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ABSTRACT

Motivation: Feature selection methods aim to reduce the complexity

of data and to uncover the most relevant biological variables. In

reality, information in biological datasets is often incomplete as a

result of untrustworthy samples and missing values. The reliability of

selection methods may therefore be questioned.

Method: Information loss is incorporated into a perturbation

scheme, testing which features are stable under it. This method is

applied to data analysis by unsupervised feature filtering (UFF). The

latter has been shown to be a very successful method in analysis of

gene-expression data.

Results: We find that the UFF quality degrades smoothly with

information loss. It remains successful even under substantial

damage. Our method allows for selection of a best imputation

method on a dataset treated by UFF. More importantly, scoring

features according to their stability under information loss is shown

to be correlated with biological importance in cancer studies. This

scoring may lead to novel biological insights.

Contact: royke@cs.huji.ac.il

Supplementary information and code availability: Supplementary

data are available at Bioinformatics online.

1 INTRODUCTION

Computational biology has undergone a revolution in the

last decade. One of the prominent characteristics of this

revolution is the development of high-throughput technologies,

allowing for gathering of large-scale data, both in the number

of samples and in their features. Examples are microarray

gene-expression experiments (Beer et al., 2002; Khan et al.,

2001) and comparative genomic hybridization (CGH) (Snijders

et al., 2005).

A popular strategy for facilitating the analysis and inter-

pretation of such large-scale data is selecting informative

features from the thousands measured in each experiment

(Guyon and Elisseeff, 2003; Herrero et al., 2003). Feature

selection methods are divided into two types: supervised, when a

target function is known, and unsupervised, in which one has

no, or limited, information regarding the samples. Supervised

feature selection methods are abundant, in particular in the

computational biology field, where they were found useful

in improving classifications tasks (Bø and Jonassen, 2002).

Nevertheless, it was argued that such methods do not lead

to a unique set of selected features (Ein-Dor et al., 2006).

This is probably due to the fundamental variability within

the data and the small number of samples (which is further

reduced due to train-test partition), in comparison to the

number of features.

Less studied approach is the unsupervised feature selection.

Selection methods that are applied before clustering are often

referred to as filter methods. Most methods of unsupervised

feature filtering include ranking of features according to

different criteria: correlation with the first principal component,

range, fold-change, threshold, entropy and variance calculated

on each feature individually (Guyon and Elisseeff, 2003;

Herrero et al., 2003). An underlying assumption for these

selection methods is that only features that significantly vary

along the samples carry the relevant information. Although it

seems that unsupervised methods are scarce and less powerful

than the supervised ones, most analysts (often inattentively),

do apply some unsupervised schemes: in practice, almost every

microarray analysis starts with filtering out thousands of genes

with small variance or those that are below a predetermined

fold-change threshold.
Recently, we have suggested an unsupervised feature filtering

(UFF) framework (Varshavsky et al., 2006) that was success-

fully applied to several datasets with various representations

(e.g. gene-expression, amino-acid composition counts). UFF

differs from other popular unsupervised selection schemes by

(1) not involving a target function as the selection criterion

[e.g. optimizing clustering results (Dy and Brodley, 2004)] and

(2) considering the interplay of all features. It has been shown

on several datasets of different types that a selection of only a

few features according to the UFF method leads to improved

clustering results relative to other unsupervised methods or to

using the complete set.

Here, we investigate the effect of missing information on

feature selection strategies. We employ UFF and study whether

it remains valid when fractions of data are eliminated. In

particular, we put emphasis on the stable features that continue

to be selected under these conditions.*To whom correspondence should be addressed.
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Experimental data are prone to errors or information loss
because of two major reasons: (i) missing or untrustworthy

samples (Wang et al., 2006); (ii) missing values: unarguably,

this is one of most bothering issues when handling gene-

expression microarray datasets (de Brevern et al., 2004; Scheel

et al., 2005); other microarray-based technologies (e.g. tiling

array, ChIP on Chip and CGH screening) impose similar

challenges. There exists a continuous drive to overcome these

problems by improving the hardware (Shi et al., 2006), and

developing imputation methods to replace missing values

(Gan et al., 2006; Hua and Lai, 2007; Troyanskaya et al.,

2001; Tuikkala et al., 2006). ‘White noise’ was shown to have

negligible effect on the analysis (Klebanov and Yakovlev, 2007)

and thus should not be considered.
Facing the fact that any data may be afflicted by missing

information, we argue that a feature selection method should

be relatively stable with respect to such errors. This assertion

can be tested by simulating information loss and studying its

effect on the method at hand. We evaluate UFF under such

conditions, suggest viewing stability as a new criterion for

feature selection, and study its use on biological data, leading to

interesting new insights.

2 DATA AND METHODS

Figure 1 summarizes the analysis protocol. The original dataset

(Section 2.1) is perturbed (Section 2.2) and filtered by UFF (Section

2.3). The selected features are then evaluated (Section 2.4) and tested

with respect to their biological relevance (Section 2.5).

2.1 Datasets

A comparative analysis is performed on two (complete) gene-expression

benchmarks, with known classifications, and a practical application is

then applied to a Comparative Genomic Hybridization (CGH) dataset

that inherently contains some missing values.

(1) SRBCT: the small round blue cell tumor gene-expression

dataset includes glass-based cDNA microarray measurements of

2308 genes (features) for 83 patients (samples). The samples

are categorized into four types of tumors: Burkitt lymphoma,

Ewing sarcoma, Neuroblastoma and Rhabdomyosarcoma

(Khan et al., 2001).

(2) Lung: this HUGeneFL Affymetrix oligonucleotide gene-

expression dataset (Beer et al., 2002), includes 86 primary lung

adenocarcinomas and 10 non-neoplastic lung samples. Total 4966

genes are measured for each sample (features).

(3) CGH: this dataset (Snijders et al., 2005) comprises 1979 clones

(features) for 89 instances (samples). The expression value of each

record is the log2ratio normalized to the genome median log2ratio.

The dataset contains 5807 missing values (3.3%).

2.2 Perturbations

Assuming the complete dataset is a full [m� n] matrix A, with m

features describing n samples (or observations) we simulate information

loss in two ways:

(1) Missing samples (Wang et al., 2006) are simulated by eliminating

some of the columns in the matrix. We consider cases where 1%,

2%, 5%, 10%, 20% and 50% of all samples are randomly

removed. Total 50 random eliminations were applied to each

group size (in the leave-one-out case, all possibilities are

considered).

(2) Missing values are modeled by randomly eliminating 1%, 2%, 5%,

10%, 20% and 50%, of all matrix elements. Total 50 random

deletions were selected for each group size. The removed matrix

elements are then imputed according to one of three imputation

methods:

(a) Standard average: each missing value is replaced with the

average of all present values in the set.

(b) Weighted average: each missing value is replaced by: [average

(row) * average (column)]/average (matrix).

(c) KNNImpute according to Troyanskaya et al. (2001), each

missing value is replaced by the standard average of samples of

the K nearest neighbors of a relevant feature (K¼ 10).

For clarity, (1) description of the KNNImpute method, (2) results of

50% data loss and (3) SDs appear in Supplementary Material.

2.3 Unsupervised feature filtering (UFF)

UFF scores each one of the features according to its contribution to the

SVD entropy of the dataset. Computation of the score is based on a

leave-one-out principle [for a complete description see Varshavsky et al.

(2006)].

Let A denote a matrix, whose elements Aij are the measurement of

feature i on sample j, e.g. expression of gene i under condition j. We

base our method on the Singular Value Decomposition (SVD)

procedure. It decomposes the original matrix A into A¼USVT,

where U and V are unitary matrices whose columns form orthonormal

bases. The diagonal, non-negative matrix S is composed of singular

values (sk).ordered from highest to lowest. Let l be the rank of the

matrix [l�min (m, n)], Using the normalized relative values, �k

�k ¼
s2kPl
i¼1 s

2
i

ð1Þ

a SVD-entropy (H) can be defined (Alter et al., 2000):

H ¼ �
1

logðlÞ

Xl

k¼1

�k logð�kÞ ð2Þ

SVD-entropy varies between 0 and 1. Low entropy datasets are

characterized by only a few high singular values whereas the rest are

significantly smaller. This pattern reflects a great redundancy in

the dataset. In contrast, non-redundant datasets result in uniformity

in the singular values spectrum and in high entropy.Fig. 1. Schematic representation of the analysis protocol.
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UFF scores each feature i using a leave-one-out calculation of the

SVD-entropy: H is calculated for the entire matrix and for the matrix

without feature i. The difference in the values defines the score of

feature i. Figure 2 displays the results after applying the UFF algorithm

to the SRBCT dataset, and sorting the features according to decreasing

UFF scores. Clearly, one can divide the features into three groups:

(1) Features with positive score. These features increase the entropy.

(2) Neutral features that have negligible influence on the entropy.

(3) Negative score features. These features decrease the entropy.

Note that a majority of features falls into group 2 (�92%), while

groups 1 and 3 represent minorities (�4% in each). The features

selected according to the UFF approach are the positive score features

[lying above the threshold of mean(score)þSD(score)]. The rationale

behind picking group 1 features is that, because they increase the

entropy, they decrease redundancy. Hence, we may expect samples to

be better separated in the space spanned by these features.

2.4 Methodology evaluation

Given a set of selected features we evaluate it according to how

successful it is in clustering correctly the set of samples, and how

much it overlaps with the set of UFF selected features of the

unperturbed data.

� Clustering quality. Clustering quality is measured both on

perturbed and on perturbed-then-filtered datasets. Cases where

the latter representation leads to higher quality indicate that

the filtering is effective even though the dataset is damaged.

This quality is measured using the Jaccard score: J¼ n11/

(n11þ n10þ n01), where n11 is the number of pairs of samples that

are classified together, both in a known classification and in the

clusters obtained by the algorithm; n10 is the number of pairs that

are classified together in the true classification, but not in the

clustering and n01 is the number of pairs that are classified together

by clustering but not in the true classification. In order to ensure

that the evaluation is not biased by the clustering method, two

clustering methods were compared and shown to provide

consistent behavior patterns. In the two microarray datasets both

QC [�¼½, dims¼ 5, (Horn and Axel, 2003)] and hierarchical

(Euclidian distance, average linkage) methods were considered.

� Filtering stability. Filtered features of the original and perturbed

datasets are compared (Scheel et al., 2005). The degree of

intersection (similarity score) indicates the method’s stability

under the perturbation.

2.5 Stability scores

On average, each dataset has undergone �1200 perturbations. Stability

of a feature is defined as the probability of this feature to be selected

under all perturbations. The features may be then ranked according to

this criterion.

3 RESULTS

3.1 Methodology validation: filtering quality and

stability

3.1.1 Smooth degradation of clustering quality under

perturbations Figure 3 displays the clustering quality of the
perturbed SRBCT and Lung datasets (missing samples and

missing values with three imputation methods). UFF always
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Fig. 3. Clustering results of the (A) SRBCT and (B) Lung datasets, following perturbations: missing samples (a) and missing values (with three

imputation methods: (b) average, (c) weighted average and (d) KNNImpute). Dashed lines denote the clustering quality of the perturbed datasets

after various levels of information loss and the continuous lined denote the corresponding quality of perturbed and then filtered sets (results shown

are averages of 50 random perturbations). Detailed results for the two datasets appear in Supplementary Material.

Fig. 2. UFF Scores of the 2308 genes of SRBCT features, ordered by

decreasing scores. Dashed lines represent mean(score)�SD(score).
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improves clustering quality. The results degrade smoothly as

a function of the amount of missing data. This allows us to

draw two important conclusions: (1) UFF continues to be

a good filtering method even under severe information loss. (2)

There does not seem to exist a critical amount of loss beyond

that clustering quality suffers a sudden drop.
In all missing sample perturbations cases, application of

UFF improves considerably the clustering quality even under

substantial information loss. This is also the case with missing

values perturbations. Clustering after UFF outperforms

clustering without UFF. Comparing between three imputation

methods, we learn that the best method for the SRBCT

dataset is the KNNImpute while for the Lung dataset it is the

weighted average.

3.1.2 UFF is stable under perturbations The stability of

filtering is measured by the similarity between the original list

of features (selected when the information is complete) and the

lists that are generated from the perturbed sets. The lists for the

SRBCT and Lung datasets (comprising 88 and 62 genes,

respectively) appear in the Supplementary Material.
Figure 4 displays the similarity scores of the perturbed

SRBCT and Lung datasets as a function of the lost data. As

shown, in the missing samples perturbation, the intersection

levels remain high even after substantial loss. This means that

UFF is stable under missing samples perturbations.

In the missing values perturbation, not all imputation

methods perform equally. In both cases the simple average

method performs relatively bad, while the weighted imputation

method performs very well. In the SRBCT dataset the

KNNimpute yields high similarity results, yet in the Lung

dataset this method is found to result in less stable lists. Overall,

similarity is seen to decrease linearly with information loss.

In both perturbation schemes the intersection is high (�85%)

even after substantial loss (20%). Similar qualitative results

have been obtained by Scheel et al. (2005) in a supervised

selection task.

3.2 Application to a faulty dataset

Given the CGH dataset that contains 3.3% missing values

(see Section 2.1), we apply to it further artificial information

loss in order to estimate (1) how damaging is the 3.3% original

loss, and (2) which is the best imputation method.
The analysis starts with applying the three imputation

methods to the dataset. Applying UFF to the three recon-

structed forms, results in three lists of selected features,

comprising 88, 83 and 85 clones for the average, weighted

average and KNNImpute, respectively. These three lists, that

are referred to as baselines, have 72 clones in common

(Table S3). As shown in Figure 5, the dataset is further

perturbed, both by missing values and by missing samples

protocols. The resulting lists of features are then compared with

their corresponding baseline lists. Figure 5 displays the
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Fig. 5. Similarity scores as a function of lost data of the CGH dataset

with (A) missing values and (B) missing samples perturbations. Note

that the missing values analysis starts with the original 3.3% loss.

Detailed results appear in Supplementary Material.
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similarity scores as a function of the information loss. Note,

that since three baseline lists are defined, three comparisons are

applied to both protocols.
Clearly, under all perturbations, the similarity levels degrade

smoothly (almost linearly), retaining high intersections (�85%)

with the original lists even after substantial loss (20%). The

high similarity levels may testify that, as far as clones selection

is considered, the original 3.3% damage is not crucial. This

observation matches the one found in the gene-expression case,

which suggests that the stability characteristic of UFF is

generic. Furthermore, both protocols lead to similar ranking of

the different methods with weighted average inferior to the

other two imputation methods.

4 BIOLOGICAL INFERENCE

In this section, we wish to study whether the stability criterion

is also biologically meaningful, i.e. are the stable features

causally related to the biological problem at hand?

4.1 Ranking stable features

Figure 6 displays the stability scores of the 88 first UFF genes

in the SRBCT dataset (according to 0 and Varshavsky et al.,

2006). There exists a positive correlation between the rank

order of the UFF score and stability. They are compared to the

ranking of Khan et al. (2001) based on a supervised criterion.

Out of 88, 37 of the UFF genes are common to the two lists

(hypergeometric enrichment P-value of 1.7E�12).
Among the 10 and 20 top stable genes, 8 and 13, genes

appear in the supervised-selection based list, respectively.

The 20 most stable genes are listed in Table 1 (complete lists

of the two datasets appear in the Supplementary Material,

Tables S1A,B and S2).

4.2 Comparing stable and ‘less-stable’ SRBCT genes

4.2.1 Statistical analysis We conducted a statistical com-
parison of top 20 stable genes, with the 20 genes that were

originally selected by the UFF algorithm, but found to be less

stable (with stability score ranging from 0.85 to 0.51). The

top stable genes have relatively low skewness and kurtosis,

compared to the less stable genes. Since imputation methods

tend to smooth distributions, wide symmetrical distributions

should indeed be more resistant to perturbations.

4.2.2 Functional analysis for the most stable genes The

malignant tumors analyzed tend to occur in childhood. From

a morphological view, subtle clues distinguish between the

tumors. At present, analysis for chromosomal abnormalities

and molecular probes are being used to assist the pathologists.

The list of most stable features in the SRBCT set is intriguing.

Among the top stable genes, several genes corroborate each

other. Figure 7 illustrates protein–protein interactions that were

experimentally validated. Several of the top 20 stable genes

appear in these networks. The appearance of representative

Table 1. Top 20 stable genes in the SRBCT dataset

Stability

ranking

Stability

score

Genes name UFF

ranking

Khan’s

ranking

1–11 1 Human DNA for insulin-like

growth factor II (IGF-2);

exon 7 and additional ORF

1 2

1–11 1 Insulin-like growth factor 2

(somatomedin A)

2 1

1–11 1 Collagen, type III, alpha 1

(Ehlers-Danlos syndrome

type IV, autosomal

dominant)

3 40

1–11 1 Insulin-like growth factor

binding protein 2 (36kD)

5 8

1–11 1 Human insulin-like growth

factor binding protein 5

(IGFBP5) mRNA

6 62

1–11 1 SMA3 11 –

1–11 1 Actin, alpha 2, smooth

muscle, aorta

14 83

1–11 1 Antigen identified by mono-

clonal antibodies 12E7,

F21 and O13

51 73

1–11 1 IM-379708 23 –

1–11 1 Growth-associated protein 43 7 31

1–11 1 Spectrin, beta, non-

erythrocytic 1

52 –

12–15 0.99 Regenerating islet-derived 1

alpha (pancreatic stone

protein, pancreatic thread

protein)

20 57

12–15 0.99 Nucleolin 22 –

12–15 0.99 Gelsolin (amyloidosis,

Finnish type)

16 –

12–15 0.99 Troponin T2, cardiac 13 25

16–19 0.98 Crystallin, alpha B 12 79

16–19 0.98 Secreted protein, acidic,

cysteine-rich (osteonectin)

37 –

16–19 0.98 Collagen, type I, alpha 2 9 –

16–19 0.98 Follicular lymphoma variant

translocation 1

30 75

20 0.97 Cyclin D1 (PRAD1: para-

thyroid adenomatosis 1)

10 3

In addition, the ranking of the genes according to Khan et al. (2001) is given. ‘–’

denote that a gene is not included in the reported 96 genes list (Khan et al., 2001).
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Fig. 6. Stability scores of the top scored UFF-based selection (88 genes)

in the SRBCT dataset.
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genes within protein networks is an indication for the

importance of the identified biological process in the classifica-

tion. The most evident property is that the stable genes are

strongly involved in regulatory networks. In general, several

genes are involved in signal transduction (i.e. IGF response),

regulation of cytoskeleton and extracellular signaling.
Some genes, listed among the top ranked genes, belong to

cytoskeleton elements and their regulators (including actin,

gelsolin, troponin, cardiac actin alpha 2, alpha B crystalline and

beta spectrin). Their roles as tumor subtype classifiers are not

evident and should be experimentally validated.
The biological properties of the less stable genes are different

from the top ranked 20 genes. In general, many of these genes

associate with a nuclear function and thus may belong to the

tumorigenesis process. Among these genes are H2A histone,

DEAD/H hnRNP K, FMR1 interacting protein 2, Cyclin-

dependent kinase 2-associated protein 1 and more. It is possible

that they are altered in tumors, but play a weaker role in

distinguishing among the different types.

5 DISCUSSION

We have subjected UFF to a perturbation-based analysis

and found it to obey the condition of stability. A similar

perturbation-based selection was shown to be efficient in

supervised tasks (selection and classification) (Chen et al.,

2007). Ours is the first unsupervised perturbation-based

selection procedure. We recommend using stability under

perturbations as an important diagnostic tool when searching

for a feature selection method.
Although for practical reasons, perturbation of even 10%

should be already considered as significantly severe, in this

study we extended our analysis to much higher damage levels

(up to 50% of the data, see Supplementary Material). The

reason for doing so is twofold: (i) acquire a deep understanding

of the nature of the method and the data. It is of interest to

investigate whether extensive damage, beyond some critical

amount, leads to a collapse of our method (known as critical

transition or percolation in various physical systems). In the

problem studied here we observe a smooth, almost linear

degradation in performance. (ii) In the context of gene

expression, the number of unreliable or suspicious samples

might often reach a significant fraction of the entire dataset.

Often these samples are not literally missing but result from

unreliable RNA extraction, low quality labeling, etc. We were

therefore motivated to examine how removing many samples

influences the lists of selected features (genes).
We have found that the effect of missing samples is very

similar to the one of missing values (followed by imputation).

In both, even a substantial loss of data does not significantly

alter the list of the selected features, reaching a similarity

of �85%. Nevertheless, it should be emphasized that this

argument should be limited to datasets with no inherent

dependency among the samples. Examples for such dependen-

cies are: time series, cell-cycle and pre-post treatment for the

same individuals.
Differences in the imputation methods are identified,

emphasizing that imputation method needs to be data-driven.

For instance, KNNImpute is usually found perform best in the

low loss region while the two average-based imputations

achieve higher similarity levels at the high loss region. This

last finding can be explained by the local nature of the

KNNImpute method (relying only on nearest neighbors). This

understanding may assist in selecting among the various

imputation methods.
In the cases analyzed, a high correlation between the external

and internal criteria (clustering quality and filtering stability,

respectively) is reported. Specifically, in both gene-expression

benchmarks the two evaluation criteria rank the imputation

methods identically. This observation can be exploited to select

an imputation method given a dataset. Interestingly, when

applying the NRMSE (Normalized Root Mean Square Error),

the standard internal criterion for evaluating imputation

methods, a different methods–ranking is reported (see

Supplementary Material). This suggests that our unsupervised,

internal, similarity measure may be a more reliable criterion for

selecting an imputation method. We therefore suggest testing

the imputation method in conjunction with an unsupervised

feature selection method, such as UFF. Not only does it test

stability of the selected features, it also points out the best

imputation method to be used under these conditions.

Identifying genes as biomarkers for tumor detection and

classifications and for the multiple neurological malfunctions is

of ultimate importance. Many genes selected by our stability

criterion are in agreement with the ones that were found in a

supervised manner. However, some potential new features are

suggested. Identifying new potential markers may be due to the

lack of bias in our analysis, neither from sample labeling nor

A B C

Fig. 7. Experimentally identified gene networks (von Mering et al., 2007). (A) IGF-2 and interacting proteins; (B) Actins (ACT) and Gensolin (GSN)

and (C) Collagen (COL), Osteonectin (SPARC) and TFG� (TGFB). Genes included in Table 1 are framed (dashed frame indicates a UFF selected

gene, but not among the top 20).
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from pre-selected classifier algorithm. Moreover, by applying

the method on the entire dataset (without train-test splitting),

we manage to reduce the well-known pitfall of over-fitting.
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