigree 

structures, the phenotypes and marker genotypes of their members, and the 

pedigree probands (denoted by bold 1). The mother’s observation is not 

shown because it is always 0M1M2. The first 4 three-member pedigrees 

can be collected when only the father becomes a proband, but not his 

oldest offspring. The latter in this case is observed in the process of 

pedigree extension and can be either affected or unaffected. The other 

pedigrees are ascertained through the oldest offspring proband and, in 

some cases, the father-proband combination, and all of them contain two 

offspring. 

From the sampling scheme considered we can conclude that, in 

pedigrees 1-20, the father’s genotype is unequivocally A1A1M1M1, while 

in the other 8 pedigrees it is A1A2M1M1, because A2A2M1M1 would 

provide no offspring proband. The mother’s genotype can only 
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Table 7.1. List of 28 pedigrees that can be sampled from the 

population of nuclear families defined in the example considered. 

N0 F Offspring N0 F Offspring 

1 1 0 M1M1 15 1 1 M1M2 +1 M1M1 

2 1 0 M1M2 16 1 1 M1M2 +1 M1M2 

3 1 1 M1M1 17 1 1 M1M1 +1 M1M1 

4 1 1 M1M2 18 1 1 M1M1 +1 M1M2 

5 1 1 M1M1+0 M1M1 19 1 1 M1M2 +1 M1M1 

6 1 1 M1M1+0 M1M2 20 1 1 M1M2 +1 M1M2 

7 1 1 M1M2+0 M1M1 21 0 1 M1M1+0 M1M1 

8 1 1 M1M2+0 M1M2 22 0 1 M1M1+0 M1M2 

9 1 1 M1M1+0 M1M1 23 0 1 M1M2+0 M1M1 

10 1 1 M1M1+0 M1M2 24 0 1 M1M2+0 M1M2 

11 1 1 M1M2+0 M1M1 25 0 1 M1M1+1 M1M1 

12 1 1 M1M2+0 M1M2 26 0 1 M1M1+1 M1M2 

13 1 1 M1M1 +1 M1M1 27 0 1 M1M2+1 M1M1 

14 1 1 M1M1 +1 M1M2 28 0 1 M1M2+1 M1M2 

Notes: For each pedigree, its structure, the trait phenotypes of its 

members, and their marker genotypes are shown. F denotes the father 

phenotype (1 – affected, 0 – unaffected, 1 – the father is a proband).  

  

be A1M1/A2M2 or A1M2/A2M1 in all pedigrees except the first, where the 

genotype A2M1/A2M2 is also possible.  

Fig. 5A shows how the bias of the estimator of ρ, 

ρ−ρ=ρ∆ )ˆ(ˆ nn E , and its standard deviation, 2)]ˆ(ˆ[)ˆ( nnn EE ρ−ρ=ρσ , 

depend on the sample size, where nρ̂  denotes the estimator found for a 
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sample of size n, and E(x) denotes the expectation of x found by averaging 

the estimate obtained from 10,000 simulation replicates. These 

characteristics were obtained in a JSL analysis, when the nuisance 

parameters p, q, D (and π, for the SMB likelihood) were estimated 

together with ρ. Three likelihoods corrected for the sampling procedures 

were used: the SMB likelihood (7.5) conditional on the sampled pedigree 

structure; the SMB likelihood conditional on the structure RS (the 

mother’s trait phenotype and the marker genotypes of both parents), and 

the SMF likelihood (7.7). This was possible because the subset RS was 

observed in its entirety. As we see, all three likelihoods produce 

asymptotically unbiased estimators of ρ. 

As expected in the likelihood technique, the estimators of ρ 

obtained from these likelihoods were biased for finite sample sizes. 

However, for each n, the bias of the estimator of ρ was smaller than the 

corresponding standard deviation. Also as expected, the estimator of ρ was 

more efficient when the SMB likelihood was conditioned on only the 

structure RS than when it was conditioned on the whole pedigree structure. 

At the same time, contrary to what was expected, the SMF estimator of ρ 

turned out to be more efficient, i.e., its standard deviation was smaller, 

than that of the SMB estimator (Fig. 5A). However, this contradiction is 

only apparent. For the other parameters, the standard deviation was larger 

for the SMF method. This means that, when conditioning on more data, 

the general result holds that the norm of the inverse matrix of second 

derivations is larger (Sawyer, 1990), but this does not mean that each 

parameter estimator has a larger standard deviation. 
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Figure 5. Dependence on the sample size of the bias and standard
deviation of the estimators of the recombination fraction (A) and the
disequilibrium parameter (B).  

The estimates were obtained using: 1) the SMB likelihood 
conditioned on the pedigree structure; 2), the SMB likelihood
conditioned on the RS structure, and 3) the SMF likelihood. See details in
section 7.8.  
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7.9.  Correction of the linkage likelihood 

The theory developed above to correct the likelihood for the 

sampling procedures used in pedigree collection is quite applicable for 

linkage analysis: the same SMB and SMF likelihood forms can be used to 

obtain asymptotically unbiased estimators of the recombination fraction. 

This follows from the fact that the theory of adequate sampling correction 

for the pedigree likelihood was proved in the previous chapter quite 

generally. The trait studied can be quantitative or qualitative. Nothing 

special was assumed about the proband definition or how the 

ascertainment probability is formulated. The only condition required for 

the model of pedigree extension is that it should permit an explicit 

expression for the probability of the pedigree data collected in the process 

of intrafamilial pedigree extension. That is why this theory is perfectly 

applicable to linkage analysis, the main goal of which is to obtain accurate 

(in particular, asymptotically unbiased) estimation of the recombination 

fraction between the locus controlling the trait studied and the marker. If 

the pedigree samples on which this estimation is performed are collected 

using the previously planned sampling procedures (ascertainment, 

intrafamilial extension and censoring), the pedigree likelihood used in 

linkage analysis should be corrected for these sampling procedures in the 

way described by the above theory. This includes unambiguous 

identification of the subset of the pedigree members RS, modeling the 

sampling procedures (ascertainment and inclusion) reflecting the true ones, 

at least in their main details (Sawyer, 1990), and, of course, the procedure 

used for pedigree extension, without which it is impossible even to write 

down the joint probability of the collected pedigree data. 
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If these three conditions are met, the pedigree likelihood can 

accurately account for the sampling procedures and provide a consistent 

estimator of the trait inheritance, including the recombination fraction ρ. 

Concerning the SMF method of sampling correction, it should be once 

again noted that likelihood (7.7), which has the excellent property of 

robustness, is simply not defined if the subset RS contains missing data.  

Note that, although the sampling correction should directly address 

the subset RS, it is always permissible, if deemed desirable, to condition 

the pedigree likelihood on other parts of the sampled data. The important 

conclusion that follows from the above considerations is that this 

additional conditioning should be made together with the sampling 

condition, not instead of it. For example, conditioning on the pedigree 

structure must include conditioning on the substructure of the subset RS.  

In section 6.10, it was explained why the condition of using all the 

sampled data was formulated by Cannings and Thompson (1977). 

Although they said nothing against selective inclusion in other cases, 

avoiding it has been widely accepted since then (see Vieland and Hodge, 

1995, 1996). On the one hand, accepting this seems understandable 

because, contrary to the more or less clear formulation of a proband 

ascertainment scheme, the inclusion procedures could be very diverse and, 

therefore, hardly amenable to a general formulation. On the other hand, 

selective inclusion of pedigrees in the sample analyzed seems to be widely 

practiced (and not only in linkage analysis), although this fact is not 

always explicitly stated. Here, we have considered selection of the 

pedigree for analysis as a special part of the sampling procedure which, 

together with the ascertainment, should be accounted for in order to obtain 

consistent estimators of the recombination fraction and other parameters 
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that determine joint trait-marker inheritance. We considered one 

characteristic of the members of Ca, as an example: the trait and marker 

data should be compatible with non-zero linkage information in the 

pedigree. However, this is equally applicable for any formulation of the 

probability ),,,|( ψaaa CYXinclP .  

7.10. Linkage test 

 The LRT statistics used to test the null hypothesis of no linkage, 

H0: ρ = 0.5 (or ρm = ρf = 0.5), can be formulated as follows: 

)5.0,ˆ|,(/)ˆ,ˆ|,(ln[2 θρθ=λ YXPYXP ],                          (7.8) 

where ρ̂  is the recombination fraction estimated together with other 

parameters, θ̂ , of the joint distribution in pedigree members of the two 

phenotypes, the trait and marker. Asymptotically, the test statistic (7.8) is 

distributed as a central χ2 with df = 1 (provided θ̂  is not restricted to being  

≤0.5).  
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8. THE SET OF TESTED GENETIC MODELS 
 

 Pedigree analysis was defined in sections 1.6 and 1.7 as the 

formation of a set θ of genetic models, the introduction of an operator Ω 

ranking them in order of preference and, as the analysis result, the choice 

of the model providing the most accurate description of the inheritance of 

a trait. Here we consider these problems in more detail. 

8.1. Likelihood ratio  

The statistical analogue of the information measure S
ijI  of 

similarity between two inheritance models introduced in section 2.2 can be 

presented for finite-size samples in the form of the logarithm of a 

likelihood ratio (LR): 

∑∑ θθ=λ=λ k jkk
S

ikk
S

k
S
ijij CXPCXP kkk )]ˆ|,(/)ˆ|,(ln[ ,  (8.1) 

where the sum goes over all sampled pedigrees; )ˆ|,( ikk
S CXP k θ  is the 

maximum likelihood for pedigree (Xk,Ck), and iθ̂  denotes the ML 

estimate(s) of θi yielding this maximum. In (8.1), we explicitly take into 

account the fact that each pedigree (Xk,Ck) can be sampled with its own 

specific sampling procedure Sk . Provided they are sampled independently 

of one another, the sample log-likelihood is the sum of the log-likelihoods 

for the pedigrees included in the analyzed sample.  

 As we can see, (8.1) is the statistical realization of the general 

operator Ω that ranks the previously formed set of genetic models θ, for 

finite-size samples. Thus, if the sample distribution of this LR is known, 

the basic statistical problem of comparing the genetic models in θ can be 
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solved and characterized in terms of the traditional statistical 

“significance” of the model comparisons.  

8.2. Transmission probability tests 

Let us consider now what models are to be included in the set θ. 

First of all, they should be mathematical-genetic models. Second, this set 

should cover as many types of trait inheritance models as possible, to 

provide an analysis result that describes the mode of inheritance with 

maximum accuracy. Third, this set is limited by the complexity of the 

models to be tested. Any particular pedigree sample contains limited 

genetic information, and therefore we usually cannot distinguish complex 

multiparametric models from one another. Thus, at present mostly MG 

models are considered for pedigree samples of a reasonable (practically 

achievable) size, and additionally some types of two-locus models 

containing parameter constraints that may not be testable. It seems 

worthwhile to add the following about the particular formulation of these 

models. 

Elston and Stewart (1971) introduced a transmission probability 

model under which to test hypotheses of inheritance in pedigree 

segregation analysis. To test for a MG model, where the trait is under the 

control of a single locus with two alleles, A1 and A2, their statistical model 

can be outlined as follows. Introduce the transmission probabilities τg = 

Pr(A1|g) that a parent with genotype g (g = 1, 2 and 3 for genotypes A1A1, 

A1A2 and A2A2, respectively) transmits allele A1 to his/her offspring. 

Under this statistical model, the parameters τg are estimated from the 

pedigree sample to have arbitrary values, together with other parameters 

specified by the model θi. Now two specific genetic hypotheses can be 
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tested under this model. If the transmission is Mendelian, then τg = 1.0, 0.5 

and 0.0 for g = 1, 2 and 3, respectively, and this forms the first hypothesis 

of interest. For the second hypothesis, we assume that all three τg are equal 

to the same value, τ  (which means that the offspring genotype is 

independent of his/her parental genotypes), estimated together with the 

other model parameters. Accordingly, two LR tests are introduced 

(“transmission probability tests”):  

λi1= 2 ∑ τθk gikk CXP )ˆ,ˆ|,(ln[ / )],ˆ|,( Mikk CXP τθ   

and   

λi2 =  2 ∑ τθk gikk CXP /)ˆ,ˆ|,(ln[ )],ˆ|,( τθikk CXP . 

where τM denotes the Mendelian transmission probabilities, and gτ̂  and τ  

are estimates of the transmission probabilities found together with other 

model parameters.  

 For the pedigree sample {(Xk,Ck)}, the null hypothesis, 

 H0: τg = τM, that the trait is really controlled by one Mendelian diallelic 

locus, can be tested by the LRT statistic which, if the estimate gτ̂ is 

unconstrained, is distributed asymptotically as the central χ2 with df = 3 

(Kendall and Stuart, 1970).  

The distribution of the second test statistic was assumed 

asymptotically to be χ2 with 2 df, if the offspring genotype is really 

independent of the parental genotypes. Using these tests, the monogenic 

model θi is included in the set θ if it is not rejected by the test λi1 and, at 

the same time, θi( τ ) is rejected by the test λi2.  

 Note that the use of such a statistical model to test hypotheses 

nested within it raises a specific problem. While each of the tests  λi1 or 
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λi2, provided their distribution are correctly established, can be 

characterized by the traditional statistical type I and II errors, the 

characteristics of the combined test, when θi( τ̂ ) is not rejected and at the 

same time θi( τ ) is rejected, cannot be derived from any asymptotic 

assumptions (Ginsburg, 1984; Ginsburg and Livshits, 1999). They are 

expected to be different for different situations.  

It should be stressed that the models θi( τ̂ ) and θi( τ ) were not 

intended to be used for a description of the trait inheritance, but rather to 

allow us to test whether a simple monogenic model can be used to describe 

the mode of inheritance. Accordingly, neither of these auxiliary models is 

included in the set θ from which the “best” (in the sense defined above) is 

to be chosen as the analysis result. Thus, the transmission probability tests 

provide the first limitation of the genetic models that are to be included in 

the set θ. Only those models are included whose genetic content is 

compatible with genetically determined MG inheritance (the genotypic set 

G and the three component distributions defining the model). 

 Based on a particular sample of pedigrees, the transmission 

probability tests result in either acceptance or rejection of the null 

hypothesis H0 that the tested genetic model can be included in the set θ. H0 

is accepted in two cases. In the first, the model formulation exactly 

corresponds to the conditions formulated in section 6.1; in other words, the 

model describes the real MG genetic control, except for the model 

parameters, which are to be estimated from the particular pedigree sample. 

In the second, the transmission probability tests λi1 and  λi2  are not 

sufficiently powerful to reject H0 based on the given pedigree sample with 

its limited information. In this case, conditions C1 – C5 (at least not all of 

them, see section 6.1) do not strictly correspond to of the particular mode 
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of inheritance of the trait being studied. It is natural to assume that a 

corresponding increase in the analyzed sample size, i.e., an increase in the 

test’s power, would result in rejection of H0, in exclusion of the tested 

model from the set θ, and in the need to re-formulate the model - making 

corresponding changes to the components of the genetic model defined in 

section 1.5.  

 Unfortunately, it is in practice impossible to extend this idea of 

transmission probability tests, developed for the MG models, to more 

complicated genetic models. The number of probabilities that describe the 

transmission of parental alleles to offspring (gametes, if more than one 

gene is involved in the genotypic control) increases sharply, making it 

impossible to estimate them with reasonable accuracy from finite-size 

pedigree samples. Skipping the proof, let us mention only two examples. 

For the three-allele monogenic model the number of transmission 

probabilities that should be estimated from the pedigree sample equals 20, 

instead of 3, for the MG model. For the digenic model, each gene having 2 

alleles, this number is already 30. 

 From what has been said it follows that formation of the set θ is 

usually made only approximately. In practice it is highly improbable that 

the formulated genetic model would correspond exactly to the real mode 

of inheritance and to the sampling procedures employed (conditions C1 – 

C5). Thus, inclusion of the formulated models in the set θ is determined 

mostly by the sample that is analyzed because this sample is not 

informative enough to reject the model from this set. 
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8.3. Most parsimonious models 

 Any accepted parameter constraint leads to a particular simplified 

model of inheritance (additive trait control, equal residual variances for the 

three major genotypes, etc). By making the description of the mode of 

inheritance more “economical”, such a constraint clearly decreases the 

maximum pedigree likelihood, )ˆ|,( ikk
S CXP k θ , in comparison with that 

of a model not having that constraint. If this decrease is found to be 

statistically non-significant, the simpler model would be preferred. This 

does not mean that such a simplification provides the same accuracy in 

describing the trait inheritance. In all probability, we might expect that the 

simpler model would lose some details in describing the trait inheritance. 

However, if the loss in this description is not substantial, and its statistical 

acceptance seems to confirm this fact, then the simplified model that has 

been obtained under constraints that are not statistically rejected can be 

used as an approximate description of the mode of trait inheritance.  

The most parsimonious (MP) model is defined as the one for which 

any further parameter constraint is rejected statistically (with predefined 

type I error and power that depends on the amount of information in the 

sample). This idea of using the MP model provides further simplification 

of the set of genetic models from which to obtain the pedigree analysis 

result. The initially formed set θ is divided into groups, each group 

containing a “general” genetic model and the genetic models that can be 

derived from this general model by various parameter constraints.  

If model θj is a special case of θi, i.e., can be obtained from the 

latter by some parameter constraints, then the sampling distribution of 2λij 

= )]ˆ|,(/)ˆ|,(ln[2 ji CXPCXP θθ  can be approximated asymptotically by 
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a central χ2 with df equal to the number of independent constraints, under 

the assumption that θi and θj do not differ from one another in their ability 

to describe the pedigree distribution. Otherwise, the distribution could be 

approximated by a non-central χ2 (Wald, 1943). Using these 

approximations, we can test the null hypothesis H0 that the particular 

parameter constraint is acceptable, i.e., does not result in a statistically 

significant change in the genetic description of the trait inheritance. If H0 

is accepted, the genetic model can be formulated in its simplified form. 

Otherwise, this constraint is rejected.  

Using this technique for each group of genetic models within 

which these nested relations can be established, it is possible to replace 

this group operationally by only one (usually) most parsimonious model, 

thus forming the reduced set }ˆ{ MP
iθ .  

The two procedures reducing the set of genetic models that should 

be compared with one another for the choice of the one providing the most 

accurate description of the trait inheritance should ideally be performed in 

a certain order. The transmission probability test should be used first, and 

only then should the MP models be constructed. Attempts to use the 

transmission probability test on MP models can lead to biased results, 

because each MP model represents an approximation of the formulated 

genetic model, for which the level of approximation bias, and even its 

direction, is usually unknown. 

There may be ambiguity regarding the construction of the most 

parsimonious model for each group. Assume for example that, at a certain 

stage of the process of testing constraints for a MG model, the two 

following constraints are statistically accepted: 1) additive major gene 

control with unconstrained residual variances, and 2) equal residual 
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variances with unconstrained genotypic values. It may be the case that 

both of these are found to be models that are most parsimonious, in the 

sense that any further parameter constraint would be significantly rejected 

in either of them. Statistical comparison of two such MP models can be 

made by a simulation test as described below in 8.4.  

Thus, we set limits when we form the set of genetic models to be 

compared for their ability to describe the trait inheritance. The set is 

reduced, first by including only those models that are genetically 

formulated (using the transmission probability test) and second, by 

including only the MP models.  

8.4. Comparison of differently formulated models 

Let us rank the models from }ˆ{ MP
iθ  by their likelihoods. Now it is 

necessary to find out whether the difference between the first ranked and 

second ranked model is statistically significant (given the pedigree sample 

with its information about the trait inheritance and the predefined type I 

error of the statistical decision). The distribution of the LRT is defined 

unambiguously if the second ranked model is obtained from the first 

ranked by parameter constraints. In this case, the LRT distribution is 

approximated asymptotically by the central χ2 with df equal to the number 

of the constraints placed, if these constraints are acceptable, or by a non-

central χ2, if not.  

Consider now the case where the first and second ranked models 

from }ˆ{ MP
iθ  are not nested in this way one within the other. In this case, a 

simulation test can be used to test whether there is a statistically significant 

difference between these two genetic models in their description of the 
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trait inheritance. The test can be constructed as follows. Let )ˆ|,( 1θCXP  

and )ˆ|,( 2θCXP  be the likelihoods, obtained on the same pedigree 

sample, for two differently formulated genetic models (different sets of 

genotypes, different control of phenotypes etc.; for example model θ1 is 

digenic while θ2 is the three-allele monogenic model). Assume that 

)ˆ|,( 1θCXP  > )ˆ|,( 2θCXP  and the LR statistic for these two models is 

LRT = )ˆ|,(ln[ 1θCXP  / )]ˆ|,( 2θCXP . 

Assume that model 2θ̂  is true. Using the known parameter 

estimates 2θ̂ , simulate a pedigree sample of the given size and structure 

and, estimating 1θ̂  and 2θ̂ , find the new LR statistic. Repeating this 

simulation many times, it is possible to find the empirical distribution of 

the LR statistic for these two genetically different models. For a predefined 

type I error, α, and given sample size, n, the simulated critical value cαn 

can be found as the upper 100α- percentile of this distribution. Then, to 

compare θ1 and θ2, the statistical decision is made as follows: H0 ( 2θ̂  is 

true) is rejected if the LRT = )ˆ|,(ln[ 1θCXP  / )]ˆ|,( 2θCXP  found for the 

compared models exceeds the critical value cαn. This means that there is a 

statistically significant difference in the description of the trait inheritance: 

model 2θ̂  provides a less accurate description of the trait inheritance than 

does 1θ̂ . 

Repeating this simulation testing for any pair of models from the 

set }ˆ{ MP
iθ , we can obtain the resulting multiple comparisons. The set of 

models should then be divided into several groups such that all the models 

belonging to the same group do not differ statistically from one another. 
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Then it is possible to rank these groups by their accuracy in describing the 

trait inheritance: models from the first group provide the most accurate 

description, and this fact is statistically significant on using the simulation 

test. Models in the second group describe the trait inheritance significantly 

better than the models in the third group etc.   

Thus, the problem of comparing and ranking the genetic models in 

}ˆ{ MP
iθ  can be solved statistically using the standard likelihood technique.  

8.5. Planned and employed sampling models 

 Explicit formulation of the sampling procedures is a necessary part 

of constructing the genetic model. Above, we several times referred to the 

sampling procedure “employed” when the sample for pedigree analysis is 

collected. However, there is quite a difference between the conceived 

sampling design carefully planned initially by an investigator and the 

ascertainment, extension and inclusion procedures actually employed in 

practice. The deviations from the planned design could be negligible or 

substantial, even in some important aspects of it. Unfortunately, it is 

usually impossible to identify and to document all the factors that 

happened to cause these deviations and, therefore, it is impossible to 

unambiguously describe the sampling procedure employed in practice. 

Note in this connection that the sample analyzed could contain pedigrees 

sampled, i.e., ascertained, extended and/or censored, differently from one 

another. Thus, the factors causing the difference between the planned and 

employed procedures should be documented (if possible) separately for 

each sampled pedigree, because each is described by its specific 

probability (likelihood) defined on its specific sample sub-space.  
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 Thus, because it is impossible to describe unambiguously the 

employed sampling procedure, the sampling models can only be 

formulated using the initially planned sampling design.  

 The obvious conclusion from what has been said is that we need to 

formulate not just one sampling model, but a reasonable set of models 

{SH}, all formulated explicitly using the initially planned sampling design 

and, hopefully, covering the range of possible sampling procedures that 

could have occurred while collecting the pedigree sample analyzed. This 

means that each of the set of competing genetic models from }ˆ{ MP
iθ  

should be compared with one another when the sample likelihood 

explicitly includes each sampling model from {SH}. This increases the 

number of MP models that should be compared, but this increase is quite 

justified when we take into account the more complete coverage it affords 

of the unknown, but actually employed, sampling procedure. In this case, 

the first-rank model that provides the most correct model of the trait 

inheritance simultaneously indicates the most parsimonious sampling 

model.  

8.6. Statistical equivalence of the models compared 

 The problems of pedigree analysis considered up to now were 

mostly theoretical. Note carefully that the construction of sampling-

corrected pedigree likelihoods (chapters 6 and 7) was made in a quite 

general form. No explicit specification of the ascertainment or inclusion 

probabilities was used, only general formulas were considered. 

Accordingly, our theoretical studies have examined the general possibility 

and method of constructing pedigree likelihoods corrected for the 

sampling procedures.  
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 At the same time, when performing pedigree analysis, it is not 

enough to prove that it is in principle possible to construct a pedigree 

likelihood that accurately corrects for the sampling procedures. There are a 

number of usually unknown social-demographic factors in each population 

that can substantially modify how we use the theoretical results. In each 

particular population, for a particular initially planned sampling design, we 

must take into account the socio-demographic factors affecting the exact 

realization of the planned sampling procedures, and so we should consider 

in more detail how we can in practice distinguish the genetic models in the 

set }ˆ{ MP
iθ . 

 The definition of pedigree analysis (1.2) implies two conditions for 

being able to compare models. First, for any two genetically nonequivalent 

models of trait inheritance there must always exist specific pedigree data 

(with respect to both structure and phenotypic content) with which these 

models can be distinguished. Second, the operator Ω introduced above 

must provide an absolutely correct ranking of the set of models of trait 

inheritance. If the necessary data are included in the sample analyzed, then 

Ω necessarily distinguishes two genetically different models, i.e., one of 

them would be specified as preferable to the other. 

In practice, these two conditions will not necessarily be satisfied. 

First of all, the distinguishing data could be unobtainable. The sample 

space, i.e., the set of pedigrees that can in principle be sampled from the 

true pedigree set {τ} defined above is constructed without any connection 

to the model set θ and, therefore, the sample space formed does not 

necessarily contain the whole conceivable range of pedigree data. If this 

sample space does not contain such distinguishing pedigree data, then the 

genetically different models would not be distinguished (even 



 167

asymptotically). Second, even if such distinguishing data can be sampled, 

the power of the statistical test used for the model comparison (the 

statistical version of the operator Ω) could be insufficient to make an 

unambiguous decision in favor of one of the two models being compared.  

This means that different genetic models of trait inheritance could 

be considered as statistically equivalent, being indistinguishable even 

asymptotically, on the given particular sample space using the given 

statistical technique. In practice, the solvability of pedigree analysis, i.e. 

the ranking of genetic models one of which is to be chosen as the best 

descriptor of the trait inheritance, is determined by both the sampled 

pedigrees analyzed and the statistical test used. 

 As usual, it is in practice impossible to list the conditions necessary 

to distinguish all models of the preformed set θ in a particular study. 

Except for a few very trivial studies, the practical solvability of pedigree 

analysis is considered in the same way as for any other analysis, mostly a 

posteriori. 
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9. ON APPROXIMATE SAMPLING CORRECTIONS 

9.1. Once more about the genotype-phenotype 
correspondence 

 Among the three component distributions defining the genetic 

model (section 1.5) the most uncertain is the one establishing how the set 

of genotypes in pedigree members display their phenotypes. This 

genotype-phenotype correspondence, f(Xn,Cn|Gn), was introduced 

phenomenologically simply because our current knowledge about the 

ontogenetic process determining any trait that we may study is such that it 

cannot be formulated with any certainty on the basis of a genetic 

mechanism. This means that the distribution f(Xn,Cn|Gn) can be formulated 

only as an approximation and, as such, in different forms. In turn, this 

means that the genetic model definition (1.1) is also given simply as an 

approximation. In each particular formulation of the genetic model, the 

only condition that the distribution f(Xn,Cn|Gn) must satisfy is its ability to 

describe the joint distribution of the trait residuals – the joint distribution 

of phenotypes in the pedigree members caused by all genetic and 

environmental factors other than the effects of the genotypes included in 

the genotypic set G. 

 From this point of view, we must re-formulate the genetic model 

given above in (1.1). It can only be satisfactorily defined if there is some 

definite preliminary knowledge about the distribution of the residuals. In 

other cases, in reality, not one but a set of genetic models should be 

introduced as versions of (1.1) that differ from one another in the 

particular formulation of the trait residual distributions. 
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9.2. Accurate and approximate formulations 

Consider one more problem of practical importance in pedigree 

analysis. When noting the “inherent intractability” of the ascertainment 

problem in pedigree analysis, Vieland and Hodge (1995) recommended “to 

pursue robust approximate approaches that will provide numerically 

acceptable results”. Indeed, the rather strict (and in practice hardly likely 

to be met) conditions needed to make the likelihoods formulated in the two 

previous sections adequate, point directly to a need of some “approximate” 

approaches for the sampling correction or, to be more accurate, the need of 

an approximate formulation of the pedigree likelihood in probability terms 

- provided, of course, the level of approximation is acceptable. However, 

we should note certain things about the term “approximate” in this context. 

Usually, “accurate” formulation means the introduction of explicit 

probabilistic models for the pedigree ascertainment, extension and 

inclusion, with their parameters having a clear probabilistic interpretation, 

e.g., π(xi,βi) is the probability that a potential proband who has the 

phenotype(s) xi and additional characteristic(s) βi actually becomes a 

proband. Contrary to that, an “approximate” formulation assumes the 

introduction of the ascertainment probability as a phenomenological 

function of some pedigree characteristics such as, for example, the number 

of affected members in the pedigree PSF (Stene, 1977, 1978). The 

distinction between such accurate and approximate formulations is not 

always clear-cut. On the one hand, most of the accurate formulations are 

made using some assumptions that are in principle untestable (the 

sampling procedure that is in practice employed is always much more 

complicated than that modeled and used in constructing the likelihood). 

On the other hand, it is sometimes possible to introduce a clearly 
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formulated probabilistic model for some phenomenological formulations 

(Ginsburg and Axenovich, 1992).  

Strictly speaking, any (either accurate or approximate) model for 

the pedigree ascertainment, extension or inclusion used in the likelihood 

formulation represents only an approximate description of the real 

sampling procedure employed, just because it is only a model. This means 

that 1) it is hardly probable that any initially defined sampling procedure 

will be strictly followed in practice, and 2) the procedure SE employed in 

practice is expected to be (much) more complicated than the testable 

model (hypothesis) SH that is formulated and used to construct the pedigree 

likelihood.  

It follows from the above consideration that we should distinguish 

between at least two types of approximation that occur in pedigree 

analysis. The first, in which we do not accurately identify the pedigree 

subset responsible for one or another sampling sub-procedure, and the 

second, in which this subset is accurately identified but formulation of the 

corresponding probability (ascertainment and/or inclusion) is made only 

approximately, with insufficient correspondence to the procedure that was 

actually employed.  

The sampling models (hypotheses) {SH} that can be formulated 

using the initially planned sampling design differ from the particular 

procedure SE that was actually employed when the pedigree was collected 

and included in the analyzed sample. The difference is caused by (usually 

unknown) factors specific to the particular population under study. 

Different SMB and SMF likelihoods use different ascertainment models, 

but both require an accurate and complete identification of the pedigree 

PSF. If this condition is fulfilled, adequacy of the likelihood formulation 
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(in particular, correct estimation of the trait inheritance parameters) 

depends, in turn, on the correctness of the extension and inclusion models, 

i.e., on their similarity to the sub-procedures actually employed. These 

different sampling models represent different formal approximations of the 

same real sampling procedure S = (α,ε,ψ).  We showed that these 

formulations of the pedigree likelihood provide correct (consistent) 

analysis results whenever they adequately describe the most decisive 

factors of the sampling procedure used, namely, the PSF and Ca structures 

of the true pedigree and either the form (but not parameter values) of the 

ascertainment and inclusion probability (SMB), or the assumed 

independence of it from the particular ascertained PC (SMF). We noted 

that the last formulation (SMF) is possible only when the phenotypes of all 

the pedigree members involved in the PSF are known. It is evident that 

other formulations are possible, including approximate ones. Some of 

them have been already proposed and become widely accepted and, 

therefore, deserve closer inspection. Most approximations proposed up to 

now have been connected with the classical π-scheme of ascertainment 

applied to a binary trait. Below, we consider some of them. 

9.3. At least one proband 

 Haldane (1938), Bailey (1951), Morton (1959), Elston and Sobel 

(1979) and many others defined the ascertainment probability as the 

probability that at least one of the PSF members becomes a proband: 

),,|( 11 ατ pCXascP  )|Pr(1 ατ−= p . This means that the ascertainment 

probability is modeled the same for all pedigrees sampled from the same 

true pedigree, regardless of the particular PC that caused the 

ascertainment. This formulation can be considered as an approximation of 
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the proband ascertainment probability to be used when the actual pedigree 

probands have not been registered, but the pedigree PSF has been. This 

formulation of the ascertainment probability is not inconsistent with the 

usual binomial version of the multiplicative form of ascertainment 

probability (6.3), but it leads to a decrease in the pedigree information. 

Shute and Ewens (1988a) reported that this formulation of the 

ascertainment probability is “far less effective” (up to 50 times so!) for 

parameter estimation than the multiplicative form (6.3).  

Note that the authors cited did not consider the important cases 

where the pedigree PSF, or at least its structure, is not known. In this case, 

the probability of no proband in a pedigree PSF, )|Pr( ατ p , cannot be 

accurately found. 

9.4. Single ascertainment 

 In the classical binomial ascertainment scheme, the special case of 

single ascertainment was distinguished as occurring when the probability 

π of any potential proband actualizing his/her potential is negligibly small. 

In this case, the binomial formulation of the ascertainment probability 

considered in section 6.3 can be approximately replaced in the likelihood 

expression by a very simple factor – the number of pedigree probands. 

This approximation decreases the number of parameters that need to be 

estimated from the given pedigree sample. Sometimes, this procedure can 

even increase the power of the tests used, but it is clearly only possible if π 

really is negligible.  

Hodge and Vieland (1996) introduced a “generalized single 

ascertainment … not just through a single proband, but through only one 

type of proband configuration”, a subset of relatives who become probands 
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and are ascertained simultaneously as one ascertainment unit, e.g., an 

affected sib pair, an affected parent-child pair etc. They defined single 

ascertainment, without a direct reference to the value of π, as that having 

the probability of finding more than one proband configuration (one 

proband if the configuration includes only one person) per pedigree 

exactly equal to zero. Because this ascertainment form shows excellent 

properties, the authors argued that this definition “corresponds both to 

single selection under the classical π-model (in the limit as π → 0) and to 

the case considered by Cannings and Thompson (1977)”. (These authors 

used the term “selection” instead of “ascertainment” as used here). This 

means that (6.3) is redefined as ),,|( 11 αCXascP  regardless of the 

number, relationships and phenotypes of the pedigree PSF members; in 

other words, regardless of the structure and phenotypic content of either 

),(\),( 11 CXCX pp  or ),(\ ppp CXτ . In the sampling context, this 

expression can be interpreted, in particular, as a total suppression of the 

potentials of all other τp members after those in the configuration C1 have 

somehow become actual probands.  

Using this ascertainment probability, the pedigree likelihood for 

single ascertainment can be simplified to: 

 

=αεθ ),,,|,( smplCXP
),(

)|,Pr(),|,( 11
αθψ

αεθ CXCXP
,      (9.1) 

where )|,Pr(),|,(),( 11),( αεθαθψ CXCXPCX∑=  is the population 

probability of ascertaining the pre-established proband configuration 

(individual, pair of siblings, parent-child pair, etc). As we can see, the 

pedigree likelihood in the form (9.1) is quite calculable if the above 
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conditions C0, C1 and C3 are fulfilled and condition C4 is differently 

formulated, namely as C′4: the population distribution of the given proband 

configuration should be known.  

 Note that it is only for the particular π-model of ascertainment, in 

which all πi ≡ π, that the denominator in (9.1) is proportional to the 

population prevalence of the proband configuration, )(),( θψ∝αθψ , i.e., 

only for this particular case is the “fundamental definition” of Hodge and 

Vieland (1996) of single ascertainment true. If, as generalized by Elston 

and Sobel (1979), this probability of becoming a proband differs for 

different members of τp, in particular if it depends on the individual’s 

specific phenotype and/or auxiliary characteristics, πi = π(xi,βi), then the 

proportionality )(),( θψ∝αθψ  does not hold - even when all the other 

conditions for “single” ascertainment are satisfied.  

 We can discuss the adequacy of such a single ascertainment model 

as follows. If the ascertainment sub-procedure used is similar to that 

modeled, i.e., if there really has been the suppression of the potentials of 

all the other τp members, then likelihood (9.1) provides a correct 

(consistent) estimator of the inheritance model. However, such a 

suppression seems hardly likely to occur in practice unless special 

precautions are taken when collecting the pedigree sample (Elston, 1995). 

That is why, in terms of the proband ascertainment scheme, it seems more 

justifiable to consider single ascertainment (formulated with any definition 

of the sampling configuration) in the traditional way, i.e., as an 

approximation of the ascertainment probability when π (or πi) approaches 

zero (1 - π ≈ 1), i.e., when the potential probands actualize their potentials 
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very rarely. This assumption can, at least, be confirmed or refuted on the 

basis of a preliminary population study.  

9.5. Phenomenological formulation  

 For a binary trait, a corollary result from classical single 

ascertainment can be presented by the approximate proportionality: 

θ∝ατ ),,|( 11 pCXascP r, where r is the number of affected members in 

the pedigree PSF, the proportionality coefficient being independent of the 

trait model. This approximation was generalized by Stene (1977, 1978) in 

the form: 

θ∝ατ ),,,|( 11 pCXascP brc. 

In this representation, c = 1 corresponds to classical single ascertainment; c 

= 0 to complete ascertainment, when the pedigrees having at least one 

proband are ascertained with probability 1, and values of c outside the 

[0,1] interval are also permitted. For example, c = 2, the “quadratic” 

ascertainment case, has been considered by Haldane (1938), Elston and 

Bonney (1984) and Ewens and Shute (1986). Ginsburg and Axenovich 

(1992) proposed a quite simple probabilistic scheme explaining this 

approximation in proband ascertainment terms: this definition of the 

ascertainment probability corresponds to the case where the probability π 

that the affected individual becomes a proband is different for different 

sizes of τp. 

 This phenomenological approximation can be generalized to the 

cases where the probability of becoming a proband, πi = π(xi,βi), is 

different for different PSF members. However, it can be used to construct 

a calculable pedigree likelihood only under the same conditions as the 

SMB likelihood formulated above: the total number of affected PSF 
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members, r, or the set of characteristics {xi,βi} in all the τp members, 

should be known.  

9.6. Adequacy of the approximate proposition 

 It seems hardly possible to formulate a theory or, at least, a list of 

reasonable recommendations of how to construct an approximate 

description of pedigree sampling when either the pedigree subsets 

responsible for the sampling procedures employed cannot be accurately 

identified, or the probabilities of pedigree ascertainment and inclusion 

cannot be accurately formulated, or both. Usually, some particular forms 

of such approximations are proposed simply because their authors consider 

the results of their analysis as promising and sufficiently accurate, which, 

from their point of view, apparently justifies the proposition.  

 Consider, for example, the approximate ascertainment correction 

for complex pedigrees proposed by Bonney (1998). His proposition was 

based on a number of practically untestable assumptions and can be 

schematically outlined as follows. Contrary to what we have said above 

about the ascertainment, extension and inclusion procedures (section 2.3), 

Bonney assumed that a sampled complex pedigree can be represented as a 

union of “family units” – nuclear pedigrees that are ascertained 

independently of one another. For each unit, the ascertainment correction 

is made separately, using the approximation “at least one proband” and 

assuming that each (affected) member of the unit can potentially be a 

proband. The likelihood correction for the complex pedigree is made by 

multiplying the correction coefficients of each constituent nuclear family. 

Unfortunately, Bonney did not present either proof of adequacy of this 

approximation or any illustration of it.  
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Let us stress once more that if the formulated sampling model does 

reflect some important features of the actually performed ascertainment 

procedure, then it is possible to expect at least approximate adequacy of 

the ascertainment correction. However, if this is not so, i.e., the degree of 

similarity between the really performed procedure SE and its model SH (as 

in the case proposed by Bonney) is unknown, the analysis result simply 

cannot be reasonably interpreted. It can be shown in addition that 

Bonney’s recommendations for the ascertainment correction could lead to 

rather doubtful results in some cases (“uniform proband status 

ascertainment correction” in his terms).  

 Summing up the above examples of constructing an “approximate” 

ascertainment (and inclusion) correction, and taking into account the 

necessarily approximate character of any SMB likelihood - even if it 

appears to be “not very approximate” because it is based on an explicitly 

formulated ascertainment model - the following should be noted. The 

inherent approximate character of practically every ascertainment (and 

extension and inclusion) model should be taken into account in the 

likelihood formulation. This can be done by giving either a set of 

conditions (explicitly formulated and practically testable), under which the 

particular approximation is justified, or a specific algorithm that provides 

robust analysis results (see below). Up to now, the first approach is quite 

undeveloped. Bonney’s (1998) proposition has been made, but it was not 

accompanied by any description of the conditions under which this 

proposition would provide adequate analysis results 

9.7. On robust algorithms 

In robust algorithms for pedigree analysis, we would consider the 

analysis results conclusive if the genetic model of the trait inheritance that 
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is accepted is the same (at least, in its main details) for different models of 

the unknown (or insufficiently known) sampling procedure. It is very 

doubtful that a more or less complete list of these different hypothetical 

models {SH}, which should provide robustness of the analysis results, 

could be given in each particular situation. However, this is the very basis 

for constructing robust algorithms. Incidentally, the following heuristic 

algorithm for making a genetic decision about the trait inheritance model 

has been proposed, widely used, but not as yet studied systematically: if 

the accepted model of trait inheritance is the same, up to sufficient detail 

(e.g., not including estimates of only some parameters), for both single 

ascertainment (π → 0) and complete ascertainment (π = 1), then this model 

is considered reliable. Later on it turned out that these two special 

ascertainment models do not cover the range of possible ascertainment 

procedures (Stene, 1977, 1978), but the very idea of how to construct a 

robust algorithm had been proposed. This idea has still not been 

sufficiently investigated. We mentioned above that some problems of 

forming the set of hypothetical sampling models {SH} are not yet solved, 

and as yet there is no proposal of how to solve them, even in relatively 

simple situations. Also still unsolved are the problems connected with the 

statistical properties of this decision procedure about the genetic model. 

For example, it is unknown how to find the probabilities of type I and II 

errors of this decision.  

9.8. Sample space and likelihood formulation 

Although justified theoretically, and quite alluring from an 

application point of view, the idea “to pursue robust approximate 

approaches that will provide numerically acceptable results” does not 
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appear to be easy to do and, obviously, needs some additional study to 

define the very principles of how to construct such approaches.  

To describe accurately the pedigree distribution in probabilistic 

terms, i.e., to define the accurate pedigree likelihood on the given sample 

space, we need quite detailed information about the sampling sub-

procedures defined on the set of true pedigrees. However, in practice this 

could be unavailable. We considered above some widely accepted methods 

of approximate likelihood formulation. Most of them were proposed many 

years ago, when the inheritance of mostly qualitative (binary) traits was 

under intensive study. It was shown that each particular approximation has 

its own area of use, consistent with the theory developed above. However, 

in practice an accurate description of this area is not always possible.  

It is important to formulate clearly exactly what it means to say that 

these methods are approximate. Until pedigree analysis explicitly uses a 

pedigree likelihood, any approximation is formally expressed in a different 

but quite unique manner of defining a probabilistic measure (pedigree 

likelihood) on the given sample space. This space may not be completely 

defined, or it could be biased because of the limitations imposed by the 

sampling design on the possibility of its strict fulfillment in the practical 

process of collecting the pedigree data; and because of the technical 

(social, demographic etc) availability of the information needed about the 

individuals’ relationships, etc. However, for each specific problem the 

sample space is either determined and, therefore, it is in principle possible 

to define on it a probabilistic measure (the pedigree likelihood), or the 

sample space cannot be defined unambiguously by the set of true 

pedigrees and the questionnaire used and so, therefore, no pedigree 

likelihood can be defined. All the accurate and approximate methods of 
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pedigree analysis are based on the probabilistic distribution of pedigrees 

that can be sampled from the given sample space (described in more or 

less detail, correctly or incorrectly). On each sample space, it is possible to 

define more than one probabilistic measure. Differently formulated 

likelihoods (SMB, SMF, approximate or not) produce different analysis 

results that are more effective the more complete the information that is 

available about the sample space. 
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10. MODEL - FREE PEDIGREE ANALYSIS 
 

 Up to now, we have considered methods of pedigree analysis that 

are explicitly based on constructing mathematical-genetic models of the 

trait inheritance and models of the sampling procedures, ascertainment, 

extension and inclusion. These models were explicitly formulated using 

parameters determined by the three basic distributions that define the 

genetic model (1.1): ),( 21 ggp , ),|( 21 gggP , and )|( nn GXf .  

 As we have seen from the above considerations, to produce results 

that are reliable and, therefore, interpretable in terms of the genetic model 

of the trait inheritance, especially when the trait is multifactorial with 

complicated inheritance, the practical execution of such an analysis 

requires a highly informative pedigree sample, an adequate formulation of 

the tested models of trait inheritance and sampling procedures, and very 

complicated calculations that can only be performed by means of specially 

designed computer programs.  

 In their place, model-free methods of genetically studying such 

traits have been proposed and extensively exploited over the past several 

years. They are called model – free because they are constructed without 

explicit formulation of a genetic model for the trait inheritance. This kind 

of analysis is especially appropriate at the early stages of a genetic study of 

such traits as, for example, a disease susceptibility having a very 

complicated genetic control and, therefore, hardly lending itself to 

constructing a reasonably adequate genetic model for its inheritance. 

Initially, these methods dealt with rather simply structured pedigree data 

and used comparatively simple statistical tests. Their further development 
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has resulted in using all the sampled pedigree data, which substantially 

increases the power of the method.  

 Owing to the successful completion of the Human Genome Project, 

which resulted in being able to identify many DNA markers distributed 

along all the human chromosomes, the most widely used model–free 

methods are directed at testing linkage between marker loci and the trait 

being studied. Dependent transmission across generations of the marker 

genotype and the phenotype of the trait can be caused by the gene that 

takes part in the trait control being positioned on the same chromosome in 

the vicinity of the marker locus (or loci). Thus, linkage analysis itself 

changes its classical purpose. As was formulated by Rao (1998), linkage 

analysis of complex traits should first prove the very existence of a gene 

involved in the control of the trait being studied, and only then map it.  

 Below, we give a description of four types of model-free methods. 

Two of them are widely used and are described in some detail, while the 

other two are only briefly outlined. 

10.1. The Haseman–Elston method 

 To demonstrate the existence of genetic control of a quantitative 

trait, Haseman and Elston (1972) proposed a method of establishing a 

linkage relationship between the trait and a marker locus, assuming that 

environmental factors cannot simulate the effect of genetic linkage.  

 Operationally, their proposed test of linkage between the 

quantitative trait being studied (to be more correct, between a locus 

putatively taking part in the control of that trait) and a marker locus was as 

follows. Consider a sample of nuclear pedigrees each having two 

offspring. Let xi1 and xi2 be the trait values measured (and adjusted for age, 
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sex and any other relevant covariates) in the offspring of the i-th pedigree, 

and di
2 = (xi1 - xi2)2 be the squared difference between them.  

 First let us define the proportion πi of marker alleles the sibs of the 

i-th pedigree have identical by descent (i.b.d.). Two relatives share an 

allele i.b.d. (as opposed to identical in state) at a particular locus if one of 

the alleles they each have there are copies of the same ancestral allele. 

Thus at any one locus sibling pairs can share 0, 1 or 2, i.e. 0, 0.5 or all, of 

their two alleles at a marker locus i.b.d. Sometimes we can observe this 

fraction, but at other times, for example if we cannot observe the marker 

genotypes of the parents, it must be estimated on the basis of the marker 

phenotypes available. Thus the proportion  πi is estimated by the estimator 

iπ̂ , defined as the probability, conditional on all the marker data available, 

that the i-th pair share 2 alleles i.b.d. plus half the probability they share 1 

allele i.b.d. This is the expectation of πi found by taking into account the 

population frequencies of the marker alleles and the marker genotype 

penetrances (it is possible to calculate this expectation even if some 

marker data on the pedigree members are missing). Haseman and Elston 

(1972) gave formulas for estimating πi for various situations. 

  Consider the regression of the squared sib-pair trait differences di
2 

on the i.b.d. estimator iπ̂ and estimate its parameters on the given sample 

of nuclear families by the usual least mean square method, i.e. by 

minimizing 

Q = ∑ −−i iid 22 )ˆ( πβα ,                           (10.1) 

where α and β are the regression coefficients to be estimated.  

 The null hypothesis tested is H0: β = 0 against the alternative H1: β 

< 0, which formulation is explained as follows. Haseman and Elston 
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showed that, for the special case of a diallelic marker locus, random 

mating, no dominance, no epistasis, no disequilibrium in the joint 

distribution of the trait and marker loci, and complete parental information, 

the expectation of the squared difference of the sibling traits conditional on 

the i.b.d. estimator is: iiidE πβ+α=π ˆ)ˆ|( 2  with 22)21(2 aσρ−−=β , where 

ρ is the recombination fraction between the trait and marker loci and 2
aσ  is 

the additive component of the trait locus genotypic variance. Thus, 

acceptance of H0 means that ρ = 0.5 or 2
aσ  = 0, i.e., no linkage between 

the trait and marker loci is detected in the given pedigree sample. The 

rejection of H0 suggests the existence of linkage (with corresponding type 

I and type II errors) and, therefore, the existence of genetic control of the 

quantitative trait being studied. Accepting H1, it is possible, under certain 

conditions, to obtain the maximum likelihood estimates of both the effect 

of the gene taking part in the trait control and the recombination fraction 

between it and the marker locus.  

 Proposed in 1972, this method initially used mostly serological and 

biochemical chromosomal markers. Later on, stimulated by a sharp 

increase in available DNA markers, this method has been substantially 

developed, extending the main idea to not only sibships (more than one 

pair in a pedigree) but also to half-sibs (Risch, 1990 a, b), and then to any 

type of noninbred relative pair, which allows the use of information from 

extended pedigrees (Amos and Elston, 1989; Olson and Wijsman, 1993; 

Schaid et al, 2000); and to form i.b.d. matrices for multipoint linkage 

analysis (Markianos et al, 2001). These new versions, used under rather 

mild conditions, resulted in a substantial increase of power (see, for 

example Holmans, 2001). Elston et al. (2000) and Elston et al. (2005) 
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discussed the possibility of using this test for binary traits. It should be 

especially noted that this test is robust, providing comparatively reliable 

information about linkage without any assumptions about the model of 

trait inheritance, and with minimal assumptions about the sampling 

procedures (Allison et al., 2000; Schaid and Rowland, 2000).  

 Currently, this method has been further improved (Shete et. al. 

2003) and is widely used, in particular in genome screening to find 

chromosomal segments having marker loci linked to the trait being 

studied. 

10.2 Transmission disequilibrium test 

 The transmission disequilibrium test (TDT) was formulated by 

Spielman et al. (1993) to test linkage between a marker locus and the trait 

being studied, provided that there is linkage disequilibrium between the 

marker locus and the gene taking part in the control of the trait. Initially, 

the test was used for a binary trait (affected-unaffected). Operationally, the 

test was constructed as follows. 

Suppose n pairs of spouses with at least one affected offspring are 

sampled from the population, and only one affected offspring of each 

parent pair is randomly selected. Let M and m be the two alleles of a 

diallelic marker locus. Then the 2n sampled parents can each transmit or 

not transmit a particular marker allele (M or m) to an affected offspring, as 

shown in Table 10.1, taken from Ewens and Spielman (1995). 

In terms of the quantities given in this Table, the contingency 

statistic can be written:  

)]2)(2/[()(4 2 dcbcbacbnTA ++++−= ,             (10.2) 
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whose distribution, if the hypothesis about no association between the 

marker locus and the trait studied is true, can be approximated under 

certain conditions by the central χ2 with df = 1. Thus, the statistic TA can 

be used to test the presence of an association between the trait and the 

marker locus. It should be especially stressed that, contrary to the case-

control samples that could induce an association caused, for example, by 

population stratification, this family-control data does not depend on the 

population structure. However, if the population from which the affected 

offspring are sampled has arisen as a result of admixture, there must have 

been at least two generations of random mating, with no further admixture, 

before the sample is taken.  

 

Table 10.1. Combinations of transmitted and nontransmitted marker 

alleles M and m among 2n parents of affected children (Ewens and 

Spielman, 1995) 

 Nontransmitted alleles  

Transmitted alleles M m Total 

M a b a+b 

m c d c+d 

Total a+c b+d 2n 

 

 Using only the heterozygote parents, Mm, it is possible to construct 

the statistic to test the null hypothesis H0: ρ = 0.5 against the alternative 

H1: ρ < 0.5, where ρ is the recombination fraction, i.e., to test linkage 

between the marker locus and a gene taking part in the trait control. This 

TDT is given in the form:  

)/()( 2 cbcbTL +−=                                    (10.3) 
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The genetic basis of these tests can be explained using the 

following simple ideas. Let the trait inheritance model be determined as 

follows. 1) The trait is controlled by one gene with two alleles, A1 and A2, 

having frequencies, p and 1 – p, respectively. 2) The genotypic values are 

not constrained (any degree of dominance). 3) The diallelic marker locus is 

codominant, with allele frequency P(M) = q and P(m) = 1 – q. The joint 

distribution of the alleles at the two loci is determined additionally by the 

disequilibrium parameter D = P(A1M1) - pq and by the recombination 

fraction ρ. In this case, it is possible to prove that the overall association 

between the two loci (this is exactly what the data in Table 10.1 describe) 

is measured by the parameter δ = D(1-2ρ) [Spielman et al., 1993, 1994]. 

This means that the test for association (10.2) is correctly defined only if 

the two loci are linked, and the linkage test (10.3) only if there exists 

disequilibrium in the joint distribution of alleles at the trait and marker 

loci. Thus, the TDT can be used either to test association between 

transmission of the studied trait and marker alleles to the next generation 

under the condition that there is linkage (ρ < 0.5), or to test linkage 

between the trait and marker loci under the condition that their alleles are 

not distributed independently (D ≠ 0). For the former test to be valid only 

one child per family can be included in the data; for the latter test, because 

the transmissions are independent under the null hypothesis of no linkage, 

it is permissible to include more than one affected child per family when 

constructing Table 10.1. 

Because of the relative simplicity of collecting data of the type 

shown in Table 10.1, and because of the simple form of tests (10.2) and 

(10.3), this model-free method has been rapidly developed further by its 

authors and by other investigators. Schaid and Sommer (1994) showed that 
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the power of the TDT could be increased if the trait inheritance model is 

known. However, Ewens and Spielman (1995) noted that this increase is 

only modest and, if the true mode of trait inheritance is additive, the TDT 

is the most powerful test. Next, Cleves at al. (1997) extended the TDT test 

to the case of multiallelic markers. Then, the situation was considered 

where marker genotypes in the parents are missing, but marker 

information on unaffected siblings can be used to determine the 

transmitted and untransmitted marker alleles (Spielman and Ewens, 1998). 

 Without dwelling further upon very interesting developments of the 

TDT directed mostly to its use in non-standard situations, let us just note 

that Allison [1997] proposed the TDT for use with quantitative traits on 

the same family-based sample data (parents with at least one of them 

heterozygous at the marker locus and one of their offspring). The data 

analyzed in this case are represented by two sub-samples, one having the 

transmitted marker allele, and the other having the untransmitted marker 

allele.  

 Allison proposed the TDT for an extreme-threshold (ET) sampling 

design defined as follows. Let u and v be upper and lower thresholds such 

that trios having offspring trait values between these thresholds are 

excluded from the analysis. In the particular case u = v, all the trios are 

used. Allison showed that this ET design increases the power of the test 

but did not dwell in detail on how to choose the optimal thresholds. 

Clearly, they should be chosen differently for different trait distributions. 

For example, suppose the trait is under the control of a single major gene 

with a dominant allele effect, and the trait distribution is bimodal. Then the 

optimal values of u and v are on either side of the point of the trait density 

that is a local minimum, even if that point differs substantially from the 
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median. The trios included in the analyzed sub-samples are only those with 

offspring trait values belonging to the tails of the distribution. The power 

of the test is expected to increase as the proportion of excluded 

intermediate trait values increases, up to the point where this exclusion 

sufficiently reduces the number of trios in the analysis that the power starts 

to decrease. This limiting point is determined by the total sample size, as 

well as by the mode of inheritance of the trait being studied, and by details 

of the marker locus, such as its allele frequencies, its distance from the 

trait locus, and the level of linkage disequilibrium. This means that, for 

each particular trait-marker pair, there is a specific optimal proportion of 

trait values that should be excluded to provide the maximum power for the 

test.  

Malkin et al. (2002), keeping intact the rationale behind the 

construction of the TDT, proposed an extreme-offspring (EO) sampling 

design that removes the problem of establishing this optimal proportion of 

excluded trios, and that substantially increases the power of the TDT. For 

each parent pair, to form the trio one selects the offspring having the most 

extreme trait value among those siblings whose trait values belong to the 

predefined tails of the distribution. Of course, there is no offspring 

selection for parent pairs who have only one offspring with a trait value 

outside the intermediate trait range – this single offspring is included in the 

trio. Thus, for each given proportion of excluded offspring, we have the 

same number of trios for both EO and ET testing.  

 Malkin et al. (2002) showed that the maximal effect of the ET 

design is smaller than the effect of the EO design. The difference depends 

on the number of offspring from which the one with extreme trait value is 
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selected and on the true mode of trait inheritance, including the trait 

heritability and the level of dominance. 

 It is important to stress that, as for the Haseman-Elston method, the 

TDT is also robust, providing information about linkage of the genes 

taking part in the trait control without any explicit formulation of the 

genetic model of inheritance, and using relatively easily collected pedigree 

data. Currently, it seems to be used mostly for screening markers that have 

been previously found to be linked with the trait in particular chromosomal 

regions (so-called “candidate genes”), but in the future it may be used for 

whole genome-wide association testing. 

The requirement of statistical independence of the parent-offspring 

trios restricts the amount of information that can be used when the 

available sample contains extended pedigrees. Thus recent development of 

the TDT technique has been directed towards using the maximal amount 

of information that one can obtain from a sample of extended pedigrees. 

These attempts have been made for both binary traits (Martin et al, 2000) 

and quantitative traits (George et al, 1999, Abecasis et al, 2000). 

10.3 Test of disequilibrium for pedigrees 

 Let us consider how the association/disequilibrium can be used to 

find a more accurate localization for a trait gene.  

Consider the model of trait inheritance in which it is assumed that 

the trait genotypes on pedigree members are exactly their marker 

genotypes. Let )|,( µnn CXP  be the pedigree likelihood of this model 

when it is assumed that all the marker genotypes have the same genotypic 

value µ for the trait in each pedigree member. Further, let )|,( gnn CXP µ  

be the same pedigree likelihood defined by the MG model for which the 
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three genotypic values µg that determine the trait control (g = 1, 2 and 3 for 

genotypes A1A1, A1A2 and A2A2, respectively) are distinguished.  

Introduce the test in the form: 

LRT = )]|,(/)ˆ|,(ln[2 µµ nngnn CXPCXP , 

where gµ̂  are the maximum likelihood estimates of the µg model 

parameters, and µ  is the parameter maximizing the null hypothesis model 

)|,( µnn CXP . We expect that, if this null hypothesis is true, the LRT is 

distributed asymptotically as χ2 with 2 df (the difference between the 

numbers of estimated parameters in the two likelihoods). The null 

hypothesis is rejected if the LRT value exceeds the critical value cα 

corresponding to the pre-established probability of type I error α. Any 

association found could be caused by different population effects such as 

either population stratification or a recently introduced trait gene mutation. 

 Let us assume that a linkage between the trait and marker loci was 

accepted in some previously performed analysis using, for example, the 

Haseman-Elston method. In this case, there is an interval on the 

chromosome in the neighborhood of the selected marker where some 

polymorphic markers demonstrate significant linkage with the putative 

trait gene. For the Haseman-Elston method, the length of this interval may 

easily be greater than 10cM. However, for the purpose of localizing a 

disease gene, a much narrower region is required. This can be found using 

a pedigree likelihood that includes marker loci that are in disequilibrium 

with the trait gene. Explicitly including in the pedigree likelihood a 

disequilibrium parameter that is not negligibly small substantially 

increases the power of linkage analysis. Recent evaluations show that in a 

stabilized population the disequilibrium parameter for a pair of loci has a 
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significant value only for distances less then 0.1cM. Then, using the above 

test for those marker loci that are in disequilibrium with the trait gene, the 

initially relatively wide chromosomal interval in which the trait gene 

demonstrates linkage with the set of marker loci can be substantially 

narrowed, providing a more precise evaluation of the trait gene position.  

 The test described in this section is very sensitive to 

disequilibrium, because it uses the whole pedigree data. This test can be 

used for fine scale gene mapping for distances where the level of linkage 

disequilibrium is significant. (Note, however, that in a stratified population 

an association can also be found in the absence of linkage). 

10.4. Method of haplotype sharing 

 This method, named decay of haplotype sharing (DHS), was 

proposed by McPeek and Strahs (1999).  

 Suppose the trait mutation originated some generations ago. Define 

a set of tightly linked marker loci in the vicinity of the mutation. It is 

assumed that the mutation originated in a haplotype that can be 

constructed from alleles of this set of marker loci.  

 Genotyping multiple tightly linked markers enables one to use the 

pedigree structure to reconstruct sequential haplotypes in a given pedigree 

member (Stephens et al., 2001; Markianos et al. 2001) either exactly or, if 

different haplotype combinations are possible in the particular pedigree 

member, with corresponding probabilities, Because of the recombination 

process that has occurred across generations since the mutation originated, 

the haplotypes identified in pedigree members would be different from the 

initial haplotype in which the mutation originated and they would differ 

from one another; the difference is larger, the larger the number of 

generations since the mutation was introduced. From this, we might expect 
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to find shared fragments in pedigree members representing regions of the 

initial haplotype that were preserved during the successive generations, 

their lengths being smaller the more recombination that has occurred from 

generation to generation.  

 The location of the mutation among the marker loci is usually 

unknown. It is considered as a parameter and is evaluated simultaneously 

with the other two parameters, namely, the initial marker haplotype in 

which the mutation originated and the number of generations since that 

time. The estimation of these parameters is made by maximizing the 

likelihood, which is formed as the product of the likelihoods found 

separately for each pedigree member phenotypically displaying the 

mutation. The model of McPeek and Strahs (1999) assumes that the parts 

of a haplotype shared by these pedigree members are fragments of the 

initial haplotype in which the mutation originated, saved during the 

recombination process. The expected length of these fragments decrease 

exponentially with increase in the number of intervening generations.  

Suppose the age of the mutation is infinite, i.e., it came into 

existence so long ago that the recombination process has destroyed any 

dependence in the distribution of alleles of the trait and marker loci. 

Rejection of this hypothesis means that the mutation is not too ancient, i.e., 

the marker alleles and the trait gene alleles (the mutation is one of them) 

are distributed dependently with one another. The dependence is measured 

by the mutation age parameter, which results in a mean (non-zero) length 

of shared haplotypes among pedigree members containing the mutation. 

This means that the trait gene and the marker loci are linked, which is 

exactly what is tested in this method.  
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10.5. Characteristics of the model-free methods 

Linked loci are often (but certainly not always) in allelic 

disequilibrium with each other. Thus, two types of linkage tests should be 

distinguished, the test of linkage itself, the result of which depends on the 

distance between the trait and marker loci, and the fine-scale mapping test 

that explicitly uses the disequilibrium association between the two loci.   

The Haseman-Elston algorithm (and, based on the same idea, 

variance-component linkage analysis, see Amos, 1994) is the linkage test. 

Its power depends on the recombination fraction between the trait and 

marker loci and on the additive component of genetic variance of the 

linked quantitative trait gene. Its dependence on any allelic disequilibrium 

between the trait and marker loci is not too strong, even if the loci are 

tightly linked, so this method is used for long distance genome scanning. 

The association tests explicitly use the allelic disequilibrium. They 

test significance of the disequilibrium parameters and are more powerful 

than linkage tests when the trait and marker loci are extremely close 

together. For a stabilized population, this distance should usually be less 

than 1cM. With larger distances the disequilibrium coefficient tends to 

zero exponentially, together with the power of any association test. These 

tests are effective for examining candidate genes and also for fine scale 

genome mapping.  

We have mentioned here three types of association/disequilibrium 

tests. The TDT has a specific design that allows us to avoid the effects of 

population stratification. Only disequilibrium in offspring of heterozygous 

marker individuals is tested, which is always equal to zero if the loci are 

not linked.  
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The pedigree disequilibrium test is applicable to the whole sample 

and has significantly greater power. But unless a TDT type TSgt is 

performed (see e.g. George et al., 1999) a significant result can then 

indicate not just linkage disequilibrium but also the effects of population 

stratification, which is only formally expressed as nonzero D. For mapping 

the trait gene, this test is effective for distances of about 0.1cM or less, for 

which the linkage disequilibrium should have a significant value.  

The DHS method is based on another disequilibrium measure, 

which is applicable only to a chromosomal interval containing tightly 

linked marker loci. This is the average length of an ancestral haplotype 

that all the affected offspring have inherited together with the mutant 

allele. This length is determined by the number of generations of 

recombination since the mutation originated. The method deals with the 

“finest scale” mapping of the trait gene investigated because, among the 

set of tightly linked markers, often those are chosen that are located inside 

the limits of the trait gene (see section 1.3).  

The tests considered here represent only examples of the model-

free technique. Because of intensive current development of this 

technique, other new methods can be expected to be proposed in the near 

future. They use different statistical techniques and test different 

manifestations associated with linkage. Their use is justified by various 

assumptions about the history of the trait and marker loci, the distance 

between them and their joint allele distribution.  

10.6 Limitations of model-based linkage results 

 Concerning these model-free methods of pedigree analysis, it is 

widely accepted that, being robust, they are to be used to provide only 

preliminary information about the linkage between the genes taking part in 



 196 

the control of a trait under study and the chromosomal markers (DNA or 

candidate genes). Their use is assumed to be especially appropriate for a 

disease susceptibility having complicated genetic and environment 

multifactorial control and, therefore, hardly lending itself to constructing a 

reasonably simple genetic model for its inheritance. Initially, these 

methods dealt with rather simply structured pedigree data, while currently 

they use the whole sampled pedigree. However, technically (in particular, 

statistically) they are easier to perform than the model-based methods. 

 If the model-free analysis results in rejection of the hypothesis of 

no linkage, this result is considered as preliminary, justifying all further 

efforts to collect a sufficiently informative pedigree sample, and analyzing 

it explicitly formulating the inheritance and sampling models, adequately 

reflecting at least their most important features, using appropriate program 

packages. In other words, the linkage test used in model-based pedigree 

analysis is expected to be (much) more powerful than that used in model-

free methods. Goldin and Weeks (1993) and Greenberg et al (1996) 

attempted to justify this expectation in detail, considering different 

arguments for and against it.  

 However, these arguments are not unambiguously convincing. Any 

model-based pedigree analysis result, i.e., the genetic model estimated on 

the given pedigree sample as the best descriptor of the trait inheritance, 

does not always make sense. If this model reflects at least some important 

features of the inheritance of the trait under study, which can hardly be 

guaranteed in practice, then its acceptance, interpretation and further 

application are justified. However, if the trait is controlled by genes and 

environmental factors in so complicated a fashion that it is simply 

impossible to construct a reasonable genetic model for its inheritance (in 



 197

particular, with a reasonable number of parameters that are to be estimated 

on a pedigree sample of practically achievable size), then even the best 

among all tested models could be absurd (see Beaty, 1997).  

Any a priori set of genetic models θ or, in its reduced version, 

}ˆ{ MP
iθ , is limited by both their content and their number. Formulation of 

the genetic models is limited by the possibilities of estimating their 

parameters from finite-size samples. It is inconceivable that one can 

formulate such a general model that it can describe the inheritance of any 

complicatedly controlled multifactorial trait. If the genetic model tested is 

substantially simpler than the true inheritance of the trait being studied, 

then the model estimator would be biased (Sawyer, 1990). It is usually 

impossible to evaluate this bias and, therefore, to give any reasonable 

interpretation of the analysis results - regardless of what they are, e.g., the 

tested linkage is accepted or rejected - because in the general case the false 

positive and false negative results are indistinguishable. The proportion of 

such false results can be, and has been, studied only for the cases of a trait 

with relatively simple inheritance, described by a similarly simply 

formulated genetic model. In turn, this means that subjecting any trait to 

pedigree analysis, i.e., trying to describe its inheritance in terms of 

relatively simply formulated genetic models, should hardly be considered 

justifiable, and any interpretation of its results would definitely be 

ambiguous. This is especially true for traits that are at the initial stages of 

their study. Later on, at other stages, we might learn that the complicatedly 

controlled trait can be dissected and presented by its “component” traits, 

each having simpler inheritance that can be reasonably modeled and, 

therefore, subjected to pedigree analysis. One of the methods is to use 
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auxiliary traits that biologically correlate with the trait being studied (Ott, 

1995).  

10.7. Genetic dissection of multifactorial traits 

Regarding model-free pedigree analysis, up to now we have placed 

no limitations on the complexity of the inheritance of the trait. This 

problem has not even been formulated. This justifies the use of model-free 

pedigree analysis for any trait, including those controlled in a complicated 

multifactorial manner, until these limitations are found and explicitly 

formulated. The results obtained, e.g., finding linkage with a certain 

chromosomal marker, could be used in further study of the trait 

inheritance. Lander and Kruglyak (1995), Rao (1998) and many other 

authors, have discussed methods of dissecting complicatedly inherited 

multifactorial traits using genomic scans, where model-free analysis is 

used to establish the existence of the genes taking part in the control of the 

trait, and then to localize them in chromosomal segments with the 

accuracy that the method can provide. 

Consider now what the term “dissecting” means. The most that can 

be obtained using the model-free technique in a genome scan is a 

(relatively) complete list of the genes taking part in the trait control, 

through rejection of null hypotheses of no linkage. The method is not 

intended to localize these genes by estimating the recombination fraction. 

Further details of the chromosomal positions of these genes can be 

obtained only through confirming such testing of the null hypothesis with 

the newer more dense sets of DNA markers (SNPs, RFLPs, STRPs etc.) 

located in small genomic fragments. Thus, the dissection of multifactorial 

traits with model-free linkage analysis have been made possible by the 
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molecular technique of identifying marker loci that can statistically 

establish the genes involved in the trait control, using the pedigree sample.  

10.8. Phenotypic dissection of multifactorial traits  

We have already mentioned several times the limitations of genetic 

modeling (it is intended for traits inherited in a relatively simple fashion) 

to investigate a biological function that is complicatedly controlled, both 

genetically and environmentally, and that we can replace the initially 

considered multifactorial trait by another phenotypic description of the 

function to be studied. It has been proposed that the function described by 

a complex trait be replaced by “component” traits, formed by using, for 

example, biological markers - intermediate phenotypes - as discussed by 

Ott (1995).  

Let us assume that the component traits of the new complex 

phenotypic description of the biological function under study are such that:  

1) these component traits describe the same function that is 

characterized phenotypically by the multifactorial trait; 

2) they are controlled in a relatively simple manner by genetic and 

environmental factors, regardless of how they are defined phenotypically 

(qualitative or quantitative);  

3) the genes taking part in the control of each component trait (it is 

assumed that these genes can be identified because of the assumed 

simplicity of their genetic control) are the same (or almost the same) as 

were found in a model-free analysis to be taking part in the multifactorial 

trait control. 

In this case, the studied function initially described by a 

multifactorial binary trait can be described by a complex trait. This 

replacement of the description of the function would be adequate, if we 
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can assume that the components of this complex trait together describe the 

same (or almost the same) characteristics of the function under study, but 

expressed as different phenotypes.  

In this new description, the problem of completeness arises. The 

component traits describe the biological function with varying degrees of 

completeness for the different multifactorial traits that might be under 

study, and for different sets of available biological markers often used as 

prognostic markers. This new description of the function under study 

could be considered to be a phenotypic dissection of the initially 

considered multifactorial trait.  

If, as we assume, the inheritance of each of the component traits is 

described by a genetic model that can be adequately estimated and tested 

using a pedigree sample, then, instead of the model of inheritance of the 

multifactorial phenotype, which in practice it is hardly possible to 

construct, we can construct several comparatively simple models 

constituting together a compound genetic model for this complex trait, and 

then use them in various applications. Further efforts in this direction 

would increase the adequacy of such a compound model, taking into 

account, for example, pleiotropic effects of some genes on several 

component traits and the joint environmental effect on the phenotypic 

distributions arising from these genes. This seems to be a quite natural 

step-by-step way of studying the inheritance of a complicatedly controlled 

trait. The result expected from this study is the mathematical-genetic 

model of the complex trait inheritance, which, if achieved with satisfactory 

completeness, can be used in application problems. Ideally, this 

description of the inheritance of the biological function would be 

constructed with such completeness as to provide adequate and accurate 
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prediction of this function in each individual whose genetic and 

physiological characteristics have been determined in previously 

performed tests.  
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CONCLUSION 
 

Thus, pedigree analysis is defined as a method to formulate the 

mathematical-genetic description of the inheritance of a particular 

biological function using sampled pedigree data. The sample of pedigrees 

represents the basis on which the pedigree analysis is performed, i.e., on 

which the genetic models of the studied function are formulated and 

statistically tested. The goal of the analysis is to construct the model that 

provides the most accurate and maximally complete description of the 

inheritance of the function. If the pedigree analysis results in such a model, 

the latter can be used in various applications. In particular, performing 

some previously established set of special tests (clinical, biochemical, 

molecular), it may be possible to identify an individual’s genotype, the 

dependence of the phenotypic distribution on the given range of 

environmental conditions, etc. These tests would provide the detailed 

information about the genetic specificity of the individual that allows us to 

predict his/her physiological reaction to a particular medical treatment. 

This, clearly, is the ultimate goal of any study performed on the 

inheritance of a biological function. 

 We simplified our consideration of the main operations of pedigree 

analysis, namely, the formulation of the mathematical-genetic model, the 

probabilistic characterization of the analyzed pedigree sample (sample 

likelihood), and the formation of a set of models to be tested, mostly by 

using the MG model. The use of this model can be explained as follows. 

First of all, there are probably traits whose phenotypic distribution 

is determined by genotypes of only one diallelic gene.  
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Second, the possibility of finding a reasonably accurate estimator 

of a genetic model from a pedigree sample is determined directly by a 

correspondence between the model complexity - in particular, the number 

of parameters that need to be estimated - and the information available in 

the sample analyzed. Because the latter is always limited, mostly MG 

models are formulated, statistically tested and used in order to have an 

(approximate) description of the trait inheritance. 

However, the main reason for using the MG model was to remove 

the need to give the details of formulating the various possible genetic 

models, which are irrelevant once the general theoretical results have 

been proved for the various aspects of pedigree analysis.  

Indeed, the formulation and parameterization of the mathematical-

genetic model for different traits characterizing the biological function 

studied (qualitative, binary, or quantitative - discrete or continuous) are 

considered without any direct specification of the genotypic set G. All 

these considerations hold true for more complicated multifactorial models 

as well, were such models to be formulated. At the same time, the 

specificity of different model formulations for different characterizations 

of the biological function is more clearly described using the MG model 

because it is then not encumbered by a need to consider irrelevant effects. 

A similar argument holds when the second basic problem is 

considered, namely, the pedigree likelihood correction for the sampling 

procedures used. As we saw from the considerations in chapters 6 and 7, 

no direct connection was specified between the corrected forms of the 

pedigree likelihood (SMB or SMF) and the structure of the genotype set, 

G. The likelihood corrections hold for any G and, therefore, it is quite 

natural to consider them for the simplest MG model.  
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The same is true for forming the set of most parsimonious models 

{θi
MP} - it is clear that the structure of G has no connection with this 

process. 

Thus, it is quite justifiable to use the simple MG models to analyze 

how the genetic-mathematical model of trait inheritance, and the sampling 

procedures determining the process of collecting pedigrees, are formulated 

and parameterized.  

At the same time, the following should be noted in connection with 

the definition, given in section 1.5, of a gene involved in controlling the 

trait inheritance. Wolf (1995) considered the theoretical possibility of an 

unambiguous genotype-phenotype correspondence and illustrated his 

conclusions with an example. Referring directly to the biological system of 

the ontogenesis process, he pointed out that “genes are a necessary but not 

sufficient component of it. The structures already present, gradients, 

threshold values, position relationships, and conditions of the internal 

milieu, are equally essential. ... even monofactorial traits can be considered 

to be of multifactorial causation” (ibid, p. 127). Thus, we should not 

expect each trait mutation to have a consistent phenotypic outcome and, 

therefore, the genotype-phenotype relationship may be irregular.  

Dipple and McCabe (2000) further reviewed some attempts of 

empirical methods to establish the genotype-phenotype relationship and 

showed that they are still far from being able to produce unambiguous 

results. Studying relatively simple Mendelian disorders, they showed that 

many of them were found to be multifactorial traits, in the sense that the 

ontogenetic process resulting in the phenotypic manifestation of each 

mutation constituting an individual genotype is too complicated to be 

unambiguously expressed in some direct linear genotype-phenotype 
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correspondence. The ontogenetic process was in many cases found to be 

multifactorial, in the sense that the phenotypic distribution of the genotype 

is influenced by many genetic, epigenetic and environmental factors, 

including not only the specific mutation studied, but also the effects of 

other genes involved in the biochemical realization of the trait, the effects 

of other genes having maybe no direct connection with the trait studied 

(modifiers), and the effects of very complicated and not easily recognized 

environmental conditions of the ontogenetic process. In other words, up to 

now, attempts to formally establish the genotype-phenotype 

correspondence explicitly using all the ontogenetic mechanisms involved 

in the genotype manifestation (or, at least, some of them) are still hardly 

possible.  

In our considerations, we used only the operational definition (see 

1.5) of the genes taking part in the trait control. The multifactorial control 

discussed by Wolf (1995) and Dipple and McCabe (2000) means that the 

ontogenetic process involves many genes as necessary links in the 

biochemical chain that results in the observed phenotype. However, only 

those allele substitutions that lead to phenotypic change (established by the 

trait characterization employed) form the set of genotypes, G, that 

determines the genetic model. 

 Consider now a connection between the two versions of pedigree 

analysis, model-free and model-based. If, using the former, a set of genes 

is established that take part in the trait control, it is possible, in principle, 

to formulate a model-based genetic model that describes the inheritance of 

the trait explicitly, thus formalizing this set. The problem to be solved in 

this case is purely technical, whether or not it is possible to collect an 

informative pedigree sample on which the formulated multifactorial model 
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of trait inheritance could be analyzed, i.e., its parameters estimated and 

statistical tests of its fit performed. It may be that further development of 

pedigree analysis methods will provide such a possibility.  

However, up to now, this possibility can be considered only in 

principle. In the current practice of pedigree analysis, using pedigree 

samples of practically achievable size, it is hardly conceivable to formulate 

and statistically analyze such multifactorial models of trait inheritance. Up 

to now, the only common thread that we can establish between the model-

based and model-free methods is that they are both just pedigree analyses, 

which means that the basis on which the analysis results are obtained in 

both cases is represented by pedigree samples. Moreover, we still do not 

know how to combine the qualitatively different results obtained by these 

two methods of analysis. For example, we do not know whether it is 

possible, and if so how, to use the information about genes established as 

taking part in the trait control to obtain a more accurate description of the 

trait inheritance, which is the main goal of genetic model construction.  

To complete our discussion of pedigree analysis, let us stress once 

more that it was not our intention to write a manual describing the various 

practical methods of performing the analysis, given the particular trait that 

characterizes the biological function to be studied, the size and structure of 

the pedigree sample on which the analysis is to be performed, and the pre-

established sampling design (this last determining the sampling procedures 

that are to be formulated and used to correct the sample likelihood). At the 

same time, this has not been a strictly consistent development of the 

mathematical theory of pedigree analysis. The current development of 

pedigree analysis is still far from affording us such a possibility, 

notwithstanding the fact that many aspects of the analysis can now be 
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formalized and the problems explicitly solved using the mathematical 

apparatus available.  

We have only considered basic concepts and made theoretical 

statements that provide the correct formulation of, and solution to, 

pedigree analysis and, what we regard as especially important, we have 

discussed in detail the conditions under which these concepts and 

statements hold true. 
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Errata and clarifications 
 
Page 14, line 2:  “genes that control the trait” 
Page 18, line 4:   no comma after “Alleles” 
Page 32, line 5:   remove “_”  
Page 53: The notation on this page would be clearer if, in the left hand side of  equation 

(3.1) and the equation 12 lines from the  bottom, and in the right hand side of the 
equation at the bottom of the page, smpl came to the right of  the conditioning symbol | 

Page 42, figure legend:  “C2 = C\C1 – the complementary part…” 
Page 47, line 10 from bottom: “In terms of” 
Page 61, line 5 from bottom:  remove “they” 
Page 63, line 4 from bottom:  “another” 
Page 73, line 7:  “If this is the case, all” 
Page 78, line 13:  “genetic model” 
Page 82, line 12:  “groups” 
Page 116, line 10 from bottom: SMF – sampling model free (not defined until page 121) 
Page 125: it is stated that the “approximate AMF likelihood cn be easily calculated by 

replacing each missing phenotype on the PSF members by the sample mean” This mean 
was calculated from all the non-missing phenotypes in the sample, both those of PSF 
members and those of non-PSF members. 

Pages 149-151: n is the number of pedigrees sampled; the parameter values used for the 
simulation are - ρ = 0.05; p = 0.2; q = 0.7; π = 0.2, and D = 0.0 

Page 154: in equation (7.8) the estimate of θ is not the same in both the numerator and the 
denominator, as incorrectly suggested by the notation. At the bottom of the page: 
“provided  ρ̂  is not restricted”  

Page 195, line 2: “a TDT type test” 
Page 198,  last line: “analysis has been made” 
Page 208, line 3 from bottom: “(1997)” 
Page 209, line 1: “Bonné” 
Page 209, line 12 from bottom: “Lalouel” 
Page 210, line 7: “Cleves” 
Page 210, line 10 from bottom and page 211, line 5 from bottom: “Bonaïti-Pellié” 
Page 210, line 4 from bottom: “Genet Epidemiol 12” 
Page 213, line 6: “Trans Roy Soc” 
Page 213, line 2 from bottom: “Biometrical J” 
Page 214, line 9 from bottom: “Genet Epidemiol: 24: 1-10” 
Page 216, line 8 from bottom: “Thompson’s” 
Page 222, line 10 from bottom: “Assumptions” 
Page 223, line 7 from bottom: “Trans Amer Math Soc” 
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