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Abstract

The probability distribution of DNA k-mers in whole genome sequences provides an inter-

esting perspective of the complexity of these systems. Whereas previous research concen-

trated on missing k-mers, we study the overall k-mer distribution of more than 100 species

from archaea, bacteria, and eukarya (including mammals). We focus on low order Markov

models, which capture short range correlations between nucleotides in the DNA sequence. In

particular, they enable us to decide if rare, missing, and common k-mers are surprising or

not. We show that various local and global properties of DNA k-mers can be modeled fairly

well by low order chains.

While exploring these empirical k-mer distributions, we discovered that a few species, in-

cluding all mammals, have multi-modal histograms, while most species exhibit unimodal

distributions. From an evolutionary perspective, these multi-modal distributions are exactly

the tetrapods. These distributions are characterized by specific values of C+G contents and

CpG dinucleotide suppression, but not by any one of these factors alone. Again, we provide an

explanation for this phenomenon, using low order Markov models.

Finally, we have investigated the k-mer distributions of specific functional elements of the

human genome, like exons, introns, and promoters. We found, for example, that the k-mer

distribution for human exons is unimodal, while for introns and long promoter regions it is

multi-modal.

Figure 0.1: 11-mer distribution. Multi-modal for Human (left), and unimodal for Zebrafish
(right).
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1 Introduction

This thesis deals with the distribution of short DNA words (k-mers) in about one hundred

species that are representatives of all genomes that were sequenced to date. We checked the

histogram which describes the number of words as a function of the number of appearances

(namely for any m ≥ 0, how many k-mers appear exactly m times in the given genome).

We found an interesting phenomenon which correlates the shape of the histogram with the

phylogenetic placement of the species. We also investigated the connection between the shape

of a histogram and both the CpG-suppression phenomenon and the GC-content in the relevant

genome.

1.1 Short DNA words (k-mers)

Short DNA words (k-mers) are a fundamental entity in studying DNA, but for values of k ex-

ceeding 2 or 3 they were not studied intensively. A number of statistical/theoretical models

for the distribution of such k-mers have been proposed. For example, Robin and Schbath

compare several approximate k-mer distributions, and also analyze the empirical k-mer dis-

tributions of the phage Lambda (49K bp long genome) [19]. Reinert et al. discussed various

plausible k-mer distributions [18]. They show that the distribution for the number of occur-

rences of a particular k-mer has two distinct large sample regimes: a normal distribution for

abundant k-mers, and a Poisson or compound Poisson distribution for extremely rare k-mers.

With the sequencing of more and more complete genomes, it becomes possible to move from

theoretical to empirical studies, examine the properties of these DNA words, and how their

distributions vary with different species or genome elements.

1.2 Related Work

Maybe the simplest question to answer is that of missing DNA k-mers. Earlier works have

studied non-existent short amino acid (AA) k-mers [16, 23], and have attributed them mainly

to chemical constrains (like hydrophobic and hydrophilic AAs). DNA does not have the com-

plicated three dimensional structure and chemical constraints of proteins. So intuitively, if k

is not too large, compared to the genome or chromosome length, we expect that all k-mers will

be present. This expectation turns out to be incorrect. Fofanov et al. studied correlations be-

tween present and absent short DNA k-mers in over 1, 500 species, and observed short k-mers

that are missing [7]. A systematic study of missing k-mers, termed nullomers, was recently

carried out by Hampikian and Andersen [8]. They reported the complete lists of missing k-

mers (8 ≤ k ≤ 13) in 12 species, including human. For example, the human genome has 80
missing 11-mers, 39, 852 missing 12-mers, and 2, 232, 448 missing 13-mers. Furthermore, they

described several possible uses of these nullomers, concluding by “These absent sequences

define the maximum set of potentially lethal oligomers,. . ., and identify potential targets for

therapeutic intervention and suicide markers”.

1



1.3 Our Approach

In this work, we initiate a systematic investigation and modeling not only of the missing k-

mers, but of the entire empirical distributions of the number of k-mer (4 ≤ k ≤ 13) occurrences

in the whole genomes of more than 100 species, including archaea, bacteria, and eukarya.

Our analysis reveals that a number of higher eukaryotes, including all mammals, exhibit a

rather unusual distribution, with a number of local maxima, and unusually high numbers

of rare k-mers (those not appearing at all, or appearing very few times) and abundant k-

mers (those appearing very many times). We show that while these observed distributions

are poorly matched by an independently, identical distribution on the nucleotides, they are

matched reasonably well by low order Markov models. Thus it is quite conceivable that unlike

short missing peptides, missing DNA k-mers, as well as rare and abundant ones, are not an

outcome of structural or functional constraints, but instead are explained by these simple

probabilistic models. This has consequences for our expectations of the significance and even

potential use of nullomers and short, infrequent words.

Our starting points were the k-mer distributions of the DNA sequences in the whole hu-

man genome, as well as all individual chromosomes. For each, we examined both the single

strands and the double strands (namely considering all k-mers on one strand and their re-

verse complements on the other strand). Quite unexpectedly, we discovered that the k-mers

distributions in all these sequences are multi modal. We went on to explore the k-mer distri-

butions of all mammals with sequenced genomes. These describe a wide evolutionary range

within mammalia, including chimp, mouse, dog, cow, opossum (non-placental mammal), and

platypus (a monotreme, egg laying mammal). The same phenomena we observed for human

still occurred here. This has motivated us to explore about 90 additional species, including

archea, bacteria, and many (but not all) other sequenced eukarya. Finally, we examined dif-

ferent functional regions of the human genome – introns, exons, 3’UTRs, 5’UTRs and promoter

regions of different lengths (600, 1000, and 5000 bases upstream).

The k-mer distributions for different organisms no longer followed the mammalian pattern.

All archea and bacteria exhibited unimodal k-mer histograms. For eukarya, the findings are

more involved. Non-mammalian species exhibiting multi-modal, “mammalian like” distribu-

tions include chicken, lizard, and frog. All these are representatives of the tetrapod clade.

The next branch up the tree of life is the bony fish. Its 5 sequenced representatives are the

zebrafish, fugu, tetraodon, stickleback, and Japanese medaka, exhibiting unimodal k-mer

distributions.

We continued to investigate the extent to which the low order Markov models capture prop-

erties of k-mer DNA distributions, such as the whole empirical distribution, the “heavy tail”

phenomenon, and differences between the number of occurrences of k-mers and their reverse

complements on a single strand. In all cases, we found that the low order Markov models

provide a fairly good fit. This enabled us to quantitatively define the notion of surprising
k-mers.

Due to the non-homogenoeous nature of genomes, and the existence of long stretches with

distinct compositional biases, the fit is far from being perfect. In light of this, it is somewhat

surprising that these low order models are capable of predicting whether the empirical k-mer

2



distribution is unimodal or not, and furthermore to predict the actual shape of the empirical

histogram and other properties.

1.4 Outline

The outline of this thesis is as follows. In chapter 2 we provide information about the data-

sets we used in our work, the analysis applied to the data in order to create the histograms,

and a method of simulating the results using a low order Markov chain.

Chapter 3 describes in detail the results regarding the different species analyzed, including

mammalian and non-mammalian genomes, and various human genomic regions. Following

are the Markov model simulation results, and the results defining “surprising” k-mers, with

respect to these models. Finally, we present some interesting observations that we encoun-

tered regarding specific results.

Finally, chapter 4 contains concluding remarks as well as a discussion regarding some

aspects of this work, with a wink to the future.

3



2 Methods

The goal of our research was to analyze the different k-mer distributions in a large variety of

species, and to try to deduce two major conclusions - a simple statistical model which can

correlate to the empirical data, and an attempt to gain biological insight regarding the results

of our k-mer analysis.

2.1 Whole Genome Analysis

We computed the empirical k-mer distributions of genomic DNA for more than 100 genomes,

taken from various online sources (Ensembl, NCBI, TIGR). Most sequences are complete, but

some are only assembled on scaffolds, with no chromosomal assignment. See the last three

tables in the appendix for the list of species we considered, their genome length (measured

as number of k-mers on a single strand), and additional properties of interest. For each

genome, we separately computed the k-mer distribution for the range 4 ≤ k ≤ 13, taking k-

mers from both strands into account. In addition to the “raw” sequence, we have also applied

a repeat mask filter [20], in order to avoid low complexity repetitive elements and enable

the identification of “interesting”, over-represented k-mer sequences. The value of k in the

histograms that we show was taken as the nearest integer to c · log4 `, where ` is the length of

the genome, and c = 0.7 is a constant, which was chosen based on k = 11 as a model-graph

for human. For any species, the histograms for values of k that are close to the one that is

shown, exhibit very similar characteristics.

For increasing values of k, the number of k-mers that do not appear at all increases, and

soon it becomes dominant, namely the largest among all k-mer counts. For moderately large

values of k, 4k is much larger than the length of the genome, but the “nullomer dominance”

phenomenon occurs well before 4k > `. For species with relatively small genomes, like bacteria

and archaea (0.5-10 million nucleotides), this phenomenon already occurs at values of k that

are typically 8 or smaller, and therefore their corresponding graphs may look skewed “to the

left” for these values of k.

Each genome in our dataset was analyzed using a simple program that tabulates the k-

mers in a large array, indexed by k-mers, and outputs useful summary information like the

total number scanned, those missing, and transition frequencies for different orders of Markov

model. On standard machines using 1GB RAM, the entire human genome can be analyzed

for k-mers with k up to 14 in no more than 15 minutes, so the analysis is not computationally

bound and is limited only by the availability of genomic data. The time required to scan and

produce statistics about a genome is proportional to its length, although finding which k-mers

are missing requires time proportional to the total number of possible k-mers (i.e. 4k); storage

increases as the number of possible k-mers, although alternative methods such as storing

only those k-mers that are present can considerably reduce the storage requirements for large

k.
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2.2 Low Order Markov Model Simulations

Perhaps the simplest probabilistic models to describe strings like genomes and chromosomes

are low order Markov models [15], such as those commonly used for a genomic “background”

comparison when detecting regulatory elements (e.g. [12, 14]). A zero order Markov model

simply describes the frequencies of each nucleotide (when we consider both strands, the fre-

quencies of A, T are equal, and so are those of C, G). A first order Markov model describes the

frequencies of individual nucleotides, given the nucleotide immediately preceding it, a second

order Markov model describes the frequencies of individual nucleotides given the pair of nu-

cleotides immediately preceding it, etc. These transition probabilities can easily be estimated

from counts of transitions observed [5], and actually provide maximum likelihood estimates.

The number of model parameters for a Markov model of order m is 4m+1 − 1 (there are 4m

m-tuples, each determining one stationary probability and four transition probabilities: the

reduced number of parameters follows from the stationary probabilities, and the transition

probabilities dependent on each m-tuple, each summing up to 1).

For Markov models of order m lower than the length of the k-mer of interest, the sequence

of k-mers emitted is itself a first-order Markov chain – the relevant history of the chain is

entirely encoded in the current k-mer. From each k-mer there are 4 possible transitions, de-

pending on which nucleotide is emitted next. The transition probabilities are given by the

embedded Markov chain. If this k-mer chain has a stationary distribution, which it does,

provided that the embedded Markov chain satisfies some weak properties, the frequency with

which a particular k-mer occurs converges to its stationary frequency (by the Ergodic theo-

rem, e.g. [15]). This gives us a direct method of calculating how many times a particular

k-mer is expected to occur, based on a lower order Markov model, M . For example, a first

order model M is specified by the stationary frequencies πM (a) and the transition probabilities

Pr(a | b) for all a, b ∈ {A,C,G, T}. By repeatedly applying these formulae, we can find, for any

k-mer a1a2 . . . ak ∈ {A,C,G, T}k, the value πK(a1a2 . . . ak), where πK describes the stationary

frequencies of the k-mer embedded model chains.

Given πK(a1a2 . . . ak), the expected number of occurrences of this k-mer in a genome of

length ` is simply ` · πK(a1a2 . . . ak). We can thus compute all these probabilities (dynamic

programming will speed up the computation), and consequently all expected frequencies di-

rectly (without resorting, e.g. to simulations). Comparing the empirical distribution to the one

predicted from the model, we can determine how well the model describes the data.

Being able to fit a model leaves the question of how well it describes the data observed

or, to reverse the question, what order of model is adequate? Reinert et al. [18] consider a

chi-square test of model adequacy, testing whether the model explains transitions that are an

order higher, although they advise caution about using this test for high-order chains. Here

we calculate the log-likelihood of each model, and compare them using Akaike’s Information

Criteria (AIC) [1]:

AIC = 2K − 2 lnL(S | θ̂)

where K is the number of model parameters, θ̂ is the maximum likelihood estimate of the

model parameters (stationary and transition probabilities), S is the sequence data (genome,

chromosome, etc.), and L(S | θ̂) is the likelihood of the model.
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It should be mentioned that even fairly high-order Markov models will not perfectly model

the genome, because they do not take into account compositional heterogeneity. This may be

especially important when looking at missing k-mers, since a small patch of biased composi-

tion could significantly increase the probability that a few instances of the k-mer are observed.

This is a fundamental limitation of any Markov model in this context.
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3 Results

In this section we describe the empirical k-mer DNA distributions, examine whether they are

unimodal or multi-modal, and how multi-modality is related to properties like C+G content and

CpG suppression. We describe the fit of low order Markov models to these k-mer distributions,

and analyse surprising k-mers in the human genome. In addition to whole genomes and

chromosomes, we have also considered various functional regions in the human genome.

3.1 Mammalian Genomes: Empirical Distributions
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Human chromosome 6, k=9
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Figure 3.1: Multi-modal distributions for human chromosomes.
The figures describe the frequency of appearance (y-axis) of the k-mers which appear the same
number of times (x-axis), for different DNA sequences and values of k. Human chromosomes
(left to right) 1, 6, 20, both 9-mers (top) and 11-mers (bottom). All exhibiting multi-modal
9-mer and 11-mer distributions.

The empirical distribution of k-mers in all mammalian single chromosomes and whole genomes

that we examined are all multi-modal. Figure 3.1 depicts the multi modal histograms for hu-

man chromosomes 1 (a long chromosome), 6 (medium) and 20 (short), for both 9-mers and

11-mers. Figure 3.2 depicts it for the complete human and opossum genomes, again for both

9-mers and 11-mers.
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Opossum, k=11

Human, k=9
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Figure 3.2: Multi-modal distributions for human and opossum.
Human (top) and opossum (bottom) whole genome, 9-mers (left) and 11-mers (right). All ex-
hibiting multi-modal 9-mer and 11-mer distributions.

We chose to demonstrate the results for human (for obvious reasons), and for opossum,

which being a non placental mammal represents an outgroup to the placental mammalian

species. The three specific chromosomes per species were chosen as representatives of a long,

medium, and short chromosomes. We chose 11-mers since k = 11 is the smallest for which

there are missing k-mers in the human genome.

Denote by ` the length of the mammalian genomes or individual chromosomes. There is

typically a high peak (or more) close to 0, corresponding to a large number of k-mers that are

either missing or rare (a low number of appearances). Then there is a second, shallower local

peak around the average number of occurrences (`/4k), from where the numbers decrease

monotonically. The high peak close to 0 flattens when ` grows larger, compared to 4k. It

gains more mass as 4k grows with respect to `. The number of over-abundant k-mers is

also substantially higher than expected by a zero order model, and the decay is slower than

exponential.
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3.2 Non Mammalian Genomes: Empirical Distributions

We analyzed the k-mer distributions for 89 non-mammalian genomes: 33 archaea, 36 bacteria,

and 20 non-mammalian eukarya, including 8 vertebrates. These distributions can be divided

into two main categories:

Figure 3.3: Unimodal k-mer distributions in various species.
From top-left: E.Coli, Aeropyrum Pernix, Zebrafish, Tetraodon, Arabidopsis, Bee, C. Elegans,
Yeast (Saccharomyces cerevisiae), Sea Squirt.

1. Unimodal distributions, where the corresponding k-mer histograms have a single maxi-

mum, usually at a realtively low number of k-mers. Figure 3.3 depicts typical unimodal k-mer

histograms for 9 species. (In all cases k is the nearest integer to c · log4 `.)
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Figure 3.4: Multi-modal k-mers distributions in four non-mammals. These species are part of
the tetrapod clade.
From top-left: chicken (k = 10), lizard (k = 11), frog (k = 11), platypus (k = 10).

2. Multi-modal distributions, where the corresponding k-mer histograms have two or more

maxima. Usually one (or more) high maximum is at a very low number of k-mers, and another,

shallower one at a larger number. We found that only a small and well characterized group

of species exhibits this distribution (figure 3.4). This group includes Gallus gallus (Chicken),

Anolis carolinesis (Green Anole Lizard), and Xenopus tropicalis (Frog), all in the tetradon clade.

Notice that the five bonny fish (vertebrates) are not a part of this group.
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3.3 Human Genomic Regions

Figure 3.5: k-mer distributions among the different human genomic regions.
From top-left: The whole human genome, both strands, k=10; Introns, single strand, k=10;
3’UTRs, single strand, k=8; Coding regions (exons), single strand, k=9; 5’UTRs, single strand,
k=8; Gene promoter region 600 bases, single strand, k=6; Gene promoter region 1000 bases,
single strand, k=6; Gene promoter region 5000 bases, single strand, k=7.

Figure 3.5 depicts the differences of k-mer distributions within human genomic regions. The

regions analyzed were coding regions (exons), introns, 3’UTRs, 5’UTRs and gene promoter re-
gions. The gene promoter regions were separately analyzed three times, corresponding to vary-

ing lengths of the promoter region (600, 1000, and 5000 nucleotide bases upstream of the 5’UTR

of the gene). The most striking empirical observation is that the coding regions, the 5’UTRs,

and the shorter lengths of gene promoter regions exhibit unimodal k-mer distribution, while

the introns, the 3’UTRs and the gene promoter regions of length 5000 bases exhibit multi-mode

k-mer distributions.
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Figure 3.6: k-mer distributions in miRNA gene promoter regions.
Length of promoter regions: 1000 bases (left, k = 6), 5000 bases (middle, k = 7), and 10000
bases (right, k = 7).

Figure 3.6 shows the k-mer histograms of the promoter regions upstream of 529 known

human micro RNA (miRNA) genes. Although all three graphs exhibit some sort of multi-

modality, it is clear that this multi-modality increases its effect as the length of the sequences

increases. This leads to the claim that there may be some change in the distribution in the

regions closer to the miRNA genes. This claim has been supported by Lee et al. [11] who

found that, for example, the 6-mer CGCGCG is over-represented in these regions and acts as a

transcription factor binding site (TFBS) for several miRNA genes. We note that the promoter

regions of miRNA genes are quite different than those of regular genes, and are closer to

introns, with respect to the properties we analyzed (see 5.3).
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3.4 Low Order Markov Models

Low order Markov models were fitted to the genome of Homo sapiens by counting the transi-

tions required to emit the sequence. Since these are simple (non-hidden) Markov models, this

is equivalent to maximum likelihood estimation [5]. Because of the lengths of sequences being

analyzed, extremely complex, namely high order, models still show a significant improvement

in their fit (as measured by the AIC).

Figure 3.7: Improvement in log-likelihood score of human genome per additional parameter.
Improvement in log-likelihood score of human genome sequence per additional parameter, as

the order of the model increases (log scale). The improvement decreases exponentially per
parameter as the order of the model increases.

Figure 3.7 shows the log of the improvement per additional parameter as the order of

the model increases, showing that there is an exponential decrease in the improvement per

parameter as the order of the model increases. For the difference between the models to be

insignificant, the improvement per parameter would have to drop below 1, and we can see this

is not the case.
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(a) (b)

Figure 3.8: Graphical representation of the first order (a) and second order (b) Markov models
of the human genome.
Bars are proportional to stationary probabilities. Areas of disks are proportional to transition
probabilities. Note the CpG suppression.

Despite more complex models being significantly better, even the first order model captures

effects like CpG suppression. Figure 3.8(a) depicts the first order model graphically. The

relative small probability for the transition from C to G is readily seen. Comparing this to

a similar graph of the transition probabilities for a second-order model (figure 3.8(b)), it is

almost like the first order transition probabilities have been repeated four-fold. This suggests

that improvements by increasing the order further come from fitting observed poly-nucleotide

frequencies better, rather than transitions.
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Figure 3.9: Multi-modal histogram Markov model simulations results (human, k = 11).
The empirical histogram (upper-left), 0th order Markov model (upper-right), 1st order Markov
model (lower-left), and 2nd order Markov model (lower-right). Simulation lengths were chosen
as the length of the original genome.
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Figure 3.10: Unimodal histogram Markov model simulations results (fugu, k = 10).
The empirical histogram (upper-left), 0th order Markov model (upper-right), 1st order Markov
model (lower-left), and 2nd order Markov model (lower-right). Simulation lengths were chosen
as the length of the original genome.

In figures 3.9 and 3.10 we show the empirical k-mer histograms, and those induced from

the zero order Markov model, first order Markov model, and second order Markov model, for

2 eukaryotes: human (k = 11) and fugu (k = 10). It can be seen that while the zero order model

poorly captures the empirical histograms, first and second orders provide a much better fit.

In particular, the second order Markov model captures the modality of the distribution quite

well.
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3.5 Tail Weight Distribution

Figure 3.11: Human chromosome 12: Log-scaled distribution of 10-mers in Markov models
and real data.
Markov model simulations versus the real data. Real data is marked by blue circlets; Markov
models: 0-order (black dots), 1-order (green +) and 2-order (red x).

During the completion of this thesis, we were informed of a related analysis by Csuros et al.

[4]. In their article, they claim that low order Markov chains do not give a fit to the empirical

genomic data, especially in the “heavy tail” part of the histograms. Instead, they propose

a model where CpG’s are first removed, and the remaining is modeled by a double Pareto

distribution [17]. We argue that this is true for the 0th-order Markov chain (i.e. transition

matrix, preserving only single nucleotide statistics). However, if we increase the order of the

model even just to 2, we achieve a fairly good fit in the “heavy tail” as well. We exhibit this

using log axes histograms for human chromosome 12 and repeat masked human chromosome

5 (figures 3.11, 3.12).

We note that the differences between the real data and our modeled data regarding the

“heavy tail” include mainly the long repeat sequences, such as poly-A and poly-T. It can be

seen that the fit for the repeat-masked chromosome is better, where the repeat-masker masks
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these types of k-mers.

Figure 3.12: Repeat-masked human chromosome 5: Log-scaled distribution of 10-mers in
Markov models and real data.
Markov model simulations versus the real data. Real data is marked by blue circlets; Markov
models: 0-order (black dots), 1-order (green +) and 2-order (red x).

Figures 3.11 and 3.12 depict the Markov models of orders 0 (black dots), 1 (green +), and 2

(red x) versus the real data (blue circlets) for human chromosome 12, and for repeat-masked

human chromosome 5, for 10-mers. We display the results using a log scale for both axes (as

used in [4]), though we note that the data is the same as shown in our previous histogram-

bars style display. The Markov models of order 1 and 2 provide a fairly good fit to the real

data. Moreover, these low order Markov models manage to capture the majority of the so-

called “heavy tail” of the distributions, without the need to disregard parts of the data (such

as CpG enriched k-mers), as suggested in [4].
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Figure 3.13: Tail weight distribution.
Markov model simulations versus the real data. Real data is marked by a full blue line; Markov
models: 0-order (green dashed line), 1-order (black dotted line) and 2-order (red dash-dotted
line). Shown for (a) human chromosome 12, and (b) repeat-masked human chromosome 5,
for k = 10.
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Chromosome 12
# of % of all Real 0-order 1-order 2-order

occur. k-mers # of k-mers # of k-mers (d)/(c) # of k-mers (f)/(c) # of k-mers (h)/(c)
(a) (b) (c) (d) (e) (f) (g) (h) (i)
≥ 7 90 946136 1046733 1.10 955065 1.01 954300 1.01
≥ 14 75 796815 1030725 1.29 899363 1.13 878222 1.10
≥ 64 50 524330 622401 1.18 562153 1.07 551253 1.05
≥ 123 30 314938 283911 0.90 422315 1.34 386321 1.23
≥ 232 10 105172 84343 0.80 112916 1.07 110924 1.05
≥ 322 5 52556 39863 0.75 34258 0.65 43496 0.83
≥ 661 1 10514 3766 0.35 777 0.07 4716 0.45
≥ 2711 0.1 1049 1 0.001 0 0.00 30 0.03
≥ 17870 0.001 11 0 0.00 0 0.00 0 0.00

Table 1: Real data fit using low order Markov models, human chromosome 12, k = 10

Chromosome 5, Repeat-masked
# of % of all Real 0-order 1-order 2-order

occur. k-mers # of k-mers # of k-mers (d)/(c) # of k-mers (f)/(c) # of k-mers (h)/(c)
(a) (b) (c) (d) (e) (f) (g) (h) (i)
≥ 5 90 955528 1042716 1.09 933181 0.98 928382 0.97
≥ 10 75 811978 1010372 1.24 818559 1.01 811780 1.00
≥ 46 50 526332 548490 1.04 548674 1.04 537336 1.02
≥ 93 30 316552 247553 0.78 352583 1.11 332627 1.05
≥ 171 10 105378 83695 0.79 106338 1.01 104400 0.99
≥ 230 5 52860 47285 0.89 43730 0.83 48556 0.92
≥ 430 1 10540 7204 0.68 3219 0.31 6965 0.66
≥ 914 0.1 1049 436 0.42 23 0.02 378 0.36
≥ 2881 0.001 11 1 0.09 0 0.00 2 0.18

Table 2: Real data fit using low order Markov models, repeat masked human chromosome 5,
k = 10
The columns represent: (a) the number of occurrences of k-mers; (b) the percentage of k-mers
which appear at least the number of times as in column (a); (c) the total number of k-mers
which appear at least the number of times as in column (a), in the real data; (d) the total
number of k-mers which appear at least the number of times as in column (a), in the Markov
model simulation of order 0; (e) the percentage of fitness between the number of k-mers in the
Markov model simulation and the real data (d)

(c) ; (f),(g) same as (d) and (e), for Markov model
order 1; (h),(i) same as (d) and (e), for Markov model order 2.

Figure 3.13 along with some actual values (tables 1, 2) exhibit how close our low order

Markov models are to capturing the essence of the real data. The figure and tables show how

many k-mers appear at least x number of times. As we can see, the tail is indeed quite heavy

(notice that the axes in the figure are log scaled), and yet the fit is quite good. It is clear

that the fit for the repeat masked chromosome is better, and that the 2nd order Markov model

provides a better fit than the lower order models. For the non-repeat masked chromosome

12, there appears to be a skew in the fit for all models for the last about 1,000 k-mers (0.1%
of all 10-mers), which is magnified in the log-scaled display. These are the most abundant

10-mers, most of which are removed by the repeat masker, thus allowing for a better fit for the

repeat masked chromosome. The relative fit of the models to these most abundant 10-mers

decreases drastically on the non-repeat masked chromosome.
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3.6 Surprising k-mers

Rather than looking at the absolute abundance of a k-mer, it is better to ask how surprising

the observed abundance is. The level of surprise can be measured using the odds-ratio (OR)

[21]: how over- or under- represented a k-mer is in a genome given our expectations.

OR =
(1− e)/e
(1− p)/p

where e is the empirical frequency at which a given k-mer is observed in a genome and p is the

proportion of time that it is expected to occur. In practice, an empirical log of the odds-ratio

is used because of problems with unobserved k-mers (see ‘empirical logits’, [21]).

Over-abundant k-mers
Homo sapiens genome Repeat masked Homo sapiens genome

k-mer Count Expected OR k-mer Count Expected OR
aaaaaaaaaaa 2488487 1366 182 tttttaaaaaa 32998 4578 7.21
ttttttttttt 2472795 1338 185 ttttttaaaaa 32862 4569 7.19
tgtgtgtgtgt 536538 687 781 atttttaaaaa 31604 3685 8.58
acacacacaca 534130 697 767 tttttaaaaat 31519 3680 8.57
gtgtgtgtgtg 500834 476 1053 ttttaaaaaat 28465 3687 7.72
cacacacacac 498270 482 1034 attttttaaaa 28341 3678 7.71
ctgtaatccca 404242 1087 372 tatttttaaaa 23708 2553 9.29
tgggattacag 402211 1085 371 ttttaaaaata 23681 2558 9.26
tatatatatat 394726 560 705 ttttaaaaatt 22181 3680 6.03
atatatatata 394600 561 703 aatttttaaaa 22134 3685 6.01

Table 3: Top ten most abundant k-mers in the human genome.
Top ten most abundant k-mers found in the Homo Sapiens genome (Ensembl release 46) for
both unprocessed and repeat-masked sequences, as measured by the total number of occur-
rences (Count). ‘Expected’ is the number of times it would be expected to occur under a first
order model and ‘OR’ is the Odds Ratio describing how surprising the observed occurrence is
compared to expectation.

Table 3 lists the 10 most abundant 11-mers in the human genome, and also the most

abundant ones in the genome under the repeat mask filter [20]. The unprocessed genome

tends to contain many mono-nucleotide and di-nucleotide repeats, whereas the repeat masked

genome is rich in interspersed poly-t and poly-a repeats. As may be predicted from the removal

of simple repeats, the repeat masked Homo sapiens genome has an under-abundance of k-

mers containing long mono-nucleotide repeats and some of these are also under-abundant in

the unmasked genome.

21



Surprisingly Over-abundant k-mers Surprisingly Under-abundant k-mers
Homo sapiens genome

k-mer Count Expected OR k-mer Count Expected OR
cgcgcgcgcgc 2448 0.061 40098 tcgaaattcgc 0 46.0 0.011
gcgcgcgcgcg 2437 0.060 39949 cccccccctat 9 817.2 0.012
cgccgccgccg 4642 0.481 9650 attgcgaacga 0 41.9 0.012
cggcggcggcg 4601 0.480 9566 tcgcgagttaa 0 34.2 0.015
ccgcgcccggc 19701 2.541 7753 atcttcgcgag 0 33.9 0.015
gccgggcgcgg 19556 2.539 7703 tcagggggggg 15 1003.5 0.015
caccgcgcccg 19907 2.895 6876 atcgcaacgga 0 32.3 0.015
cgggcgcggtg 19848 2.888 6873 tatgtttcgcg 0 31.9 0.016
accgcgcccgg 19655 3.002 6547 tgcaacgatcg 0 31.1 0.016
ccgggcgcggt 19539 2.996 6522 agtccgcgcaa 0 30.3 0.016

Repeat masked Homo sapiens genome
k-mer Count Expected OR k-mer Count Expected OR, ×10−3

cgcgcgcgcgc 601 0.022 26760 taagggggggg 0 481.8 1.038
gcgcgcgcgcg 576 0.022 25673 cccccccctaa 0 481.7 1.038
cggcggcggcg 1208 0.183 6609 ttagggggggg 0 480.9 1.040
cgccgccgccg 1073 0.183 5874 tcagggggggg 0 450.2 1.111
cgcgcgcgcgt 152 0.027 5660 cccccccctca 0 450.1 1.111
cgcgccgcgcg 150 0.028 5466 cccccccctga 0 449.4 1.113
acgcgcgcgcg 144 0.027 5352 tagggggggga 0 432.1 1.157
cgcgcggcgcg 138 0.028 5029 tccccccccta 0 431.5 1.159
cgcggcgcgcg 138 0.028 5029 cccccccccat 0 430.3 1.162
cggcgcgcgcg 133 0.028 4847 cccccccctat 0 387.2 1.291

Table 4: Top ten most surprising over- and under- abundant k-mers in the human genome.
Top ten most surprising over- and under- abundant k-mers found in the Homo Sapiens
genome (Ensembl release 46) for both unprocessed and repeated masked sequences, as mea-
sured by the Odds Ratio (OR). ‘Count’ is the number of times the k-mer occurs, whereas
‘Expected’ is the number of times it would be expected to occur under a first order model.

Table 4 describes the 10 most surprising 11-mers in the human genome – both rare and

abundant ones (those with smallest and largest odds ratios, correspondingly). Those sur-

prisingly over-abundant k-mers tend to be CpG rich, in contrast to those with high absolute

abundance, which do not contain CpG di-nucleotides; the over-abundance may be due to

the hypothesized effect on the major groove in DsDNA. While there is a tendency for under-

abundant k-mers to be missing, 8 of the top 10 shown, the relationship is not strong. Out

of the first 1000 least absolutely abundant k-mers, 982 are missing whereas only 192 are

missing from the first 1000 most under-abundant k-mers; for the repeat masked genome, all

of the first 1000 least absolutely abundant are missing whereas only 331 of first 1000 most

under-abundant k-mers as missing. Notice that rare CpG-rich k-mers are not surprising. We

remark that other low-order models give fairly similar results. Our results show that the dis-

tribution of k-mer frequencies is consistent with CpG suppression and many k-mers are just

too rare to be observed in the data.
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3.7 CpG Suppression

Figure 3.14: The CpG-dimer within the distributions.
k-mers which contain the CpG-dimer comprise the left-most part in the multi-modal his-
tograms: (a) Human, (b) Chicken. In other species it has no such effect: (c) C. Elegans
(Worm), (d) Tetraodon (Fish).

Figure 3.14 shows histograms of the k-mer distribution for (a) Human (Homo sapiens) and (b)

Chicken (Gallus gallus). k-mers which include the dimer CpG are colored green, while all others

are blue. For clarity, the right hand side of the histograms are truncated, but those truncated

regions are essentially “CG-free”. It is evident that these highlighted k-mers wholly comprise

the left-most areas of the multi-mode histograms. The same histograms and highlights are

shown for species with unimodal k-mer distributions – (c) the Worm (Caenorhabditis elegans)

and (d) Fish (Tetraodon nigroviridis). In these examples it is clear that the CpG dimer does not

have the same dramatic effect.
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(a) (b)

Figure 3.15: Enrichment of the CpG-dimer within rare 11-mers: (a) Human, (b) Chicken.

Those k-mers containing even more CpG dimers appear more and more to the left of the

histogram, as seen in figure 3.15. In these histograms those k-mers which include 3 or more

instances of CpG are colored red, those which include 2 instances are colored green, 1 instance

are yellow, and the rest (0 instances) are blue.

Karlin et al. [10] defined ρ as the ratio between the empirically found probability of a dimer,

and the expected combination of its monomers, according to their respective probabilities.

Thus, for the CpG dimer, the relevant ratio is

ρCG =
Pr(CpG)

Pr(C)Pr(G)

If the occurrences of C and G were independent, ρCG would be 1. For human, ρCG = 0.24, for

opossum it is 0.13, for lizard it is 0.3 and for frog it is 0.34. Low values are also attained for

some bacteria (e.g. Entamoeba Histolytica, 0.3) and archea (e.g. Methanococcus Jannaschii,

0.32, and for Methanosphaera stadtmanae, 0.27). Values of ρCG exceeding 1 are less frequent

but nonetheless exist, e.g. for beetle it is 1.15 and for bee it is 1.64.
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Figure 3.16: GC content vs. ρCG.
Notice the tetrapods cluster.

Figure 3.16 shows a 2-D graph, where the x-axis represents the GC-content (in %), and

the y-axis represents ρCG. The tetrapods, which exhibit a multi-modal k-mer histograms,

cluster quite closely. We can also see that some species, such as the archaea Methanosphaera
stadtmanae and Methanococcus Jannaschi, the protozoan bacteria Entamoeba hystolytica and

Tetrahymena thermophila all have ρCG < 0.33, a value similar to the lizard and smaller than the

frog.
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3.8 Simulated Multi-modal Borders

We tried to establish an empirical border to the multiple modality phenomenon, with respect

to the GC-content and ρCG. In order to do this we use a convex combination between the dimer

distributions of human and all other species.

Figure 3.17: The simulated border of the multi-modal distribution.

Figure 3.17 shows the simulated borders of the multi-modal k-mer distribution phenomenon,

with respect to the GC-content, ρCG and αs, using the human distribution as the basic multi-

modal distribution.
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Figure 3.18: Simulated estimate of the border of the multi-modal distribution.
Using a convex combination of the Markov model transition probabilities from one species to
another. In this example we start at the human distribution (α = 0) and finish at the mosquito
distribution (α = 1). We show the distributions for the varying values of α from α = 0.1 to
α = 0.9 (k=9). In this case αs = 0.3, as the multi-modal distribution is clearly evident for
α ≤ 0.3.

The convex combination was obtained using the following:

Let D capture the probabilities of all 16 possible dimers, with respect to species s.

Ds = Pr(ab) a, b ∈ A, C, G, T

So now for each species s, and every value of 0 ≤ α ≤ 1, define the convex combination
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D′α,s = (1− α)Dhuman + αDs

We then plug these new dimer distribution values in to our Markov model simulator as

the new transition probabilities, and run the simulation. We then visually decide whether the

graph is “uni-modal” or “multi-modal”, and thus define αs as the border where for α ≤ αs we

will get a “multi-modal” distribution.

Figure 3.18 shows an example of the k-mer distribution graphs of the Markov model sim-

ulation from human (α = 0) to mosquito (α = 1). We used k = 9, and the length of each

simulation run was 50, 000, 000 bases.
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3.9 Extended Chargaff Phenomenon

When analyzing single strand sequences, we saw a close similarity between the number of

appearances of k-mers and their reverse-complements (this is obvious for two strands, but

not for one). We note Chargaff’s rules [2], and specifically the second rule.

Chargaff’s 2nd rule: %A ≈ %T and %C ≈ %G on single stranded DNA.

We observed that this rule can be extended to larger k-mers:

For almost all k-mers: # of occurrences of a k-mer ≈ # of occurrences of its reverse-

complement-k-mer.

Figure 3.19: Extending Chargaff’s 2nd rule for k-mers, 4 ≤ k ≤ 10.
k-mers and their reverse complements on a single strand, human chromosome 12, k = 10.

We define a simple score di for the relative difference between the number of occurrences

of a k-mer i (Ni) and the number of occurrences of its reverse complement (Nrc
i ):

di =
∣∣∣∣ Ni −Nrc

i

Ni + Nrc
i

∣∣∣∣
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It is easy to see that d = 0 for k-mers which appear the exact same number of times as their

reverse complements, and d increases with the relative difference between these occurrences.

Figure 3.19 shows this observation on the human chromosome 12, for 4 ≤ k ≤ 10. The

y-axis represents the k-mers sorted by their S score and normalized on a [0..1] scale. The

x-axis represents the score d between the k-mer and its reverse complement. It can be clearly

seen that the vast majority of k-mers exhibit a very low relative difference score.

% of k-mers k=4 k=5 k=6 k=7 k=8 k=9 k=10
10 0.000 0.000 0.001 0.001 0.002 0.005 0.007
30 0.000 0.001 0.002 0.004 0.008 0.017 0.034
50 0.000 0.002 0.003 0.007 0.015 0.031 0.065
70 0.001 0.003 0.006 0.012 0.026 0.056 0.120
85 0.002 0.004 0.009 0.020 0.045 0.100 0.217
90 0.002 0.006 0.011 0.027 0.059 0.130 0.294
95 0.003 0.007 0.017 0.037 0.084 0.185 0.417
99 0.006 0.016 0.027 0.068 0.148 0.333 0.999

Table 5: The relative difference score d at different percentiles of k-mers.

Table 5 provides some actual values as depicted in the figure. For example, if we look at

k = 8, we can see that 90% of k-mers have a relative difference score of less than 0.006, and

99% have a relative difference score of 0.148 or less.
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Figure 3.20: Low order Markov models preserve properties of extended Chargaff rule phenom-
ena.
k-mers and their reverse complements on a single strand, human chromosome 12, k = 10.
Real data (blue) versus the simulated models of order 0 (black dots), order 1 (green dashes)
and order 2 (red dot-dashes).

Figure 3.20 shows that the low order (non-zero) Markov models preserve the properties of

the extended Chargaff rule phenomena as well. The models of orders 0, 1 and 2 were based

on the human chromosome 12.
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4 Discussion

Figure 4.1: The tetrapod clade on a symbolic “tree of life”.
Figure taken from http://biology.unm.edu/ccouncil/Biology 203/Summaries/Phylogeny.htm

When placing the species with multi-modal k-mer histograms on the “tree of life” [22], we

observe that they define exactly the tetrapod clade (Figure 4.1). We note that mammals, birds,

amphibians and reptiles (all analyzed here) compose the majority of the tetrapod groups.

(Tetrapods are terrestrial vertebrates, and other vertebrates that bear limbs with digits rather

than fins.) Another family of species within the tetrapods are the turtles, whose genomes are

not yet sequenced, but we expect they will also exhibit the same multi-modal distribution. We

note that bony fish are the outgroup to tetrapods within the vertebrates. As pointed out in

Section 3, the five bony fish analyzed here exhibit unimodal k-mer distributions.

As mentioned earlier, Reinert et al. have shown that the distribution for the number of

occurrences of a particular k-mer has two distinct large sample regimes: a normal distribution

for abundant k-mers, and a Poisson (or compound Poisson) distribution for extremely rare k-

mers [18]. Comparing their results to our empirical findings, we observe that the tetrapods’

genomes exhibit k-mer distributions where a superposition of both such regimes are evident.

The non-tetrapods exhibit just one of the two distributions.

A major cause of the low frequency of appearance of the CpG dimer (termed “CpG suppres-

sion” [13]) in tetrapods is methylation [3]. Methylation has far ranging effects, from embryonic

development to neuron apoptosis and cancer. In humans, for example, more than 70% of the

Cs in CpGs are methylated, and these CpGs tends to mutate at greater rates, specifically to

TG and to CA. The dimers TG and CA together account for most of the CpG loss: With no sup-

pression, CpG in tetrapods is expected to appear at approximately 4% of the dimers, but in
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actuality it appears at approximately 1%, so approximately 3% are missing; TG and CA each

appear about 1.3% more than their “fair share”. Together this accounts for about 2.6% of the

dimers, covering about 90% of the CpG loss.

Figure 4.2: Species with unimodal distributions and low ρCG values.
k-mer distribution for Methanococcus Jannaschii (k=7, top left), Methanosphaera Stadtmanae
(k = 7, top right), and Entamoeba Histolytica (k = 8, bottom).

Since all tetrapods exhibit a significant level of CpG suppression, one may wonder if their

multi-modal k-mer distributions are not simply a direct consequence of low ρCG values. Clearly,

our findings indicate that low ρCG values are a necessary ingredient in having multi-modal

k-mer distributions. However, low ρCG values by themselves are not enough. Figure 4.2,

reveals three non-tetrapods (two archea and one bacteria, with ρCG values smaller than 0.33,
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yet unimodal k-mer distributions. These three species have a substantially lower C+G contents

than the tetrapods, and this also is likely to be an important factor.

More generally, even the first order Markov model has 20 parameters, and it is not clear

how to determine which regimes give rise to each type of distributions, but clearly ρCG and the

C+G contents are important. Despite their limitations, low order models do reveal interesting

features. For example, by allowing to measure how surprising a k-mer is, we get a quantitative

measure that is more significant than just “missing” or “highly abundant”.

We believe that our study of empirical DNA distributions is only an initial step in this

direction, and that additional insights are yet to be found.
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5 Appendix A

5.1 Algorithms

The algorithms used in this research were fairly simple and straightforward.

5.1.1 Extracting k-mer data from a genome

This algorithm was used to extract all data for all k’s in range 4 ≤ k ≤ 13 from a genome data

file, in one pass. The general scheme was to create for each k an array of length 4k. Each

entry in the array holds a counter for the number of appearances for a specific k-mer. The

genome would then be read letter by letter, and the entry for the relevant k-mer encountered

would be counted. Even though the procedure to do this is quite straightforward, there were

some issues that needed some closer attention:

1. Files can reach significant sizes (the complete human genome, for example, is larger

that 2GB). Loading a file like this to the RAM can fail, or at least slow down the machine. The

solution used to this problem was to load the file to memory in a “chunks” of 100MB each,

which essentially act as a buffer. This allowed to keep the RAM manageable, thus allowing

the calculative parts of the algorithm to work faster.

2. How to efficiently map a k-mer to its designated place in the array. The solution to

this was done by mapping each nucleotide to a 2-bit number (A → 00, C → 01, G → 10, T → 11),

and thus mapping a k-letter string to an integer in the range 0 to 4k − 1. When a new letter

is encountered, all that needs to be done is a 2-bit left shift of the previous number, and

OR-ing the new letter’s 2-bit value as the least significant bits (LSB). This also enabled easy

calculation of double-strand (reverse-complement) data by switching the direction of the 2-

bit shift to a right-shift, and OR-ing the complement 2-bit value as the most significant bits

(MSB). This allows all operations on a single letter be done in O(1), enabling the total time be

O(l), where l is the genome length. Total memory usage is O(max(4k, b)), where b is the buffer

size used to read the genome file.

3. Output files can reach large sizes. Assuming we want all extracted data written to a

file, that file can reach large sizes. For example, for k = 13, the raw output file is almost

200MB. This is not too large, but loading and manipulating that kind of data for many species

is not recommended. The solution was to partition the data into histogram-like bins, thus

controlling the file sizes with the number of bins. Since we show histograms anyway, this was

an easy solution to choose.

35



5.2 Genomic data acquiring

Genomic data of species was downloaded from the following sites:

• Ensembl ftp://ftp.ensembl.org

• NCBI ftp://ftp.ncbi.nih.gov

• TIGR ftp://ftp.tigr.org

• UCSC ftp://hgdownload.cse.ucsc.edu

• HGSC ftp://ftp.hgsc.bcm.tmc.edu

• Genoscope http://www.genoscope.cns.fr

Data regarding human genomic regions was downloaded from:

• Exons, Introns http://hsc.utoledo.edu/bioinfo/eid/index.html

• 3’UTRs, 5’UTRs ftp://bighost.ba.itb.cnr.it/pub/Embnet/Database/UTR/data

• Gene Promoters http://www.epd.isb-sib.ch/seq download.html

• miRNA Data ftp://ftp.sanger.ac.uk/

For some of the species the whole genomic data was not fully assembled, so we took

what was available in the form of scaffolds and chromosomes. We assume that the final

assemblies will probably not differ significantly from these preliminary files in terms of the

k-mer statistics.

36



5.3 Species list

Species (Archea) Classification Length %G+C ρCG dist. type

AeropyrumPernix Archea 1,509,911 56.5 0.70 unimodal

ArchaeoglobusFulgidus Archea 2,076,061 48.6 0.78 unimodal

HaloarculaMarismortui Archea 3,208,489 62.0 1.32 unimodal

HalobacteriumSp Archea 1,887,389 68.0 1.36 unimodal

HaloquadratumWalsbyi Archea 2,925,353 47.9 1.11 unimodal

HyperthermusButylicus Archea 1,509,911 53.8 0.77 unimodal

MethanobacteriumThermoautotrophicum Archea 1,604,247 49.6 0.51 unimodal

MethanococcoidesBurtonii Archea 2,453,539 40.8 0.72 unimodal

MethanococcusJannaschii Archea 1,604,238 31.4 0.32 unimodal

MethanococcusMaripaludis Archea 1,509,911 33.1 0.89 unimodal

MethanocorpusculumLabreanum Archea 1,698,650 50.1 1.19 unimodal

MethanopyrusKandleri Archea 1,604,247 61.2 1.18 unimodal

MethanosaetaThermophila Archea 1,792,986 53.5 0.86 unimodal

MethanosarcinaAcetivorans Archea 5,473,296 42.7 0.79 unimodal

MethanosarcinaBarkeri Archea 4,624,004 39.3 0.72 unimodal

MethanosarcinaMazei Archea 3,869,048 41.5 0.72 unimodal

MethanosphaeraStadtmanae Archea 1,604,247 27.6 0.27 unimodal

MethanospirillumHungatei Archea 3,302,831 45.1 0.77 unimodal

NanoarchaeumEquitans Archea 377,477 31.1 0.61 unimodal

NatronomonasPharaonis Archea 2,453,539 63.4 1.39 unimodal

PicrophilusTorridus Archea 1,415,508 36.0 0.76 unimodal

PyrobaculumAerophilum Archea 2,076,061 51.3 0.97 unimodal

PyrobaculumIslandicum Archea 1,698,650 49.5 0.93 unimodal

PyrococcusAbyssi Archea 1,604,247 44.7 0.71 unimodal

PyrococcusFuriosus Archea 1,792,986 40.8 0.50 unimodal

PyrococcusHorikoshii Archea 1,604,247 41.9 0.61 unimodal

SulfolobusAcidocaldarius Archea 2,076,061 36.7 0.55 unimodal

SulfolobusSolfataricus Archea 2,831,017 35.8 0.67 unimodal

SulfolobusTokodaii Archea 2,547,942 32.8 0.55 unimodal

ThermococcusKodakaraensis Archea 1,981,725 52.0 0.88 unimodal

ThermofilumPendens Archea 1,698,650 57.7 1.00 unimodal

ThermoplasmaAcidophilum Archea 1,415,508 45.9 0.91 unimodal

ThermoplasmaVolcanium Archea 1,509,911 39.9 0.83 unimodal
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Species (Bacteria) Classification Length %G+C ρCG dist. type

AcidobacteriaBacteriumEllin345 Bacteria 5,378,893 58.4 1.27 unimodal

BacillusSubtilis Bacteria 3,963,384 43.5 1.04 unimodal

BrucellaMelitensis Bacteria 3,114,055 57.2 1.20 unimodal

BurkholderiaXenovoransLB400 Bacteria 9,247,928 62.6 1.38 unimodal

ChlamydophilaPneumoniaeAR39 Bacteria 1,132,366 40.6 0.73 unimodal

ChlorobiumTepidumTLS Bacteria 1,981,718 56.5 1.21 unimodal

ChromobacteriumViolaceum Bacteria 4,529,601 64.8 1.12 unimodal

CyanobacteriaBacteriumYellowstoneA-Prime Bacteria 2,736,681 60.2 0.74 unimodal

EscherichiaColi536 Bacteria 4,718,340 50.5 1.14 unimodal

FrancisellaTularensisHolarctica Bacteria 1,792,986 32.2 0.54 unimodal

GeobacterSulfurreducens Bacteria 3,585,973 60.9 1.00 unimodal

HelicobacterHepaticus Bacteria 1,698,650 35.9 0.70 unimodal

IdiomarinaLoihiensisL2TR Bacteria 2,642,278 47.1 1.06 unimodal

LactobacillusPlantarum Bacteria 3,114,092 44.5 1.12 unimodal

LegionellaPneumophilaLens Bacteria 3,208,092 38.4 0.73 unimodal

MagnetococcusMC-1 Bacteria 4,435,265 54.2 0.80 unimodal

MarinobacterAquaeoleiVT8 Bacteria 4,529,611 56.9 0.94 unimodal

MycobacteriumTuberculosis Bacteria 4,151,874 65.6 1.18 unimodal

NeisseriaMeningitidisFAM18 Bacteria 2,076,061 51.6 1.31 unimodal

NitrobacterWinogradskyiNb-255 Bacteria 3,208,495 62.1 1.33 unimodal

NostocSp Bacteria 6,888,767 41.3 0.78 unimodal

PhotobacteriumProfundumSS9 Bacteria 6,039,402 41.8 0.99 unimodal

ProchlorococcusMarinusNATL2A Bacteria 1,698,650 35.1 0.57 unimodal

RalstoniaEutrophaH16 Bacteria 6,605,672 66.6 1.13 unimodal

SaccharophagusDegradans2-40 Bacteria 4,812,743 45.8 1.08 unimodal

SalmonellaTyphi Bacteria 4,907,083 51.9 1.23 unimodal

ShewanellaOneidensis Bacteria 4,907,081 45.9 1.00 unimodal

ShigellaDysenteriae Bacteria 4,340,901 51.0 1.13 unimodal

StreptococcusMutans Bacteria 1,887,389 36.9 0.71 unimodal

ThermoanaerobacterTengcongensis Bacteria 2,547,942 37.6 0.52 unimodal

VibrioCholerae Bacteria 3,774,608 47.5 1.04 unimodal

ZymomonasMobilisZM4 Bacteria 1,887,389 46.2 1.10 unimodal

PlasmodiumFalciparum (malaria) Protozoa 21,798,142 19.4 0.76 unimodal

TetrahymenaThermophila Protozoa 98,669,430 22.3 0.44 unimodal

LeishmaniaMajor Protozoa 31,116,157 59.7 1.02 unimodal

EntamoebaHistolytica Protozoa 12,298,665 33.6 0.30 unimodal
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Species (Eukaryotes) Classification Length %G+C ρCG dist. type

CaenorhabditisElegans (worm) Nematode 95,970,454 35.4 0.99 unimodal

SaccharomycesCerevisiae (yeast) Fungi 11,512,682 38.3 0.80 unimodal

CandidaGlabrata (haploid yeast) Fungi 11,700,869 38.6 0.66 unimodal

BiomphalariaGlabrata (mollusca) Mollusk 48,845,378 39.1 0.75 unimodal

CionaIntestinalis (sea squirt) Tunicate 83,180,064 35.6 0.86 unimodal

ArabidopsisThaliana (arabidopsis) Plant 113,813,113 36.0 0.72 unimodal

OryzaSativa (rice) Plant 385,822,552 43.5 0.87 unimodal

VitisVinifera (grape) Plant 468,739,222 34.6 0.43 unimodal

DrosophilaMelanogaster (fly) Insect 115,134,437 42.4 0.93 unimodal

AnophelesGambiae (mosquito) Insect 213,534,127 44.6 1.07 unimodal

ApisMellifera (bee) Insect 175,355,887 34.9 1.64 unimodal

TriboliumCastaneum (beetle) Insect 145,486,340 33.9 1.15 unimodal

DanioRerio (zebrafish) Bony Fish 996,230,784 36.3 0.52 unimodal

TakifuguRubripes (fugu) Bony Fish 329,961,080 45.5 0.57 unimodal

TetraodonNigroviridis (pufferfish) Bony Fish 177,300,831 45.9 0.60 unimodal

GasterosteusAculeatus (stickleback) Bony Fish 424,233,346 44.6 0.66 unimodal

OryziasLatipes (Japanese Medaka) Bony Fish 552,716,066 40.1 0.48 unimodal

AnolisCarolinensis (lizard) Reptile 1,676,035,836 40.4 0.30 multi-modal

XenopusTropicalis (frog) Amphibian 1,288,438,558 40.0 0.34 multi-modal

GallusGallus (chicken) Bird 942,474,046 41.3 0.24 multi-modal

OrnithorhynchusAnatinus (platypus) Mammal 388,840,627 43.3 0.30 multi-modal

BosTaurus (cow) Mammal 1,408,036,795 42.8 0.25 multi-modal

CanisFamiliaris (dog) Mammal 2,187,364,344 41.1 0.26 multi-modal

RattusNorvegicus (rat) Mammal 2,327,934,313 42.1 0.22 multi-modal

MacacaMulatta (rhesus monkey) Mammal 2,503,126,668 40.9 0.25 multi-modal

MonodelphisDomestica (opossum) Mammal 3,287,333,976 37.6 0.13 multi-modal

MusMusculus (mouse) Mammal 2,387,461,979 41.9 0.19 multi-modal

PanTroglodytes (chimpanzee) Mammal 2,596,334,645 40.8 0.23 multi-modal

HomoSapiens (human) Mammal 2,735,501,651 40.9 0.24 multi-modal

HumanIntrons (human regions) 1,368,981,774 41.5 0.24 multi-modal

Human3’UTR (human regions) 30,577,457 44.4 0.29 multi-modal

HumanExons (human regions) 108,962,293 49.9 0.44 unimodal

Human5’UTR (human regions) 10,160,999 55.4 0.60 unimodal

HumanPromoters600 (human regions) 1,025,512 58.8 0.74 unimodal

HumanPromoters1000 (human regions) 1,762,896 53.7 0.64 unimodal

HumanPromoters5000 (human regions) 8,753,016 47.3 0.39 multi-modal

HumanMiRNA1000 (human regions) 494,332 48.3 0.38 multi-modal

HumanMiRNA5000 (human regions) 2,594,039 47.2 0.35 multi-modal

HumanMiRNA10000 (human regions) 5,193,844 46.5 0.33 multi-modal

HumanChr12 (human regions) 108,585,772 40.8 0.24 multi-modal

HumanChr5RepeatMasked (human regions) 74,495,291 38.6 0.21 multi-modal
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