1002

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 5, SEPTEMBER 2004

Dynamic Proximity of Spatio-Temporal Sequences

David Horn, Member, IEEE, Gideon Dror, and Brigitte Quenet

Abstract—Recurrent networks can generate spatio-temporal
neural sequences of very large cycles, having an apparent random
behavior. Nonetheless a proximity measure between these se-
quences may be defined through comparison of the synaptic
weight matrices that generate them. Following the dynamic
neural filter (DNF) formalism we demonstrate this concept by
comparing teacher and student recurrent networks of binary
neurons. We show that large sequences, providing a training set
well exceeding the Cover limit, allow for good determination of
the synaptic matrices. Alternatively, assuming the matrices to be
known, very fast determination of the biases can be achieved.
Thus, a spatio-temporal sequence may be regarded as spatio-tem-
poral encoding of the bias vector. We introduce a linear support
vector machine (SVM) variant of the DNF in order to specify
an optimal weight matrix. This approach allows us to deal with
noise. Spatio-temporal sequences generated by different DNFs
with the same number of neurons may be compared by calculating
correlations of the synaptic matrices of the reconstructed DNFs.
Other types of spatio-temporal sequences need the introduction
of hidden neurons, and/or the use of a kernel variant of the SVM
approach. The latter is being defined as a recurrent support vector
network (RSVN).

Index Terms—Dynamic neural filter (DNF), recurrent support
vector network (RSVN), spatio-temporal coding.

1. INTRODUCTION

RECENT paper [1] has introduced the concept of a dy-

namic neural filter (DNF), a recurrent network projecting
input space into spatio-temporal binary sequences. The one-step
dynamics of a binary recurrent network of N neurons is defined
by

ni(t+1) = H (hi(t+1)) = H | Y wijn;(t)+b; | (1)

where n; is the activity of neuron ¢ whose binary values may be
either O or 1. w;; is the synaptic coupling matrix and b; are the
biases of the system.! H is the Heaviside step function taking
the values 0 for negative arguments and 1 for positive ones. We
will use these dynamics to generate large families of sequences.
The special viewpoint of the DNF is that each spatio-temporal
sequence of that kind is encoded by the specific structures w;;
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Tn [1], we have used b; = R; — 6, putting emphasis on the external inputs
R; fed into the neurons. For simplicity we use only one parameter here.

and b; that were used to generate it. Thus, we may encounter
a binary spatio-temporal sequence of N = 40 neurons and
T = 1000 time-steps, whose 40000 entries can be encoded
by the 1640 parameters of the relevant DNF. Whereas the com-
plexity of the spatio-temporal sequence may seem uncontrol-
lable, it looks more manageable when being recast in terms of
its generators. The particular issue that we will discuss is that
of proximity of such sequences, defining the latter in terms of
the generating parameters (codes) instead of the spatio-temporal
entries.

It is well known [2] that symmetric w matrices lead to fixed-
points or two cycles, and antisymmetric matrices can lead [3], at
most, to four cycles. Nonetheless, completely asymmetric ma-
trices [4] can lead to arbitrary large cycles in the large /V limit.
Studying DNF structures with relatively low N values, we have
shown [1] that one may, indeed, obtain large cycles with asym-
metric matrices, provided the biases are small. Moreover, we
have demonstrated the occurrence of many different sequences,
in the thousands for an asymmetric w matrix when N = 5.
Asymmetry may be defined by the parameter [1]

25 Wi wji
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@

that varies between 1 and — 1, with the extremes characterizing
the symmetric and anti-symmetric cases. The completely asym-
metric case corresponds to o = 0.

It should be noted that for each time step the system finds
itself in a state {n}, one of 2%V states. Once we turn to large
N values, e.g., N = 40, the volume of the space of all states
becomes enormous. Moreover, choosing an asymmetric w and
small biases we guarantee obtaining very complex spatio-tem-
poral behavior. Biases are in general limited to lie within the
range

—qujo(U)qjj) <b <-— ZU)UH(_WU) 3)
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J

otherwise they lead to trivial results, dominating the dynamics
of the neurons. Choosing them to lie in the middle of this range,
ie.

1
b =5 D wi 0)
J

guarantees generating the largest possible cycles. This is
demonstrated in the next section where we present numerical
studies of an N = 40 model with o ~ 0. We show there
that under such conditions one generates very long sequences.
Moreover, slight changes in b; may lead to new sequences.
If this is the case, a divergence occurs at one time step, after
which the sequences do not bear any resemblance to each other.
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This is so because, given the large volume of state—space (2%V),
a small shift of a sequence by one state leads to a completely
new path in this space. In other words, sequences generated by
near-by biases (reflecting near-by external inputs) may bear no
similarity to one another. Nonetheless, sequences generated by
a DNF contain information that allows for the reconstruction
of the DNF. We will use this fact to define a proximity measure
for such sequences.

Given any sequence one may use [1] a perceptron algorithm
to reconstruct a DNF that can generate it. This algorithm is de-
scribed in the next section. A precondition for this algorithm
to work is that the given sequence obeys linear separability, in
a sense to be specified below. This may be guaranteed under
certain conditions (see Section I-B) and is easily obtained if a
teacher DNF is employed to create the sequence. This is the
method we use in Section II where we study an N = 40 ex-
ample. For large N, the linear separability conditions can be
easily met for randomly generated sequences.

A. Perceptron Algorithm

Here we recapture a straightforward algorithm for building
the DNF from a given sequence [1]. Let us start by defining,
for each neuron ¢, an N 4 1 dimensional vector of perceptron
weights

forj=1,--N (&")nt1=bi. (5)

(@"); = wij

Let us define vectors #(t), for each neuron i, as follows:

(&),

(& ®) s =

The vector () represents the state of all neurons that form the
input at time ¢ to neuron %, weighted by a positive or negative
sign depending on whether the target neuron ¢ at the next time
step is 1 or 0, respectively. With these definitions, all constraints
of the problem at hand can be written as T" perceptron inequal-
ities

:’I’L]’(t)(Qni(t-l'l)—l) fOl"jzl,---N
(2ni(t+1) = 1). (6)

W - #(t) >0 forallt=0,1,---T — 1. (7

Now one can use the perceptron learning rule [2], [5]
AW = nF () H (—0; - T'(1)) ®)

while iterating the system, time and again, over all T states. The
Heaviside function guarantees that @’ gets modified at a given
iteration by the vectors #(t) that do not satisfy the inequality.
This algorithm converges [2] if the system of inequalities is sol-
uble.

Adhering to a notation where all vectors lie in an N + 1 di-
mensional space we define also

(1)), = ni(t)

which allows rewriting (1) as n;(t + 1) =

fori=1,---N (ii(t))y,, =1 (9

H(@ - i(t)).
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Fig. 1. Raster plot of an N = 40 DNF, demonstrating a spatio-temporal
sequence over 7' = 1200 time steps without any repetition.

B. Network Size

Given data of N neurons in 7" time steps one may wonder
if they could be generated by a DNF. It is straightforward [1]
to show under which conditions the sequence would fit a DNF
even if the states were generated randomly. Each neuron has to
satisfy T" inequalities in an N + 1 dimensional space. Hence,
strict matching for any set of such data requires (see, e.g., [2])

A: N>T-1. (10)
In the large N limit one can apply Cover’s result [6], saying that
a solution may be found for

B: T<2(N+1) or N> %(T 2). (11)

This would be the case when the sequence is constructed
of random states. Clearly, if the sequence is generated by a
(teacher) recurrent network, the inequalities expressing linear
separability will be obeyed for any length of the sequence. In
other words, trying to reconstruct a DNF from given data, we
may run into problems at 7' ~ 2NV, if the data were not gener-
ated by a DNF. Otherwise, we should be able to reconstruct the
DNEF, and improve on it, as 7" increases.

II. NUMERICAL STUDIES

A. Apparent Randomness

We run a network of N = 40 neurons with w;; ~ N(0,1)
and b; chosen according to (4). Under these conditions, the av-
erage activity of the neurons is 1/2, and the resulting spatio-tem-
poral sequence has a very long cycle. A characteristic raster plot
of this system is shown in Fig. 1. This is the kind of spatio-tem-
poral pattern we wish to study. Checking 1200 time steps, we
find that the sequence never repeats itself, i.e., it belongs to a
cycle that is larger than 1200.

A very large cycle, whose states belong to a space of size
240 gives the impression of apparent random behavior. This be-
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Fig.3. Correlation between teacher and student DNF in the N = 40 problem,
using the perceptron algorithm in 10 different teacher-student experiments.

havior is also reflected in another aspect of the system. As im-
plied by its name, the DNF may be viewed as a dynamic filter
from external input space, or bias space formed by all b;, to its
spatio-temporal representation for a given fixed w. If the re-
sulting spatio-temporal sequence has an apparent random struc-
ture, one may expect small shifts in b; to lead to divergence of
the resulting sequence. This is indeed the case, as can be seen
in Fig. 2. Here we show the Hamming distance between two
sequences generated by the same N = 40 DNF. All b; values
for both sequences were identical, but for one that was slightly
shifted. The resulting sequences started diverging very late, be-
cause the shift in the parameter was very small, but once they
diverged they quickly reached the maximal Hamming distance,
which, in a system of binary 1/0 neurons whose average activity
is 172, is N/2.

B. Reconstructing a DNF From Its Sequences

As explained in the Introduction we will associate a
spatio-temporal sequence with the DNF generating it. To recap-
ture the w matrix of the DNF we use the perceptron algorithm.
Thus, the DNF that served to generate the sequence may be re-
garded as a teacher network training DNF students. The results
of this training are shown in Fig. 3 where we display averages
of the correlations " for each neuron, 1/N Y, corr (i),
between teacher (T) and student (S) recurrent networks. The
training converges nicely after a few hundred steps. The error
bars represent standard deviations over 10 different student-net-
works, trained on 10 different sequences of the type shown
in Fig. 1. Another measure of successful learning is given by
the results of one-step predictions of the student. By one-step
prediction we refer to the final state {n(1)} produced by the
system for a random initial state {n(0)}. Comparing the results
of the student with those of the teacher, and averaging over 10
different sessions of teacher-student tests, we obtain the errors
shown in Fig. 4, displaying rapid convergence as function of
the training period.
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Fig. 2. Hamming distance between two N = 40 spatio-temporal sequences,
generated by sets of b; values that were identical but for a slight change in one
of them.
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Fig. 4. Convergence of the errors of student networks on one-step prediction
tasks.

Thus, we see that the given temporal sequence of Fig. 1 de-
fines, through the perceptron algorithm, a quite unique w ma-
trix. Its uniqueness depends on the size of the training set, i.e.,
the number of time steps of the given sequence. The smaller
this size, the wider will be the range of w that can reproduce a
given sequence. One should notice that, in any case, the matrix
w is defined only up to a set of N scale transformations. As can
be seen from (1), every factor multiplying any * of (5), leads
to the same dynamics. This arbitrariness of scale is factored
out once we calculate the correlations 1/N Y, corr (i) be-
tween teacher (T) and student (S), displayed in Fig. 3.

It is important to realize that sequences may be very uncorre-
lated in their spatio-temporal structure and yet may be very close
in their generating ws. Consider a sequence of the type shown
in Fig. 1. Generating a w from its first 500 time steps, and an-
other w from the next 500 steps, we obtain correlations close to
1 between these two ws, as expected from Fig. 3. Yet the two
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Fig. 5. Inverse error is proportional to the number of training examples, as
shown here for the averages of 10 teacher-student experiments.

spatio-temporal patterns are completely uncorrelated as far as
their neural realization is concerned. In other words, while Ham-
ming distance shows no proximity the dynamics are as close as
they can be! This exemplifies the power of the DNF as a tool for
defining proximity between spatio-temporal patterns.

C. Generalization Error

In Fig. 4, we have tested the performance of the student net-
works on examples on which they have not been trained. Hence,
the error measured here is the generalization error. Given the fact
that the problem we study can be viewed as a set of perceptrons
that are being trained together, as is quite evident from the per-
ceptron algorithm that we use in the training procedure, we may
expect the generalization error to follow that of the perceptron.
It is well known [7] that once the number of training examples,
presented here by the time duration 7' of the spatio-temporal
training sequence, is larger than twice the dimension of the input
samples T' > 2N, the asymptotic behavior sets in and the error
decreases as 1/T. Testing the large T range in Fig. 5, we find
that this rule applies to our system as expected.

D. Reconstructing the Biases

Of particular interest may be the problem of bias reconstruc-
tion. Imagine the following encryption problem: given a weight
matrix, that is known to both sender and receiver of an encrypted
message, the sender transmits a spatio-temporal sequence from
which the receiver has to extract the vector of biases, which is
the encrypted message. How long should this sequence be?

Obviously the error in the extracted bias is expected to behave
like the generalization error of the previous section. But, given
the much smaller number of variables, we expect it to converge
much faster. The numerical results are shown in Fig. 6. The av-
erages decrease in proportion to the inverse of T, the length of
the transmitted sequence. The scale of the error is, as expected,
much smaller than that of Fig. 5 because of the much simpler
problem.
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Fig. 6. Error of reconstructing the bias as function of the number of training
examples. Here it is assumed that the synaptic matrix is known. Shown are
averages and standard deviations of 10 teacher-student experiments.
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trained on random one-step trials shows the advantage of the latter scheme.

E. Reconstructing a DNF From One-Step Data

Although the main emphasis of this paper is on sequences, we
digress in this section to point out that learning a teacher DNF
can be better done by using random initial states for one-step
dynamics, than by employing a long sequence. This is shown
in Fig. 7, where we compare the average errors of ten students
using random one-step pairs, with those using data generated by
a sequence. In the figure, we plot the difference between errors
of the latter and the former. This suggests there is an advantage
to using random pairs. The reason for this difference is that the
states read off from a sequence are biased by the fact that they
are generated by the teacher. The weights w of the teacher in-
duce correlations in input samples of the student in the sense that
the activities n;(¢) and n;(¢) are correlated due to the generating
weights «* and 177 . This is in accord with known understanding
of the dynamics of recurrent neural networks [10]-[12].
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III. OPTIMAL NETWORK

In Fig. 3, we see that an increase in training examples leads to
better and better correlation of the student DNF with the teacher
DNF. It is quite evident that, for a given number of training
examples, there exists a large number of possible w matrices
that can generate it. One may then ask if there exists an optimal
choice of w, not necessarily the one generated by the perceptron
algorithm that we have used so far. Optimality may be defined
as stability toward small (noisy) change of data. In this case, the
answer can be obtained by using the maximal margin approach
of support vector machines (SVMs) [8], [9]. This is a well-de-
veloped theory within which one can discuss and describe issues
of classification in general and linear separability in particular.

A teacher DNF produces a sequence that is linearly separable.
The data that the student network is presented with consists of
all initial state vectors 7i(t), with ¢ varying from 0 to T' — 1,
and their corresponding final (target) values that are specified by
7i(t+1). To cast our problem into the SVM formulation consider
the set of all input samples 7i(t), and their corresponding target
values n;(t + 1) on neuron i as expressed by & (¢) in (6). They
form a linearly separable data set in the N-dimensional input
space, separated according to whether the target value is 0 or 1.
The SVM algorithm specifies the weight vector of neuron ¢ in
terms of a few of these inputs

T-—1
Wt =Y B (). (12)
t=0

The values of the parameters (3 are obtained by solving a
quadratic optimization problem [8], [9]. Most of the (3 values
vanish. The few positive weights (3‘(t) specify the ¢ values
which define the support vectors of the problem of neuron s.
The resulting 7 is guaranteed to specify the largest margin,
i.e., this is the direction such that the hyperplanes perpendicular
to it, that close on the two classes of data, are separated by the
largest distance (margin).

Using the SVM algorithm to solve the problem of Fig. 3,
we obtain the results shown in Fig. 8. Although the results of
the SVM algorithm are slightly better, their general trend is the
same as that of the perceptron algorithm solution. Also here the
correlations start out low, because, whereas the student finds an
optimal solution (in the SVM sense) the teacher is not optimal.
In fact, a DNF with a given w, leads through any particular se-
quence that it generates, to a family of different optimal solu-
tions as function of the length 7" of that sequence. Only in the
limit T' — oo does the optimal solution converge to that of the
teacher DNF. For a moderate value of training examples it may
approximate it quite well.

IV. NoISY SPATIO-TEMPORAL SEQUENCE

An interesting case is that of a spatio-temporal sequence that
is DNF generated, but is subject to a noisy channel, inverting
some fraction of its bits. The question is if, given such a se-
quence, one can rebuild the original w.

Clearly some of the errors will just mislead the learning algo-
rithm, but others may introduce violations of linear separability.
The latter pose a problem for the perceptron algorithm, but can
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in the data. The highest noise value corresponds to 1/80, i.e. half a flip on average
for each state of the trained system.

be readily handled by the SVM formalism through the introduc-
tion of slack variables leading to an upper bound on 0 < 3*(t) <
C [8], [9].

In Fig. 9, we display the effect of noise on the teacher-student
task of recovering the synaptic matrix w. We employed the same
methodology as described in previous experiments, using the
SVM algorithm with a constant slack parameter C = 1. As can
be seen, this system works quite well, leading to relatively small
errors. Thus, we see that noise that flips on average one neuron
in each state of N = 40 neurons leads to a prediction error of
order 14%, roughly twice that expected from a network trained
on a noiseless sequence of the same length of 250. The error bars
reflect the standard deviation of ten teacher-student sessions.

These results are very encouraging. They imply that even at
a relatively high error rate one can obtain reasonable predictive
power from the analysis of the data. In other words, one may
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trust the meaningfulness of the w deduced by the student. Com-
paring two different sequences, this implies that one can deduce
from our analysis whether they are generated by a similar w or
not.

V. ILL-DEFINED PROBLEM

Sequences or spatio-temporal patterns that are not generated
by a DNF may not be amenable to DNF representations that are
limited to the number N of observed neurons. There may be two
sources of disagreement:

1) occurrence of contradictory repetitions, i.e. 7i(t1) = 7i(t2)
while ﬁ(tl + 1) #* ﬁ(tz + 1);

2) occurrence of XOR-like configurations that violate the
linear separability condition that is implied by the dy-
namics of (1).

Simple examples of such sequences can be generated by a DNF
with a number of neurons N’ that is larger than the number of
observed neurons NV in terms of which the sequence is presented
to the student network. This hints at the way to solve the two
problems mentioned above: add hidden neurons [1]. This, how-
ever, poses a difficult problem: not only has one to learn a larger
synaptic matrix but one has also to choose appropriate values
n;(t) of the hidden neurons during the time steps of the avail-
able sequence. We leave open the questions of what is an effi-
cient algorithm to achieve these goals, and how one may guar-
antee that the minimal N’ is obtained. We can state, however,
that for any spatio-temporal sequence of length T' composed of
arbitrary states, a DNF representation exists under the condi-
tions discussed in Section I-B of the Introduction (' of order
T/2).

Problem number 2 of the XOR-like configurations, can be
handled by generalizing the DNF of (1) into a nonlinear SVM
kernel formulation

ni(t+1)=H (K (@',7(t))) (13)
with the kernel replacing the scalar product «° - 7i(t). Appro-
priate kernels can be powers K (d, b) = (@-b+1)? or Gaussians
K(a, l;) = e((@=5)*/20%) [8], [9]. Once the separability of a se-
ries is resolved, (13) can be used as the definition of a recurrent
support vector network (RSVN).

There exists still the first problem, that of contradictory rep-
etitions, when the same state vector leads to different results
occurring at different time steps. When such a situation occurs
one cannot escape the necessity of invoking hidden neurons. It
is however straightforward to decide on their minimal number
since all that is needed is to guarantee the disappearance of con-
tradictory repetitions.

VI. DISCUSSION AND CONCLUSION

The DNF serves as a general framework for the generation
and study of binary spatio-temporal patterns. N = 40 is a
large enough system to demonstrate very large cycles (over
1000), leading to apparent random spatio-temporal sequences.
Although such patterns, and even different sections of the same
sequences, look quite different from one another, there exists a
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dynamical proximity measure in terms of the synaptic matrices
w that generate them.

In our numerical studies we have demonstrated the com-
plexity of the sequences, and have shown that in spite of this
complexity some order may be found in terms of their inferred
w. Regarding the given spatio-temporal sequence as a teacher
we trained on it student networks. We have demonstrated the
correlations between ws of teacher and student networks using
two algorithms: the perceptron algorithm of [1] and an SVM
algorithm suggested here. The latter may serve to define an
optimal w in the sense of providing the largest margin in
any classification algorithm of the linearly separable data. We
have seen that it is relatively easy to get very high correlations
between the ws in our N = 40 examples. The scale of the re-
quired length of the series is set by T = 2N, or 80 in this case,
when a very large sector of all w-space can accommodate the
data, as expected from the Cover limit B of (11). For T" > 2N
generalization sets in, causing an ever increasing correlation
between the 1 vectors of synaptic weights of the teacher and
the student. Here, a few hundred learning steps were sufficient
to obtain correlations above 90%. Thus, given two sequences
of length T = 250, generated by two DNFs with N = 40,
we may deduce, to an accuracy of order 80%, the correlations
between the two original ws.

These results can be used to emphasize the interesting coding
property that the DNF suggests for spatio-temporal sequences:
a sequence may be defined by the w used to generate it. If it is
long enough, this w may be reproduced by the algorithms men-
tioned above, as long as all neurons are observed. Proximity of
sequences is then defined by proximity in w values. One spe-
cial case is that of keeping all w;; fixed and varying only the b;
values. We saw in Fig. 2 that a small change in these parameters
suffices to induce divergence in Hamming distance. Nonethe-
less, the b; values may be reconstructed easily, as seen in Fig. 6.

There are two characteristics of DNF-generated sequences
that are important: 1) nonrecurrence of a state (unless it reap-
pears in a cyclic recurrence) and 2) linear separability of all
states observed by each neuron. Once not all neurons are dis-
played, these characteristics may disappear when only the ob-
served neurons are considered. In principle, any finite spatio-
temporal binary sequence can be generated by a DNF provided
sufficient hidden neurons are provided. However, this extension
and, in particular, finding the minimal DNF that can accommo-
date a given sequence [1], is a hard problem.
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