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We investigate binding within the framework of a model of excita-
tory and inhibitory cell assemblies that form an oscillating neural net-
work. Our model is composed of two such networks that are connected
through their inhibitory neurons. The excitatory cell assemblies repre-
sent memory patterns. The latter have different meanings in the two
networks, representing two different attributes of an_object, such as
shape and color. The networks segment an input that contains mix-
tures of such pairs into staggered oscillations of the relevant activities.
Moreover, the phases of the oscillating activities representing the two
attributes in each pair lock with each other to demonstrate binding,.
The system works very well for two inputs, but displays faulty corre-
lations when the number of objects is larger than two. In other words,
the network conjoins attributes of different objects, thus showing the
phenomenon of “illusory conjunctions,” as in human vision.

1 Introduction

Recent observations of synchronous oscillatory behavior of neural firings
(Eckhorn et al. 1988; Gray et al. 1989) have strengthened the idea that
temporal correlations are the means by which binding is achieved (von
der Malsburg and Schneider 1986).

The binding problem may be viewed as the quest for a mechanism
uniting parts of incoming sensory information into coherent activation
patterns representing objects or situations in the external world. In the
case when the assembled parts are essential for the object’s identity (as
when the object is defined by specific relations between its parts), this
mechanism could be provided by an underlying synaptic connectivity
reflecting prior knowledge. A theoretical attempt in this direction was
made by several researchers (Sompolinsky et al. 1989; Kammen et al.
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1989) who showed that synchronized oscillations between distant neural
populations may be obtained, once an explicit connectivity among the
neural populations is assumed. The binding problem is more acute in
the case when the relation among the parts of the integrated objects is
of contingent nature, that is, when the parts do not bear any relations
essential to the identity of the objects. In this case a mechanism that does
not rely on a priori connectivity should be provided.

We will limit our discussion to the binding of intramodality informa-
tion. To illustrate the problem consider the case studied in psychophys-
ical experiments (Treisman and Schmidt 1982), in which an observer is
presented with a display consisting of three colored shapes, for example,
a red diamond, a blue square, and a green circle. If we suppose that
shapes and colors are stored in different cortical modules (networks), we
are faced with the double problem of segmentation and binding. That is,
the “shape” module should recognize and segment the shapes, while the
“color” module should recognize and segment the colors. The binding
problem, then, is to provide the correct matching between the shapes and
their corresponding colors. Treisman and Schmidt suggested that cor-
rect matching can be obtained by the human visual system only when
focusing attention on each of the objects separately, otherwise illusory
conjunctions may occur.

We wish to study this problem within a model of coupled oscillatory
networks that receive a mixed input, as illustrated schematically in Fig-
ure 1. Such a system is then required to perform simultaneously both
segmentation and binding.

Segmentation is the task of parallel retrieval of the individual mem-
orized patterns composing the input. This can be achieved in oscillating
networks as was demonstrated by Wang et al. (1990) and by Horn and
Usher (1991). What happens is that the activities of the different memory
patterns that are turned on by the input oscillate in a staggered fashion.

Binding is modeled by assuming that patterns corresponding to the
related attributes oscillate in phase (e.g., the activity of the pattern repre-
senting the shape “diamond” should oscillate in phase with the activity
of the color “red”). Modeling the binding process is especially challeng-
ing since no a priori stored synaptic structure relating the corresponding
patterns is allowed, due to the fact that their relation is contingent. We
will show how a solution to the binding problem is achieved by using
a mechanism based on enhancement of noise correlations. Moreover we
will show that for more than two input patterns synchronization faults
occur. These faults may provide a natural explanation for perceptual
errors of the illusory conjunction type.

The neural networks that we study are based on coupled formal neu-
rons that possess dynamic thresholds that exhibit adaptation: they vary
as a function of the activity of the neurons to which they are attached. As
such they introduce time dependence, which can turn a neural network
from a dissipating system that converges onto fixed points into one that
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Figure 1: Schematic drawing of a problem of joint segmentation and bind-
ing. The example of objects of different shapes and colors will be discussed
throughout this paper. The inhibitory connection between the two networks is
an important element of our solution.

moves from one center of attraction to another (Horn and Usher 1989).
Here we will use a variant of these models (Horn and Usher 1990) that
is based on a model of excitatory and inhibitory neurons. This model is
explained briefly in the next section. It can be expressed in terms of a set
of differential equations that involves the activities of the excitatory cell
assemblies that represent the memories of this model. In the following
section we describe how two such networks can be-coupled through their
inhibitory neurons in a nonsemantic fashion, that is, no explicit connec-
tions exist between the patterns that are to be bound. We show that this
coupling leads to matching their periods and phases. The next section
is devoted to an explanation of how binding is achieved. Afterward we
turn to an analysis of the performance of our model and dwell on the
illusory conjunctions that it exhibits when the number of inputs is larger
than two.

2 The E-1 Model

The system that we will study is based on a model of excitatory and
inhibitory neurons with dynamic thresholds. These two kinds of neu-
rons are assumed to have excitatory and inhibitory synapses exclusively.
Memory patterns are carried by the excitatory neurons only. Further-
more, we make the simplifying assumption that the patterns do not over-
lap with one another, that is, the model is composed of disjoint Hebbian

cell assembilies of excitatory neurons that affect one another only through
their interaction with a group of inhibitory neurons common to all of
them. We refer to a previous paper (Horn and Usher 1990) for details
of the microstructure of this model. Here we will limit ourselves to its
description in terms of differential equations for the activities of the cell
assemblies.

To start with let us consider the case of static thresholds. We denote
by m#(t) the fraction of cell assembly number y that fires at time f, and
by m!(t) the fraction of active inhibitory neurons. We will refer to m* as
the activity of the uth memory pattern. There are p different memories in
the model, and their activities obey the following differential equations

dmt/dt = —m"+ Fr(Am* — Bm' — 6F) 2.1)
dm'/dt = —m'+Fr(CM-Dm'-6")
where
M=Smt Fr(x)=(1+e*N)™" (2.2)
m

6 and 6' are the (constant) thresholds of all excitatory and inhibitory
neurons, respectively. The four parameters A, B, C, and D are all positive
and represent the different couplings between the neurons. This system
is an attractor neural network. It is a dissipative system that flows into
fixed points determined by the memories.

This system is a generalization of the E-I model of Wilson and Cowan
(1972) in which we have introduced competing memory patterns. The
latter make it into an attractor neural network. Wilson and Cowan have
shown that a pair of excitatory and inhibitory assemblies, when properly
connected, will form an oscillator. We induce oscillations in a different
way, keepihg the option of having the network behave either as an at-
tractor neural network or as an oscillating one: we turn the thresholds of
the excitatory neurons into dynamic variables. For this purpose we in-
troduce new variables r* that represent the average alternating behavior
of the thresholds of the excitatory neurons in cell assembly p, and change
the p equations of the excitatory neurons to the following 2p equations:

dm* /dt —m* + Fr(Am* — Bm' — 6§ — br*) (2.3)
drtfdt = (1fc—1)r* +m*

For ¢ > 1 and appropriate values of g = bc/(c~1), this system exhibits
local fatigue effects. The reason is simple. Imagine a situation in which
the system would move into a fixed point m* = 1. r* will then increase
until it reaches the value c/(c — 1). This means that the argument of
the Fr function in the equation for m* decreases by g. If this overcomes
the effect of the other terms the amplitude m* decreases and the system
moves out of the attractor and falls into the basin of a different center of
attraction. This process can continue indefinitely.



3 The Model of Coupled Networks

The system we study is presented diagrammatically in Figure 1. We real-
ize it by using two E-I networks that are coupled through their I neurons.
This type of coupling is chosen to avoid any a priori specific connection
between memory patterns of the two different networks. They may still
affect each other through their couplings to the connected sets of I neu-
rons, but there is no explicit relation between the two sets of memories.
Let us introduce also external inputs to the E neurons designated by i*.
The system of the two coupled networks takes then the form

dm{“z/dt = —m{fz + FT(Amf‘z - Bm'l_z - 05 - br{"z + i{fz) 3.1
driy/dt = (1/c—1)r{; +my,
dml,/dt = —m),+Fr(CMy2—Dm}, —6' - xm}))

The subindices refer to the two different networks, whose only connection
is through the term Am' representing the coupling between the two sets
of inhibitory neurons. We present in Figure 2 a schematic drawing of
the relation between the variables that appear in this set of differential
equations. Drawn here is one of the two networks with three memories
and an input that feeds into two of them. )

Let us start our discussion of this system of differential equations by
limiting ourselves to the case of a single excitatory cell assembly in each

Figure 2: Schematic drawing of the relations between the variables of one of
the two networks described by equations 3.1. Shown here is the case of three
memories and two inputs.

network. Assuming first no input and no coupling between the two net-
works we obtain the results shown in Figure 3. We have chosen the b
parameters to be different in the two networks, therefore we obtain os-
cillations with different frequencies. Figure 4 shows how the situation
changes when the coupling between the two I assemblies is turned on,
A = 1. It is quite evident that this coupling forces the two networks
to move in tandem. The common frequency is lower than the two fre-
quencies of the free networks. We observe a difference in the shape and
phase of the activities of the two networks, which is the remnant effect
of the two different frequencies. The phase shift is particularly strong
between the two I activities because they inhibit each other. The regular
shape of the average I activity in the coupled case justifies a posteriori
approximating its equation of motion by

dm'/dt = —m"' + Fr(CM - Dm' — 6' — m")

meaning that its effective autoinhibition increased from D to D + A. This
seems to be the reason for the lower overall frequency.

Let us turn now to the general case of p excitatory cell assemblies, n
of which receive a common input:

if,=i . p=1--.n 3.2
i, =0 p=n+1,---,p

For A = 0 we find the phenomenon of temporal segmentation discussed
by Wang et al. (1990) and by Horn and Usher (1991). This means that
different memories oscillate in a staggered manner, each one peaking at
different times, thus leading to segmentation of the mixed input. This
scenario works as long as 7 is small. Once we couple the two inhibitory
assemblies we may expect the oscillations of the two networks to match
one another in period and phase. However, this matching will be ran-
dom, since there is no reason for a particular cell assembly of one network
to oscillate in phase with a particular one of the other network. How to
achieve such binding will be discussed in the next section.

4 Binding by Correlated Fluctuations

Our problem, which is symbolically presented in Figure 1, assumes that
the two networks describe two attributes of objects that appear in a mixed
form in the input. We expect our combined network to be able to segment
this information and, moreover, to order the staggered oscillations in such
a form that the activities of the two attributes of the same object have the
same phase. To achieve the latter we make use of noisy inputs. For two
attributes of the same object we assume that both are affected by some
common random activity fluctuation. However, the noises affecting two
different objects are assumed to be uncorrelated. The noise is transmitted
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Figure 3: Activities of two networks with one E assembly each, no input, and
no coupling. The activities of the first and the second network are represented
by full and dashed curves, respectively. The results are numerical solutions of
the differential equations 3.1 using time steps of dt = 0.1 and parameters A = 1,
B=07,C=1,D=1T=01c=12 65 =01, 6 = 055 The parameters b
are chosen differently for the two networks, b; = 0.15 and b, = 0.2, hence the
different frequencies of oscillation.

together with the constant input to the relevant cell assemblies of the two

networks.
The inputs we use take the form

#(t) = 0.1 +0.1[p*(t) - 0.5) “.1)

where p# is a random variable distributed between 0 and 1. The same
input is used for both attributes which refer to the same object i}, = i*,
yet different pairs of attributes are driven by different and uncorrelated
random noises p*. We solve numerically the differential equations 3.1
using small time steps of dt = 0.1 for each iteration. We assume that
the inputs are updated on a time scale 7 that is an order of magnitude
larger, either 7 = 1 or 2. Correspondingly we represent the time scale in
the following figures by integers.
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Figure 4: The result of turning on the coupling A = 1 between the two networks
of the previous figure.

Figure 5_describes results when two pairs of input of the type of 4.1
were used. Starting from random initial conditions we observe correct
phase correlations after 10 time units, turning into almost perfect binding
after 30 time units. Binding occurs almost instantly if one starts from zero
(instead of random) initial conditions for the activities. In this figure we
show in addition to the activities of the two different cell assemblies in
the two networks also the random noises used for the two pairs of inputs.
Note that the time scale of phase-locked oscillations is much larger than
that of the autocorrelations of the fluctuating noise (which is 7 = 1).

In the case of three objects, shown in Figure 6, it takes longer time
to achieve correct binding. Moreover, we have noticed that the system
can move out of correct binding into erroneous phase correlations, of the
type shown here from ¢ = 30 to 90.

In order to quantify the binding quality we measure the fraction of
correct activity correlations:

[fatsn_ mi(t)ms (¢) (4.2)

B=
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Figure 5: The first two frames exhibit activities of memory patterns (excitatory
cell assemblies) of two coupled networks. The parameters b are 0.1 and 0.12.
The other parameters used here and in all following figures are A =1, B =
11,C=12,D=1T=01c¢=12 6 =01, 6" =055 A = 1.2. The
first network has five memory patterns and the second has three. Two cell
assemblies receive inputs of the type of equation 4.1. The activities of these two
memories are shown by the full line and the dashed line. The dot-dashed curve
represents an activated memory that does not receive an input. We observe both
segmentation and binding. Segmentation means that the two different patterns
in the two networks oscillate in a staggered fashion, and binding means that the
patterns that are associated with one another oscillate in phase. The association
is brought about by the common noise, which is shown in the third frame.

For the case of n = 2 in networks with different parameters (b; = 0.1,
b, = 0.15) we find high correct correlations, B = 0.83. In general binding
is best when the frequencies of the two coupled networks are identi-
cal. Nonetheless, when we turn to n = 3 in networks with identical
parameters as shown in Figure 6, we find that B reduces to 0.41 + .02.
Better performance is obtained if we allow the noise correlation time to
be longer, for example, we change p only every two time units (7 = 2).
This leads to B = 0.51 £ .02.

Figure 6: The behavior of the joint networks in the case of three inputs. Using
equal frequencies, by = b = 0.1, we find that temporal segmentation works very
well but binding is less successful than in the case of two patterns. Associated
patterns are represented by the same type of lines in the two different networks.

~

5 Binding Errors and Illusory Conjunctions

We saw that the binding obtained by our model is not perfect and that
some degree of erroneous matching of oscillation occurs. The frequency
of these matching errors increases with the increase in the number of
displayed objects from two to three. We propose that this could be the
mechanism responsible for the phenomenon of illusory conjunctions.
Let us shortly describe the outcome of a typical experiment in the il-
lusory conjunction paradigm. When an observer is presented with a dis-
play containing several visual shape—color patterns for a short exposure
time, and when due to experimental set-ups his attention is spread over
the whole display, perceptual errors (such as reporting a green diamond
when presented with a red diamond and a green circle) occur. As we pre-
viously mentioned, Treisman and Schmidt (1982) suggest that integrating
shape and color information related to one object requires focusing at-
tention on the object. Thus when attention is distributed across several
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Figure 8: An example of three objects, two of which share one attribute (green
color). Most conjunctions are correct. The shape and the color networks have
the parameters by =b; =0.1, py =5, po = 3.

shape and color networks. The problem of binding the correct assemblies
in the shape and color networks (i.e., assemblies representing attributes
of the same object) is solved by introducing correlated noise fluctuations
into the corresponding assemblies. Thus our model provides the means
by which binding via amplification of noise correlations can be obtained.

This model can serve as an example of intramodality binding, in
which we can assume that the input carries some information regard-
ing the connection between the two attributes that are to be bound. This
cannot be applied in the same form to the interesting question of cross-
modality binding (e.g., connecting visual and acoustical attributes) where
the common input layer does not exist. A model for cross-modality
binding needs a different approach, which may have to rely on prior
knowledge that introduces explicit synaptic connectivity between mem-
ory patterns, an element that we have successfully avoided in our model.

Two characteristics of noisy inputs are worthwhile stressing in the
context of our model. First, we wish to point out that noisy input in-
creases the segmentation power of the network. Running the network
with a constant input we find that it cannot segment successfully more

than about five objects. This is in complete agreement with other oscil-
latory networks performing segmentation (Wang et al. 1990; Horn and
Usher 1991). If more than five excitatory assemblies receive a constant
input many activities try to rise simultaneously leading to the collapse
of all of them. When noise is added to the constant inputs the network
can continue its staggered oscillations for very large numbers of objects.
The reason for this is that noise fluctuations will always enhance mo-
mentarily the input of one of the assemblies, enabling it to overtake the
other ones. It seems that this has to do with the fact that we run the
network in a chaotic phase, which is the second point we wish to stress.
When we use n = 3 input patterns the networks segment the input into
a well ordered sequence of staggered oscillations. This is no longer true
for n = 4 or 5. The order of the staggered oscillations is quite random,
indicating chaotic behavior. Therefore, if synchronicity between the ac-
tivities of the two connected networks fails, it is easier to amend it when
n > 3. In other words, sensitivity to noise correlations is enhanced when
the network is in its chaotic phase, leading to an increase in the value
of S beyond three displayed objects. The importance of chaos in the
sensory processing of information by the brain was discussed by Skarda
and Freeman (1987), who found that neural activity in the olfactory bulb
shows chaotic characteristics when the animal is engaged in odor recog-
nition. They suggested that the advantage of chaos for the processing of
sensory information is that a chaotic state is more sensitive to changes in
the incoming input. It seems that this characteristic is also demonstrated
by our model.

Although we have not attempted to model the physiological observa-
tions in the visual cortex (Eckhorn et al. 1988; Gray et al. 1989), we should
be aware of an interesting qualitative difference: binding in our model
takes some time to develop, as seen in Figures 5 and 6, whereas in the
experimental results phase locking develops rapidly. The delay in our
model comes about because we start from random initial conditions that
the input has to overcome. It is quite possible that the physiological pro-
cess is also assisted by auxiliary mechanisms. For example, “spotlight”
attention (Koch and Ullman 1985) can eliminate all but one object and,
therefore, lead to fast binding. Our model shows that even when the
attention spotlight is spread, as in illusory conjunction experiments, sig-
nificant amount of binding can be obtained by making use of noise effects.

Within the context of the psychological phenomenon of illusory con-
junctions, our model differs from the Feature Integration Theory (Treis-
man and Schmidt 1982). While according to this approach, feature rep-
resentations (e.g., shape and color) are completely separate, according to
our model some early mixed representation of shape and color informa-
tion exists in the input layer. Only at a higher order memory level shape
and color information are separated.

The main prediction of our model is that binding performance de-
pends on the number of displayed objects (Fig. 7). In particular, we find



a strong increase in the rate of illusory conjunctions when the number of
objects is increased from two to three. We predict, however, quite uni-
form behavior when the number of objects is larger than three. Due to
the linear dependence on the input we expect predominance of repeated
attributes both in correct and illusory conjunctions. In this context we
wish to stress that we represented the different objects with the same
weights, that is, by equal numbers of neurons. If this is modified, we ex-
pect oscillations of the excitatory cell assemblies to be ordered according
to input strength, thus producing biased errors (e.g., if “red” is stronger
than “green” and “circle” is stronger than “square,” then circles may be
always red regardless of spatial coincidence). An experimental exami-
nation of this issue is needed in spite of its difficulty. It may call for
additional mechanisms to rescale the representation on the input level.

Finally we wish to address the issue of temporal versus spatial co-
incidence. We assume that a shape and a color appearing in synchrony
will be matched by some higher level process. To test this assumption
is rather difficult since it involves rapid presentation (at the oscillation
rate, probably higher than 40 Hz, which is probably higher than sensory
integration rate) of isolated object attributes at different locations. Thus
it is not surprising that Keele et al. (1988) failed to find direct support for
temporal binding, and concluded that spatial coincidence is the preferred
mechanism for binding that is revealed by psychophysical experiments.
Note, however, that our model is making use of spatial coincidence as a
binding clue (by local noise) and thus is not in disagreement with these
results. It is also possible to introduce spatial location explicitly into the
model by adding a network encoding relative or absolute location as an
attribute that can oscillate synchronously with all other attributes and
enhance the role of spatial coincidence.

In conclusion, we have shown that noise correlations in the input layer
can provide the mechanism by which binding via matching of oscillations
is achieved. It remains to be seen whether this mechanism is used by the
brain to conjoin sensory attributes when attention is distributed across
several objects.
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