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Until recently, phylogenetic analyses have been routinely based on homologous sequences of a single gene. Given
the vast number of gene sequences now available, phylogenetic studies are now based on the analysis of multiple
genes. Thus, it has become necessary to devise statistical methods to combine multiple molecular data sets. Here,
we compare several models for combining different genes for the purpose of evaluating the likelihood of tree
topologies. Three methods of branch length estimation were studied: assuming all genes have the same branch
lengths (concatenate model), assuming that branch lengths are proportional among genes (proportional model),
or assuming that each gene has a separate set of branch lengths (separate model). We also compared three models
of among-site rate variation: the homogenous model, a model that assumes one gamma parameter for all genes,
and a model that assumes one gamma parameter for each gene. On the basis of two nuclear and one mitochondrial
amino acid data sets, our results suggest that, depending on the data set chosen, either the separate model or the
proportional model represents the most appropriate method for branch length analysis. For all the data sets
examined, one gamma parameter for each gene represents the best model for among-site rate variation. Using
these models we analyzed alternative mammalian tree topologies, and we describe the effect of the assumed
model on the maximum likelihood tree. We show that the choice of the model has an impact on the best phylogeny
obtained.

Introduction

In the last 30 years, vast improvements in DNA-
sequencing methods have effected an exponential in-
crease in the number of gene entries in databases world-
wide (e.g., International Human Genome Sequencing
Consortium 2001) and given scientists access to entire
genome sequences of many organisms. Access to large
amounts of sequence data has spawned a revolution in
the understanding of biological diversity (see Graur and
Li 1999, pp. 217–247). For example, in a recent analysis
Murphy et al. (2001) examined variations among 18 ho-
mologous gene segments (nearly 10,000 base pairs) to
infer the mammalian evolutionary tree. The sequence
data explosion is not without its caveats, however, be-
cause it brings with it the need for development of meth-
ods to combine efficiently information from multiple
molecular data sets. Examples of multiple data sets are
(1) several genes, (2) the three-codon positions of a pro-
tein-coding sequence, and (3) different parts of the pro-
tein-coding sequence that correspond to different sec-
ondary structures (e.g., alpha-helix, beta-sheet). Because
different genes likely have different evolutionary con-
straints, the evolution of different genes might be best
described by different sets of parameters. However,
when statistically analyzing a data set, adding new pa-
rameters is not always justified and can lead to errone-
ous conclusions (for examples, see Burnham and An-
derson 1998). Thus, when modeling sequence evolution
in a maximum likelihood (ML) framework of tree re-
construction (Felsenstein 1981), investigators must
strive to determine a median set of parameters that nei-
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ther assumes too few parameters nor results in ‘‘over
fitting’’ by assuming too many. An example of a sig-
nificant improvement in sequence evolution models is
the parameterization of among-site rate variation. By
adding only one parameter to describe the site rate var-
iation distribution, a substantial increase in the log-like-
lihood is typically gained (Yang 1996a). Not only is this
addition of a single parameter reasonable in a statistical
and biological sense, but it has also been shown to affect
the resulting phylogenetic conclusions (Sullivan and
Swofford 1997). Cases in which the addition of new
parameters is statistically unjustified are rarely pub-
lished, but such pitfalls are discussed by Nei and Kumar
(2000, pp. 154–155) and Takahashi and Nei (2000).

When analyzing a multiple sequence alignment,
one must assume an underlying evolutionary model.
This model includes tree topology, branch lengths, rate
heterogeneity among sites, and substitution probabili-
ties. All these parameters may change from gene to
gene. For example, the tree topology of various genes
may not be the same because of horizontal gene transfer.
Similarly, the substitution model may vary from gene to
gene because of different evolutionary constraints or be-
cause of differences in GC content. In this article we
focus on the fitting of different branch length models
and rate heterogeneity models to several protein data
sets.

The Number of Branch Length Parameters

For an unrooted tree topology T, with n sequences,
the number of branches is 2n 2 3. We denote branches
by t1, . . . , t2n23. Assume now that we have two data sets
(e.g., two different genes), each one with n homologous
sequences. One way to analyze a combination of these
data sets is to concatenate the sequences and evaluate
the resultant branch lengths. We refer to this model as
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Table 1
The Number of Parameters in Each of the Nine Models,
Where g is the Number of Genes and n is the Number of
Sequences in Each Gene

Homogenous 1-GAM N-GAM

Concatenation . . .
Proportional . . . . .
Separate . . . . . . . .

2n 2 3
2n 1 g 2 4
2ng 2 3g

2n 2 2
2n 1 g 2 3
2ng 2 3g 1 1

2n 1 g 2 3
2n 1 2g 2 4
2ng 2 2g

NOTE.—For example, in the case of the proportional–1–GAM model, the
number of branches is 2n 2 3; there are g 2 1 gene-specific rate parameters
(one to each gene, with an average equal to 1), hence 2n 2 3 1 g 2 1 or 2n
1 g 2 4; adding the one gamma rate parameter yields a total of 2n 1 g 2 3
parameters.

the ‘‘concatenate model.’’ In such a scenario the joint
probability would be

P(data1 & data2/T, t , . . . , t )1 2n23

5 P(data1/T, t , . . . , t ) ·P(data2/T, t , . . . , t )1 2n23 1 2n23

The number of free parameters here is 2n 2 3. (This
model assumes that both genes have the same branch
length.) Another approach is to assume that branch
lengths for the two genes are independent (i.e., each
gene is analyzed separately). We refer to this model as
the ‘‘separate model.’’ In this case the joint probability
would be

1 1 2 2P(data1 & data2/T, t , . . . , t , t , . . . , t )1 2n23 1 2n23

1 1 2 25 P(data1/T, t , . . . , t ) ·P(data2/T, t , . . . , t )1 2n23 1 2n23

where the superscripts denote the data set attributes. In
our present work, we study these two alternative models
and explore a third alternative for combining data sets,
namely, the ‘‘proportional branch lengths’’ approach
first suggested by Yang (1996b).

The Proportional Branch Lengths Approach

The proportional branch lengths approach assumes
that branch lengths for two trees are the same, up to a
scaling factor r. Thus, if t1, . . . , t2n23 are the branches
of the first gene, the branch lengths of the second gene
would be rt1, . . . , rt2n23. This scaling factor r corre-
sponds to a gene-specific rate that is assigned to each
gene, and for n genes we have n gene-specific rate fac-
tors r1, . . . , rn. The average r should be equal to 1.0.
We refer to this model as the ‘‘proportional model.’’ For
two data sets the joint probability is

P(data1 & data2/T, t , . . . , t , r , r )1 2n23 1 2

5 P(data1/T, t , . . . , t , r )1 2n23 1

3 P(data2/T, t , . . . , t , r )1 2n23 2

Consequently, the total number of parameters for
two genes under this proportional model is 2n 2 3 1 1
5 2n 2 2. The number of parameters for n genes for
each of the three models is summarized in table 1.

The biological meaning of the proportional model
relies on the assumption that the rate in each branch is
a multiplication of two rates: the rate of the specific gene
multiplied by the rate of the specific lineage. It is the

rate of the specific lineage that is common to all genes
under the proportional model. In contrast, the concate-
nate model assumes that all genes’ rates and all lineages’
rates are the same, whereas the separate model assumes
that the rate in each lineage is independent among genes.

The Number of Among-Site Rate Variation Parameters

We consider three possible models of among-site
rate variation. The first model assumes that all sites have
the same rate of evolution (‘‘homogenous’’ model), the
second model assumes one gamma rate parameter for
all genes (‘‘1-GAM’’ model), and the third model as-
sumes a separate gamma parameter for each gene (‘‘N-
GAM’’ model).

We compare all nine combinations of models with
respect to likelihood (concatenate-homogenous, concat-
enate–1-GAM, concatenate–N-GAM, proportional-ho-
mogenous, proportional–1-GAM, proportional–N-
GAM, separate-homogenous, separate–1-GAM, sepa-
rate–N-GAM). With respect to branch lengths, we show
that the proportional and separate models are always
better than the concatenate model. Selecting between
these two models depends on the specification of the
data set under study. For some data sets the proportional
model represents the best model, whereas for others the
separate model is the best. With respect to the number
of gamma parameters, the N-GAM model is the best
model for all the data sets included in our study.

Material and Methods
Sequences

Computations were based on three protein align-
ments: those given by Madsen et al. (2001) and Murphy
et al. (2001), and an updated mitochondrial data set of
Nikaido et al. (2001).

Madsen Data Set

The Madsen nucleotide alignment includes 28 spe-
cies for four independent nuclear genes: the alpha-2B
adrenergic receptor (A2AB, 344 sites), the breast cancer
susceptibility gene (BRCA1, 557 sites), the interphoto-
receptor retinoid-binding protein (IRBP, 301 sites), and
the von Willebrand factor (vWF, 338 sites). The se-
quences of the golden mole (Amblysomus hottentotus)
and the Madagascar hedgehog (Echinops telfairi) were
not included because sequence data were not available
for IRBP. The BRCA1 sequence of the thick-tailed opos-
sum (Lutreolina crassicaudata; accession number:
AY057826) was added manually to the Madsen
alignment.

Murphy Data Set

Among the 18 genes considered in the nucleotide
alignment of Murphy et al. (2001), we excluded the sev-
en noncoding genes. Because we required that all genes
share the same species sampling (i.e., no missing se-
quences), three more genes for which marsupial se-
quences were unavailable were excluded. Two genes
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with a poor species sampling were also excluded. This
exclusion allows our analysis to maintain a large and
diversified species sampling, where all sequences are
available for all genes. The final alignment includes 46
species for six nuclear genes: adenosine A3 receptor
(ADORA3, 107 sites), the Menkes disease gene
(ATP7A, 220 sites), the brain-derived neurotrophic fac-
tor (BDNF, 182 sites), the cannabinoid receptor 1
(CNR1, 219 sites), the sphingolipid G-protein–coupled
receptor 1 (EDG1, 199 sites), and the zinc finger protein
X-linked (ZFX, 67 sites).

Mitochondrial Data Set

The mitochondrial data set included 56 species
comprising the 43 complete mitochondrial coding se-
quences analyzed by Nikaido et al. (2001), together with
the following sequences: (1) Asiatic shrew, Soriculus
fumidus, AF348081; (2) long-tailed bat, Chalinolobus
tuberculatus, AF321051; (3) little red flying fox, Pter-
opus scapulatus, AF321050; (4) northern brown bandi-
coot, Isoodon macrourus, AF358864; (5) gymnure,
Echinosorex gymnura, AF348079; (6) American pika,
Ochotona princeps, AF348080; (7) barbary ape, Ma-
caca sylvanus, AJ309865; (8) slow loris, Nycticebus
coucang, AJ309867; (9) white-fronted capuchin, Cebus
albifrons, AJ309866; (10) cane rat, Thryonomys swin-
derianus, AJ301644; (11) vole, Volemys kikuchii,
AF348082; (12) tree shrew, Tupaia belangeri,
AF217811; and (13) small Madagascar hedgehog, E. tel-
fairi, AJ400734. The 12 H-strand mitochondrial protein-
coding genes are ND1 (313 sites), ND2 (313 sites),
COX1 (512 sites), COX2 (225 sites), ATP8 (32 sites),
ATP6 (201), COX3 (259), ND3 (104 sites), ND4L (94
sites), ND4 (438 sites), ND5 (526 sites), and Cytb (375
sites). The overlapping regions between ATP6 and ATP8
and between ND4 and ND4L were excluded.

All nucleotide alignments were translated into ami-
no acid alignments. To agree with the reading frame,
some minor changes were made to the alignments of
Madsen et al. (2001) and Murphy et al. (2001). For all
genes, gap positions were excluded from the analysis. If
data for certain positions were missing in .5% of the
species studied, then such positions were excluded from
the analysis. All the protein alignments and accession
numbers are attached as supplementary material at http:
//www.molbiolevol.org/.

Tree Topologies

For each data set four different topologies were
considered: a morphological tree, a mitochondrial tree,
and two nuclear trees (Madsen and Murphy topologies).
Because species sampling differed among the four data
sets, the four trees were slightly different with respect
to the data set used. For the mitochondrial data set the
morphological and mitochondrial trees are presented in
figures 1 and 2, respectively. For the Murphy data set
the Murphy tree is given in figure 3, and for the Madsen
data set the Madsen tree is given in figure 4. All 12
trees are attached as supplementary material at http://
www.molbiolevol.org/.

Morphological Tree

For all data sets, morphological trees were based
on the phylogeny of McKenna and Bell (1997) (e.g., fig.
1). The topology of Novacek (1992) was adopted for
relationships between clades that were not determined
by McKenna and Bell (i.e., among the grandorders of
Epitheria). Any relationships that were not fully re-
solved by the above criteria were subsequently chosen
based on the nuclear topology of Murphy et al. (2001).

Mitochondrial Tree

The mitochondrial tree is based on Cao et al.
(2000). However, the position of the rodents was chosen
in agreement with Reyes, Pesole, and Saccone (2000),
and Mouchaty et al. (2001). The position of the vole
among the rodents was chosen in agreement with mor-
phological data (McKenna and Bell 1997). Among ce-
tartiodactyls, the alpaca and the pig were sister clades
in agreement with Arnason et al. (2000). The relation-
ships among bats were chosen in agreement with Ni-
kaido et al. (2001) and McKenna and Bell (1997). The
shrews and moles were placed as a sister clade of the
bats, in agreement with Nikaido et al. (2001). The Af-
rotheria phylogeny was in agreement with Murphy et al.
(2001). Xenarthra was placed as a sister clade of Af-
rotheria, in agreement with Reyes, Pesole, and Saccone
(2000). The position of the rabbit, tree shrew, primate,
and hedgehog was in agreement with Schmitz, Ohme,
and Zischler (2000). The lagomorphs were considered
monophyletic. The relationship among primates fol-
lowed McKenna and Bell (1997). Hedgehog and gym-
nure were placed together. Finally, relationships among
marsupials were taken from Phillips et al. (2001). For
the other relationships we followed Murphy et al.
(2001). Figure 2 presents the mitochondrial tree for the
mitochondrial data set.

The Murphy Tree

This tree was based on Murphy et al. (2001). Mc-
Kenna and Bell (1997) were followed for relationships
that were not determined by Murphy et al. Figure 3 pre-
sents the Murphy tree for the Murphy data set.

The Madsen Tree

This tree is based on Madsen et al. (2001, fig. A).
Murphy et al. (2001) and McKenna and Bell (1997)
were followed for relationships that were not determined
by Madsen et al. Figure 4 presents the Madsen tree for
the Madsen data set.

Model

In this study, models based on amino acid sequenc-
es were used. The replacement probabilities among ami-
no acids were calculated with the JTT matrix (Jones,
Taylor, and Thornton 1992) for nuclear genes and the
REV model (Adachi and Hasegawa 1996) for mito-
chondrial genes. However, the approach presented here
is also valid for nucleotide sequences and for any sub-
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FIG. 1.—The morphological tree topology for the mitochondrial data set.
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FIG. 2.—The mitochondrial tree topology for the mitochondrial data set.
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FIG. 3.—The Murphy tree topology for the Murphy data set.
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FIG. 4.—The Madsen tree topology for the Madsen data set.
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Table 2
Results of the Mitochondrial Data Set, Assuming the N-GAM model and the
Mitochondrial Tree (ML tree for this data set)

MODEL:
GENE

(positions)

CONCATENATE

Log-
likelihood

Alpha
Parameter

PROPORTIONAL

Log-
likelihood

Gene-
Specific

Rate
Alpha

Parameter

SEPARATE

Log-
likelihood

Alpha
Parameter

nd1(313) . . . .
nd2(313) . . . .
co1(512) . . . .
co2(225) . . . .
atp8(32) . . . .
atp6(201) . . .
co3(259) . . . .
nd3(104) . . . .
nd4l(94) . . . .
nd4(438) . . . .
nd5(526) . . . .
Cytb(375) . . .

28,157.72
213,881.80
25,916.21
24,331.77
21,479.19
25,527.05
24,922.87
23,165.27
23,307.18

213,618.68
217,624.30
29,256.67

0.55
0.68
0.25
0.41
0.73
0.55
0.37
0.48
0.70
0.50
0.53
0.40

28,151.33
213,857.77
25,840.83
24,323.39
21,471.97
25,520.59
24,902.91
23,163.01
23,305.66

213,606.69
217,613.26
29,241.90

0.82
1.43
0.29
0.71
1.48
0.82
0.73
1.20
0.93
1.27
1.48
0.83

0.51
0.83
0.26
0.48
0.98
0.52
0.31
0.49
0.65
0.50
0.55
0.37

28,079.67
213,780.25
25,738.85
24,155.21
21,398.87
25,407.84
24,827.74
23,116.25
23,218.65

213,536.09
217,519.18
29,143.17

0.52
0.82
0.26
0.43
0.85
0.52
0.31
0.46
0.60
0.49
0.55
0.38

Sum(3392) . . 291,188.71 — 290,999.30 — — 289,921.78 —

Table 3
Results of the Murphy Data Set, assuming the N-GAM model and the Madsen Tree (ML
tree for this data set)

MODEL:
GENE

(positions)

CONCATENATE

Log-
likelihood

Alpha
Para-
meter

PROPORTIONAL

Log-
likelihood

Gene-
Specific

Rate

Alpha
Para-
meter

SEPARATE

Log-
likelihood

Alpha
Para-
meter

ADO3 (107) . .
ATP7 (220) . . .
BDNF (182) . .
CNR1 (219). . .
EDG1 (199). . .
ZFY (67) . . . . .

22,459.36
24,433.48
21,623.36
21,245.59
21,441.12

2415.76

0.39
0.86
0.29
0.13
0.17
0.16

22,435.45
24,431.60
21,608.58
21,228.21
21,435.97

2404.06

2.59
1.59
0.57
0.31
0.69
0.26

0.59
0.93
0.32
0.12
0.17
0.20

22,362.59
24,388.23
21,528.31
21,181.36
21,361.04

2370.58

0.58
0.90
0.32
0.13
0.17
0.20

Sum (994) . . . . 211,618.67 — 211,543.87 — — 211,192.12 —

stitution model. The alpha parameter of the gamma dis-
tribution was estimated using the ML method. The dis-
crete gamma distribution with four categories was used
(Yang 1994). A program implementing all the nine mod-
els described above was written in C11 and is attached
as supplementary material at: http://www.molbiolevol.
org/.

Procedures for calculation of the likelihood func-
tions were adapted from the SEMPHY program (Fried-
man et al. 2001).

To compare the different models, the Akaike In-
formation Criterion (AIC), defined as AIC 5 22 3 log-
likelihood 1 2 3 number of free parameters, was used
(Sakamoto, Ishiguro, and Kitagawa 1986). A model with
a lower AIC is considered more appropriate (Sakamoto,
Ishiguro, and Kitagawa 1986). To evaluate if the AIC
values of two models are significant, the test of Linhart
(1988) was used. When comparing different tree topol-
ogies for the same model, the one-tailed Kishino-Has-
egawa test was used (Kishino and Hasegawa 1989).

Results

We examined the effect of different branch length
models as well as the number of gamma parameters (al-
pha) when combining different genes for phylogenetic

analysis. For all data sets and all trees, the lowest AIC
values (indicative of the best model) were achieved by
assuming a different gamma parameter for each gene
(the N-GAM model). This result held for all categories
of branch length models. Further, AIC values were al-
ways lower when one gamma parameter for all genes
was assumed (the 1-GAM model) than in the model that
assumed no among-site rate variation (the homogenous
model). Hence, we present detailed results (i.e., log-like-
lihoods, alpha parameter, and gene-specific rate factors)
only for the best trees under the N-GAM model (tables
2–4). For all other cases, only the sums of the log-like-
lihoods and the AIC values are presented (tables 5–7).

Mitochondrial Data Set

The proportional method assigns a specific rate for
each gene. This gene-specific rate can be used to rank
the evolutionary rate among different genes. For ex-
ample, in the mitochondrial tree, the N-GAM model
yielded a gene-specific rate of 1.48 for the ATP8 gene,
whereas that for cytochrome oxidase subunit 1 (the
‘‘slowest’’ gene) was 0.29 (table 2). Only minor changes
in the gene-specific rates were observed when other tree
topologies were assumed.
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Table 4
Results of the Madsen Data Set, Assuming the N-GAM model and the Murphy Tree
(ML tree for this data set)

MODEL:
GENE

(positions)

CONCATENATE

Log-
likelihood

Alpha
Para-
meter

PROPORTIONAL

Log-
likelihood

Gene-
Specific

Rate

Alpha
Para-
meter

SEPARATE

Log-
likelihood

Alpha
Para-
meter

A2AB (344) . .
BRCA1
(557). . . . . . . . .
IRBP (301) . . .
VWF (338) . . .

24,097.60
215,655.40
25,178.58
26,587.52

0.34
2.56
0.61
0.75

24,028.88
215,636.23
25,163.13
26,578.57

0.47
1.61
0.90
1.03

0.29
2.95
0.64
0.77

23,978.66
215,575.42
25,079.71
26,519.49

0.29
2.82
0.64
0.79

Sum (1540) . . . 231,519.10 — 231,406.81 — — 231,153.28 —

For the 12 mitochondrial genes studied (table 5),
the AIC values obtained using the proportional model
were significantly lower than those obtained with either
the concatenate model or the separate model. For ex-
ample, the N-GAM model for the mitochondrial tree
yielded an AIC value of 182,262.6 for the proportional
model, whereas the separate analysis and concatenate
models gave AIC values of 182,483.55 and 182,619.42,
respectively. This difference of 221 between the pro-
portional model and the separate model is significant (P
, 0.05). Thus, the proportional model is significantly
better than both the separate model and the concatenate
model. However, the AIC difference of 136 between the
separate model and the concatenate model (table 5) is
not statistically significant.

Among the four different tree topologies, for all
models the most likely tree was the mitochondrial tree.
For the N-GAM model with proportional branch length,
the log-likelihood of the mitochondrial tree was
290,999.3, whereas the Murphy tree was second best at
291,022.96. This difference of 23.66 6 47.84 corre-
sponds to a P value of 0.31, using the Kishino-Hase-
gawa test (Kishino and Hasegawa 1989). Hence, when
using the proportional model, the mitochondrial tree is
not significantly different from the Murphy tree. Similar
results were obtained when comparing the mitochondrial
tree and the Madsen tree (P value of 0.21 using the
Kishino-Hasegawa test). However, the morphological
tree was rejected when compared with all other trees
(log-likelihood difference . 742; P , 0.001).

Murphy Data Set

For the six nuclear genes studied, again the AIC
values obtained using the proportional model were sig-
nificantly lower than those obtained with either the con-
catenate model or the separate model. For example, the
N-GAM model for the Madsen tree yielded an AIC val-
ue of 23,287.7 for the proportional model, whereas the
separate analysis and concatenate models gave 23,464.2
and 23,427.3, respectively (table 6). This difference of
176.5 between the proportional model and the separate
model is significant (P , 0.05). As for the mitochondrial
data set, the AIC differences between the separate model
and the concatenate model were not significant. The
most likely tree topology for all models is the Madsen
topology, in contrast with the observations of Murphy

et al. (2001), except for the concatenate–N-GAM model,
where the best tree is the Murphy tree. This discrepancy
most likely arises from our use of amino acid data sets
instead of nucleotide data sets, as well as from differ-
ences in alignment. However, the difference in log-like-
lihood between the Madsen topology and the Murphy
topology is very small and nonsignificant in each case
(i.e., log-likelihood difference , 10; table 6). For ex-
ample, for the proportional–N-GAM model the log-like-
lihood difference between the Madsen and the Murphy
tree topologies is 1.87 6 8.22, corresponding to a P
value of 0.41 by the Kishino-Hasegawa test. Assuming
this model, both the mitochondrial tree and the morpho-
logical tree are significantly worse than the Madsen tree
(log-likelihood difference . 44; P , 0.01).

Madsen Data Set

Unlike the results obtained for the other two data
sets, the lowest AIC values for the Madsen data set were
obtained with the separate model regardless of the num-
ber of gamma parameters assumed. For example, the N-
GAM model for the Murphy tree yielded an AIC value
of 62,738.6 for the separate model, whereas the propor-
tional analysis and concatenate models gave 62,933.6
and 63,152.2, respectively. This difference of 195 be-
tween the proportional model and the separate model is
significant (P , 0.01). Here, the proportional model is
also significantly better than the concatenate model (P
, 0.01). The most likely tree topology was obtained for
the Murphy topology for all the models considered. Sur-
prisingly, the Murphy tree appears to be significantly
better than all other tree topologies. For example, for
the N-GAM–separate model the log-likelihood differ-
ence between the Madsen (the second best tree) and
Murphy tree topologies is 53.19 6 20.62, corresponding
to a P value of ,0.05 by the Kishino-Hasegawa test.

Tree Search

In the above analyses, we investigated the differ-
ences between the supports of four predetermined tree
topologies under nine different models. As can be seen
from table 6, the model can have an impact on the best
topology found. For the Murphy data set under the con-
catenate–N-GAM model, the Murphy tree appears to be
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the best, whereas under all the other models the Madsen
tree is the best.

To further determine the effect of the model on tree
topology, we implemented a tree-search algorithm to
find the most likely tree under each of the models. Be-
cause of computational limitations, the tree search was
conducted on 14 taxa representing the main mammalian
clades, using a subset of the mitochondrial data set (fig.
5). Starting with various starting points (a neighbor-join-
ing tree, a tree based on the mitochondrial topology, and
a tree based on the Murphy topology), we searched the
tree space for better trees through the nearest neighbors
interchange (NNI) algorithm. We also limited our
searches to the two best models found above (i.e., the
proportional–N-GAM model and the separate–N-GAM
model). The alpha parameters and the gene-specific rates
for this search were based on the corresponding N-GAM
analysis of the complete mitochondrial data set.

We found different best trees under these two mod-
els. The ML tree under the N-GAM–proportional is giv-
en in figure 5A, whereas the ML tree under the N-GAM–
separate is given in figure 5B. Under the proportional–
N-GAM model the glires (rodents and rabbit) are mono-
phyletic. The glires are related to a man 1 tree shrew
clade. In the separate model the tree-shrew clusters with
rabbit rather than with man; hence, the glires are not
monophyletic. Another difference concerns the Laura-
siatheria. In the N-GAM–proportional model the Laur-
asiatheria are divided into two clades. The first includes
mole and bat. The second includes whale, horse, and
cat. In this second clade, horse and whale cluster to-
gether. On the contrary, in the N-GAM–separate model,
whale is the first diverging taxa of the Laurasiatheria.
However, in each model the differences in log-likelihood
between these two topologies are not significantly dif-
ferent: under the proportional model the log-likelihood
difference between the two trees is 13.3, whereas under
the separate model the difference in log-likelihood be-
tween the two trees is 2.15. These differences are not
significant based on the Kishino-Hasegawa test (P .
0.05; results not shown). Nevertheless, these results
demonstrate that choosing among alternative models can
lead to different best trees. Thus, choosing the best mod-
el is important not only to model the molecular evolu-
tionary process better but also for inferring phylogenetic
relationships among taxa in general.

Discussion
Assigning Gene-Specific Rates for Genes

In the proportional model a specific rate is assigned
to each gene. These rates can be used to classify genes,
and estimating relative rates of sequence evolution can
be used to determine whether a gene is relevant for a
specific phylogenetic analysis. Conserved genes (i.e.,
genes with lower evolutionary rates) are expected to
give better estimates for deeper evolutionary divergenc-
es, whereas fast-evolving genes can be used to resolve
recent divergences. For example, Corneli and Ward
(2000) used sequence similarity plots to determine em-
pirically the relative rates of evolution of mitochondrial
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6 genes. The advantages of our method for determining

gene-specific evolutionary rates lie in its statistical ro-
bustness (it is a maximum-likelihood estimate of the
gene-specific rate) and its ability to combine specific
model assumptions (the gamma distribution, the substi-
tution model) into the estimation scheme. Furthermore,
our method takes tree topology into consideration,
whereas sequence similarity plots do not.

Model Selection

Currently, the method of concatenating sequences
is most frequently used for analyzing multiple data sets
(Reyes, Pesole, and Saccone 2000; Madsen et al. 2001;
Murphy et al. 2001). Conversely, our results show that
both the proportional model and the separate model
yield results that are superior to the concatenate model.
This is in agreement with the result of Cao et al. (1998),
who showed that for mitochondrial data, separate anal-
ysis is superior to the concatenate method. However,
selecting the superior of the separate and proportional
models is a more complicated issue. The proportional
model is more appropriate for analysis of the mitochon-
drial and Murphy data sets, whereas the separate model
is favored for the Madsen data set. The separate analysis
is preferable when each gene is of sufficient length to
allow accurate determination of a separate set of branch
lengths. In our study the sequence lengths in the Madsen
data set were longer than those in the Murphy or mi-
tochondrial data sets. When only the first 100 positions
in each gene of the Madsen data set were analyzed, the
proportional model was the best model (data not
shown). Another factor that can affect model selection
is inconsistent branch length among different genes in a
data set. If, for example, significant rate acceleration oc-
curred for only one gene in a specific clade, then anal-
ysis by the separate model would be justified. Thus, it
is expected that the proportional model would be most
appropriate when analyzing closely related sequences.
Yang (1996b) showed that the proportional model was
superior to the separate analysis for a data set composed
of four parts: the first-, second-, and third-codon posi-
tions of six mitochondrial genes, and a fourth part com-
posed of 11 tRNA sequences. We speculate that this
proportional model preference is due to the fact that
Yang’s analysis considered only primate sequences.

In our analyses it proved more fruitful to assume a
different gamma parameter for each gene rather than a
single gamma parameter for all genes. Each gamma dis-
tribution involves a shape parameter alpha. This alpha
parameter determines the shape of the gamma distribu-
tion and is inversely related to the extent of rate varia-
tion among sites. Some genes show substantial rate var-
iance, whereas others exhibit a more homogenous dis-
tribution of the rate of different positions. For example,
for the Murphy data set, assuming the best model, the
alpha parameter ranges from 0.93 for the ATP7 gene to
0.12 for the CNR1 gene (see table 3). We conclude that
the substantial difference in rate distribution among
genes is sufficient to justify a separate gamma parameter
for each gene.
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6 Regarding the effect of the model on tree selection,

our results show that the model chosen has an effect on
tree topology. It is expected that the model would also
affect bootstrap support for different clades, and molec-
ular date estimation based on several genes. More sim-
ulation studies and improvements in computational tech-
niques are required to explore fully the effect of these
different models on phylogeny reconstruction.

Before selecting a model that combines different
genes, one must consider whether there is a basis for
combining the genes of interest in the first place. To
address this issue, Huelsenbeck and Bull (1996) pro-
posed a likelihood ratio test designed to detect conflict-
ing phylogenetic signals among genes. Regarding the
genes used in our study, we followed Cao et al. (2000),
Madsen et al. (2001), and Murphy et al. (2001) and as-
sumed that there is agreement between the gene tree and
the species tree. Of course, before any analysis of a new
data set, such an assumption should be verified (for re-
view see Huelsenbeck, Bull, and Cunningham 1996).

Mammalian Phylogeny

For all the models and data sets considered in our
study, the morphological tree exhibited significantly
lowest log-likelihood values (results of the Kishino-Has-
egawa test not shown). Many traditional morphological
clades are not supported by molecular phylogeny anal-
ysis (see Springer et al. 1997, 1999; Murphy et al.
2001), as exemplified by the clades Archonta (bats and
primates), Anagalida (elephant shrew and glires), and
Ungulata (aardvark, horses, cows, whales, elephants, du-
gongs, and hyraxes). Interestingly, the McKenna tree
(McKenna and Bell 1997) has also been challenged by
recent morphological discoveries. For example, Thew-
issen et al. (2001) confirmed a close relationship be-
tween Cetacea and Artiodactyls, whereas Cetacea was
previously considered as a sister clade of Mesonychia.

Both the mitochondrial and the nuclear data sets
support their respective trees for all the models consid-
ered. Our results for the mitochondrial data set show
that there is no significant difference between the mi-
tochondrial tree and the nuclear tree with regard to like-
lihood when using the 1-GAM or the N-GAM models
(P . 0.05; results of the Kishino-Hasegawa test not
shown). However, with the homogenous models the mi-
tochondrial tree was found to be significantly better than
both the Madsen and the Murphy trees (P , 0.03; re-
sults of the Kishino-Hasegawa test not shown). This is
in agreement with Sullivan and Swofford (1997), who
showed that simplified models could lead to systematic
errors.

Our results for the two nuclear data sets reject the
mitochondrial tree for all the models considered (P ,
0.05; results of the Kishino-Hasegawa test not shown).
Thus, the nuclear data sets discriminate more than the
mitochondrial data set between alternative topologies.
Hence, it is apparent that there is more ‘‘phylogenetic
signal’’ in the nuclear genes (e.g., Springer et al. 2001).
The main differences between the mitochondrial tree
and the nuclear trees are that (1) Eulipotyphla insecti-
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FIG. 5.—ML tree obtained after NNI search on a subset of the mitochondrial data set. A, The best tree obtained under the proportional–N-
GAM model. B, The best tree obtained under the separate–N-GAM model. Arrows indicate taxa with different positions in the two trees.

vores (hedgehogs, moles, shrews) are paraphyletic in the
mitochondrial tree and the Erinaceidae (hedgehogs) are
the most basal mammalian taxa in the mitochondrial
tree; (2) glires and Euarchonta (primates, flying lemur,
tree shrews) do not cluster in a single clade (the Euar-
chontoglires) in the mitochondrial tree but appear par-
aphyletic at the base of the placental tree; (3) rodents
are paraphyletic in the mitochondrial tree and mono-
phyletic in the nuclear tree; and (4) consequently, Af-
rotheria (armadillos, anteaters, and sloths) and Xenarthra
are at the base of the placental trees but have a more
internal position in the mitochondrial tree.

When comparing the two nuclear trees, the Madsen
data set supports the Murphy tree, and the Murphy data
set supports the Madsen tree (for eight out of the nine
models). For the Murphy data set the differences are not
significant; however, the Madsen data set significantly
supports the Murphy tree. Both trees support the same
topology between the four main clades, Laurasiatheria,
Euarchontoglires, Xenarthra, and Afrotheria, and any
differences concern only the relationships among these
four clades. It is worth noting that the full NNI tree
search on the subset of the mitochondrial data set led to
a tree supporting these four main clades as well as the
rodent monophyly. Our results suggest that the Murphy
tree is probably closer to the ‘‘true tree’’ than is the
Madsen tree. However, we speculate that the true tree
lies between these two alternative nuclear trees, and ad-

ditional gene sequences and the development of better
models will help to address these questions.

Acknowledgments

We thank Nir Friedman and Nicolas Galtier for
helpful discussions. Ross Crozier and two anonymous
referees provided helpful comments on this paper. T.P.
is supported by a grant from the Japanese Society for
the Promotion of Science (JSPS), and D.H. is supported
by a Lavoisier grant from the French Ministry of For-
eign Affairs. This work was partially supported by
grants from the JSPS and Monbusho to M.H.

LITERATURE CITED

ADACHI, J., and M. HASEGAWA. 1996. MOLPHY version 2.3:
programs for molecular phylogenetics based on maximum
likelihood. Comput. Sci. Monogr. 28:1–150.

ARNASON, U., A. GULLBERG, S. GRETARSDOTTIR, B. URSING,
and A. JANKE. 2000. The mitochondrial genome of the
sperm whale and a new molecular reference for estimating
eutherian divergence dates. J. Mol. Evol. 50:569–578.

BURNHAM, K. P., and D. R. ANDERSON. 1998. Model selection
and inference: a practical information-theoretic approach.
Springer-Verlag, New York.

CAO, Y., M. FUJIWARA, M. NIKAIDO, N. OKADA, and M. HAS-
EGAWA. 2000. Interordinal relationships and timescale of
eutherian evolution as inferred from mitochondrial genome
data. Gene 259:149–158.



Combining Multiple Data Sets 2307

CAO, Y., A. JANKE, P. J. WADDELL, M. WESTERMAN, O. TAK-
ENAKA, S. MURATA, N. OKADA, S. PÄÄBO, and M. HASE-
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