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Abstract

Specific Peptides (SPs) have been shown [22] to specify the functions of 93%

of the enzymes on which they occur. In this work we will focus on the biological

importance and possible roles of SPs in the realisation of enzymatic functions.

SPs are shown to provide correct functional classification in problems where

conventional methods, based on sequence or structure similarity, fail. These cases

include enzymatic functions that diverged or converged with evolution.

Analysing the coverage of functional annotations of enzymes, we demonstrate

that SPs contain major fractions of all annotated biological features. One such

feature, DNA binding, is further analysed and observed to show interesting cov-

erage patterns. Moreover, its SPs allow for sub-classification of the species which

possess this function into phylogenetic classes.

An analysis of sites which have been experimentally altered by mutagenesis

leads to the conclusion that SPs contain much more sites that affect the enzyme’s

function when mutated than a background model, hence are highly important to

enzymatic functions.

Events of SPs occurring in three-dimensional pockets of active sites (and other

sites of functional importance) are found to be statistically significant. These

SPs may play important roles in bringing about the enzymatic function, mostly

unknown so far. These SPs are shown to be significantly enriched by glycine, thus

leading to the hypothesis that they are responsible for the induced-fit mechanism.
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Chapter 1

INTRODUCTION

An outstanding challenge in molecular biology is to predict the spatial structure

of proteins and their function from the protein sequence of amino-acids [13, 33].

The conventional approach is to rely on sequence similarity (homology) of the

protein in question with other proteins whose structure and function is known:

high sequence-similarity ensures similar structures and functions [40], but this

is sometimes misleading [16, 32]. Alternatively one may use motif approaches

[2, 5, 10, 14, 19, 29], trying to extract from the data sub-sequences that are

responsible for particular functions.

Motifs can be deterministic sequences of amino-acids, regular expressions that

allow various alternatives for specific locations within the motif, or stochastic

structures specifying the probability of an amino-acid at every location. This

work uses deterministic sequence-motifs, and concentrates on shedding light on

their relationships with protein functionality.

Conventional sequence-motif extraction in enzymes is performed in a super-

vised fashion, using sequences of proteins that are known to have the same func-

tion and looking for (deterministic, regular-expression or stochastic) motifs that

are over-represented in this group of proteins. These motifs are then postulated

to being crucial in the enzymes’ functional performance. Large-scale studies often

make use of multiple sequence alignment, phylogenetic information, and sophis-

ticated mathematical models, thus leading to the plethora of time and resource

demanding algorithms and web-tools that permeate bioinformatics. While all that
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may be necessary to obtain a thorough understanding of the way proteins develop

and perform, much can be gained by shifting attention to deterministic linear

motifs on proteins. This is the approach we have taken in [22]. The derivation

of motifs does not use pre-processing by multiple sequence alignment, does not

search for over-representation in functional categories, and does not rely on any

phylogenetic information.

A large-scale search for deterministic sequence-motifs was performed [22], with-

out specifying a-priori their exact functional roles by applying an unsupervised

motif extraction algorithm (MEX - described in Appendix A) to 50,698 enzyme

sequences. The resulting motifs were then filtered by their specificity relative to

the four-level classification hierarchy of the Enzyme Commission (EC), obtaining

52,216 exact motifs, named Specific Peptides (SPs). For a precise account of the

SP extraction and filtering procedures see Methods in Chapter 7. By representing

some 50,000 enzymes (of average length 380 amino acids) in terms of about the

same number of SPs (on average 8.4 ±4.5 amino-acids), a largely compressed func-

tional representation and an EC classification with 93% accuracy is obtained [22].

This may be compared with other methods such as the one based on sequence

motifs of [7] or predicting functionality on the basis of sequence similarity using

SVM classification [23]. In comparison with the large-scale and popular motif

database Pro-Site [5], our approach displays a wide-margin advantage - 93% cov-

erage compared to Pro-Site motifs coverage extending only to 63% of all enzymes

in the database. This is further analysed in Appendix B.

This work puts its focus on the question whether SPs are of biological impor-

tance. This can be dealt with by asking, first, whether SPs contain regions of the

enzyme that are already known to be of importance to the performance of the

enzymatic feature. This point can be further strengthened by carrying a statis-

tical analysis of the effects of experimental mutations in the SP on the enzymes’

performance. Based upon the results to these questions, one can then ask whether

certain SPs may contain regions of previously unsuspected functional importance.
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Chapter 2 gives basic biological terms needed for this work. Statistical calcula-

tions carried out to obtain results that appear throughout this work are available

in Chapter 7, the Methods section. In Chapter 3 we point out the roles of SPs in

correctly classifying classes of enzymes that pose a particular problem in conven-

tional methods of classification, such as enzymes with functions that converged or

diverged with evolution. The biological relevance of SPs is investigated in Chapter

4. Although only enzyme sequences were used in the analysis, and no further bio-

logical constraints served as input to the derivation of these classification markers,

we will show that most annotated active and binding sites of enzymes are cov-

ered by SPs. We further investigate this point, by calculating SP coverage of

annotated features other than active and binding sites and evaluating the sensi-

tivity of enzymes to mutations of amino-acids on SPs. Moreover, other SPs were

found to reside in 3D pockets inhabited by active sites, these being candidates

for motifs holding novel biological features, previously un-annotated. Chapter 5

discusses this point, analysing characteristics of certain groups of SPs that may

be of biological importance. SPs in pockets of certain annotations are found to be

significantly glycine-enriched, hinting at their role in the induced fit mechanism.

This work is based on the following papers:

1. V. Kunik, Y. Meroz, B. Sandbank, E. Ruppin and D. Horn (2007) Functional

representation of enzymes by Specific Peptides, submitted for publication.

2. Y. Meroz and D. Horn (2007) Roles of specific peptides, submitted to ISMB

2007.
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Chapter 2

BIOLOGICAL BACKGROUND

2.1 Enzymes

In the 19th century, Louis Pasteur’s attention was directed to the study of the

fermentation of sugar to alcohol by yeast. It was in 1860 that he concluded that

the fermentation was catalyzed by something inherent to yeast cells, what he called

ferments. In 1878 Wilhelm Kühne described this process using the term enzyme,

from Greek ενζυµoν ”in leaven”. The enzymes, or ferments, that Pasteur talked

about were thought to act only within living cells, but this was proven wrong in

1897, when Eduard Buchner discovered the ability of yeast extracts to ferment

sugar outside living yeast cells.

Many chemical processes take place all the time in a properly functioning cell,

most of which naturally occur at a rate too low to fulfill the cells needs; this is

where enzymes come into action. Enzymes are proteins that catalyze , i.e accel-

erate, chemical reactions, converting molecules (substrates) into other molecules

(the product). The dramatic acceleration of the rate of the reaction is obtained

by effectively lowering its activation energy.

Like all proteins, enzymes are macromolecules made up of long chains of amino

acids, 20 kinds of small molecules, that fold into a three-dimensional structure.

The names of the 20 amino acids are represented by 20 letters. Different enzymes

catalyze different processes, and their functions are greatly determined by their

spatial structure. Very few of the enzymes’ amino acids have direct contact with
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    1 MSDQQQPPVY KIALGIEYDG SKYYGWQRQN EVRSVQEKLE KALSQVANEP ITVFCAGRTD    60

   61 AGVHGTGQVV HFETTALRKD AAWTLGVNAN LPGDIAVRWV KTVPDDFHAR FSATARRYRY   120 

  121 IIYNHRLRPA VLSKGVTHFY EPLDAERMHR AAQCLLGEND FTSFRAVQCQ SRTPWRNVMH   180 

  181 INVTRHGPYV VVDIKANAFV HHMVRNIVGS LMEVGAHNQP ESWIAELLAA KDRTLAAATA   240 

  241 KAEGLYLVAV DYPDRYDLPK PPMGPLFLAD                                    270             

Figure 2-1: The sequence and 3D structure of the enzyme tRNA pseudouridine
synthase A (PDB 1DJ0A). Active sites are marked in red.

the substrate in question, and these are called active sites. Figure 2-1 shows

an example of an enzyme’s sequence of amino acids, and its three-dimensional

structure. The active sites are highlighted in both.

2.2 Functional Classification

The International Union of Biochemistry and Molecular Biology developed a

nomenclature for enzymes; the Enzyme Comission (EC) numbers. Enzymes are

classified according to their functionality, the classification being represented by

four numbers, four hierarchical levels of classification: N1.N2.N3.N4. Each num-

ber represents the classification in the appropriate hierarchy. The first number,

N1, represents the first level of hierarchy, broadly classifying the enzyme based

on its mechanism. The top-level classification is: EC 1 Oxidoreductases: catalyze

oxidation/reduction reactions, EC 2 Transferases: transfer a functional group (e.g.
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a methyl or phosphate group), EC 3 Hydrolases: catalyze the hydrolysis of var-

ious bonds, EC 4 Lyases: cleave various bonds by means other than hydrolysis

and oxidation, EC 5 Isomerases: catalyze isomerization changes within a single

molecule and EC 6 Ligases: join two molecules with covalent bonds. These groups,

in turn, have more subclassifications, for example transferases have nine subdivi-

sions, meaning that for N1=2 N2 ranges between the values 1 to 9. In the end, the

EC number N1.N2.N3.N4 defines the enzymes function, so that all the enzymes

bearing the same EC number may belong to different species but have the same

function.

2.3 Spatial structure

As was mentioned before, proteins are sequences of amino acids that fold into

specific three-dimensional structures, in which they perform their particular bi-

ological function. The tertiary structure of a protein is its overall shape, also

known as its fold. Proteins can be classified according to these folds, as is done

in databases such as SCOP [27] and CATH [30]. The secondary structure is the

general three-dimensional form of local segments of the protein; the protein fold is

made up of ’structural building blocks’. The most common secondary-structures

are α-helices and β-sheets. An α-helix looks much like a drill or fusilli pasta,

while a β-sheet consists of β strands (stretches of about 5-10 amino acids whose

peptide backbones are almost fully extended) connected laterally by three or more

hydrogen bonds, forming a generally twisted, pleated sheet. An example of the

tertiary and secondary structure of the enzyme from Figure 2-1 is brought in Fig-

ure 2-2. The two most common ways of determining experimentally the structure

of a protein are X-ray crystallography and NMR spectroscopy. Determining the

structure of proteins is imperative since the structure is greatly responsible for the

proteins function.
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    1 MSDQQQPPVY KIALGIEYDG SKYYGWQRQN EVRSVQEKLE KALSQVANEP ITVFCAGRTD    60

   61 AGVHGTGQVV HFETTALRKD AAWTLGVNAN LPGDIAVRWV KTVPDDFHAR FSATARRYRY   120 

  121 IIYNHRLRPA VLSKGVTHFY EPLDAERMHR AAQCLLGEND FTSFRAVQCQ SRTPWRNVMH   180 

  181 INVTRHGPYV VVDIKANAFV HHMVRNIVGS LMEVGAHNQP ESWIAELLAA KDRTLAAATA   240 

  241 KAEGLYLVAV DYPDRYDLPK PPMGPLFLAD                                    270             
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"-STRAND

Figure 2-2: The sequence and secondary structures of enzyme 1DJ0 (the same en-
zyme shown in Figure 2-1). (a) The sequence, with a β-sheet highlighted in green,
an α-helix in blue, and a turn that connects the two in red. (b) The structure in
ribbons, meaning that the secondary structures can be identified sequentially. (c)
The structural form of the highlighted sub-sequence of the secondary structures
in (a) is magnified, revealing the β-sheet (made of two β-strands represented by
flat arrows), the α-helix the turn connecting them.
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Chapter 3

FUNCTIONAL CLASSIFICATION

Breakthrough developments in high throughput sequencing in the last years are

the main reason for the information overload currently experienced in biological

research. This is evident when considering the very high quantities of sequence in-

formation available in public databases, and their rapid growth rate. The number

of protein sequences is far greater than the number of proteins whose structure and

function has been experimentally determined. Therefore, researchers rely on au-

tomatic methods to classify new protein sequences into functional and structural

hierarchies.

Conventional methods used to determine the functional classification of an en-

zyme are based on homology. Two proteins are said to be homologous if they

have evolved from the same common ancestor, having similar structures and/or

sequences. One strategy uses sequence similarity. For example the Smith Water-

man algorithm [36] may be used to assess the sequence similarity between two

proteins. The resulting scores will determine whether the two are homologous or

not. This algorithm will be used throughout this chapter, and a short account

of it may be found in Appendix C. Another main method takes advantage of

fold similarity. The Structural Classification of Proteins (SCOP) database [27]

classifies proteins (as its name hints) by their structures, creating a hierarchy of

classes, folds, superfamilies, families, function (protein domains) and lastly the

actual structures in different species.

In both cases there are counter examples that show that the similarity as-
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sumption may lead to wrong conclusions. Such examples include enzymes with

convergent and divergent functions (as shall be seen in sections 4.2 and 4.3).

It is important to note that many of the SPs may have been formed due to

sequence similarity, since over-represented motifs are obviously extracted by the

MEX algorithm. On the other hand, it has been pointed out that MEX also

produces motifs that are not necessarily over-represented, meaning that SPs may

be refined enough to classify correctly some extreme examples, where sequence

and even structure similarity are not enough. SPs may be regarded as the essence

of homology. This point will be examined in this chapter.

3.1 Success rate of classification with SPs.

Applying MEX to the data, and filtering the results by requiring specific peptides

within the EC hierarchy, [22] were able to classify most enzymes by SPs occurring

on them with coverage between 87% to 93% depending on the EC level that is

being looked for (see Table 1 in [22]). Classification success of novel sequences

that belong to the same type of data is of order 84-86% (see Table 2 in [22]).

With a restriction to low bias (Table 3 in [22]), a precision of 88% is reached on

the enzymes covered by SPs.

3.2 Non-homologous enzymes with high sequence similar-

ity

Rost et.al. [32] (see Table 1 there) show examples of enzymes where conventional

functional classification based on sequence similarity fails. These examples are

comprised of pairs of enzymes that have different functional assignments, yet share

large sequence identity. Table 3.1 further demonstrates the point made by [6],

showing successful classification of the said pairs of enzymes, using SPs. All

displayed EC assignments are substantiated by corresponding SPs located on these

enzymes, most belonging to SP4. For each pair of enzymes in the table, a Smith-
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Waterman alignment [26, 36] has been calculated with a gap opening penalty of 11,

gap extension penalty of 1 and the BLOSUM62 similarity matrix (see Appendix

C). The results of the alignment include the percentage of sequence identity, the

alignment length, the Smith-Waterman alignment score and the appropriate E-

value. The E-value is a statistical estimator for the validity of alignment scores.

It is defined as the expected number of false positives with a score higher than

the observed score. This value depends on the number of random alignments,

determined by the size of the aligned sequences. A lower E-value indicates that the

score has a higher confidence level. These results demonstrate the high sequence

similarity these pairs of enzymes share.

As a more detailed example we note the sixth pair of enzymes in Table 3.1,

GTFB STRMU and AMY3B ORYSA, having 42% sequence identity along an

alignment of 105 amino acids with an alignment score of 106 and and E-value of

7.4e-08. The pair is correctly classified by different SPs: AMY3B ORYSA contains

24 SPs, none of which have an exact match on GTFB STRMU, and a single SP4

(GGAFLE) found on the latter determines correctly its EC classification. It should

be noted that 7 of the 16 enzymes in Table 3.1 were not in the original data set

on which MEX was run, and were correctly classified nonetheless.

Enzyme 1 Enzyme 2 Seq. id. Al. len. score E-value
GUNA PSEFL 3.2.1.4 MDHP FLABI 1.1.1.82 69 % 29 64 1.6 e-03
PLB1 YEAST 3.1.1.5 METB ARATH 2.5.1.48 60 % 30 73 5.9 e-05
RPB1 PLAFD* 2.7.7.6 UBC2 YEAST 6.3.2.19 61% 28 84 1.8 e-05
CHIB POPTR 3.2.1.14 DGK2 DROME* 2.7.1.107 58% 24 80 6.0 e-06
ODO2 FUGRU 2.3.1.61 PP2BB HUMAN 3.1.3.16 48% 46 86 1.1 e-06
GTFB STRMU* 2.4.1.5 AMY3B ORYSA 3.2.1.1 36% 105 106 7.4 e-08
RPB1 PLAFD* 2.7.7.6 PDE3B RA* 3.1.4.17 57% 37 107 8.4 e-08

IGF1R HUMAN* 2.7.10.1 PTPRU HUMAN* 3.1.3.48 28% 170 123 1.5 e-09

Table 3.1: Enzymes with high sequence similarity and different EC assignments.
Alignment length and sequence identity are calculated according to the Smith-
Waterman algorithm [26, 36]. The alignment score and its statistical validity
appear in the last two columns, demonstrating the high sequence similarity shared
by each pair of enzymes. EC assignments agree with SPs occurring on the enzymes.
Enzymes denoted by a star were not in our original data set on which MEX was
run.
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3.3 Functionally divergent enzymes

Another example along the lines of the previous section, is enzymes whose func-

tions diverged with evolution. These are enzymes that originate from the same

common ancestor (and therefore have similar structures and sequences), yet evolved

to perform different functions ( different EC numbers). Conventional functional

classification based on sequence similarity fails on such enzymes, since the high

sequence similarity leads to misleading conclusions.

A classical example of divergent functionality is TIM barrel enzymes that pos-

sess similar folds but different functions [18]. Figure 3-1 shows a schematic rep-

resentation of the structure of such TIM barrel enzymes. Out of 87 known TIM

barrel enzymes we studied 73 which belong to our data set. We found SP hits on

84% of them. SPs specify correctly the full EC number of 73% of the TIM barrels,

and classify correctly 6% to the 3rd EC level, 1% to the 2nd EC level, and 4% to

the 1st level.

3.4 Functionally convergent enzymes involving different

folds

An opposite problem to the previous section is that of functionally convergent

enzymes. Such enzymes originate from different ancestors, but evolve to perform

exactly the same function. Although these pairs of enzymes share the same four

components of the EC number, they have completely unrelated spatial structures

(i.e involve different folds) and also very low sequence similarity (an extreme ex-

ample of remote homology). Figure 3-2 shows an example of such a pair.

In this case both methods using sequence similarity and methods based on

structure similarity will fail. Another method used to deal with small functional

shifts, such as changes in the 4th level of EC classification among homologous

enzymes, relies on studies of amino acid evolutionary changes on various positions

of multiply-aligned enzymes, such as in [1], although this strategy is very resource-
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Figure 3-1: An example of divergent evolution, the TIM-barrel. This fold functions
as a generic scaffold catalysing 15 different enzymatic functions. A schematic
figure of the TIM-barrrel fold is shown with numbers in boxes indicating the
different location of the active sites in four proteins that have this fold. These four
proteins, xylose isomerase, aldose redductase, enolase and adenosine deaminase,
carry our very different enzymatic functions, in four of the main EC classes (1.-
.-.-, 3.-.-.-, 4.-.-.- and 5.-.-.-). They have active sites at very different locations
(identified by the boxed numbers in the barrel) yet they all share the same fold.

demanding.

Discrete sequence motifs, although often extracted from homology, may serve

as measures for functional specification of proteins [6]. Indeed, using the SP

methodology we do not rely on sequence similarity or multiple sequence align-

ments, yet we can attack convergence and divergence problems even at the 1st EC

level, as is shown in this chapter.

Hegyi & Gerstein [18] quote 13 sets of enzymes (12 pairs and one triplet)

with specific functional convergences involving different folds. These examples

are shown in Table 3.2 where, in addition to the pairs of enzymes sharing the

same function, we display the levels of correct EC hierarchy as determined by SPs

located on these enzymes. For example, the two enzymes in the 8th row in Table

3.2 perform beta-glucanase (EC 3.2.1.73). The first enzyme, gub nicpl, has a fold

12



Figure 3-2: An example of a pair of functionally convergent enzymes: (a) 1DMX
and (b) 1THJ. These are two carbonic anhydrases with the same enzymatic func-
tion (EC number 4.2.1.1) but with different folds; 1DMX is a flat beta sheet,
while 1THJ os a left-handed beta helix. The figures were taken from the PDB
database([20] and [12]

number 3.001.001 and SPs classify it with the specificity of the third component of

the EC number 3.2.1 (L1=3). The second enzyme, gub bacsu, has a fold number

2.018.001 and SPs classifiy its complete EC number (3.2.1.73), i.e. L2=4. SPs

classify correctly, to some level of specificity, 8 pairs out of the 13 sets, 5 of which

are classified completely (the full EC number).

It should be noted that in all the examples of Table 3.2 the sequence similarity

of the pairs of enzymes is very small. The Smith-Waterman similarity test was run

on the aforementioned pairs with the same parameters as in the previous section,

resulting in an average score of 43± 25, compared to 90± 19 from section 4.2. The

two score distributions do not overlap, being ∼2 standard deviations apart. Hence

we conclude that SPs are able to compare correctly pairs of enzymes with remote

homology both in sequence and in structure. Thus we have partially resolved a

difficult problem in functional classification [18].

13



EC Swiss-Prot1 Fold1 L1 Swiss-Prot2 Fold2 L2

1.11.1.10 prxc psepy 3.048.001 1 prxc curin 1.068.001 1
1.15.1.1 sodc1 orysa 2.001.007 4 sodm bacca 4.023.001 4
3.1.3.48 ptpa strco 3.028.001 - pyp3 schpo 3.029.001 4
3.1.26.4 rnh ecoli 3.038.003 4 rnh bpt4 3.039.001 -
3.2.1.4 gun bacsz 1.061.001 - gun paepo 3.001.001 4
3.2.1.8 xyn triha 2.018.001 4 xynb thene 3.001.001 4
3.2.1.14 chia tobac 3.001.001 4 chix pea 4.002.001 4
3.2.1.73 gub nicpl 3.001.001 3 gub bacsu 2.018.001 4
3.2.1.73 gub bacci 1.061.001 -
3.2.1.91 gux1 trivi 2.018.001 4 gux3 agabi 3.002.001 1
3.5.2.6 blp4 pseae 5.003.001 4 blab bacce 4.083.001 4
4.2.1.1 cah mette 2.053.001 - cahz brare 2.047.001 4
5.2.1.8 mip trycr 4.018.001 4 cypr drome 2.041.001 4
5.4.99.5 chmu yeast 1.079.001 - chmu bacsu 4.037.001 -

Table 3.2: 13 sets of functionally convergent enzymes from [18]. Each row contains
a pair of enzymes sharing the same function. In rows 8 and 9 is a triplet of enzymes.
For each enzyme we quote the Swiss-Prot identification, the fold number from the
SCOP database and the EC level to which we were able to classify it using SPs
(L1, L2). A - means that no SPs were found on the enzyme.
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Chapter 4

SPECIFIC PEPTIDES CONTAIN

BIOLOGICALLY IMPORTANT FEATURES

Some areas of the enzyme’s sequence are crucial to its performance. For example, it

is obvious that the mutation of an active site will completely destroy the enzyme’s

ability to catalyse its intended chemical reaction, and with it its raison d’être.

Therefore sequence regions that are crucial to an enzyme will be under evolutionary

pressure, i.e. more conserved than other regions. Thus over-represented sequence

motifs such as SPs may be presumed to be of biological importance. It is of

interest to try and establish particular biological roles for the SPs.

4.1 Coverage of active sites

We start by enquiring how many of the known active and binding sites are located

on SPs, and what is the percentage of SPs involved in hosting them. Out of all

enzymes in Swiss-Prot release 48.3, 42% have annotations of loci of active sites

and binding sites. For simplicity we will refer to both annotations, which are

always indications of single amino acids, as active sites. An explanation on the

Swiss-Prot format and its annotations is available in Appendix D. Given these

loci we find that 65% of all active sites are covered by SPs. This can be compared

with the coverage of random positions on enzyme sequences which, on average, is

only 27%, being 80 standard deviations away.

If an active site annotation is covered by an SP on a given enzyme, it is
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probable that the active sites on other enzymes belonging to the same EC class

will be covered too, due to the high levels of homology. This is apparent in Figure

4-1. The results for coverage of active sites by SPs may therefore be misleading. In

order to estimate the statistical significance of these results more rigourously (see

Methods) we construct a non-redundant set by choosing only one enzyme for each

4-component EC class. The results, displayed in Table 4.1, show some differences

between the total and the non-redundant set. Note the high significance of these

results, and the estimate that about 12% of the relevant SPs (i.e. those that

occur on the queried enzymes) hit active sites. In both data sets the score is given

in number of standard deviations since the p-value is smaller thanthe smallest

positive normalized floating-point in MATLAB.

dataset #enzymes sites hit random sites score #SPs SPs hitting
by SPs hit by SPs in STDs sites

all 21,228 65% 27% 80 26,931 8%
non

redundant 582 52% 21% 33 6,660 12%

Table 4.1: Occurrence of SPs on active sites. Analysis has been carried out on
enzymes that have an active (or binding) site annotation with SPs occurring on
them. The first column states the data set used (all being the total set of enzymes
in Swiss-Prot 48.3 and non-redundant standing for a non-redundant set in which
a single enzyme was chosen for each EC class (see Methods)). The next column
displays the number of enzymes in each data set. In the third column is the
percentage of annotated active / binding sites covered by SPs. Next is the average
percentage of random sites covered by SPs, followed by the score calculated in
standard deviations (STDs). For both results the p-value is smaller than the
smallest positive normalized floating-point in MATLAB. The next column displays
the number of SPs occurring on the given data set, and the last column displays
the percentage of these SPs that cover annotated active / binding sites.

As an example of these features in the data we display in Figure 4-1 aligned

sub-sequences of enzymes, belonging to the same 3rd level but to two different 4th

levels of the EC hierarchy: 6 out of 35 enzymes of 5.1.3.2 and 7 out of 29 enzymes

of 5.1.3.20. Shown are strings belonging to the sequences that include active

sites and binding sites as indicated in Swiss-Prot annotations, and red highlighted

substrings denoting SPs from our lists. Whereas in 5.1.3.20 most active sites are
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5.1.3.20                        ACT                          ACT   ACT
P45048|HLDD_HAEIN  YCLDREIPFFYAS S AATYG-DTKVFREERE---FEGPLNV Y GYS K FLFDQYVRNILPE-AKSPVCGFRYFNVYGPRE 174
Q9CL97|HLDD_PASMU  YCLDREIPFFYAS S AATYG-DKTEFREERE---FEAPLNV Y GYS K FLFDQYVRAILPE-ANSPVCGFRYFNVYGPRE 174
Q7VKK8|HLDD_HAEDU  FCVDRQIPFLYAS S AATYGGRADNFIEERK---FEGPLNA Y GYS K FLFDEYVRRLLPE-ANSAICGFKYFNVYGPRE 175
Q8ZJN4|HLDD_YERPE  FCLDRSIPFLYAS S AATYGGRTDNFIEDRQ---YEQPLNV Y GYS K FLFDQYVREILPQ-ADSQICGFRYFNVYGPRE 175
P67910|HLDD_ECOLI  YCLEREIPFLYAS S AATYGGRTSDFIESRE---YEKPLNV Y GYS K FLFDEYVRQILPE-ANSQIVGFRYFNVYGPRE 175
Q7NTL6|HLDD_CHRVO  YCQHEEIQFLYAS S AATYG-KGTVFKEERQ---HEGPLNV Y GYS K FLFDQVLRQRIKEGLSAQAVGFRYFNVYGPRE 176
Q51061|HLDD_NEIGO  WCQDERIPFLYAS S AAVYG-KGEIFREERE---LEKPLNV Y GYS K FLFDQVLRRRMKEGLTAQVVGFRYFNVYGQHE 177
Q9WWX6|HLDD_BURPS  ACLAQGTQFLYAS S AAIYG-GSSRFVEARE---FEAPLNV Y GYS K FLFDQVIRRVMPS-AKSQIAGFRYFNVYGPRE 174
Q7WGU9|HLDD_BORBR  YCQAERVPFLYAS S AAVYG-GSSVYVEDPA---NEHPLNV Y GYS K LLFDQVLRTRMSL--TAQVVGLRYFNVYGPHE 172
Q72ET7|HLDD_DESVH  LCMETGARFINAS S AATYGDGSLGFSDDDTTMLRLKPLNM Y GYS K QLFDLWAYREGRL---DGIASLKFFNVYGPNE 176
                    *      *  ** * ****                  ***  * *** *  ***                    *****  *

5.1.3.2                         BIND                       ACT
P09147|GALE_ECOLI  MRAANVKNFIFSS S ATVYGDQPKIPYVESFPTGTPQSP Y GKSKLMVEQILTDLQKAQPDWSIALLRYFNPVGAHPSGDM 188
Q56093|GALE_SALTI  MRAANVKNLIFSS S ATVYGDQPKIPYVESFPTGTPQSP Y GKSKLMVEQILTDLQKAQPEWSIALLRYFNPVGAHPSGDM 188
Q9F7D4|GALE_YERPE  MRAAQVKNLIFSS S ATVYGDQPQIPYVESFPTGSPSSP Y GRSKLMVEQILQDVQLADPQWNMTILRYFNPVGAHPSGLM 188
P35673|GALE_ERWAM  MRSAGVNQFIFSS S ATVYGADAPVPYVETTPIGGTTSP Y GTSKLMVEQILRDYAKANPEFKTIALRYFNPVGAHESGQM 188
P55180|GALE_BACSU  MEKYGVKKIVFSS S ATVYGVPETSPITEDFPLG-ATNP Y GQTKLMLEQILRDLHTADNEWSVALLRYFNPFGAHPSGRI 187
Q42605|GALE1_ARATH MAKYNCKMMVFSS S ATVYGQPEKIPCMEDFELK-AMNP Y GRTKLFLEEIARDIQKAEPEWRIILLRYFNPVGAHESGSI 197
Q43070|GALE1_PEA   MAKHNCKKMVFSS S ATVYGQPEKIPCVEDFKLQ-AMNP Y GRTKLFLEEIARDIQKAEPEWRIVLLRYFNPVGAHESGKL 196
O65780|GALE1_CYATE MSKFNCKKLVISS S ATVYGQPDQIPCVEDSNLH-AMNP Y GRSKLFVEEVARDIQRAEAEWRIILLRYFNPVGAHESGQI 200
Q59083|EXOB_AZOBR  CLRAGIDKVVFSS T AAVYGAPESVPIREDAPTV-PINP Y GASKLMTEQMLRDAGAAH-GLRSVILRYFNVAGADPAGRT 187
O84903|GALE_LACCA  MNQFGIKKIVFSS T AATYGEPKQVPIKETDPQV-PTNP Y GESKLAMEKIMHWADVAY-GLKFVALRYFNVAGAMPDGSI 179
                              **   *  **     *  *         * * *  **  *        *        *****  **   *

  SP |  peptides
========================================================================
 SP4 | PFLYASSAA LNVYGYSK YGYSKFLFDEYVR RYFNVYGP YFNVYGPRE FSSSATVYG 
     | IPYVESFPTG MVEQIL LLRYFNP YFNVAGA
     |
------------------------------------------------------------------------
 SP3 | SSAATYG ASSAAVYG RYFNV
     |
------------------------------------------------------------------------

Figure 4-1: Aligned sub-sequences of two different groups of enzymes of level 4 that
share the same 3rd level assignment. The organisms in the upper group, 5.1.3.20,
belong to proteobacteria, while those of the lower group, 5.1.3.2, contain also
eukaryotes (ARATH, CYATE and PEA). Red-highlighted substrings denote SPs.
Amino-acids flanked by spaces denote active sites and binding sites, as indicated
above. A list of all SPs and their assignments to SPN classes is presented below
the sequences.

covered by SPs, this is not the case for the active site of 5.1.3.2.

4.2 Coverage of all annotated biological features

We extend the previous analysis to cover most annotated features in Swiss-Prot,

and present the results in Table 4.2.

Amongst the most impressive results are the SP coverage of DNA binding

annotations (DNA BIND with 79%), of nucleotide phosphate-binding annotations

(NP BIND with 75%) and of annotations of short sequence motifs of biological

interest (MOTIF with 71%). Next come the active sites, binding sites and metal

binding sites (ACT SITE, BINDING, METAL) whose coverage is quite impressive

too, when considering the large amounts of features in the data. To evaluate the

significance of the coverage of a certain feature, we use again the non-redundant
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Feature #features coverage cov NR cov rand NR score in STDs
(pval)

PEPTIDE 33 36% - - -
CA BIND 141 19% - - -
ZN FING 349 48% - - -
DNA BIND 131 79% - - -
NP BIND 9331 75% 65% 42% 7.7 (p=6.8e-15)
MOTIF 3346 71% - - -
SITE 3757 52% - - -
CARBOHYD 8895 15% 13% 20% 3.7 (p=1.1e-04)
ACT SITE 28305 64% 55% 21% 30.8 (p=0)
BINDING 22429 64% 45% 22% 16.0 (p=0)
METAL 38587 59% 39% 17% 23.6 (p=0)
all 113485 59% 43% 22% 34.4 (p=0)

Table 4.2: Coverage of biological function sites. The first column contains the
feature annotation as it appears in Swiss-Prot. Their descriptions can be found in
Appendix D. Next is the number of annotations found on the data set, next is the
percentage of these annotations that were covered by SPs. Beyond the division
are the calculations for the non-redundant (NR) data set: the first column shows
the coverage of features within the NR set, the next column shows the expected
value of the coverage in the background model. Finally is the score in standard
deviations when compared to the background model (see Methods). The p-value
is given in brackets, p=0 meaning that it is smaller than the smallest positive
normalized floating-point in MATLAB. The score is left blank if the NR data set
(of enzymes that are annotated with the given feature) is smaller than 100. The
last row displays the result when all the annotations are taken into consideration,
avoiding double counting.
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data set as in the previous section (see Methods). Significance is evaluated only

for features whose non-redundant set contains more than 100 enzymes. The non-

redundant calculation leads to an over-all coverage of 43% of all features, with

significance of 34.4 standard deviations with comparison to the background model.

Apart from functional classification of novel enzymes, as seen in the previous

chapter, the SPs that cover a certain biological feature may be used to identify

the possible location of the said feature on a novel enzyme.

4.3 SP coverage and classification of DNA binding regions

We further investigate the SP coverage of one of the features mentioned above,

DNA BIND (DNA binding regions). This feature consists of a sequence of usually

21 amino-acids, and is mainly observed in hydrolases, 3.4.21.88. We have analyzed

all enzymes in this EC number that possess the DNA binding region annotation.

Figure 4-2 displays the coverage, by SPs, of each location along the DNA binding

region.This coverage is high, of the order of 70%, at the beginning and at the end

of the domain and quite low in the middle. This sort of positional preference has

not been found in other features that are annotations of more than one amino

acid (i.e. CA BIND, PEPTIDE and ZN FING).

Another interesting result is obtained by looking at the SPs occurring on en-

zymes of the different sub-classes of bacteria. Table 4.3 shows the sets of SPs

observed on proteobacteria of the types α, β, γ and others. The interesting point

to be made here is that the sets of SPs clearly allow for sub-classification of the

relevant bacteria in 3.4.21.88 into three classes: 1. α-proteobacteria, 2. β and

γ-proteobacteria, and 3. others. Thus we observe here SPs that are not only EC

specific but also specific to phylogenetic classes.
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Type #Enzymes Sets of SPs

α 17 16 KSGIHR, PSFDEMK, SKSGIHRLI
1 KSGIHR, SKSGIHRLI

β 8 4 GFRSPNAAE, PPTRAEI
3 NAAEEHL, PPTRAEI
1 PPTRAEI

γ 37 14 NAAEEHL, PPTRAEI
11 AEEHLKALARKGVIEI, GFRSPNAAE,

NAAEEHL, PPTRAEI
5 RAAQYHLEALE
4 GFRSPNAAE, NAAEEHL, PPTRAEI
1 NAAEEHL
1 AEEHLKALARKGVIEI, PPTRAEI
1 GFRSPNAAE, PPTRAEI

other 42 16 SVREIG, GYPPSVREI, STVHGH
8 RGYPPSIREI
5 SVREIG, GYPPSVREI, REIGQAVGL,

STVHGH
4 GYPPSVREI, STVHGH
4 STVHGH
3 REIGQAVGL
2 GYPPSVREI

Table 4.3: Sub-classification of DNA-binding bacteria according to the SPs that
cover the binding region. The first column contains the class of proteobacteria,
followed by the numbers of relevant enzymes belonging to them. Next come sets
of SPs whose common appearance is observed on these enzymes, preceded by the
number of their occurrences. The sets of SPs occurring on the three different
classes of bacteria are disjoint.
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Figure 4-2: Positional coverage of DNA binding regions (as annotated in Swiss-
Prot) by SPs. The x axis represents the position from the beginning of the DNA
binding region. The y axis denotes the percentage of DNA binding regions covered
by SPs per position. A preference of SPs to occur at the starting point and at the
end of the feature is apparent.
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Chapter 5

NOVEL BIOLOGICAL FEATURES

5.1 Mutated SPs damage enzyme function

Having assessed that SPs cover annotations of biological importance in a statis-

tically significant manner, it is of interest to obtain a result on a more global

scale. What is the relevance of SPs in general, especially those that do not cover

sites of known biological importance? The ultimate test for biological relevance

of a certain motif is experimentally altering one of its amino acids by mutage-

nesis, and looking for changes in the enzymatic function. Amongst the Swiss-

Prot annotations is one called MUTAGEN, that annotates a site which has been

experimentally altered by mutagenesis. We can exploit this fact and calculate

whether mutated SPs damage enzymatic function significantly more than other

tested amino acids.

3.509 MUTAGEN annotations exist on our data set. Since active sites, binding

sites and metal binding sites are already known to be crucial to the enzymes’

performance, we eliminate MUTAGEN annotations that refer to sites that are also

annotated as such. We are then left with 2,814 MUTAGEN annotations, 2,562

of which affect the enzymatic function. An event of a MUTAGEN annotation

is defined as successful if the mutation in question has damaged the enzyme’s

performance and un-successful if not.

The size of the population is 2,814, the number of successes in the population

is 2,562. From this population we pick a sample of 919 such MUTAGEN anno-
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tations that are covered by SPs, 867 of which are successful. The hypergeometric

distribution describes the probability that in a sample of n distinctive events drawn

from the population (without returns) exactly k events are successful. The p-value

of the observed results (see Methods) is 3.5e-06, making them highly significant.

This supports the statement that mutated SPs, as a whole, tend to damage the

enzymatic function.

5.2 SPs in active pockets

In the preceding chapter we saw that SPs cover sequences of amino acids of known

biological importance in a statistically significant manner. It was also shown

that mutated SPs, in general, tend to damage enzymatic function of enzymes

significantly more than at other loci. Here we analyse SPs that do not necessarily

cover annotated amino acids with known biological importance.

A certain chain of events led us to the three-dimensional analysis discussed in

this chapter: Taking a second look at Figure 4-1, one notices that if the enzymes

from both EC classes are aligned by the second active site ( Y in both classes) and

gaps are disregarded, the SP3 RYFNV occurs 26-27 amino acids away from the

said active site. We came across a number of such examples of SPs appearing in

what seemed like constant distances from active sites. This led to the conclusion

that such SPs might take part in the catalytic activity of active sites. The obvious

place to look for such cooperation is in the three-dimensional structure of enzymes.

Figure 5-1 shows the relationship between SPs and spatial structure. The

active site and two binding sites appear close in the structure, creating a catalytic

area, even though they occur hundreds of amino acids apart on the sequence.

This enzyme contains many SPs. Two overlapping SPs cover the active site and

lie along the catalytic area. Another one - HMVRNI - lies along the other side

of the catalytic area. The active and binding sites are cradled by SPs, some of

which are far away on the sequence. These SPs share a pocket with the active site

and the two binding sites, and one suspects they may play a role in the catalytic
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Figure 5-1: (a) Three-dimensional display of enzyme P07649, belonging to
5.4.99.12, showing [1] an active site D at sequence location 60, [2] a binding site
Y at location 118, [3] a binding site L at 245. The active site is common to two
overlapping SPs [4] (CAGRT(D)AGVH). Other shown SPs are [5] GQVVH at
locations 67-71, [6] FHARF at 107-111, known to be a tentative RNA-binding
peptide, [7] ENDFTS at 157-163 and [8] HMVRNI at 201-207, sharing a pocket
with the active and binding sites. GQVVH and ENDFTS belong to SP3, all other
motifs to SP4. (b) A different perspective of the same enzyme emphasising the
pocket containing the active sites and cradling SPs.

activity.

One is naturally tempted to assign importance to SPs with high solvent-

accessibility and in proximity of active sites. High solvent-accessibility means

that the SP lies on the surface of the enzyme’s structure, and therefore can in-

teract with external substrates. The proximity to an active site reinforces the

argument that the SP may play a role in the catalytic activity of the enzyme.

SPs that automatically obey these demands are those that reside in the pockets

of active sites in the spatial structures of enzymes.

For this study we use the CASTp [9] database, that runs a geometric algorithm

on spatial structures listed in the PDB, identifying their pockets. Each structure

has a list of pockets and the amino-acids composing them. The interest is directed

only, for the moment, towards active pockets - pockets that contain an active or

binding site amongst their constituting amino-acids. We define an SP as lying

within an active pocket if at least four of its amino-acids reside in the pocket

(i.e. are amongst the amino-acids constituting the active pocket). Figure 5-2

illustrates an example of an active pocket both in structure and in sequence. SPs
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are highlighted on the sequence, demonstrating the definition of SPs residing in

active pockets.

We select 1031 enzymes that possess such active pockets. There are 8860 SPs

that occur on them, 28% of which lie within these active pockets. Defining a

background model (see Methods) of random peptides selected for each event of

an SP hitting a particular enzyme, we estimate that 18% of all SPs belong to

events that pass an FDR limit [8] of 0.05, i.e. are statistically significant events.

Most of them (88%) do not contain an active site, and have not yet been studied

experimentally. Table 5.1 presents the these results.

#enzymes #SP #SPs in pockets #Significant SPs #Significant SPs
FDR=0.05 without site

1031 8860 2487 (28%) 1622 (18%) 1426

Table 5.1: Occurrence of SPs in spatial proximity to active sites. This is an
analysis of 1031 enzymes whose spatial structure is known (in PDB) and possess
three-dimensional pockets that include active sites (using CASTp [9]). The table
lists the number of enzymes that were analysed and the number of SPs that are
located on these enzymes. This is followed by numbers of SPs lying (with at
least four residues) in pockets including active sites. Requiring high significance
of the latter, through a background model described in Methods, and using the
FDR limit of 0.05, we obtain the results in the next column, the number and
percentage of SPs whose events passed the FDR test. The last column shows the
number of statistically significant SPs that do not contain the active or binding
site.

5.3 SPs in pockets of other biological features

Not only active sites tend to reside in pockets; other biological features do so too,

such as metal binding sites, nucleotide phosphate-binding regions and more. In

light of the interesting results for pockets of active sites, we perform the same anal-

ysis on pockets of the other biological features (as seen in Chapter 3). Table 5.2

illustrates results of statistically significant occurrences of SPs in pockets of Swis-

sProt annotated features. Again, these statistically significant occurrences of SPs

in pockets of different SwissProt annotated features may have crucial biological

roles in the performance of the enzymatic functions.
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Figure 5-2: Example of an active pocket in enzyme 1AG1O (PDB id), drawn using
JMOL (www.jmol.org). The atoms of the amino acids belonging to the active
pocket are shown in red and green on the backbone spatial structure (above).
The same amino-acids are highlighted in red and green in the sequence (below).
The active sites are in red and the rest of the amino acids constituting the pocket
are in green. The SPs appearing on this enzyme are underlined in the sequence. It
can be noted that none of the amino acids of the first SP, GAFTGE, belong to the
active pocket. The second SP, HSERRAY, covers the active site, H, and contains
5 more amino acids belonging to the active pocket (and therefore is said to lie in
the active pocket). Three partially ovelapping SPs appear around location 210.
Only one of them, ILYGGSV, is said to reside in the pocket.
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Feature #Significant SPs #Significant SPs #Feature pockets
in pockets without feature with SPs

NP BIND 1,246 1,103 135
MOTIF 116 92 16
SITE 263 258 28

CARBOHYD 56 44 7
ACT SITE 1,057 1,024 116
BINDING 945 828 95
METAL 867 751 96

all 2,919 2,300 329

Table 5.2: Occurrence of SPs in spatial proximity to SwissProt annotated features.
This is an analysis of enzymes whose spatial structure is known (in PDB) and
possess 3D pockets that include any SwissProt feature annotation (using CASTp
[9]). For each feature, the table shows the number of SPs lying (with at least
four residues) in pockets including the given feature’s residues. Requiring high
significance of the latter, through a background model described in Methods, and
using the FDR limit of 0.05, we obtain the SPs in the first column. The second
column shows the number of these SPs that do not contain the feature, and
therefore without experimental verification. In the last column is the number of
enzymes which have a pocket with the said feature, and that have an SP lying in
it.

5.4 Glycine-enriched SPs in active pockets

Here we discuss a novel finding concerning SPs located in active pockets, whose

statistical significance was determined. Comparing the relative frequencies of all

amino-acids occurring on these SPs with the frequencies observed on enzymes in

general one finds a clear over-representation of glycine. Table 5.3 compares the

glycine frequency on enzymes with that on SPs in general and with SPs whose

occurrence in active pockets is statistically significant. It turns out that it is

highest for those SPs that lie in these pockets, regardless of whether they contain

the active site or not. It should be stressed that amongst the amino acids that

constitute the active pockets, glycine frequency is normal (as in all the data set),

emphasising that the glycine enrichment is a specific characteristic of the statisti-

cally significant occurrences of SPs in active pockets. Glycine frequency is normal

also for amino acids constituting other pockets.

Glycine is the smallest amino acid, having effectively no side chain, and there-

fore bestows rotational flexibility to the site (i.e appears in turns and hinges) and
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Data set Glycine frequency

all enzymes 7.5%
all SPs 9.2%
SPs in active pockets 11.1% (p=4.0e-04)
SPs in active pockets, not on site 11.0% (p=2.9e-04)
amino acids in active pockets 8.6%

Table 5.3: Frequencies of the glycine amino acid in various data sets. SPs in active
pockets refers to SPs whose occurrence in active pockets is statistically significant
(see Methods). The p-values in rows 3 and 4 refer to a comparison with frequency
distributions of amino-acids in all enzymes (see Methods). The glycine frequency
on all enzymes is compared to that on SPs in general and SPs in active pockets.
Significance is calculated for SPs that lie in these pockets and do not cover the
active site. Glycine frequency is normal (8.6%) amongst the amino acids that
constitute the active pockets as a whole.

contributes to packing of nearby residues. It is generally accepted [38] that the

location of glycines in the structure of a protein influences its motion.

One can asses whether the glycine enriched SPs tend to appear on turns and

hinges by checking on which secondary structures they appear. As explained in

the Introduction, the most common secondary structures are α-helices, β-sheets

and turns. SwissProt annotates the amino acids that take part in these secondary

structures, in enzymes for which the three dimensional structure is known. Table

5.4 shows the analysis of the characteristic secondary structure of our SPs, with

glycines and without. Results show that the glycine enriched SPs tend to occur on

turns and un-annotated secondary structures, both compared to a random model

and compared to the SPs that are not glycine enriched. Turns and unannotated

secondary structures obviously need to be flexible, while α-helices and β-sheets are

pretty rigid. An example of a glycine-enriched SP appearing in an active pocket,

on a sharp bend of an enzyme structure is shown in Figure 5-3.

Following the reasoning according to which glycine influences protein motion

and bestows rotational felxibility, [44] have examined 23 enzymes and suggested

that glycine residues may provide flexibility to active pockets in enzymes.This is in

line with the induced fit model that has been proposed by [21]. According to this

model active pockets are flexible and go through conformational changes when
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At least 1 AA belongs
to a secondary

structure
data #SPs none turn helix strand

At 795 #SPs 583 443 281 345
least #rand 523 353 274 373
1 Gly p-val 3.1e-09 0 0.29 0.02

Table 5.4: Glycine enriched SPs’ secondary structures (turn, α-helix, β-sheet or
no annotation). The data set analysed in this table is SPs whose occurrences in
active pockets were statistically significant and that consist of at least one glycine.
The number of SPs is presented in the second column. An SP may take part in
different secondary structures (one demands that at least one of the amino acids
of the SP be annotated as taking part in a certain secondary structure). Thus,
for example, the 281 SPs that are shown to take part in α-helices each have at
least one amino acid annotated as occurring on an α-helix, but some of these SPs
may also occur on β-sheets or turns or have no annotation. One also performs the
same count for randomly picked SPs (of the same length and number), presenting
here the average count. The p-value is calculated for each test. 0 is marked where
the calculated p-value is smaller than the smallest positive normalized floating-
point in MATLAB. The results show that glycine enriched SPs tend to appear on
turns and un-annotated secondary structures significantly more than expected by
random motifs.

Figure 5-3: Example of a glycine enriched SP in an active pocket. A schematic
structure of 1B2M, with the SP ASGNNF in light blue. The SP lies on a sharp
bend in the structure, the glycine right in the middle of it. The figure was made
using RasMol [34]
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Figure 5-4: The induced fit mechanism is shown in its various stages. (a) the
active pocket is in an open state, (b) a substrate enters the active pocket, (c) the
active pocket changes its conformation to a closed state, hugging the substrate,
(d) the catalysis takes place, and may change the substrate’s conformation, and
therefore also the active pocket’s conformation, (e) the products leave the active
pocket and (f) the active pocket changes it conformation back to the original one.
Pictures from www.phschool.com.

binding to a substrate: they have an open form, where the solvent-accessibility

is increased revealing the active site, and a closed form when the substrate is

bound. This enables both improved catalysis (since excess water molecules may

be squeezed out) and permits multiple selectivity of the enzyme. The mechanism

is illustrated in Figure 5-4

In addition to the observation of increased glycine content in active pockets

[44], we note that the strategic location of glycine has been suggested as a mech-

anism for achieving an induced fit for some specific enzymes [31], [39], [28]. It has

been concluded [44], [31] that fluctuations at or in close proximity to the active

site can represent an induced fit mechanism, and that the observed fluctuations

are associated with the location of glycines in the protein structure. From Table

5.3 we learn that significant glycine enrichment is observed on SPs residing in

active pockets. Thus we may hypothesize that the latter are responsible for the

induced fit mechanism.

At this point it might be appropriate to mention that single site mutations in-
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Feature SPs in SPs in SPs in
feature pockets feature pockets feature pockets

not containing feature containing feature
#SPs %Gly pvalue #SPs %Gly pvalue #SPs %Gly pvalue

NP BIND 1,246 12.3 1.2e-04 1,103 11.4 5.7e-04 152 19.28 3.1e-05
METAL 867 10.6 2.6e-02 751 10.3 2.9e-02 117 12.4 7.6e-02
MOTIF 116 9.6 3.6e-01 92 9.2 4.9e-01 24 11.36 2.1e-01
SITE 263 10.4 3.7e-02 258 10.6 2.4e-02 5 2.33 -

CARBOHYD 56 8.9 5.7e-01 44 10.0 3.1e-01 12 5.1 -

Table 5.5: Glycine statistics of SPs in pockets of SwissProt annotated features
that appear in pockets. Three types of data sets are analysed: SPs residing in the
pocket of a given SwissProt annotated feature, SPs residing in the pocket of the
feature that do not contain the actual feature, and last of all, SPs in the pocket
that do contain the annotated feature. P-values are calculated only for sets of at
least 20 SPs. Glycine enrichment is apparent in SPs that occur in pockets of the
NP BIND feature and METAL feature.

volving glycines, i.e mutating glycines or changing non-glycine to glycine residues,

can be lethal. Such mutations always affect protein stability [11, 35], cause changes

in specificity [41], and are responsible for about 15% of human genetic diseases

[42].

It is also interesting to see whether SPs that reside in pockets of other biological

features are glycine enriched too. Table 5.5 displays the results for SwissProt

annotated features that may appear in pockets: SPs in pockets of NP BIND

annotations are generally very glycine-enriched, especially those containing the

feature. SPs in pockets of METAL annotations are less glycine-enriched than in

active pockets, but are still interesting. SPs in pockets of the remaining features

(MOTIF, SITE and CARBOHYD) do not show significant glycine enrichment.
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Chapter 6

DISCUSSION

This study substantiates the importance of Specific Peptides both as classification

tools and especially as biologically relevant functional elements.

Conventional classification methods rely on sequence or structure similarity. In

Chapter 3 we introduced extreme classification problems, where straightforward

sequence or structure similarity analysis may lead to wrong conclusions. While

sequence similarity is also at the root of most SPs of level 4 (see some examples

in Figure 4-1), we have demonstrated the role of SPs as carriers of information

in those extreme situations. SPs were successful in the classification of enzymes

with evolutionarily convergent functions (extreme cases of remote homology, the

enzymes differing in sequence and structure). SPs classified successfully both

non-homologous enzymes with high sequence similarity and enzymes with evo-

lutionarily divergent functions, such as the TIM barrel enzymes. This may be

attributed to the fact that SPs are deterministic motifs and not forms of general

expressions.

The relevance of SPs to biological functions was evaluated in Chapter 4, by

finding the coverage of amino acids that are known to be crucial to these func-

tions, such as active-sites, metal binding sites, Ca-binding sites, etc. Many of the

functional annotations are well covered by SPs. The statistical significance of the

observed coverage was also evaluated on non-redundant data sets. The results are

extremely significant.

In the case of DNA binding regions we found that the coverage by SPs is
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peaked at the beginning and at the end of the region. We also discovered that

these SPs allow for sub-classification of the enzymes of the relevant bacteria into

phylogenetic classes. This is quite natural since SPs are highly conserved sections

of proteins that belong to different species and share the same EC classification.

Chapter 5 discussed possible biological roles of SPs that do not contain anno-

tated sites known to be crucial to the enzymatic function. In order to verify the

biological importance of any individual SP one should perform mutations of the

different amino acids of the SP, testing how crucial the SP is to the function of the

enzyme. In our large-scale study, we have checked the existing MUTAGEN anno-

tations in the Swiss-Prot database. In doing so we tested a large set of SPs that

do not possess known annotations. The number of affecting mutagenesis results

occurring on these SPs was compared to the affecting mutageneses in all the data

set. Once again the significant p-value confirms the fact that SPs are biologically

important.

After assessing that SPs cover sites of known biological importance, and that

they affect the the enzyme’s function, it is of interest to predict biological roles

of previously un-annotated sites. All SPs that reside in active pockets, do not

contain annotated sites, and are statistically significant are such novel structures.

Their three-dimensional vicinity to a crucial site, and high solvent accessibility,

are indications of their expected biological importance. An analysis of such a set

of SPs has lead to the following interesting observation: SPs that reside in active

pockets and do not contain the actual active or binding site, are significantly

enriched with glycine. This holds even when compared to the distribution of all

residues in active pockets. We suggested the interpretation that these SPs are

responsible for the induced fit mechanism in these enzymes.
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Chapter 7

METHODS

7.1 Data set

In this work the data set is the same as that used in [22]. Protein sequences

annotated with EC numbers were extracted from the Swiss-Prot database (Release

48.3, 25-Oct-2005). To obtain a high-quality, well-defined training data set, the

data was strictly screened and the following sequences were removed: sequences

shorter than 100 amino acids or longer than 1200 amino acids, sequences with

uncertain annotation, and enzymes that catalyse more than one reaction (e.g.

have more than one EC number).

7.2 SP sets

MEX was separately applied [22] to each one of the six enzyme classes, with the

parameters η = 0.9 and α = 0.01. The graph vertices of MEX represent the

20 amino acids that comprise the enzyme sequences. The resulting motifs, or

peptides, were classified according to their EC classification specificity, resulting

in Specific Peptide (SPs). An SP4 is a peptide that occurs only on enzymes

belonging to the same four-component EC classification (e.g. only enzymes of

EC 5.2.3.20). An SP3 is a peptide that occurs only on enzymes belonging to the

the same 3-component EC classification (e.g. enzymes of EC 5.3.2.20, 5.3.2.1,

5.3.2.4 and so on, but only of EC 5.2.3.-). In the same fashion one defines SP2
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5.2 ....

5.1.1 5.1.2 5.1.4 ....5.1.3

.... 5.1.3.205.1.3.2

5.1

1 632 4 5

5.3

SP1

SP2

SP4

SP3

 RYFNV

SSAATYG

ASSAAVYG

etc...

 PFLYASSAA 

LNVYGYSK

RYFNVYGP

etc...

Figure 7-1: The SP (specific peptide) definition: RYFNV is an SP3 since it occurs
on sequences of enzymes with the same first three components of the EC number
(5.1.3.-) but with a different fourth component. On the other hand RYFNVYGP
is specific to a level 4 EC number (5.1.3.20), and therefore is an SP4.

and SP1. This is represented in Figure 7-1. These SPs were filtered to obtain a

non-redundant set (i.e. if within an SPN group one motif contained another, the

shorter one was kept).

42,874 SPs have been extracted that specify the full EC number, i.e. corre-

spond to the fourth level of the EC hierarchy and denoted as the SP4 set. Other

SPs divide into 2,945 in the SP3 set, 1,159 in the SP2 set and 5,414 in the SP1

set, the latter specifying the enzyme class (one out of six classes). We employ

these sets of SPs in our analysis. The appearance of an SP on the sequence of

an enzyme implies that the enzyme belongs to the particular EC branch to which

the SP belongs. On average 9.5 SPs appear on an enzyme. Obviously their EC

assignments have to be consistent with one another.

7.3 Statistical significance of SP coverage of annotated fea-

tures

In Chapter 4 we calculate the SP coverage of a given Swiss-Prot annotated feature.

Let us clarify this by considering an example of the DNA BIND feature in Figure
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D-1 in Appendix D. The 20-amino acid-long annotation starts on the 28th amino

acid in the sequence and ends on the 48th amino acid (highlighted in red). Two

SPs are found to overlap with the feature, therefore this annotation is said to

by covered. In the same manner the coverage of all DNA BIND appearances is

assessed.

To analyse the statistical significance of the results we compare them to the

expected value of a background model. The latter is defined by labelling randomly

picked strings from the enzyme’s sequence as pseudo-features, equivalent in size

and number to the occurrences of the real features.

According to the central limit theorem, the distribution of a sum of a large

number of independent variables is approximately normal. The rule of thumb is

that a sample size of at least 30 will suffice. Therefore the background model is run

30 times, enabling the calculation of an expected value and standard deviation.

In our example from Figure D-1, 30 different sub-sequences (each 20 amino acids

long) are randomly chosen from the enzyme sequence, and for each the coverage is

checked. The procedure is carried out on all the enzymes on which the DNA BIND

feature occurs.

The average number of covered annotations and standard deviation define

the normal distribution of the background model. A p-value is calculated as

the probability of observing at least as many covered annotations as observed in

reality, in the background model.

Since enzymes belonging to the same EC class share high homology, if an active

site is covered by an SP on one enzyme it is probably covered also on the other

enzymes of the class (as can be seen in Figure 4-1). Coverage results may be biased

and therefore the statistical significance is calculated also on a non-redundant set

of enzymes (enzymes without high sequence similarity). The set is constructed

by finding all enzymes that include the said feature, and choosing one arbitrary

enzyme for each EC number.
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7.4 Calculation of the p-value for the mutagen analysis

Chapter 5 includes an analysis of the effect on enzymatic function of SPs whose

sites have been experimentally altered by mutagenesis.

A hypergeometric distribution is encountered. This is a discrete probability

distribution that describes the number of successes in a sequence of n draws form

a finite population without replacement.

The size of the population ( i.e. the number of MUTAGEN annotations that

do not coincide with active, binding or metal binding sites) is defined as N. The

number of successes in the population ( i.e. the number of MUTAGENs that

represent mutations that damaged the enzymatic function) is defined as D. The

hypergeometric distribution describes the probability that in a sample of n dis-

tinctive events drawn from the population ( the MUTAGEN annotations that are

covered by an SP) exactly k events are successful. The said probability for k=X

successful events is given by:

Pr(k = X) = f(k; N, D, n) =

D

k


N −D

n− k


N

n


(7.1)

In this case we have X = 1,197, N = 3,509, D = 3,254 and n = 1,251. The p-value

is the cumulative of this distribution, i.e Pr(k ≥ 1, 197).

7.5 Statistical significance of SPs residing in active pockets

In Chapter 5 we define an active pocket as a pocket in the three-dimensional

structure of an enzyme that includes an active or binding site. An SP is defined

as residing in an active pocket if at least four of its amino acids also constitute

the active pocket. Figure 5-2 shows an example of the structure of an enzyme,

demonstrating an active pocket, the amino acids belonging to it and SPs residing
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in it. The data regarding the amino acids that constitute pockets was taken from

the CASTp database [9].

Since different numbers of SPs of different lengths appear on different enzymes,

one has to define the random variable, the statistical event, as the occurrence of

a given SP within an active pocket in a given enzyme.

Let us define N as the number of different SPs occurring on an enzyme’s

sequence. We assign to each SP a random variable representing a Bernoulli trial:

the possible outcomes of a randomly picked motif of the same length as the SP:

Xi = {1, 0}; ∀i ∈ {1, 2, ..., N} (7.2)

If the randomly picked motif occurs in an active pocket, it is called a success

and the appropriate random variable is assigned 1. If the randomly picked motif

does not occur in an active pocket, it is assigned 0. The probability of success

of each variable is defined as the number of possible motifs on the sequence that

occur on an active pocket divided by the number of all possible motifs on the

sequence. Let us define the probabilities of success for each random variable as:

pi ∈ [0, 1]; ∀i ∈ {1, 2..., N} (7.3)

It should be noted that it is possible for one such probability to be equal

to 0 (if the motif isn’t long enough to cover four amino acids belonging to an

active pocket). Let us now define a new random variable, describing the number

of successes or the number of motifs occurring in an active pockets our of N

randomly picked motifs (equal in number and size to the SPs appearing on the

enzyme sequence):

Z =
∑

i=1,2,...,N

Xi (7.4)

For a given event of an SP occurring in an active pocket, the p-value is calcu-

lated as the probability that at least one of N randomly picked motifs occurs in
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an active pocket, i.e.

p-value = Prob(Z ≥ 1) = 1− Prob(Z = 0) =
∏

i=1,2,...,N

(1− pi) (7.5)

P-values are calculated for all events of SPs in active pockets, creating a

multiple-hypothesis problem. This occurs when a number of independent ob-

servations are filtered using the same acceptance criterion (i.e the same p-value

criterion) that one would use when considering a single event. A single event’s

acceptance criterion requires that the observed data be highly unlikely under a

background model. A large number of independent observations, subject to the

same acceptance criteria, outweighs the original high unlikelihood associated with

each individual test. It becomes increasingly likely that one will observe data that

satisfies the acceptance criterion by chance. These errors are called false positives

because they positively identify a set of observations as satisfying the acceptance

criterion while that data in fact represents the null hypothesis. False discovery

rate (FDR) control [8] is a statistical method used in multiple hypothesis testing

to correct this phenomenon. Significant events are selected here according to an

FDR limit of 0.05.

7.6 Statistical significance of differences between distribu-

tions

Tables 5.3 and 5.5 in Chapter 5 compare two amino acid frequency distributions.

Let us define the frequency of each amino acid in all enzymes as Xi (i=A, C, D...W,

Y). The corresponding frequency in a certain set of SPs is defined as Yi. We then

calculate the differences between the frequencies for each amino acid, Zi = Yi−Xi,

and evaluate the average and standard deviation of these differences.

The statistical significance of the difference between the frequency of a certain

amino acid in a given SP set and its frequency in all the data is evaluated by

calculating a p-value. This is done by comparing the difference in frequencies for
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a certain amino acid to the average difference.
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Appendix A

THE MEX ALGORITHM

MEX (Motif Extraction Algorithm, [37]) is an unsupervised algorithm that ex-

tracts statistically significant motifs from a given set of data. The algorithm

is data driven, meaning that the motifs that it finds are not necessarily over-

represented in the data. This fact gives it an advantage on other motif extraction

algorithms, usually based on sequence similarity (and therefore missing motifs that

are not over-represented). Originally, MEX emerged from the a linguistic context,

and since spoken language is intuitive, it might be a good idea to describe MEX

in this context.

Let us define the problem our algorithm confronts: given a corpus with all word

delimiters removed (such as spaces, and all forms of punctuation), it must fathom

the original words that assemble the corpus. The algorithm uses a directed graph:

the vertices are composed of the letters of the alphabet and begin and end vertices.

V = {a, b, c, ...., y, z, begin, end}. A set of ordered pairs of vertices, or edges,

represent the order in which the letters appear in the corpus, i.e. the edge e(t, h),

connecting between the vertices t and h, represents that fact that h appeared after

t at some point in the corpus. The first sentence in the corpus is loaded onto the

directed graph, connecting the vertices with directed edges, starting at the begin

vertex and ending at the end vertex. This procedure is illustrated in Figure A-1,

and is repeated for all sentences of the corpus.

As can be seen in Figure A-1 (d), the edges connecting the vertices a, l, i, c

and e, consecutively, seem to form a bundle; edges seem to converge towards the
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Vertex Conditional probability expression Conditional probability
a P( a ) = 8,770 / 109,625 0.08
l P( al|a ) = 1,046 / 8,770 0.12
i P( ali|al ) = 486 / 1,046 0.45
c P( alic|ali ) = 397 / 486 0.85
e P( alice|alic ) = 397 / 397 1
w P( alicew|alice ) = 48 / 397 0.12
a P( alicewa|alicew ) = 21 / 48 0.44
a P( alicewas|alicewa ) = 17 / 21 0.81
b P( alicewasb|alicewas ) = 1 / 17 0.12
e P( alicewasbe|alicewasb ) = 1 / 1 1
g P( alicewasbeg|alicewasbe ) = 1 / 1 1

Table A.1: The first column shows which vertex were looking at, the second
column shows what conditional probability were interested in, and its calculation.
The last column shows the final probability after calculation.

vertex a, walk together through l, i, c and e, and seem to diverge at the vertex

e, as is illustrated in refFig:03. This happens since the sequence alice appeared

in all four phrases, but in different contexts. So if one were able to recognize all

such bundles, these would hypothetically lead to the words that constitute the

corpus. Let us rephrase this in probabilistic terms by constructing a conditional

probabilities matrix. Table A.1 shows the calculation of the matrix for a toy

example, the first sentence form Alice in Wonderland: Alice was beginning to get

very tired of sitting by her sister on the bank and having nothing to do. The input

of MEX is: alicewasbeginningtogetverytired......

In the first row of Table A.1, P(a) the probability of appearing in the corpus

is calculated resulting in 0.08. In the next row we see the calculation for P(l—a)

the probability of l appearing after a, giving 0.12. Continuing along the sentence

the probability slowly rises, until it reaches 1 on the fifth vertex, meaning that e

always appears after the sequence alic. But in the next row, there is a sharp drop

in the probability: w appears after only 12% of the occurrences of alice. This is

the quantitative expression of the divergence of edges we saw before, meaning that

after the word alice any new word can begin. At a certain point in the sentence

the probability will be 1 and remain so since there is only one such sentence in the

corpus. These probabilities are called the right moving probabilities (PR), since
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Figure A-1: Loading the directed graph: (a) the empty graph with the vertices V
= {a, b, c, ...., y, z, begin, end} (b) the sentence alice was is loaded: the first edge
connects vertex begin and vertex a, the second edge connects a and l and so on,
creating a path on the graph that ends on the vertex end (c) the sentence is alice
is loaded (d) all 4 sentences are loaded on the graph. The edges seem to form a
bundle along the vertices a, l, i, c and e.
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they are calculated by moving to the right along the corpus. We also calculate

the left moving probabilities (PL), the conditional probabilities in the opposite

direction, from the end to the beginning. These probabilities are calculated for all

positions, formally:

PR(ei; ej) = p(ej|eiei+1ei+2...ej−1) =
l(ei; ej)

l(ei; ej−1)

PL(ej; ei) = p(ej|ei+1ei+2...ej−1ej) =
l(ej; ei)

l(ej; ei+1)

where ei is vertex i, and l(ei; ej) is the number of sub-paths connecting vertices

ei and ej. The end of a motif is defined as the vertex in which a dramatic drop in

the right moving probabilities is apparent (expressing the divergence of edges from

the vertex), and the beginning of a motif as a dramatic drop in the left moving

probabilities (expressing the convergence of edges to that vertex), formally; we

define the drops at a given point as:

DR(ei; ej) = PR(ei; ej)/PR(ei; ej−1)

DL(ej; ei) = PL(ej; ei)/PL(ej; ei+1)

demanding DR(ei; ej) < η for the ending of the motif at vertex ej−1, and DL(ei; ej) <

η for the beginning of the motif at vertex ei+1. η is the threshold parameter. This

is illustrated in Figure A-2.

The probabilities have been calculated from finite numbers, creating a low

statistics problem which may give misleading results. Another parameter is intro-

duced, α < 1, to take care of this: we require that the average of DL and DR be

smaller than α.

For more details see [37] and http://adios.tau.ac.il.
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Figure A-2: An alice example: a drop in the right moving probability denotes the
end of the motif at the vertex e, and a drop in the left moving probability denotes
the beginning of the motif at the vertex a, thus detecting the motif alice.
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Appendix B

MOTIF EXTRACTION: COMPARISON OF

SPS TO PROSITE MOTIFS

Here we compare the SPs performance to that of ProSite motifs. SPs cover 93%

of enzymes, while ProSite motifs cover only 63%. Figure B-1 demonstrates this

point.

It is of interest to assess how SPs cover ProSite motifs. Since ProSite motifs

are expressed as regular expressions or weight matrices, and SPs are deterministic

motifs, we search for the appearance of the ProSite regular expression on a given

enzyme and check how well SPs cover tit. The average length of ProSite motifs is

18 amino acids (double the average length of SPs). We define a ProSite motif to

be covered by SPs if at least 40% of its amino acids also belong to an SP on that

enzyme. We can then calculate what percentage of unique ProSite peptides are

covered by SPs, with the given definition. To calculate the statistical significance

Figure B-1: Venn Diagram of the coverage of enzymes by SPs and/or ProSite
motifs. SPs cover 93% of our enzyme data set, while ProSite motifs cover only
63%.
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Figure B-2: Comparison of the coverage of ProSite peptides by SPs and by ran-
domly chosen motifs, for different definitions of a covered ProSite motif (i.e. dif-
ferent minimal percentages of ProSite amino-acids that belong also to the motifs
in question.

of these results, we calculate the coverage of ProSite motifs by randomly chosen

motifs from the enzyme sequences (equal in number and length to the SPs on

them). Figure B-1 compares the SP coverage and the average random coverage of

ProSite peptides for various minimal percentages.

For example, if we require that at least 40% of a ProSite peptides amino acids

be covered by SPs to consider it entirely as covered, then SPs cover 48% of ProSite

peptides, and random motifs cover on average only 24%, with a standard deviation

of 0.06%. These statistically extremely significant results demonstrate that SPs

not only cover more enzymes than ProSite motifs do, but they also cover existing

ProSite motifs favourably.
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Appendix C

THE SMITH-WATERMAN ALGORITHM

The Smith-Waterman Algorithm performs local alignment between two sequences;

it finds a pair of segments, one from each of the two long sequences, such that there

is no other pair of segments with greater similarity (homology). The similarity

measure used here allows for arbitrary length deletions and insertions.

Let us define the two sequences as A = a1a2...an and B = b1b2...bm. A sim-

ilarity s(a, b) is given between sequence elements a and b, and a weight Wk is

assigned to deletions of length k. So as to find pairs of segments with greatest

similarity, a matrix H is constructed. All cell values start at zero and are not

allowed to fall below zero (so a new alignment path can begin at any point). So

we set: Hk0 = H0l = 0 for 0 ≥ k ≥ n and 0 ≥ l ≥ m. Preliminary values of H have

the interpretation that Hij is the maximum similarity of two segments ending in

ai and bj, respectively. When calculating the value for a cell in matrix H, there

are four possibilities for ending the segments at any ai and bj:

1. If ai and bj are associated, the similarity is Hi−1,j−1 + s(ai, bj).

2. If ai is at the end of a deletion of length k, the similarity is Hi−k,j −Wk.

3. If bj is at the end of a deletion of length l, the similarity is Hi−k,j −Wl.

4. Finally, a zero is included to prevent calculated negative similarity, indicat-

ing no similarity up to ai and bj. (Zero need not be included unless there

are negative values for s(a, b)).
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The equation expressing this:

Hij = max{Hi−1,j−1 + s(ai, bj), max
k≥1

{Hi−k,j −Wk}, max
l≥1

{Hi,j−l −Wl}, 0} (C.1)

for 1 ≥ i ≥ n and 1 ≥ j ≥ m.

The pair of segments with maximum similarity is found by starting with the

cell of greatest value in H. The other matrix elements leading to this maximum

value are then sequentially determined with a traceback procedure ending with

an element of H equal to zero. Thus both the segments and the corresponding

alignment are produced. The pair of segments with the next best similarity is

found by applying the traceback procedure to the second largest element of H not

associated with the first traceback.

We bring here a simple example, on two DNA sequences: S1 =CAGCCUCGCUUAG

and S2 = AAUGCCAUUGACGG. In this example, if ai and bj are a match, then

the similarity is set to s(ai, bj) = 1. If ai and bj are a mismatch, then the similarity

is set to s(ai, bj) = −1/3. The deletion weight was chosen to be Wk = 1 + k/3

(in general it must be at least the difference between a match and a mismatch).

Figure C-1 shows the construction of the H matrix, calculating the value for H6,7.

max
k≥1

{H6−k,7 −Wk} = max
k≥1

{H6−k,7 − (1 + k/3)}

= max{H5,7 − (1 + 1/3), H4,7 − (1 + 2/3), H3,7 − (1 + 3/3),

H2,7 − (1 + 4/3), H1,7 − (1 + 5/3)}

= max{1.0− (1 + 1/3), 0.7− (1 + 2/3), 0.0− (1 + 3/3),

0.0− (1 + 4/3), 0.0− (1 + 5/3)}

= max{−1/3,−29/30,−2.0,−7/3,−8/3}

= −1/3

(C.2)
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Figure C-1: Partially filled H matrix. The the value for the element
H6,7 is calculated by considering the maximal element in its sub-row, the
maximal element in its sub-column, and the element in the its diagonal,
while taking into consideration mismatch penalties. Figures are taken from
http://www.maths.tcd.ie/ lily/pres2/sld001.htm.
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max
l≥1

{H6,7−l −Wl} = max
l≥1

{H6,7−l − (1 + l/3)}

= max{H6,6 − (1 + 1/3), H6,5 − (1 + 2/3), H6,4 − (1 + 3/3),

H6,3 − (1 + 4/3), H6,2 − (1 + 5/3), H6,1 − (1 + 6/3)}

= max{1.7− (1 + 1/3), 3.0− (1 + 2/3), 1.0− (1 + 3/3),

0.0− (1 + 4/3), 0.7− (1 + 5/3), 1.0− (1 + 6/3)}

= max{11/30, 4/3,−1,−7/3,−59/30,−2}

= 4/3

(C.3)

H6−1,7−1 + s(a6, b7) = H5,6 + s(C, C) = 0.3 + 1(match) = 1.3 (C.4)

So if we plug in (C.1) the calculated values (C.4), (C.2), (C.3), we will get the

value for H6,7:

H6,7 = max{H6−1,7−1 + s(a6, b7), max
k≥1

{H6−k,7 −Wk}, max
l≥1

{H6,7−l −Wl}, 0}

= max{1.3,−1/3, 4.3, 0} = 4/3

(C.5)

In this way all the cells of matrix H are calculated. The complete matrix

is presented in Figure C-2. The matrix element with the greatest value is then

located (in this example it is H10,8 = 3.3. From this maximal element, one traces

back which other matrix element lead to it (must be wither in the maximal el-

ement’s diagonal or in its sub-column or sub-row). In this example, H9,7 = 2.3

is the element that lead to the maximal element. This trace-back procedure is

continued until a zero element is hit (in this caseH3,4 is the last element).

We can now retrieve the two segments, and the corresponding alignment, as
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Figure C-2: Complete H matrix: the underlined elements indicate the trace-back
path from the maximal element 3.3.

shown in Figure C-3.

Figure C-3: The resulting segments and the corresponding alignment.
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Appendix D

THE SWISS-PROT FORMAT

The Swiss-Prot Protein Knowledgebase is an annotated protein sequence database.

It was established in 1986 and maintained collaboratively by the group of Amos

Bairoch and the EMBL Outstation - The European Bioinformatics Institute (EBI).

This appendix is based on the UniProt Knowledgebase User Manual available at

http://www.expasy.org/sprot/userman.html.

The Swiss-Prot Protein Knowledgebase consists of sequence entries. Sequence

entries are composed of different line types, each with their own format. For

standardisation purposes the format of Swiss-Prot follows as closely as possible

that of the EMBL Nucleotide Sequence Database. In Swiss-Prot, as in many

sequence databases, two classes of data can be distinguished: the core data and

the annotation. For each sequence entry the core data consists of: sequence data;

citation information (bibliographical references); taxonomic data (description of

the biological source of the protein).

The annotation consists of the description of the following items: Function(s)

of the protein; post-translational modification(s) such as carbohydrates, phospho-

rylation, acetylation and GPI-anchor; domains and sites, for example, calcium-

binding regions, ATP-binding sites, zinc fingers, homeoboxes, SH2 and SH3 do-

mains and kringle; secondary structure, e.g. alpha helix, beta sheet; quaternary

structure, i.e. homodimer, heterotrimer, etc.; similarities to other proteins; dis-

ease(s) associated with any number of deficiencies in the protein; sequence con-

flicts, variants, etc.
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The entries in the database are structured so as to be usable by human readers

as well as by computer programs. Each sequence entry is composed of lines.

Different types of lines, each with their own format, are used to record the various

data that make up the entry. A sample sequence entry is shown in Figure D-1.

Each line begins with a two-character line code, which indicates the type of data

contained in the line. Some of the important line types and line codes, as shown

in Figure D-1, are explained here.

The ID (IDentification) line is always the first line of an entry. The first

item on the ID line is the entry name of the sequence. The Swiss-Prot entry

name consists of up to 11 uppercase alphanumeric characters. Swiss-Prot uses a

general purpose naming convention that can be symbolised as X Y, where: X is

a mnemonic code of at most 5 alphanumeric characters representing the protein

name. Examples: B2MG is for Beta-2-microglobulin, HBA is for Hemoglobin

alpha chain and INS is for Insulin, CAD17 for Cadherin-17; The ’ ’ sign serves as

a separator; Y is a mnemonic species identification code of at most 5 alphanumeric

characters representing the biological source of the protein. This code is generally

made of the first three letters of the genus and the first two letters of the species.

The AC (ACcession number) line lists the accession number(s) associated

with an entry. The purpose of accession numbers is to provide a stable way of

identifying entries from release to release. It is sometimes necessary for reasons of

consistency to change the names of the entries, for example, to ensure that related

entries have similar names. However, an accession number is always conserved,

and therefore allows unambiguous citation of entries.

The DT (DaTe) lines show the date of creation and last modification of the

database entry.

The DE (DEscription) lines contain general descriptive information about the

sequence stored. In the case of enzymes the EC number is given. This information

is generally sufficient to identify the protein precisely.

The GN (Gene Name) line indicates the name(s) of the gene(s) that code for
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ID   LEXA1_PSESM             Reviewed;         202 AA.

AC   Q87ZB9;

DT   24-OCT-2003, integrated into UniProtKB/Swiss-Prot.

DT   01-JUN-2003, sequence version 1.

DT   23-JAN-2007, entry version 31.

DE   LexA repressor 1 (EC 3.4.21.88).

GN   Name=lexA1; Synonyms=lexA-2; OrderedLocusNames=PSPTO_3510;

.

.

.

KW   Autocatalytic cleavage; Complete proteome; DNA damage; DNA repair;

KW   DNA replication; DNA-binding; Hydrolase; Repressor; SOS response;

KW   Transcription; Transcription regulation.

FT   CHAIN         1    202       LexA repressor 1.

FT                                /FTId=PRO_0000170072.

FT   DNA_BIND     28     48       H-T-H motif (By similarity).

FT   ACT_SITE    123    123       For autocatalytic cleavage activity (By

FT                                similarity).

FT   ACT_SITE    160    160       For autocatalytic cleavage activity (By

FT                                similarity).

FT   SITE         88     89       Cleavage; by autolysis (By similarity).

SQ   SEQUENCE   202 AA;  22150 MW;  48257AB73A3BB9B6 CRC64;

     MIKLTPRQAE ILGFIKRCLE DNGFPPTRAE IAQELGFKSP NAAEEHLKAL ARKGAIEMTP

     GASRGIRIPG FEARPDESSL PVIGRVAAGA PILAQQHIEE SCNINPSFFH PSANYLLRVH

     GMSMKDVGIL DGDLLAVHTT REARNGQIVV ARIGDEVTVK RFKREGSKVW LLAENPDFAP

     IEVDLKDQEL VIEGLSVGVI RR

//

Figure D-1: A sample sequence entry of LexA repressor 1 enzyme. Only the
beginning and the end of the entry are shown here, bringing the important entries
relevant to this work. Circled in blue are: the ID (IDentification) line with the
entry name of the sequence (LEXA1 PSESM); the AC (ACcession) line that lists
the accession number associated with the entry (Q872B9); the DE (DEscription)
line containing the name of the enzyme (LexA repressor 1) and the EC number.
The annotations of biological features are shown in the FT (FeaTure) line. The
annotations for DNA BIND, ACT SITE and SITE are highlighted in matching
colours on the sequence. The SPs that appear on this enzyme are underlined here,
for future reference. SPs PPTRAEI and NAAEEHL overlap with the DNA BIND
feature, GMSME covers the ACT SITE and the SPs DEVTVK and EVTVKR
cover the other ACT SITE. Descriptions of the lines and the feature identifiers
are brought in this chapter.
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the stored protein sequence. The GN line contains different types of informa-

tion, such as gene names (a.k.a gene symbols) and ordered locus names ( a name

used to represent an open reading frame in a completely sequenced genome or

chromosome).

The KW (KeyWord) lines provide information that can be used to generate

indices of sequence entries based on functional, structural, or other categories.

The FT (Feature Table) lines provide a precise but simple means for the

annotation of sequence data. The table describes regions or sites of interest in

the sequence. In general the feature table lists post-translational modifications,

binding sites, enzyme active sites, local secondary structure or other characteristics

reported in the cited references. Sequence conflicts between references are also

included in the feature table. The first item on each FT line is the key name,

which is a fixed abbreviation (of up to 8 characters) with a defined meaning.

Following the key name are the ’FROM’ and ’TO’ endpoint specifications. These

fields designate (inclusively) the endpoints of the feature named in the key field.

In general, these fields simply contain residue numbers which indicate positions in

the sequence as listed. The remaining portion of the FT line is a description that

contains additional information about the feature.

SwissProt feature identifiers used in this work: PEPTIDE - Extent of a released

active peptide; CA BIND - Extent of a calcium-binding region; ZN FING - Extent

of a zinc finger region; DNA BIND - Extent of a DNA-binding region; NP BIND

- Extent of a nucleotide phosphate-binding region; MOTIF - Short (up to 20

amino acids) sequence motif of biological interest; SITE - Any interesting single

amino-acid site on the sequence, that is not defined by another feature key. It

can also apply to an amino acid bond which is represented by the positions of the

two flanking amino acids; CARBOHYD - Glycosylation site; ACT SITE - Amino

acid(s) involved in the activity of an enzyme; BINDING - Binding site for any

chemical group (co-enzyme, prosthetic group, etc.); METAL - Binding site for a

metal ion.
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The SQ (SeQuence header) line marks the beginning of the sequence data and

gives a quick summary of its content.
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