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Abstract Transposable elements play a vital role in

genome evolution and may have been important for

the formation of the early metazoan genome, but only

little is known about transposons at this interface

between unicellular opisthokonts and Metazoa. Here,

we describe the first miniature transposable elements

(MITEs, Queen1 and Queen2) in sponges. Queen1

and Queen2 are probably derived from Tc1/mariner-

like MITE families and are represented in more than

3,800 and 1,700 copies, respectively, in the Am-

phimedon queenslandica genome. Queen elements

are located in intergenic regions as well as in introns,

providing the potential to induce new splicing sites

and termination signals in the genes. Further possible

impacts of MITEs on the evolution of the metazoan

genome are discussed.
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The origin of animals is among the greatest enigmas

in evolutionary biology. In particular, genomic evolu-

tion during the transition of unicellular protists to

multicellular metazoans is still largely speculative
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(Hoenigsberg et al., 2008). Most comparative

approaches in genomics focus on shared genes and gene

families; however, other genomic components, such as

transposable elements, which have been important in

genome formation (Brosius, 1999; Batzer & Deininger,

2002; Kazazian, 2004), remain understudied.

Transposable elements encompass mobile DNA

sequences that can integrate into the genome at new

positions. They are represented in most eukaryotes

where they account for up to 90% of the genome

(Bailey et al., 2003). Strand breaks during transpo-

sition and insertion can trigger various genomic

rearrangements (Lim & Simmons, 1994; Zhang &

Peterson, 2004). Furthermore, transposons occasion-

ally evolve into new genes or parts of genes,

including regulatory elements (Brosius & Gould,

1992; Deininger & Batzer, 1999; Feschotte et al.,

2002; Krull et al., 2007; Kuang et al., 2008).

Consequently, transposable elements have an enor-

mous evolutionary potential by directly influencing

phenotypes encoded in genomes, ranging from subtle

regulatory perturbations to the complete loss of gene

function (Feschotte & Pritham, 2007).

For the evolution of multidomain proteins in

Metazoa (animals), transposable element-mediated

exon shuffling may be an important mechanism to

move encoded motifs and domains (Tordai et al.,

2005; Feschotte, 2008). Comparative genomics of

basal metazoans and choanoflagellates, the closest

living relatives of animals, has recently revealed

uniquely arranged combinations of metazoan domains

in the choanoflagellate sister group (King et al., 2008).

Novel domain architectures, for example in cnidarians

and sponges (Adamska et al., 2007; Putnam et al.,

2007; Larroux et al., 2008), both basal metazoan

phyletic lineages, might be transposable element-

mediated exon rearrangements that occurred during

early metazoan evolution. Indeed, transposable ele-

ments may have played a pivotal role in the genesis of

many metazoan-specific gene families prior to the

divergence of Porifera (possibly the earliest diverging

extant Metazoa, e.g., Philippe et al., 2009) and

eumetazoan lineages. Novel domain architectures

emerging prior to animal cladogenesis appear to

underpin metazoan-specific regulatory and protein

networks that comprise cellular, developmental, and

morphological synapomorphies, as revealed by the

recently published genome of the demosponge Am-

phimedon queenslandica (Srivastava et al., 2010).

In the case of sponges, physiology and evolution

affords a rapidly shifting capacity to produce complex

secondary metabolites, which may be modulated by

transposable element-mediated changes in the genome.

While 25% of the anthozoan Nematostella vect-

ensis genome consists of transposable elements

(Putnam et al., 2007), only little is known about

transposable elements in Amphimedon queenslandic-

a, the first sponge genome to be sequenced (Srivast-

ava et al., 2010). Our own estimations also point to a

20-30% contribution of transposable elements to the

Amphimedon queenslandica genome (unpublished

observations), but information on elements in other

sponges is scarce (e.g., Arkhipova, 2001; Wiens

et al., 2009). Today, the only sponge element with a

published sequence is a long terminal repeat-retro-

transposon from the freshwater sponge Lubomirskia

baicalensis (Wiens et al., 2009).

In the assembled genome of the demosponge

Amphimedon queenslandica we have identified the

first miniature transposable elements (MITEs) that we

call ‘‘Queen1’’ and ‘‘Queen2’’ (see Supplementary

Methods). MITEs are short, nonautonomous DNA

transposons with high copy numbers and homogeneous

lengths (Bureau & Wessler, 1992; Zhang et al., 2000).

Queen1 is 210 bp long with an inverted terminal

repeat (TIR) of 28 bp, including a potential dinucle-

otide (TA) target site duplication (TSD), a 3-bp

linker, and 14 bp of a sub-TIR sequence (Fig. 1). We

estimated that there are more than 3,800 Queen1

elements in the A. queenslandica genome (0.28% of

the genome). Thirty-four percent of full-length

Queen1 elements display 90% identical inverted

repeats (IRs).

Queen2 comprises more than 1,700 elements of

245 bp with a 25-bp TIR, a 2-bp linker, and 11 bp

of sub-TIR (0.15% of the genome). Fifty-seven

percent of full-length elements display 90% perfect

IRs, indicating a relatively recent activity period.

Queen1 and 2 appear to be novel MITEs, probably

deriving from the widespread Tc1/mariner transpos-

ase superfamily, as they also possess characteristic

50-TA-30 target sites (Fig. 2). Except for this target

site preference, there is no sequence similarity

between Queen1 and 2. Adjacent Queen elements

are significantly often of the same type (P \ 0.01).

Queen elements have not been detected in other

organisms thus far, including in EST data of other

sponges, and the high copy numbers of these MITEs
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is unusual for nonbilaterian Metazoa. In the Placozoa

Trichoplax adhaerens, MITEs are very rare; genome-

wide, only a single family with about 20 copies is

represented (Wang et al., 2010b). Likewise, the

number of CMITE elements found in two stony coral

genomes (Wang et al., 2010a) is far less than the

number of Queen copies in A. queenslandica.

Generally, MITEs are located in low-copy-number

genomic regions and in gene-rich environments

(Bureau & Wessler, 1992; Zhang et al., 2000). Their

frequent insertions close to genes indicates a significant

potential for generating allelic and genomic diversity

(Feschotte & Pritham, 2007). Consequently, regulatory

and coding mutations are a frequent side effect of MITE

insertion (Bureau & Wessler, 1992; Nakazaki et al.,

2003; Xu et al., 2007; Kuang et al., 2008). We detected

several Queen elements located in introns, where they

might potentially influence the splicing of a pre-mRNA

by introducing new splice sites, resulting in intron

retention, exon skipping, or the creation of new exon/

intron boundaries (Feschotte, 2008). This may result in

new protein isoforms with different functions and

fitness advantages; especially, because Queen elements

might induce new splicing sites.

In this context, we detected what appeared to be Queen

elements in the transcriptome of A. queenslandica;

Queen2 elements were present in many ESTs.

However, currently the amount of EST data for

A. queenslandica is very limited (63,542 EST

sequences compared to the half million such sequences

in C. elegans or several millions in human). So far no

case of MITE inclusion in protein-coding sequence

regions (in the sense orientation to genes) could be

determined. In contrast, a detailed analysis of the

predominantly computationally predicted annotation

of the A. queenslandica genome did indicate such

cases. However, careful inspections and RT-PCR

analyses could not confirm any of the potential

protein-coding MITE cassettes (data not shown).

Our results shed light on the occurrence and

abundance of miniature transposable elements in

sponges. The genetic features of Queen1 and Queen2

corroborate hypotheses that such transposable ele-

ments might have contributed to the evolution of early

(b) Queen2

(a) Queen1

RIT-busLRIT

Lsub-TIR

TIR L sub-TIR

TIRLsub-TIR

TIR

Fig. 1 Queen1 and Queen2 as detected in A. queenslandica. Arrows indicate location and direction of terminal inverted repeat

(TIR), linker (L), and sub-TIR (sub-TIR) sequences

Queen 1

gi 282449543
gi 296290723

320

1090

554

1116

Fig. 2 Presence of Queen1 (boxed region) in an EST sequence

(gi282449543) and its absence at the genomic level

(gi296290723). The discrepancy between EST and genome is

probably caused by different experimental sources for the

cDNAs and DNA extraction, and is also an indication that this

specific MITE element inserted recently and/or is polymorphic.

The coordinates of the sequences are indicated. The upper

sequence in the box represents the Queen1 consensus sequence

(65%). The slashes replace 196 nucleotides of the MITE

element
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Metazoa and the formation of the early-branching

metazoan genome (Hoenigsberg et al., 2008). MITE

insertions in introns and exons of (vital) genes, such as

Queen element insertions in A. queenslandica, might

have a wide range of effects at the transcriptional and

posttranscriptional levels, as summarized by Feschotte

(2008): (1) Queen insertions in the untranscribed

region of genes might disrupt existing promoters,

transcription start sites, and regulatory elements. (2)

An intronic insertion of a Queen element might trigger

antisense transcription and inhibition of sense tran-

scription, as was shown for MITEs in Solanaceae

(Kuang et al., 2008). (3) Once inserted into an intron,

Queen elements might trigger formation of hetero-

chromatin, leading to transcriptional inhibition of

adjacent genes (Cam et al., 2008). (4) An intronic

Queen element may interfere with the normal splicing

pattern of a pre-mRNA, leading to various forms of

alternative splicing (e.g., intron retention and exon

skipping). (5) A Queen element that has inserted into

an intron and contains cryptic splice sites may be

incorporated as an alternative exon, which may result

in the translation of a new protein isoform or in the

destabilization or degradation of the mRNA by the

nonsense-mediated decay (NMD) pathway.

The sequence divergence observed among Queen1

and Queen2 elements indicates that MITE integrations

may be an ongoing process shaping the A. queenslan-

dica genome. The full gambit of evolutionary effects

caused by MITEs and other transposable elements will

be evident with the discovery and characterization of a

more complete set of TEs in A. queenslandica and

other sponge classes and a comprehensive transcrip-

tome analysis. Genome sequencing of calcareous,

hexactinellid, and homoscleromorph sponges is there-

fore eagerly needed.
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