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Abstract 

The present era is a time of “genomic revolution”. In recent years, dozens of genomes 

have been sequenced, proteins and genes have been mapped and learned, their structures 

have been inferred and their functions are being understood. 

The groundwork for such a rapid progress consists of several breakthroughs in high-

throughput technologies that allow fast sequencing (e.g., Haplotype Map), recording 

expressions of thousands of genes simultaneously (e.g., Microarray chips, Comparative 

Genomic Hybridization), protein-DNA interactions (ChIP-on-chip), proteome properties 

(e.g., Mass Spectrometry, proteins chips) and more. Such technologies, accelerated by 

commercial platforms, have made data collection easy, reliable, relatively cheap and fast. 

In conjunction with data-collection feasibility, progresses in storage and information 

transfer have facilitated the reposition and retrieval of that data. As a result, numerous 

online genomic repositories are now publicly available (e.g., NCBI, Stanford Genomics, 

Ensemble and UniProt).  

This extensive availability of data has opened an opportunity for novel 

research directions, many of which were considered futuristic only a few 

years ago.Most of these efforts belong to a new discipline, strongly related to 

Bioinformatics, called “Systems Biology”. Systems Biology studies aim to determine the 

inter-relations among molecules (genes, RNA, metabolites and proteins), how groups of 

elements influence biological phenomena and how environmental and metabolic factors 

shape the cell’s ecosystem. 

The first step to address these ambitious questions is to reveal hidden patterns out of the 

‘clouds of data’. Methods that aim to extract information out of large-scale data are 

referred to as data mining techniques, and usually include statistical and machine learning 

principles. Existing Data Mining algorithms applied in Bioinformatics are either (1) 

standard routines that were adapted to the field or (2) algorithms particularly developed 

in the field. Examples of the former are most of the feature selection methods (see 

below), clustering and classification methods, and for the latter are CLICK, CAST and 

Gene-Shaving for clustering gene-expression data and BLAST for matching sequences. 

Algorithms, which belong to the first group are generic and perhaps not adequate to 
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handle genomic data and the others are mostly domain-specific that probably cannot be 

generalized to other data types. 

It is customary to divide data mining methods based on the stages of the data analysis 

in which they are applied (i.e., preprocessing or categorization), and whether they are 

supervised or not. One can therefore classify data mining methodologies into four main 

classes: (1) unsupervised-preprocessing, (2) unsupervised-categorization (clustering), (3) 

supervised-preprocessing and (4) supervised-categorization (classification). 

The focus of this research is to investigate and develop data mining techniques, which 

belong to the four partitions described above. In particular, much emphasis is put on 

unsupervised methods, and studying relatively less explored fields. 

Unsupervised-Preprocessing 

The first step of most data analysis procedures is usually preprocessing. It functions 

mostly to prepare the dataset (e.g., normalization, missing values imputation), eliminate 

noise, filter out irrelevant instances or features that describe each instance, and to reduce 

the dimensionality of the data.  

One popular unsupervised approach to achieve normalization, dimensionality reduction 

and noise filtering, is feature extraction. However, ICA, PCA, SVD and other extraction 

methods transform all features to a lower dimension space, and do not allow attaching 

meaning to some relevant features in the set as in feature selection.  

Although most analysts, often inattentively, do apply some unsupervised schemes (e.g., 

filtering out thousands of genes with small variance), surprisingly, only a few solutions 

have been suggested to select features in an unsupervised manner. Most of them are very 

naïve e.g., range, fold-change, threshold, entropy and variance calculated on each feature 

individually. 

The importance of unsupervised feature selection to Bioinformatics, and the absence of 

unbiased, efficient, stable and effective solutions to address this issue, was our rationale 

to develop an unsupervised feature filtering algorithm (UFF). UFF differs from other 

unsupervised selection schemes in the following aspects (1) It does not involve a target 

function as the selection criterion and (2) it considers the interplay of all features. UFF 

scores each one of the features according to its contribution to the SVD-entropy of the 

dataset. Scoring a feature is based on a leave-one-out principle. 
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We have shown on several datasets (e.g., gene-expression, amino-acid composition 

counts) that: (1) Selection of only a few features according to UFF leads to improved 

clustering results as compared to other unsupervised methods or to using the complete 

set, (2) UFF is robust even in cases of severe information loss, (3) selected features are 

correlated with biological importance in cancer studies, (4) an a-priori criterion can 

provide an estimation of the effectiveness of the method for a given dataset and (5) the 

method can be generalized to select instances rather than features. 

Unsupervised-Categorization (Clustering) 

Clustering algorithms aim to find distinctive and, hopefully, relevant groups of instances 

in the dataset. This popular approach was very effective in clustering genes and tissues in 

gene-expression experiments and proteins according to their sequence similarities. Two 

aspects in clustering, addressed in our work, are the global considerations in clustering 

and their evaluation.  

Global considerations in clustering: As noted above, some algorithms were initially 

developed to handle genome-specific data, while others are general machine learning 

procedures. One of the most popular standard routines is the agglomerative hierarchical 

algorithm, which is applied in a vast majority of cases. A clear limitation of this 

algorithm is its tendency to neglect global factors. In order to embed global 

considerations in clustering, we developed two algorithms: (1) TDQC: a novel Top-

Down hierarchical algorithm based on genuine density of the data-points, and (2) a 

global-local (‘glocal’) variation of the agglomerative algorithm, which is based on all 

relationships within the data (all distances). A comprehensive analysis shows that the two 

new algorithms outperform other divisive and agglomerative methods. This assessment 

was tested in multiple domains, including gene-expression, stock trade records and 

functional protein families. 

Clustering evaluation: High-throughput biological data is often noisy and of extremely 

large size (both in number of instances and in number of features). Therefore, manual or 

visual evaluation of clustering results is practically impossible. As the variability of data 

is so broad, no single clustering algorithm can always be effective, and preferred to 

others. Furthermore, because many algorithms encounter various limitations, determining 

the best solution is a very challenging task. We therefore designed and implemented three 
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algorithmic and software frameworks that provide platforms to handle the above 

mentioned obstacles: (1) The Clustering Algorithms Optimizer, which is a completely 

unsupervised set of procedures that scan the clustering solutions space and identify the 

optimal solution vis-à-vis an internal measure, based on the Bayesian Information 

Criterion (BIC). This methodology performs well and overcomes intrinsic limitations of 

many clustering algorithms that rely on some predetermined parameters or involve 

nondeterministic factors. (2) COMPACT: Comparative Package for Clustering 

Assessment- A methodology and set of procedures that allow statistical and visual options 

to compare many algorithms and asses their results. (3) ClusTree: A graphical software 

package to analyze and compare hierarchical clustering. 

Supervised-Preprocessing (feature selection) 

As opposed to the unsupervised selection methods described above, supervised feature 

selection algorithms have been extensively studied and applied. Popular examples are: 

forward insertion, backward elimination, stepwise selection and ranking according to 

statistical criteria (e.g., t-test). 

Supervised-Categorization (classification) 

Classification algorithms learn patterns in the data, according to a training set, and try to 

induce a generalization rule, which fits the entire data. As in clustering, Support Vector 

Machine (SVM), decision trees, and other supervised methods, were effective in 

classifying gene-expression or sequence-based data. 

In a research combining the two steps of supervised analysis (selection and 

classification), we hypothesized that high-level functional groups of proteins may be 

classified by a very small set of biochemical global features (e.g., molecular weight, 

hydrophobicity, amino-acid composition). To test this assumption, proteins represented 

by those global features, were classified using SVM. Furthermore, using various feature 

selection strategies, the contribution of specific subsets of features to the classification 

quality was thoroughly investigated. Our results show that a small set of global features 

that, sometimes, can be further reduced, provides effective information for protein family 

classification. Moreover, we found that a combination of global and local sequence 

features significantly improves classification performance. 
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Several general motivations led to these studies. First, when possible, unsupervised 

algorithms were preferred. The rationales to prefer the unsupervised approach in genomic 

data mining are: (1) Being less biased deriving from irrelevant factors, allowing for the 

emergence of more reliable and sometimes surprising results. (2) Only a relatively small 

portion of genomic items are fully labeled. (3) The train-test splitting, performed in 

supervised methods, is often problematic, (might cause over-fitting, sampling bias etc.).  

The algorithms we suggest are based on mathematical and statistical principles, 

ignoring any specific biological considerations. Therefore, our methods are generic and 

not limited to a specific biological dataset, yet they are all well suited for large scale 

biological data. We should note however, that since biological understanding was our 

motivated force, inference was a principal focal point part of each study. 

In addition, in data mining, and particularly in the cases of noisy biological data, it is 

very unlikely to expect a “one size fits all” practice, in other words, for every particular 

case a different algorithm and configuration should be preferred. Therefore, we put a 

strong emphasis on developing appropriate evaluation methods. 

Most of the directions we explored have not been well studied in the literature, in 

particular, unsupervised feature filtering and global hierarchical algorithms. This research 

suggests that currently overlooked approaches should not be neglected. Surprisingly, 

these methods are shown to be effective when exploring genomic and proteomic data. 

Our research was guided by realistic and applicative motivations, not limited only to 

theoretic perspectives. As a result, all our algorithms were applied to experimental 

datasets. In all cases, a software tool was developed for the corresponding algorithm. For 

instance, the COMPACT package, which has been made freely available for academic 

usage, has been accessed to date, more than 6,000 times, downloaded more than 800 

times and was the basis for two graduate courses. Because potential users of these tools 

may be biologists or medical researchers who are not data mining experts, providing 

intuitive graphical and user-friendly applications was essential.  

Finally, throughout the research, we were motivated to follow the principle of Occam’s 

razor. Hence, we favored solutions that are easy to comprehend and fast to implement. 

Additionally, a main focus of our research was to find a minimal set of features or 

parameters that describe hidden patterns in the data. 
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Chapter 1 

Introduction 

Imagine a world in which doctors could diagnose most malicious diseases way before the 

apparent symptoms can be observed. In such a world, preventive medicine can really be 

efficient. Moreover, in cases when the illness has progressed, doctors would prescribe the right 

dose of the right drug at the right time, reducing the current trail-and-error practices. Such a 

personalized medicine is still a hope, yet science has made some significant steps toward 

fulfilling this ambitious goal. 

The most significant progress in recent years was made in improving diagnosis. This was 

allowed by embedding genomic factors in the analysis. The study of the genome and the 

proteome has undergone some revolutionary advances due to the introduction of new 

technologies that can rapidly and accurately measure thousands of records. A prominent example 

of these technologies is the DNA-chip that simultaneously measures the expression of the entire 

genome (tens of thousands of genes), in a living-organism’s tissue.  

A typical experimental setting that uses these chips often consists of samples of dozens of 

tissues, taken from different individuals (either human or other species). A researcher that 

analyzes such an experiment may ask several questions: does the overall genomic signature 

correlate with some biological understanding (i.e., are there some meaningful patterns in the 

data?); according to the expression of the genes, can distinctive groups of instances be observed? 

Are there groups of genes that are similarly expressed? Is there a minimalist subset of the genes 

in the array that may be used for identifying a given biological phenomenon or a disease? The 

last question is of high importance, as it may lead to better understanding of the underlying 

processes involved in that phenomenon. Moreover, the genes included in such a set may serve as 

biomarkers for accurate diagnosis. Indeed, in recent years some diagnostic chips (e.g., for breast 

cancer) have been introduced.  

Our research was motivated by these questions. In particular, our aim was to extract hidden 

patterns out of large-scale genomic and proteomic data and to suggest computational methods for 

revealing relevant groups (or subgroups) of entities in them. 
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1.1. Thesis outline 

Chapter 1, the introduction, gives a brief description of the tools and the specific practices that 

were used throughout the research. Section 1.2 includes technical definitions; sections  1.3 and 

1.4 describe the datasets and data types that were analyzed, respectively. Sections 1.5 and 1.6 

include a high-level overview of data mining in general and data mining for genomic and 

proteomics in particular. The following sections include presentation of several data mining 

procedures that are applied in bioinformatics and are relevant to this research. 

Chapter 2 describes a novel framework for unsupervised feature filtering (UFF). UFF is a 

unique approach for selection of features without previous knowledge of their classification, yet 

considering the interplay of all features. Selection according to this approach is effective and 

stable under incomplete information. It leads to interesting biological observations (Varshavsky, 

et al., 2006; Varshavsky, et al., 2007).  

Chapter 3 includes an analysis of hierarchical unsupervised categorization (clustering). This 

analysis shows that global considerations, embedded in hierarchical clustering, can improve 

clustering results and reveal meaningful patterns in data. Furthermore, two new procedures, 

TDQC (Top-Down-Quantum-Clustering) and ‘Glocal’ (Global-Local) algorithms are suggested 

and shown to be highly effective for clustering data of different domains. 

Chapter 4 includes a number of tools used for clustering evaluation. ”Clustering algorithms 

optimizer”, based on an internal criterion is suggested for usage in an unsupervised internal 

assessment (section 4.1). Two tools (COMPACT and ClusTree) are based on external criteria, 

and provide visual comparison and quantitative assessment routines (sections 4.2 and 4.3, 

respectively). These tools, providing access to several clustering algorithms (partitioning and 

hierarchical), were successfully applied to various datasets.  

Chapter 5 presents a study based on supervised learning practices (feature selection and 

classification). This study shows that often only a small set of global features suffices to perform 

functional classification of proteins. 

Chapter 6 concludes the thesis and provides a unifying discussion of our studies. A summary 

of conclusions common to the different studies is provided. Supplementary information 

completes the dissertation (for simplicity and coherence, relevant references are provided at the 

end of each chapter). 

2



In order to orient the reader, an arranged view of the chapters, according to the different stages 

of the data mining process, is presented in Table 1. 

Table 1: Methods applied in standard data mining application, arranged according to the stages in the analysis 

process (rows) and appearance in the thesis (columns)  

Step Analysis Introduction Ch. 2 Ch. 3 Ch. 4 Ch. 5 

1 Data Preparation  1.5.1 +   + 

2 Data Representation  1.4     

Feature-space  1.4 + + + +  

Similarity-space  1.4  + + + 

3 Preprocessing  1.5.2,  1.7.1,  1.7.3     

No    +   

Extraction  1.7.1  + +  

 

Selection 1.7.1,  1.7.3 +   + 

4 Categorization      

Clustering  1.7.2     

 Hierarchical 1.7.2.1     

No   1.7.2.1 + + +  

Bottom Up  1.7.2.1  + +  

 

Top Down  1.7.2.1  + +  

 Evaluation  1.7.2.2     

Internal 1.7.2.2   +   

External 1.7.2.2 + + + + 

 

Classification  1.7.3    + 

5 Biological Inference   + +  + 

 

1.2. Notation, definitions and assumptions 

Data: Let us consider a dataset comprising n instances A[mXn] = {Ā1, Ā2,…, Āi,…, Ān} , where each 

instance, or observation, Āi is a vector of m measurements or features describing it. 

Categorization: Categorization is defined as systematically arranging instances into specific 

groups. In a categorization task (Figure 1), every instance, Āi has a label Yi, where Yi is a 

categorical parameter (
1 2{ , ,... }i kY χ χ χ∈ ). A categorization algorithm is a function f that assigns 

a label, Ỹi to an instance (f (Āi) � Ỹi). An algorithm is usually evaluated according to how well 

each predicted label, Ỹi, can be mapped to the true label Yi. 

Throughout this work we refer to any algorithm that assigns instances to labels as “a 

categorization algorithm”. We distinguish between clustering (unsupervised categorization) and 

classification (supervised categorization) algorithms. 
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Assumptions: We assume that ija∀ ∈ℝ (all records are real numbers), and that A is complete 

(i.e., there are no missing values). In data preparation and UFF descriptions (sections  1.5.1, and 

2.2, respectively) we discuss cases with missing values.  

Terminology: This work relates to genomic (i.e., belonging the genome) and proteomic (i.e., 

belonging to the proteome) analyses. The scientific field, in which genomic and proteomic 

problems are studied through computational and algorithmic tools, is called Bioinformatics. 

1.3. High-throughput genomic and proteomics experiments 

In the last several years, some high-throughput technologies that collect genomic and proteomic 

data were introduced. These technologies are considered as breakthroughs since they allow fast 

sequencing, recording the expressions of thousands of genes simultaneously, locating 

interactions between tens of thousands proteins and DNA and measuring many properties of the 

proteome. Most of these technologies were initially developed in universities and research 

centers, but have become readily available, cheaper and more reliable once produced by 

Figure 1: Schematic representation of a dataset in a categorization task, comprising n instances, each described 

by m measurements, and a label Yi assigned to it. 

m features 

n instances 

Āi 

aij 

labels 

Yi 
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commercial companies. In conjunction with the data-collection feasibility, the progress in 

storage management (i.e., databases) and information transfer (in particular, the internet 

revolution), have facilitated the reposition and enabled more efficient retrieval of data. 

Therefore, numerous online genomic repositories have become publicly available.  

We briefly describe in this section the high-throughput technologies of DNA and CGH chips. 

A more in-depth overview and descriptions of other methods (e.g., Haplotype Map, ChIP-on-

chip, Mass Spectrometry, and protein chips) can be found in corresponding references. Data 

repositories that have been used in the research are also presented.  

1.3.1. Technologies 

1.3.1.1. Gene expression microarrays (DNA chips) 

Gene expression microarray is probably the best known high-throughput technology that has 

been applied to genomic data. This technology allows for miniaturization of hybridization filters 

and as a result, measurement of thousands of different RNA molecules representing the 

expression of thousands of genes and even a complete genome. 

Researchers can either use in-house, per-demand microarrays or standard, off-the-shelf chips 

that are produced by one of the commercial manufacturers (e.g., Affymetrix, Agilent). The 

introduction of commercial DNA-chips has significantly reduced the cost of each experiment and 

1 2 3 4 5 6 7 8 9

2000

4000

6000

8000

10000

12000

14000

A 

B 

C 

Figure 2: The microarray concept (left) and results (right). Shown are (A) samples, (B) 

genes, and (C) two-way comparisons. Data taken from an experiment done in the lab 

(Affymetrix RAE 230A, chip) 
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its complexity, and accelerated the popularity of gene-expression studies. In addition, recent 

studies showed that this technology has reached maturity (Shi, et al., 2006), sufficing to yield 

reliable results (Klebanov and Yakovlev, 2007). 

A typical experimental configuration would consist of several chips, allowing a multipurpose 

analysis (Figure 2): (A) disease diagnostics based on samples comparison (between different 

tissues or different conditions). (B) Gene discovery and taxonomy based on genes comparison 

(genes that similarly vary along the different experimental settings) and (C) Two-way 

comparisons (finding groups of genes whose expressions correspond to subsets of the samples 

provided).  

As gene-expression experiments have become so popular and the potential of analysis is so 

wide, most of the algorithms and tools presented in this work were applied to this type of data.  

1.3.1.2. Comparative Genomic Hybridization (CGH) 

Similarly to DNA chips, the relatively new CGH technology provides simultaneous recording of 

thousands of genomic changes. However, while DNA chips measure affinity for cell molecules 

and the chip’s probes, the CGH classifies copy number alternations as DNA gains and losses, 

and its results are considered to be more reliable than DNA chips.  

Despite the fact that this technology has not reached maturity yet, it is becoming very popular, 

with increasing number of experiments utilizing it (Baudis and Cleary, 2001). 

We have applied our novel filtering method (UFF) to a noisy, incomplete CGH benchmark 

(Varshavsky, et al., 2007, section 2.2), and showed that the method can successfully handle this 

data, suggesting some potentially interesting biological interpretations. 

1.3.2. Repositories 

 In parallel, and as a result of the availability in high throughput technology, several publicly 

available data collections hold thousands of experimental results. These open repositories include 

results of gene-expression experiments, many sequenced genomes and functional, cellular and 

other annotations related to genes and proteins. 
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1.3.2.1. Gene expression 

Microarray experimental results can be easily accessed in several gene expression repositories. 

Collections such as Stanford Microarray database (Ball, et al., 2005), Gene Expression Omnibus 

of NCBI (Barrett, et al., 2007) and ArrayExpress at EBI (Sarkans, et al., 2004), archive 

thousands of datasets (in October 2007, the numbers of datasets were 15238, 12376 and 2644, 

each holding dozens of cases). Each set includes raw and processed data, corresponding 

publication and supplementary information. In addition, open repositories holding the fast 

growing CGH data have become available (e.g., the progenetix database with 16252 cases from 

634 publications, Baudis and Cleary, 2001). 

1.3.2.2. Sequences  

Today it has become easier to gain access to sequenced genomes. Sequence related databases 

provide different perspectives on sequenced data. While in 2003, about 1 million sequences were 

stored in the UniProt database (release 1.0), today (release 12) it contains about five million 

protein sequences, and this collection is expected to grow (Wu, et al., 2006). This database also 

provides non-redundant subsets of the entire list (UniRef90 and UniRef50) yielding a reduction 

to 3 and to 1.5 million sequences, respectively. In those instances, no two sequences are 

permitted to share more than 90% or 50% sequence identity, respectively.  

The Pfam database holds a collection of multiple sequence alignments and protein domains, 

classified into around 9000 families (Finn, et al., 2006). Other databases hold a clustered view of 

the genome (Kaplan, et al., 2005) and structural information (Berman, et al., 2000; Balaji, et al., 

2001; Bhat, et al., 2001). 

1.3.2.3. Annotations 

In addition to the sequences of each protein or gene, several databases keep functional, cellular 

compartment and other annotation of genes (e.g., GO, Camon, et al., 2004) or proteins (e.g., 

UniProtKB, Kriventseva, et al., 2001). Several of these annotations are manually curated, while 

other are based on a combination of biological understanding and algorithmic power. This 

information is usually considered as an ‘expert’ view of the instances, and thus is utilized for 

evaluation of categorization algorithms.  
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Categorization of sequenced proteins is presented and assessed in chapters 3 and 5 

(Varshavsky, et al., 2007). A discussion of the limitation of this ‘expert’ based evaluation and the 

capability of our approach to reduce it is provided in the conclusions of these chapters. 

1.4. Data types 

Data may come in two possible representations: feature-space or similarity-space. 

A [mXn] feature-space matrix represents each instance according to its features or attributes. 

For example: Gene expression (Figure 2), 3D coordinates of protein structures, global features 

(hydrophobicity, length, Cai, et al., 2003; Syed  and Yona, 2003; Varshavsky, et al., 2007).  

A [nXn] similarity (or dissimilarity) matrix represents each instance by its similarity 

(dissimilarity) to another instance (Figure 3). When a distance function defines the dissimilarity 

between instances, this square representation leads to a symmetric matrix. The popular distance 

functions are:  

Norm l1 distance 1 11
( , ) ... m md x y x y x y= − + + −  

Norm l2 (Euclidian) distance 
2 2

1 12
( , ) ... m md x y x y x y= − + + −  

Correlation coefficient distance 
( , )

( , ) 1
ccd

x y

Cov x y
d x y

σ σ
= −  

Figure 3: Distance (translated to E-score) between protein sequences, as 

displayed by the ProtoMesh web-tool (www.protonet.cs.huji.ac.il/mesh2) 
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In some cases, similarity between elements are directly extracted (without transforming from 

feature-space). Examples are: BLAST (Altschul, et al., 1997) or Smith-Waterman (Smith and 

Waterman, 1981; Smith, et al., 1981) matrices in proteomics. Given only the similarity, feature-

space cannot be reconstructed (except for approximations as in Multidimensional Scaling, 

Kruskal and Wish, 1981). In the context of categorization, most algorithms operate on distances 

between elements (e.g., agglomerative hierarchical algorithm), while others on feature-space (K-

Means, QC, see section  1.7.2, chapter 3 below and Duda, et al., 2000). 

1.5. Data Mining 

Knowledge Discovery in Databases (KDD), known as “Data Mining”, is an approach based on 

statistical, algorithmical and other mathematical methods used to extract nontrivial information 

from data (Frawley, et al., 1992). In recent years, large-scale data has become available in many 

scientific and applicative domains. Due to the complexity of the data and the questions, there is a 

strong emphasis on applying automated routines with the least amount of user interaction. 

Therefore, data mining is a flourishing field. Examples of data applications are: marketing 

(CRM, customers segmentation, markets trends, customers loyalty), stocks (trades patterns, 

associates stocks or correlations with external factors), text mining (document classification), 

intelligence, internet (web search, ad-sense), finance (fraud detection) and of course in biology 

(Azuaje, 2006). 

Analysis based on data mining includes several stages, that can vary according to the data at 

hand and the task. The procedures listed below are frequently used in data mining of biological 

datasets. 

1.5.1. Data preparation 

Experimental data are often noisy, not fully reliable and incomplete. In order to improve the 

accuracy of the analysis, several data preparation procedures are usually applied. The standard 

methods are values transformation (e.g., log-transform in DNA chips), handling categorical 

features, discretization and normalization (e.g., to mean 0 and standard deviation 1). Other 

quality control methods are background elimination (e.g., dummy probes in DNA chips that do 

not attach to any molecule, whose recorded values should be deducted from the values of the real 

probes) and replicates based analysis (Singh and Nagaraj, 2006). In our work we assume that 
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data’s origin is one meta-distribution, so that genuine values carry significant information. 

Therefore, we do not address in this work data transformation and it is not specifically applied 

nor studied. Moreover, assuming all features are real, handling categorical features is not 

required. Implicitly we assume that the data have already passed the quality control procedures. 

Absent values becomes a challenge when handling experimental data, particularly in 

experimental high-throughput genomic datasets (de Brevern, et al., 2004; Scheel, et al., 2005). 

Several methods were developed to address this issue (Troyanskaya, et al., 2001; Gan, et al., 

2006; Tuikkala, et al., 2006; Hua and Lai, 2007), starting from the naive zero or average 

replacements (i.e., each missing value is replaced by 0 or by the average of all present values in 

the set, respectively), to more sophisticated ones (e.g., KNNImpute, where each missing value is 

replaced by the standard average of samples of the K nearest neighbors of a relevant feature, 

Troyanskaya, et al., 2001). This issue is discussed in chapter 2.1 (Varshavsky, et al., 2007), 

where the UFF method is evaluated in noisy datasets. Applying it to incomplete data that has 

undergone several imputation procedures, it is shown that the method can sustain high accuracy 

levels even after substantial loss. Furthermore, it can assess in an unsupervised manner the 

various imputation procedures. 

1.5.2. Preprocessing 

Data preparation is often followed by data preprocessing. Various procedures may be included at 

this stage, but most of them have similar aims: dimensionality reduction, outliers removal, 

selection of the most informative features and noise filtering (also known as increasing signal to 

noise ratio). 

All these methods aim to reduce the size of data analyzed and minimize the complexity of the 

problem. Compression of datasets is essential to incorporate algorithms that cannot perform well 

on large-scale data, or have generalization limitations in higher dimensions. In addition, an 

accurate partition between relevant and obscuring elements can improve interpretation extracted 

from the analysis. Descriptions of several representative preprocessing methods, relevant to the 

research, appear in sections  1.7.1 and  1.7.3. 
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1.5.3. Model fitting 

After preprocessing of data, several analysis procedures can be applied. These methods can be 

classified according to several criteria: unsupervised (do not rely on labels), or supervised (using 

a labeled train set), categorization (where the labels are categorical variables) or regression 

(labels are continuous variables).  

The focus of this research is unsupervised and supervised categorization (clustering and 

classification, respectively). Regression, association rules, generative models, decision trees and 

other popular data mining techniques lie outside the scope of this work. 

1.6. Data mining in genomic and proteomics 

Breakthroughs in technology and the improved effectiveness of data mining lead to what has 

been described as “a paradigm shift in biological investigation, such that the bottleneck in 

research is shifting from data generation to data analysis” (Sherlock, 2000). The following 

paragraphs provide a brief review of the special characterizations of genomic and proteomic 

data. 

The accelerated growth in the size of the UniProt repository from one to five million sequences 

in less than five years (Wu, et al., 2006), which is typical of biological data, poses a significant 

challenge which is almost unsolvable by traditional research techniques. For example, the 5-fold 

multiplication in the size of the repository leads to 25-fold more calculations in clustering 

methods that involve computation of all relations between elements (e.g., Kaplan, et al., 2005). 

Data observation, analysis and inference need therefore advanced procedures.  

In many fields where data mining is applied, the number of features is quite limited. For 

example, in marketing applications, records collected from potential customers may amount to 

only a few hundreds. However, the number of features in genomic data is tremendous (e.g., tens 

of thousands gene-expression records per tissue). Simplistic observation of such data is 

impossible. In addition to that, in tasks where learning about the instances is required, the 

number of dimensions (genes) is significantly bigger than the number of instances (samples). 

Such a phenomenon is referred to as the “curse of dimensionality” problem (Bellman, 1961), in 

which in learning rules, an exponential increase in the number of instances is required when 

adding extra dimensions. The major challenge of this problem is that no experimental setting can 
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be learnt and generalized unless thousands of instances are measured (Ein-Dor, et al., 2006). 

Dimensionality reduction is therefore an essential preprocessing procedure. 

A fundamental characteristic of biological data is the great number of intervening factors. 

These factors include the underlying variance between biological observations, differences 

between experimental settings, technology (that although becoming more stable, still has various 

flaws (e.g., Irizarry, et al., 2003), imprecision of scanning devices, recording and software. All of 

them increase the relative noise flux in data, and therefore call for efficient noise filtering 

techniques.  

Another obstacle, almost exclusive to this field, is the difficulty of inference. While in other 

disciplines (e.g., in document mining), it is relatively easy to assign experts to validate the results 

and provide a ‘ground-truth’ benchmark, in genomic and proteomics, current knowledge is still 

inadequate; hence, many proteins are still unlabeled. 

1.6.1. Applications 

Categorization is the most common data mining practice applied in bioinformatics. Popular 

categorization tasks are grouping instances (samples) according to their gene-expression pattern 

(Golub, et al., 1999; Sharan, et al., 2002; D'Haeseleer, 2005), grouping genes that are similarly 

expressed along different experimental settings (Spellman, et al., 1998), grouping proteins 

according to their sequence (Kaplan, et al., 2004; Kaplan, et al., 2005) or other properties (Cai, et 

al., 2003; Varshavsky, et al., 2007). These tasks can be applied either in unsupervised or 

supervised manner. 

 Many dimensionality reduction, noise filtering and feature selection methods have been 

suggested to address challenges presented by genomic and proteomic data. A major part of this 

research was devoted to study, analyze and develop efficient, data-driven compression methods. 

Other efficient data mining procedures, not discussed here, are sequence motifs search 

(Skoufos, 1999; Kriventseva, et al., 2001; Kunik, et al., 2005), systems and network 

dependencies analysis (known as interactome study, Fattore and Arrigo, 2005; Singh and 

Nagaraj, 2006) and text/literature mining. During recent years much effort is devoted to dig into 

the abundance of data covered in the literature (Hirschman, et al., 2002; Jensen, et al., 2006). 

These efforts, based on knowledge from NLP (Natural Language Processing), archiving and 

document classification, try to extract interesting biological knowledge. 

12



1.7. Algorithms 

Data mining algorithms in bioinformatics are either: (1) routines developed in other domains 

(e.g., Physics, Mathematics, Statistics and Computational Neuroscience), that were adapted to 

the deal with genomic or proteomic problems, or (2) algorithms that were specifically designed 

to mine gene-expression or sequence based data. Examples of routines developed in other 

domains are most of the feature selection methods (Saeys, et al., 2007), clustering and 

classification methods (D'Haeseleer, 2005). Examples of designated methods are CLICK (Sharan 

and Shamir, 2000), CAST (Ben-Dor, et al., 1999; Ben-Dor, et al., 2001) and Gene-Shaving 

(Hastie, et al., 2000) for clustering gene-expression data, and BLAST (Altschul, et al., 1997) for 

matching sequences. Algorithms which belong to the first group are generic and perhaps not 

adequate to handle genomic data and the others are mostly domain-specific and probably cannot 

be generalized to other data types. 

It is customary to divide data mining methods according to stages of the data analysis in which 

they operate: preprocessing or categorization, supervised or not. One can therefore classify data 

mining methodologies into four main classes: (1) unsupervised-preprocessing, (2) unsupervised-

categorization (clustering), (3) supervised-preprocessing and (4) supervised-categorization 

(classification). 

1.7.1. Unsupervised preprocessing 

Preprocessing is applied to facilitate analysis of the data. Preprocessing methods are either 

applied for preparation (see section  1.5.1, above), or for dimensionality reduction. The 

significantly large size of the data gathered using high-throughput technology makes 

dimensionality reduction a necessity. According to (Guyon and Elisseeff, 2003; Saeys, et al., 

2007), the major objectives of dimensionality reduction are: reducing over-fitting, improving 

model performance, lowering runtime and other costs and providing a better insight of 

underlying processes. Dimensionality reduction methods are described as feature extraction or 

feature selection. Feature extraction methods transform all features to a lower dimension space 

and feature selection methods select some relevant features in the set. 

In our research, Singular Value Decomposition (SVD) was used for extraction. SVD represents 

any real matrix A as a product of three matrices A=UΣV
T, where U and V are orthonormal 

matrices and Σ is a diagonal matrix whose eigenvalues si (singular values) appear in decreasing 
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order (Figure 4). The columns of U and V define two independent vector spaces. This 

decomposition is unique (up to overall phases) and holds for any real matrix of size m by n. The 

number of non-zero entries in Σ equals the rank of A. A common practice of application of SVD 

for dimensionality reduction is replacing Σ with a truncated version Σ’, where only a small 

number r, of leading singular values, is retained and the rest are replaced by zeros. The resulting 

reconstructed matrix A’=UΣ’V
T
, is the best least-mean-squares approximation of A obtainable 

by any matrix of rank r. 

An alternative utilization of the SVD procedure consists of focusing attention on the matrices 

U and V which, in gene-expression datasets, form gene and sample spaces, respectively. It is 

within these spaces, now reduced to rank r that one can look for data patterns (Alter, et al., 2000; 

Alter and Golub, 2006; Horn and Axel, 2003; Wall, et al., 2003). Such an extraction application 

is presented in chapter 4 (Varshavsky, et al., 2005; Varshavsky, et al., 2007).  

There exist only a handful of unsupervised feature selection algorithms (Guyon and Elisseeff, 

2003; Saeys, et al., 2007). As described in (Dy and Brodley, 2004), such methods can be applied 

at three different stages: before, during and after the clustering process. Methods which operate 

before clustering are referred to as filter methods. These methods are the least biased of all, as 

they do not depend on the clustering implementation. Common methods of unsupervised feature 

filtering rank features according to (1) their projection on the first principal component 

(Hartmann, 2006; Zou, et al., 2006) , (2) their normalized range,(3) entropy or (4) variance of the 

feature as calculated from its values on all instances (Guyon and Elisseeff, 2003; Herrero, et al., 

2003).  

 

Figure 4: Visualization of SVD routine as applied to gene-expression data (see appendix 2) 
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We present a novel unsupervised feature filtering (UFF) framework, which differs from other 

unsupervised selection schemes in the following aspects: (1) it does not involve a target function 

as the selection criterion and (2) it considers the interplay of all features (chapter 2, Varshavsky, 

et al., 2006; Varshavsky, et al., 2007). 

1.7.2. Clustering 

In the last few years several clustering algorithms were found useful in handling genomic and 

proteomics data, for example: diagnosis of different conditions (between sick and healthy 

tissues), and classification to subtypes of a disease (Golub, et al., 1999; D'Haeseleer, 2005 ). An 

additional conclusion to the application of such algorithms to gene-expression data was the 

discovery of functional classes of genes among the thousands used in experimental settings 

(Eisen, et al., 1998). Furthermore, it became possible and useful to isolate groups of relevant 

genes that mostly contribute to a particular condition, a procedure called two-way or bi-

clustering  (Cheng and Church, 2000).  

1.7.2.1. Clustering algorithms 

Clustering algorithms are often classified as nonhierarchical (partitioning) or hierarchical. 

Nonhierarchical clustering algorithms define a complete partition of the data (for comprehensive 

reviews see Jain and Dubes, 1988; Duda, et al., 2000; D'Haeseleer, 2005). Because they suggest 

multiple levels of organization, hierarchical algorithms are perhaps the most popular clustering 

methods used (Spellman, et al., 1998).  

Hierarchical methods can be further divided into Bottom-Up (BU, agglomerative) and Top-

Down (TD, divisive) types (Jain and Dubes, 1988; Duda, et al., 2000; Planet, et al., 2001). BU 

algorithms start with every instance as a cluster and repeatedly merge clusters until a unified 

cluster is formed. TD methods work in the opposite direction and are rarely used for biological 

data. Algorithms can be alternatively classified by the following criteria (1) being deterministic 

or not, (2) being model-based or heuristic. Deterministic algorithms assume that the data was 

generated from a specific 'meta' distribution and the algorithms’ objective it to reconstruct that 

distribution.  

In this study we explored clustering algorithms in depth, focusing on hierarchical algorithms 

(chapter 3). In addition to that, we present two novel algorithms: (1) TDQC: Top-Down-
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Quantum-Clustering algorithm, derived from QC (Quantum-Clustering) algorithm that was 

successfully applied to gene-expression data (Horn and Axel, 2003) and (2) a global-local 

(‘glocal’) variation of the agglomerative algorithm which is based on all relationships within the 

data (all distances). 

1.7.2.2. Evaluation 

Since different results can be obtained by different clustering algorithms, evaluation of this 

variety is an essential step of the analysis (Handl, et al., 2005; Varshavsky, et al., 2005). Other 

factors influencing evaluation and inference are: (1) the number of clusters contained in the 

dataset. Clustering algorithms usually require selecting a set of parameters, turning each 

application into a set of subjective choices. If no prior knowledge is available, assessing the 

correct number of clusters (e.g., as required by the K-Means algorithm), is almost impossible. 

Other algorithms do not explicitly accept the number of clusters as an input; however this 

number is directly derived from their parameters. (2) Algorithms such as K-Means, and others, 

being nondeterministic, are inconsistent as they depend on starting points and other stochastic 

factors.  

Clustering assessment can be based on internal or external measurements. Internal criteria 

evaluate results solely on the data distribution and clustering partitions. In chapter 4.1 

(Varshavsky, et al., 2007) we adopt the Bayesian Information Criterion (BIC), a model-based 

driven internal criterion (Fraley and Raftery, 1998) to compare between different algorithms, and 

select the optimal solution.  

External criteria evaluate clustering results according to the labels of the instances, as assigned 

by experts. This post-analysis evaluation reflects the algorithm – real-world correspondence. 

Evaluations based on external criteria are presented and discussed in chapters 4.2 (Varshavsky, 

et al., 2005) and 4.3. 

1.7.3. Supervised learning: Feature selection & Classification 

In supervised learning, selecting the most relevant features and classifying the instances 

according to them, are two common procedures. Supervised selection approaches prioritize 

features according to the goodness of their fit to a classification task, and are usually defined 

according to logical relation to this task (Guyon and Elisseeff, 2003; Saeys, et al., 2007). 
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Selection methods are either filter, wrapper or embedded. Filter methods score each feature 

according to some criteria (e.g., t-test), and select the highest-scoring features. Wrappers try to 

optimize the classification task in an iterative way by adding a feature (forward insertion), 

removing a feature (backward elimination), adding or removing features (stepwise) or applying 

some more sophisticated, often randomized routines. Embedded methods are more related to the 

classification algorithm, selecting features that incorporate intrinsic consideration (e.g., selecting 

features with high correlation to the weights of the vectors resulted by SVM).  

In bioinformatics, supervised learning is a very common strategy, and many of its aspects have 

been studied. In particular, genes have been ranked and selected according to how they classify 

instances to different cancer types (Khan, et al., 2001; Beer, et al., 2002). In our study, we 

employed various feature selection methods to a proteins dataset. In this dataset, proteins are 

characterized according to a few global features, derived from their sequence. By following a 

parsimony theme (central to this research), we showed that a very small set of features suffices to 

classify proteins to functional groups (chapter 5 and Varshavsky, et al., 2007).  
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ABSTRACT

Motivation: Many methods have been developed for selecting small

informative feature subsets in large noisy data. However, unsupervised

methods are scarce. Examples are using the variance of data collected

for each feature, or the projection of the feature on the first principal

component.Weproposeanovel unsupervisedcriterion, basedonSVD-

entropy, selecting a feature according to its contribution to the entropy

(CE) calculated on a leave-one-out basis. This can be implemented in

four ways: simple ranking according to CE values (SR); forward selec-

tion by accumulating features according to which set produces highest

entropy (FS1); forward selection by accumulating features through the

choice of the best CE out of the remaining ones (FS2); backward elim-

ination (BE) of features with the lowest CE.

Results:We apply our methods to different benchmarks. In each case

we evaluate the success of clustering the data in the selected feature

spaces, by measuring Jaccard scores with respect to known classifica-

tions.Wedemonstrate that feature filteringaccording toCEoutperforms

the variance method and gene-shaving. There are cases where the

analysis, based on a small set of selected features, outperforms the

best score reportedwhenall informationwasused.Ourmethod calls for

an optimal size of the relevant feature set. This turns out to be just a few

percents of the number of genes in the two Leukemia datasets that we

have analyzed. Moreover, the most favored selected genes turn out to

have significant GO enrichment in relevant cellular processes.

Abbreviations: Singular Value Decomposition (SVD), Principal

Component Analysis (PCA), Quantum Clustering (QC), Gene

Shaving (GS), Variance Selection (VS), Backward Elimination (BE)

Contact: royke@cs.huji.ac.il

Conflicts of Interest: not reported

1 INTRODUCTION

Feature selection is an important tool in many biological studies.

Given the large complexity of biological data, e.g. the number of

genes in a microarray experiment, one naturally looks for a small

subset of features (e.g. small number of genes) that may explain the

properties of the data that are being investigated. This type of

motivation fits into the general scheme of feature exploration,

i.e. searching for features because of their direct biological relev-

ance to the problem. An alternative motivation is that of pre-

processing: searching for a small set of features to simplify

computational constraints, to allow for the handling of high

throughput biological experiments, and to separate signal from

noise. Practically, selection of a small set of genes is of ultimate

importance when a small set of informative genes can be the basis

for cancer diagnosis and a basis for development of gene associated

therapy.

Preprocessing often involves some operation on feature-space in

order to reduce the dimensionality of the data. This is referred to as

feature extraction, e.g. restricting oneself to the first r principal

components of a PCA routine. Note that superpositions of features

appear in this example. Alternatively, in feature selection we limit

ourselves to particular features of the original problem. This is the

subject to be studied here. Let us refer to Guyon and Elissef (2003)

for a comprehensive survey.

It is conventional to distinguish between wrapper and filter

modes of the feature selection process. Wrapper methods contain

a well-specified objective function, which should be optimized

through the selection. The algorithmic process usually involves

several iterations until a target or convergence is achieved. Feature

filtering is a process of selecting features without referring back to

the data classification or any other target function. Hence we find

filtering as a more suitable process that may be applied in an

unsupervised manner.

Unsupervised feature selection algorithms belong to the field of

unsupervised learning. These algorithms are quite different from the

major bulk of feature selection studies that are based on supervised

methods (e.g., Guyon and Elissef, 2003, Liu and Wong, 2002), and

compared to the latter are relatively overlooked. Unsupervised stud-

ies, unaided by objective functions, may be more difficult to carry

out, nevertheless they convey several important theoretical advant-

ages: they are unbiased, by neither the experimental expert nor by

the data-analyst, can be preformed well when no prior knowledge is

available, and they reduce the risk of overfitting (in contrast to

supervised feature selection that may be unable to deal with a

new class of data). The downside of the unsupervised approach

is that it relies on some mathematical principle, like the one to

be suggested in this study, and no guarantee is given that this

principle is universally valid for all data. A common practice to

resolve this quandary is to demonstrate the success of the method on

various biological datasets and compare the results obtained by the

method with external knowledge.

Existing methods of unsupervised feature filtering include rank-

ing of features according to range or variance (e.g., Herrero, 2003,

Guyon and Elissef, 2003), selection according to highest rank of the

first principal component (‘Gene shaving’ of Hastie et al. 2000,�To whom correspondence should be addressed.
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Ding 2003) and other statistical criteria. An example of the latter is

Ben-Dor et al., (2001) where all possible partitions of the data are

considered and the corresponding features are labeled. The parti-

tions with statistical significant overabundance are selected.

Another example is of Wolf et al., (2005), who optimize a function

based on the spectral properties of the Laplacian of the features.

Here we present an intuitive, efficient and deterministic principle,

leaning on authentic properties of the data, which serves as a reliable

criterion for feature ranking. We demonstrate that this principle can

be turned into efficient and successful feature selection methods.

They compete favorably with other popular methods.

2 METHODS

2.1 Mathematical framework and notations

Let us consider a dataset of n instances1 A½nXm� ¼ f�AA1‚ �AA2‚ ::::‚
�AAi‚ :::‚

�AAng,
where each instance, or observation, Ai is a vector of m

measurements or features. The objective is to define a subset of

features ~MM , of size mc < m, that, in a sense to be defined below, best

represents the data.

In PCA (or SVD) studies it is conventional to regard the best representa-

tion as the minimal least-square approximation of the original matrix (Wall

et al., 2003). This principle can be followed also in feature extraction but it

has the disadvantage that it may preserve too many properties of the data,

including systematic noise. We will define our ‘best approximation’ using a

principle based on SVD-entropy, and subject it to an a-posteriori test: given

different selection rules of features choose the ones that prove useful as basis

for the best fit to labeled data, e.g., perform clustering within the data-space

spanned by the selected features and compare the results with known clas-

sification. This comparison will be performed using the Jaccard score.

J ¼ n11
n11 þ n01 þ n10

ð1Þ

where n11 is the number of pairs of instances that are classified together,

both in the ‘expert’ classification and in the classification obtained by the

algorithm; n10 is the number of pairs that are classified together in

the ‘expert’ classification, but not in the algorithm’s classification; n01 is

the number of pairs that are classified together in the algorithm’s classifica-

tion, but not in the ‘expert’ classification.

The Jaccard score reflects the ‘intersection over union’ between the algor-

ithm’s clustering assignments and the expected classification. Its values

range from 0 (no match) to 1 (perfect match).

2.2 Ranking by SVD-Entropy

Alter et al., (2000) have defined an SVD-based entropy of the dataset.

Denote by sj the singular values of the matrix A. sj
2 are then the eigenvalues

of the nxn matrix AAt. Let us define the normalized relative values (Wall

et al., 2003): and the resulting

Vj ¼ s2j

. X
k

s2k ð2Þ

dataset entropy (Alter et al., 2000):

E ¼ � 1

log ðNÞ
XN
j¼1

Vj log ðVjÞ ð3Þ

This entropy varies between 0 and 1. E ¼ 0 corresponds to an ultra-

ordered dataset that can be explained by a single eigenvector (problem of

rank 1), and E ¼ 1 stands for a disordered matrix in which the spectrum is

uniformly distributed. Figure 1 demonstrates two examples of 5 eigenvalues,

one with high entropy (left, 0.87) and the other with low entropy (right, 0.14).

As can be seen in Figure 1, when the entropy is very low, one expects a very

non-uniform behavior of eigenvalues. One should not confuse the standard

definition of entropy, based on probabilities (Shannon, 1948), with the one

used here, which is based on the distribution of eigen- (or singular) values.

Although standard entropy considerations appear in feature selection meth-

ods, such as the supervised bottleneck approach (Tishby et al., 2000), the use

of SVD-entropy for feature selection is a novel approach.

We define the contribution of the i-th feature to the entropy (CEi) by a

leave-one-out comparison according to

CEi ¼ EðA½nXm�Þ � EðA½nXðm�1Þ�Þ ð4Þ

where, in the last matrix, the i-th feature was removed.

Thus we can sort features by their relative contribution to the entropy. Let

us define the average of all CE to be c and their standard deviation to be d.

We distinguish then between three groups of features:

(1) CEi > c + d, features with high contribution

(2) c + d > CEi > c-d features with average contribution

(3) CEi < c-d features with low (usually negative) contribution

Features in the first group (high CE) lead to entropy increase; hence they

are assumed to be very relevant to our problem. Retaining these features we

expect the instances to be more evenly spread in the truncated SVD space.

The features of the second group are neutral. Their presence or absence does

not change the entropy of the dataset and hence they can be filtered out

without much information loss. The third group includes features that reduce

the total SVD-entropy (usually c-d <0). Such features may be expected to

contribute uniformly to the different instances, and may just as well be

filtered out from the analysis.

The first feature selection method that we propose is to limit oneself to the

first group of features according to theCE ranking.Awill then be represented

by a new matrix of rank mc, the number of features in group 1. Several other

feature selection methods are suggested in the next section. In all of them we

assume that the same value of mc continues to serve as the right guide for

optimal dimensionality reduction.

2.3 Three Feature Selection Methods

Entropy maximization can be implemented in three different ways, as is also

the case in other feature selection methods.

Fig. 1. A comparison of two eigenvalue distributions; the left has high entropy (0.87) and the right one has low entropy (0.14).

1In this paper A (or A[nXm]) is a matrix and A (or Ai) is a vector.
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(1) Simple ranking (SR): select mc features according to the highest

ranking order of their CE values.

(2) Forward Selection (FS): here we consider two implementations.

(a) FS1: Choose the first feature according to the highest CE. Choose

among all other features the one which, together with the first

feature, produces a 2-feature set with highest entropy. Continue

with iteration over allm-2 features to choose the third according to

maximal entropy, etc, until mc features are selected (Box 1).

(b) FS2: Choose the first feature as before. Recalculate theCE values

of the remaining set of size m-1 and select the second feature

according to the highest CE value. Continue the same way until

mc features are selected (Box 2).

(3) Backward Elimination (BE): Eliminate the feature with the lowest CE

value. Recalculate the CE values and iteratively eliminate the lowest

one until mc features remain (Box 3).

One may view the different methods also as specifying alternative

ranking methods. Whereas SR ranks the features according to their original

CE values, FS1, FS2 and BE introduce other ranking orders through the

algorithms defined above. In the examples studied below we display

rankings for the entire range of 1 to m.

In an appendix we analyze the computational complexity of all these

methods. SR is the fastest one and BE is the most cumbersome one for

large numbers of features. In the examples to be discussed next, we will

compare the different methods with one another. However, because of

complexity, the BE method will be used in only one of the examples.

3 Results

Our four feature filtering methods were compared with each

other and with two known methods: Variance Selection (VS) and

Gene Shaving (GS). The latter is a variation of a method of Hastie

et al. (2000) which removes features iteratively according to their

lowest correlations with the first principal component. For compar-

ison we also look at results of random feature selection on several

benchmarks.

3.1 The viruses dataset of Fauquet, 1988

This is a dataset of 61 rod-shaped viruses affecting various crops

(tobacco, tomato, cucumber and others) originally described by

Fauquet et al. (1988) and analyzed more thoroughly by Ripley

(1996). There are 18 measurements of Amino Acid Compositions

(AAC) for the coat proteins of the virus that serve as 18 features.

The viruses are known to be classified into four classes:

Hordeviruses (3), Tobraviruses (6), Tobamoviruses (39) and

Furoviruses (13).

Figure 2 displays the CE values of all 18 features. Our criterion

sets mc ¼ 3. We test the performance of the system for the entire m
range to see if this choice makes sense. Before doing so, let us

display the ranking orders of all methods in Table 1. By definition,

SR has the same ranking order as CE in Figure 2. In this problem,

BE turns out to lead to the same order as FS1, and all our three

methods agree with each other on the first three features to be

selected. We include in Table 1 also the ranking order of VS (vari-

ance selection) and GS (gene shaving). The two last ones are highly

correlated with each other (Spearman correlation 0.76) but highly

uncorrelated with our three methods (see Supplementary Material

for more details). In particular note that VS chooses ASX and GLX

as its second and third features, whereas for our three methods these

two features are unfavorable (15th to 18th) choices.

Next we evaluate the subset selection using the Jaccard score.

This is done by applying the QC clustering algorithm (Horn and

Gottlieb, 2002) on the 61 viruses described by the selected subset of

features. QC was applied after reduction of each space to normal-

ized 3-space dimensions, using the parameter s ¼ 0.5 (for details

see Varshavsky et al., 2005, and COMPACT2). Results are shown in

Box 1: Pseudo-code of Forward Selection method FS1

Box 2: Pseudo-code of Forward Selection in method FS2

Box 3: Pseudo-code of Backward Elimination method BE

Fig. 2. CE of the 18 Amino Acid Compositions (AAC) of the virus dataset.

ASX stands for ASN and ASP and GLX for GLN and GLU. The dashed line

represents the value of c and the dot-dashed line the value of c+d.

2http://adios.tau.ac.il/compact or http://www.protonet.cs.huji.ac.il/compact
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Figure 3 for three of our four methods. All three do exceedingly well

at the three features level (J > 0.9) whereas the variance method

obtains J¼ 0.4. Note that our methods, with our choice ofmc, lead to

a much better result than J ¼ 0.6, obtained when all 18 features are

taken into account. This exemplifies the importance of keeping

features that maximize the entropy. The feature ranking of FS1

and BE is the only one that keeps performing very well with

more than three selected features. Similar relative successes

of feature selection evaluation (although less favorable

J-scores) were obtained with other clustering methods, such as

K-means. This comparison, as well as other details that could

not be fitted into this paper, can be found in the Supplementary

Material3.

Fauquet et al. (1987) have argued that the AAC of the coat protein

of plant viruses are specific to the structure of the viral particle, to

the mode of transmission and to sub-grouping of viruses to distinct-

ive classes. Our results indicate that choosing only 3–4 features

correctly, not only preserves the classification but allows much

better performance with minimal failure. It is interesting to note

that the 3 highest-ranking amino acids, GLY, THR and LYS are not

dominating the coat proteins. These amino acids account for only

13–21.5% of the coat proteins, a fraction that is similar to the

average percentage in the entire proteins database (18.3%). Further

investigation shows that neither their size nor polarity or electric

charges differentiate these three amino acids from the remaining.

Nevertheless, since GLY, THR, LYS and MET (the fourth ranked

AAC, according to the FS1 method) represent different functional

groups, we conclude that the FS1/BE ranking is consistent

with selecting amino acids that carry different physico-chemical

properties.

3.2 The MLL dataset of Armstrong et al., 2002

The second dataset that we apply our methods to is that of

Armstrong et al., 2002, who have attempted to cluster data of

three Leukemia classes: lymphoblastic Leukemia with MLL trans-

locations and conventional acute lymphoblastic (ALL) and acute

myelogenous Leukemias (AML). In the experiment, 12582 gene

expressions were recorded, using Affymetrix U95A chips on

72 patients, 20 of which diagnosed as MLL, 24 ALL and

28 AML. They showed that these 3 Leukemia types can be divided

according to some gene expression. However, when filtering in an

unsupervised manner (selecting 8700 genes that show some vari-

ability in expression level), the clustering results were unsatisfact-

ory and much inferior to a supervised selection of 500 genes that

best separate between the cancer patients.

Applying our CE criteria we use the method SR, and compare

clustering of these feature-filtered data with VS (Figure 4). Clus-

tering was performed by K-Means, averaging over 100 runs and

using K ¼ 3 with data projected onto a unit sphere in 3D-reduced

space (Varshavsky et al., 2005). The asymptotic Jaccard score is

J ¼ 0.426 for this K-Means method. As can be seen in Figure 4 VS

provides no improved quality, whereas SR leads to J-values

Table 1. Ranking of the 18 Amino Acid Compositions of the virus dataset

according to various feature filtering methods. Colors from white to black

match the numbers that reflect the ranking of each method

Fig. 4. Clustering quality of two feature selection methods. Results are

averages of 100 runs of K-Means clustering.

Fig. 3. Filtering quality of the virus dataset is tested by Jaccard scores of

clustering performed in spaces spanned by them (see text). Best results are

obtained for FS1 (identical with BE in this case) and SR for mc ¼ 3. FS1

continues to perform very well with more features. Feature selection accord-

ing to VS performs worse. For comparison we include also an evaluation

based on a large group of random order rankings.

3http://adios.tau.ac.il/compact/UFF/SUPP
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between 0.7 and 0.8 for filtered gene groups of sizes 250 to 450. The

preferredmc value according to c + d of SR is 254. Better results can

be obtained by using the QC algorithm, but the same trend and

conclusions regarding feature selection hold also there. It is

interesting to note that QC clustering of our unsupervised SR

method, for mc ¼ 254, reaches J ¼ 0.85 (see supplementary).

We display the K-Means analysis in Figure 4, in spite of its poorer

performance compared to QC, in order to emphasize that the quality

of the feature filtering method is independent of the clustering-test

performed on the filtered data.

3.3 The Leukemia dataset of Golub et al., 1999

After demonstrating the effectiveness of our methods on both small

and large datasets, we choose a third dataset (Golub et al., 1999) that
has served as a benchmark for several clustering algorithms (Sharan

and Shamir, 2000, Getz et al., 2000 and more) and feature selection

methods (e.g., Liu B. et al., 2004, Liu H. et al., 2002). The experi-
ment sampled 72 Leukemia patients with two types of Leukemia,

ALL and AML. The ALL set is further divided into T-cell Leukemia

and B-cell Leukemia and the AML set is divided into patients who

have undergone treatment and those who did not. For each patient,

an Affymetrix GeneChip measured the expression of 7129 genes.

The task is clustering into the four correct groups within the 72

patients in a [7129x72] gene-expression matrix. This clustering task

is quite difficult. Using the QC method (in normalized 5 dimensions

with s ¼ 0.54), applied to the data without feature selection, one

obtains J ¼ 0.707, which is the best score for a variety of clustering

algorithms (Varshavsky et al., 2005).
The CE values for the 7129 features of this problem are displayed

in Figure 5. Most of the features have a zero score. There are

about 150 large CE values (see Figure 5) and about the same number

of small CE values. The bright color within the inset indicates the

first 100 features selected by FS1. While their ordering is different

from the SR ranking, most of them belong, as expected, to the class

of large CE values. The overlaps of the first leading features of SR

with those of FS1 and FS2 are shown in the Venn diagrams of

Figure 6.

Next we turn to testing the filtering methods to see how well they

do in the clustering task, i.e. what are the Jaccard scores that are

obtained by applying an identical clustering algorithm to the dif-

ferent spaces spanned by the selected features. The clustering

algorithm is the QC method mentioned above. Figure 7 shows

that good results can be obtained by our filtering methods once

the gene subset is larger than 100 or so. For feature sets of sizes

120 to 200 we find selections (of FS1 and SR) that lead to Jaccard

scores that are better than J ¼ 0.707, the asymptotic limit. Gene

subsets larger than 300 result in Jaccard scores below the asymptotic

limit (for a complete list, see supplementary). Also in this problem

the GS results are inferior to those of the other methods.

3.3.1 Biological interpretations of the Leukemia dataset of Golub
et al., 1999 It is clearly of interest to look at the 100 or so genes

that participate in the sections that lead to the best Jaccard score. In

Figure 6 we saw that there exists a substantial overlap between the

choices of our three different methods. To study the biological

significance of our subset of overlapping 54 genes we have run a

GO enrichment analysis (NetAffx� web tool4) on this subset. As

Fig. 5. CE of the 7129 genes of the Golub dataset (c ¼ 0, dashed lines

represent c ± d). The inset zooms into the highest-ranked 300 genes, with

bright dots signifying the top 100 features according to the FS1 method

Fig. 6. Venn diagram of relations among the first 100 features selected by

different methods.
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4http://www.affymetrix.com/analysis/index.affx

Novel unsupervised feature filtering of biological data

e511

27

http://www.affymetrix.com/analysis/index.affx


displayed in Figure 8 (and supplementary), we are able to assign

some prevalent biological processes to the selected genes.

The association of our selected 54 genes with functional annota-

tion related to defense, inflammation and response to pathogen (with

p-value ranging from e-7 to e-22) is intriguing (Figure 8). It may

underlie the difference in AML and ALL in view of the different

susceptibility of the patients to treatment such as chemo and

radiotherapy. Thus the listed protein processes may not only be

considered as ‘subtype cancer markers’ but as an indication of

the biological properties of the cancerous cells. Specifically,

cellular response to pathogen, to stress and to inflammation may

be different for AML and ALL. It may also provide a focused

hypothesis towards the processes and mechanisms that can be

used as a follow up in monitoring the outcome of therapy in

case of Lymphoma.

4 Discussion

We have introduced a novel principle for unsupervised feature

filtering that is based on maximization of SVD-entropy. The fea-

tures can be ranked according to their CE-values. We have proposed

four methods based on this principle and have tested their usefulness

on three different biological benchmarks. Our methods outperform

other conventional unsupervised filtering methods. This is clearly

brought out by the examples that we have analyzed. More details are

provided by our Supplementary Material5. In particular, it is striking

to note howmuchmore successful our methods are compared to VS,

the popular variance ordered method.

The major theoretical difference between the two approaches is

that VS relies on a measurement of one feature at a time. The

entropy-based approach, as implemented by the CE calculation,

takes into account the interplay of all features. In other words,

the contribution of a feature, its CE, depends on the behavior of

all other features in the problem. Thus variance is only one of the

factors that affect the CE value. The CE value depends also on

the correlations (or the absence thereof) of a given feature with

all others. The difference between the ranking of SR and VS

in Table 1 bears evidence to the difference between the two

methods.

We have demonstrated that our selected features have important

biological significance, through a GO enrichment analysis of the

genes in the Golub dataset. A similar analysis of the Armstrong

dataset is presented in the Supplementary Material5. In the virus

dataset, we have shown that the FS1/BE filtering method works

exceedingly well for a large range of numbers of features. The

biological significance of the relevant choices of amino-acids

remains to be uncovered.

The CE ranking leads to an estimate of the optimal mc choice.

This is an important point by itself. In other methods, such as VS, it

is almost impossible to make this choice on the basis of variation of

feature properties. Conventionally one makes therefore an arbitrary

choice, such as selecting 10% or 50% of the features. In the three

datasets discussed in our paper it seems quite clear that our sug-

gested optimal mc, as judged from the CE scores, leads indeed to

optimal results. The improved Jaccard scores indicate that the selec-

ted mc features have biological significance.

Our four methods differ in computational complexity. SR is the

simplest one, since it relies just on sorting the initial CE values. In an

appendix we compare its complexity with that of the other methods.

The relative values depend on the choice of mc (the size of the

subset).

FS1 chooses features that lie high on the original CE-score, hence

its optimal selected set will have a large intersection with that of SR.

Nonetheless, for small numbers of selected features, the order may

be very important. Thus, in the virus problem, FS1 turns out to be

much more successful than SR. In the Leukemia datasets, where

reasonable results were obtained for larger feature sets, FS1 was not

found to be significantly better than SR. Biologically one may

expect the appearance of features that are degenerate with one

another, i.e. have quite identical behavior on all instances. Such

duplicity can be included by the SR method but excluded by the FS1

one.

Our optimal feature-filtered sets in the two Leukemia problems

turn out to include just few percents of all genes. Thus a CE-analysis

indicates that a small subgroup of all genes is the most relevant one

to the data in question. We have seen that this relevance is borne out

by both Jaccard scores and GO enrichment analysis. The pursuit of

small feature sets is often guided by wishful thinking that the

essence of biological importance can be reduced to a small causal

set. Here we find that the small number obtained in our analysis is an

emerging phenomenon, and may be regarded as a true biological

result.
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APPENDIX

Computational complexity of the four methods

In the following calculations, we will assume that mc < n, which
will give upper bound to the complexity. We will not assume that

m < n.
The computation of all eigenvalues for a dense symmetric matrix

requires O(p3) operations, where p is the size of the matrix

(Anderson, 1999).

We will define the complexity of the initial computation of all

CEs to be O(m�min(n,m)3) � K.

� SR: The computational complexity is lowest for the SRmethod.

There’s only one calculation of all CEs, followed by sorting.

Hence the complexity is O(K + m�logm).

� FS1: Calculation of all CEs followed by (mc �1) repetitive

diagonalization of a growingmatrix (from 2 to (mc�1)), leading

to O(K + m�mc
4).

� FS2: Calculation of all CEs followed by (mc �1) repetitive

diagonalization of a decreasing matrix (from m-2 to (m-mc)),

leading to O(m5-(m-mc)
5). Note that here, if n < (m-mc), the

complexity is O(mmcn
3)

� BE:Calculation of all CEs followed by (m-mc-1) repetitive diag-

onalization of a decreasing matrix (fromm-2 to (mc-1)), leading
toO(m5-mc

5). Note that here, if n <m, the complexity is reduced

to O((m2-mc
2)n3).

Clearly computational complexity is lowest for the SR method,

since only one calculation of all CEs is needed. BE or FS2 have the

highest complexity, depending on whether m > 2mc or not.
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ABSTRACT

Motivation: Feature selection methods aim to reduce the complexity

of data and to uncover the most relevant biological variables. In

reality, information in biological datasets is often incomplete as a

result of untrustworthy samples and missing values. The reliability of

selection methods may therefore be questioned.

Method: Information loss is incorporated into a perturbation

scheme, testing which features are stable under it. This method is

applied to data analysis by unsupervised feature filtering (UFF). The

latter has been shown to be a very successful method in analysis of

gene-expression data.

Results: We find that the UFF quality degrades smoothly with

information loss. It remains successful even under substantial

damage. Our method allows for selection of a best imputation

method on a dataset treated by UFF. More importantly, scoring

features according to their stability under information loss is shown

to be correlated with biological importance in cancer studies. This

scoring may lead to novel biological insights.

Contact: royke@cs.huji.ac.il

Supplementary information and code availability: Supplementary

data are available at Bioinformatics online.

1 INTRODUCTION

Computational biology has undergone a revolution in the

last decade. One of the prominent characteristics of this

revolution is the development of high-throughput technologies,

allowing for gathering of large-scale data, both in the number

of samples and in their features. Examples are microarray

gene-expression experiments (Beer et al., 2002; Khan et al.,

2001) and comparative genomic hybridization (CGH) (Snijders

et al., 2005).

A popular strategy for facilitating the analysis and inter-

pretation of such large-scale data is selecting informative

features from the thousands measured in each experiment

(Guyon and Elisseeff, 2003; Herrero et al., 2003). Feature

selection methods are divided into two types: supervised, when a

target function is known, and unsupervised, in which one has

no, or limited, information regarding the samples. Supervised

feature selection methods are abundant, in particular in the

computational biology field, where they were found useful

in improving classifications tasks (Bø and Jonassen, 2002).

Nevertheless, it was argued that such methods do not lead

to a unique set of selected features (Ein-Dor et al., 2006).

This is probably due to the fundamental variability within

the data and the small number of samples (which is further

reduced due to train-test partition), in comparison to the

number of features.

Less studied approach is the unsupervised feature selection.

Selection methods that are applied before clustering are often

referred to as filter methods. Most methods of unsupervised

feature filtering include ranking of features according to

different criteria: correlation with the first principal component,

range, fold-change, threshold, entropy and variance calculated

on each feature individually (Guyon and Elisseeff, 2003;

Herrero et al., 2003). An underlying assumption for these

selection methods is that only features that significantly vary

along the samples carry the relevant information. Although it

seems that unsupervised methods are scarce and less powerful

than the supervised ones, most analysts (often inattentively),

do apply some unsupervised schemes: in practice, almost every

microarray analysis starts with filtering out thousands of genes

with small variance or those that are below a predetermined

fold-change threshold.
Recently, we have suggested an unsupervised feature filtering

(UFF) framework (Varshavsky et al., 2006) that was success-

fully applied to several datasets with various representations

(e.g. gene-expression, amino-acid composition counts). UFF

differs from other popular unsupervised selection schemes by

(1) not involving a target function as the selection criterion

[e.g. optimizing clustering results (Dy and Brodley, 2004)] and

(2) considering the interplay of all features. It has been shown

on several datasets of different types that a selection of only a

few features according to the UFF method leads to improved

clustering results relative to other unsupervised methods or to

using the complete set.

Here, we investigate the effect of missing information on

feature selection strategies. We employ UFF and study whether

it remains valid when fractions of data are eliminated. In

particular, we put emphasis on the stable features that continue

to be selected under these conditions.*To whom correspondence should be addressed.

� The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 3343

33



Experimental data are prone to errors or information loss
because of two major reasons: (i) missing or untrustworthy

samples (Wang et al., 2006); (ii) missing values: unarguably,

this is one of most bothering issues when handling gene-

expression microarray datasets (de Brevern et al., 2004; Scheel

et al., 2005); other microarray-based technologies (e.g. tiling

array, ChIP on Chip and CGH screening) impose similar

challenges. There exists a continuous drive to overcome these

problems by improving the hardware (Shi et al., 2006), and

developing imputation methods to replace missing values

(Gan et al., 2006; Hua and Lai, 2007; Troyanskaya et al.,

2001; Tuikkala et al., 2006). ‘White noise’ was shown to have

negligible effect on the analysis (Klebanov and Yakovlev, 2007)

and thus should not be considered.
Facing the fact that any data may be afflicted by missing

information, we argue that a feature selection method should

be relatively stable with respect to such errors. This assertion

can be tested by simulating information loss and studying its

effect on the method at hand. We evaluate UFF under such

conditions, suggest viewing stability as a new criterion for

feature selection, and study its use on biological data, leading to

interesting new insights.

2 DATA AND METHODS

Figure 1 summarizes the analysis protocol. The original dataset

(Section 2.1) is perturbed (Section 2.2) and filtered by UFF (Section

2.3). The selected features are then evaluated (Section 2.4) and tested

with respect to their biological relevance (Section 2.5).

2.1 Datasets

A comparative analysis is performed on two (complete) gene-expression

benchmarks, with known classifications, and a practical application is

then applied to a Comparative Genomic Hybridization (CGH) dataset

that inherently contains some missing values.

(1) SRBCT: the small round blue cell tumor gene-expression

dataset includes glass-based cDNA microarray measurements of

2308 genes (features) for 83 patients (samples). The samples

are categorized into four types of tumors: Burkitt lymphoma,

Ewing sarcoma, Neuroblastoma and Rhabdomyosarcoma

(Khan et al., 2001).

(2) Lung: this HUGeneFL Affymetrix oligonucleotide gene-

expression dataset (Beer et al., 2002), includes 86 primary lung

adenocarcinomas and 10 non-neoplastic lung samples. Total 4966

genes are measured for each sample (features).

(3) CGH: this dataset (Snijders et al., 2005) comprises 1979 clones

(features) for 89 instances (samples). The expression value of each

record is the log2ratio normalized to the genome median log2ratio.

The dataset contains 5807 missing values (3.3%).

2.2 Perturbations

Assuming the complete dataset is a full [m� n] matrix A, with m

features describing n samples (or observations) we simulate information

loss in two ways:

(1) Missing samples (Wang et al., 2006) are simulated by eliminating

some of the columns in the matrix. We consider cases where 1%,

2%, 5%, 10%, 20% and 50% of all samples are randomly

removed. Total 50 random eliminations were applied to each

group size (in the leave-one-out case, all possibilities are

considered).

(2) Missing values are modeled by randomly eliminating 1%, 2%, 5%,

10%, 20% and 50%, of all matrix elements. Total 50 random

deletions were selected for each group size. The removed matrix

elements are then imputed according to one of three imputation

methods:

(a) Standard average: each missing value is replaced with the

average of all present values in the set.

(b) Weighted average: each missing value is replaced by: [average

(row) * average (column)]/average (matrix).

(c) KNNImpute according to Troyanskaya et al. (2001), each

missing value is replaced by the standard average of samples of

the K nearest neighbors of a relevant feature (K¼ 10).

For clarity, (1) description of the KNNImpute method, (2) results of

50% data loss and (3) SDs appear in Supplementary Material.

2.3 Unsupervised feature filtering (UFF)

UFF scores each one of the features according to its contribution to the

SVD entropy of the dataset. Computation of the score is based on a

leave-one-out principle [for a complete description see Varshavsky et al.

(2006)].

Let A denote a matrix, whose elements Aij are the measurement of

feature i on sample j, e.g. expression of gene i under condition j. We

base our method on the Singular Value Decomposition (SVD)

procedure. It decomposes the original matrix A into A¼USVT,

where U and V are unitary matrices whose columns form orthonormal

bases. The diagonal, non-negative matrix S is composed of singular

values (sk).ordered from highest to lowest. Let l be the rank of the

matrix [l�min (m, n)], Using the normalized relative values, �k

�k ¼
s2kPl
i¼1 s

2
i

ð1Þ

a SVD-entropy (H) can be defined (Alter et al., 2000):

H ¼ �
1

logðlÞ

Xl

k¼1

�k logð�kÞ ð2Þ

SVD-entropy varies between 0 and 1. Low entropy datasets are

characterized by only a few high singular values whereas the rest are

significantly smaller. This pattern reflects a great redundancy in

the dataset. In contrast, non-redundant datasets result in uniformity

in the singular values spectrum and in high entropy.Fig. 1. Schematic representation of the analysis protocol.
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UFF scores each feature i using a leave-one-out calculation of the

SVD-entropy: H is calculated for the entire matrix and for the matrix

without feature i. The difference in the values defines the score of

feature i. Figure 2 displays the results after applying the UFF algorithm

to the SRBCT dataset, and sorting the features according to decreasing

UFF scores. Clearly, one can divide the features into three groups:

(1) Features with positive score. These features increase the entropy.

(2) Neutral features that have negligible influence on the entropy.

(3) Negative score features. These features decrease the entropy.

Note that a majority of features falls into group 2 (�92%), while

groups 1 and 3 represent minorities (�4% in each). The features

selected according to the UFF approach are the positive score features

[lying above the threshold of mean(score)þSD(score)]. The rationale

behind picking group 1 features is that, because they increase the

entropy, they decrease redundancy. Hence, we may expect samples to

be better separated in the space spanned by these features.

2.4 Methodology evaluation

Given a set of selected features we evaluate it according to how

successful it is in clustering correctly the set of samples, and how

much it overlaps with the set of UFF selected features of the

unperturbed data.

� Clustering quality. Clustering quality is measured both on

perturbed and on perturbed-then-filtered datasets. Cases where

the latter representation leads to higher quality indicate that

the filtering is effective even though the dataset is damaged.

This quality is measured using the Jaccard score: J¼ n11/

(n11þ n10þ n01), where n11 is the number of pairs of samples that

are classified together, both in a known classification and in the

clusters obtained by the algorithm; n10 is the number of pairs that

are classified together in the true classification, but not in the

clustering and n01 is the number of pairs that are classified together

by clustering but not in the true classification. In order to ensure

that the evaluation is not biased by the clustering method, two

clustering methods were compared and shown to provide

consistent behavior patterns. In the two microarray datasets both

QC [�¼½, dims¼ 5, (Horn and Axel, 2003)] and hierarchical

(Euclidian distance, average linkage) methods were considered.

� Filtering stability. Filtered features of the original and perturbed

datasets are compared (Scheel et al., 2005). The degree of

intersection (similarity score) indicates the method’s stability

under the perturbation.

2.5 Stability scores

On average, each dataset has undergone �1200 perturbations. Stability

of a feature is defined as the probability of this feature to be selected

under all perturbations. The features may be then ranked according to

this criterion.

3 RESULTS

3.1 Methodology validation: filtering quality and

stability

3.1.1 Smooth degradation of clustering quality under

perturbations Figure 3 displays the clustering quality of the
perturbed SRBCT and Lung datasets (missing samples and

missing values with three imputation methods). UFF always
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Fig. 3. Clustering results of the (A) SRBCT and (B) Lung datasets, following perturbations: missing samples (a) and missing values (with three

imputation methods: (b) average, (c) weighted average and (d) KNNImpute). Dashed lines denote the clustering quality of the perturbed datasets

after various levels of information loss and the continuous lined denote the corresponding quality of perturbed and then filtered sets (results shown

are averages of 50 random perturbations). Detailed results for the two datasets appear in Supplementary Material.

Fig. 2. UFF Scores of the 2308 genes of SRBCT features, ordered by

decreasing scores. Dashed lines represent mean(score)�SD(score).
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improves clustering quality. The results degrade smoothly as

a function of the amount of missing data. This allows us to

draw two important conclusions: (1) UFF continues to be

a good filtering method even under severe information loss. (2)

There does not seem to exist a critical amount of loss beyond

that clustering quality suffers a sudden drop.
In all missing sample perturbations cases, application of

UFF improves considerably the clustering quality even under

substantial information loss. This is also the case with missing

values perturbations. Clustering after UFF outperforms

clustering without UFF. Comparing between three imputation

methods, we learn that the best method for the SRBCT

dataset is the KNNImpute while for the Lung dataset it is the

weighted average.

3.1.2 UFF is stable under perturbations The stability of

filtering is measured by the similarity between the original list

of features (selected when the information is complete) and the

lists that are generated from the perturbed sets. The lists for the

SRBCT and Lung datasets (comprising 88 and 62 genes,

respectively) appear in the Supplementary Material.
Figure 4 displays the similarity scores of the perturbed

SRBCT and Lung datasets as a function of the lost data. As

shown, in the missing samples perturbation, the intersection

levels remain high even after substantial loss. This means that

UFF is stable under missing samples perturbations.

In the missing values perturbation, not all imputation

methods perform equally. In both cases the simple average

method performs relatively bad, while the weighted imputation

method performs very well. In the SRBCT dataset the

KNNimpute yields high similarity results, yet in the Lung

dataset this method is found to result in less stable lists. Overall,

similarity is seen to decrease linearly with information loss.

In both perturbation schemes the intersection is high (�85%)

even after substantial loss (20%). Similar qualitative results

have been obtained by Scheel et al. (2005) in a supervised

selection task.

3.2 Application to a faulty dataset

Given the CGH dataset that contains 3.3% missing values

(see Section 2.1), we apply to it further artificial information

loss in order to estimate (1) how damaging is the 3.3% original

loss, and (2) which is the best imputation method.
The analysis starts with applying the three imputation

methods to the dataset. Applying UFF to the three recon-

structed forms, results in three lists of selected features,

comprising 88, 83 and 85 clones for the average, weighted

average and KNNImpute, respectively. These three lists, that

are referred to as baselines, have 72 clones in common

(Table S3). As shown in Figure 5, the dataset is further

perturbed, both by missing values and by missing samples

protocols. The resulting lists of features are then compared with

their corresponding baseline lists. Figure 5 displays the

B 

A 

60

70

80

90

100A

B

0 5 10 15 20

% Missing values

%
 S

im
ila

rit
y

Average Impute

Weighted Average
KNNImpute

80

85

90

95

100

0 5 10 15 20
% Missing samples

%
 S

im
ila

rit
y

Average Impute

Weighted Average

KNNImpute
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(B) Lung datasets. Detailed results for the two datasets appear in

Supplementary Material.
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similarity scores as a function of the information loss. Note,

that since three baseline lists are defined, three comparisons are

applied to both protocols.
Clearly, under all perturbations, the similarity levels degrade

smoothly (almost linearly), retaining high intersections (�85%)

with the original lists even after substantial loss (20%). The

high similarity levels may testify that, as far as clones selection

is considered, the original 3.3% damage is not crucial. This

observation matches the one found in the gene-expression case,

which suggests that the stability characteristic of UFF is

generic. Furthermore, both protocols lead to similar ranking of

the different methods with weighted average inferior to the

other two imputation methods.

4 BIOLOGICAL INFERENCE

In this section, we wish to study whether the stability criterion

is also biologically meaningful, i.e. are the stable features

causally related to the biological problem at hand?

4.1 Ranking stable features

Figure 6 displays the stability scores of the 88 first UFF genes

in the SRBCT dataset (according to 0 and Varshavsky et al.,

2006). There exists a positive correlation between the rank

order of the UFF score and stability. They are compared to the

ranking of Khan et al. (2001) based on a supervised criterion.

Out of 88, 37 of the UFF genes are common to the two lists

(hypergeometric enrichment P-value of 1.7E�12).
Among the 10 and 20 top stable genes, 8 and 13, genes

appear in the supervised-selection based list, respectively.

The 20 most stable genes are listed in Table 1 (complete lists

of the two datasets appear in the Supplementary Material,

Tables S1A,B and S2).

4.2 Comparing stable and ‘less-stable’ SRBCT genes

4.2.1 Statistical analysis We conducted a statistical com-
parison of top 20 stable genes, with the 20 genes that were

originally selected by the UFF algorithm, but found to be less

stable (with stability score ranging from 0.85 to 0.51). The

top stable genes have relatively low skewness and kurtosis,

compared to the less stable genes. Since imputation methods

tend to smooth distributions, wide symmetrical distributions

should indeed be more resistant to perturbations.

4.2.2 Functional analysis for the most stable genes The

malignant tumors analyzed tend to occur in childhood. From

a morphological view, subtle clues distinguish between the

tumors. At present, analysis for chromosomal abnormalities

and molecular probes are being used to assist the pathologists.

The list of most stable features in the SRBCT set is intriguing.

Among the top stable genes, several genes corroborate each

other. Figure 7 illustrates protein–protein interactions that were

experimentally validated. Several of the top 20 stable genes

appear in these networks. The appearance of representative

Table 1. Top 20 stable genes in the SRBCT dataset

Stability

ranking

Stability

score

Genes name UFF

ranking

Khan’s

ranking

1–11 1 Human DNA for insulin-like

growth factor II (IGF-2);

exon 7 and additional ORF

1 2

1–11 1 Insulin-like growth factor 2

(somatomedin A)

2 1

1–11 1 Collagen, type III, alpha 1

(Ehlers-Danlos syndrome

type IV, autosomal

dominant)

3 40

1–11 1 Insulin-like growth factor

binding protein 2 (36kD)

5 8

1–11 1 Human insulin-like growth

factor binding protein 5

(IGFBP5) mRNA

6 62

1–11 1 SMA3 11 –

1–11 1 Actin, alpha 2, smooth

muscle, aorta

14 83

1–11 1 Antigen identified by mono-

clonal antibodies 12E7,

F21 and O13

51 73

1–11 1 IM-379708 23 –

1–11 1 Growth-associated protein 43 7 31

1–11 1 Spectrin, beta, non-

erythrocytic 1

52 –

12–15 0.99 Regenerating islet-derived 1

alpha (pancreatic stone

protein, pancreatic thread

protein)

20 57

12–15 0.99 Nucleolin 22 –

12–15 0.99 Gelsolin (amyloidosis,

Finnish type)

16 –

12–15 0.99 Troponin T2, cardiac 13 25

16–19 0.98 Crystallin, alpha B 12 79

16–19 0.98 Secreted protein, acidic,

cysteine-rich (osteonectin)

37 –

16–19 0.98 Collagen, type I, alpha 2 9 –

16–19 0.98 Follicular lymphoma variant

translocation 1

30 75

20 0.97 Cyclin D1 (PRAD1: para-

thyroid adenomatosis 1)

10 3

In addition, the ranking of the genes according to Khan et al. (2001) is given. ‘–’

denote that a gene is not included in the reported 96 genes list (Khan et al., 2001).
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Fig. 6. Stability scores of the top scored UFF-based selection (88 genes)

in the SRBCT dataset.
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genes within protein networks is an indication for the

importance of the identified biological process in the classifica-

tion. The most evident property is that the stable genes are

strongly involved in regulatory networks. In general, several

genes are involved in signal transduction (i.e. IGF response),

regulation of cytoskeleton and extracellular signaling.
Some genes, listed among the top ranked genes, belong to

cytoskeleton elements and their regulators (including actin,

gelsolin, troponin, cardiac actin alpha 2, alpha B crystalline and

beta spectrin). Their roles as tumor subtype classifiers are not

evident and should be experimentally validated.
The biological properties of the less stable genes are different

from the top ranked 20 genes. In general, many of these genes

associate with a nuclear function and thus may belong to the

tumorigenesis process. Among these genes are H2A histone,

DEAD/H hnRNP K, FMR1 interacting protein 2, Cyclin-

dependent kinase 2-associated protein 1 and more. It is possible

that they are altered in tumors, but play a weaker role in

distinguishing among the different types.

5 DISCUSSION

We have subjected UFF to a perturbation-based analysis

and found it to obey the condition of stability. A similar

perturbation-based selection was shown to be efficient in

supervised tasks (selection and classification) (Chen et al.,

2007). Ours is the first unsupervised perturbation-based

selection procedure. We recommend using stability under

perturbations as an important diagnostic tool when searching

for a feature selection method.
Although for practical reasons, perturbation of even 10%

should be already considered as significantly severe, in this

study we extended our analysis to much higher damage levels

(up to 50% of the data, see Supplementary Material). The

reason for doing so is twofold: (i) acquire a deep understanding

of the nature of the method and the data. It is of interest to

investigate whether extensive damage, beyond some critical

amount, leads to a collapse of our method (known as critical

transition or percolation in various physical systems). In the

problem studied here we observe a smooth, almost linear

degradation in performance. (ii) In the context of gene

expression, the number of unreliable or suspicious samples

might often reach a significant fraction of the entire dataset.

Often these samples are not literally missing but result from

unreliable RNA extraction, low quality labeling, etc. We were

therefore motivated to examine how removing many samples

influences the lists of selected features (genes).
We have found that the effect of missing samples is very

similar to the one of missing values (followed by imputation).

In both, even a substantial loss of data does not significantly

alter the list of the selected features, reaching a similarity

of �85%. Nevertheless, it should be emphasized that this

argument should be limited to datasets with no inherent

dependency among the samples. Examples for such dependen-

cies are: time series, cell-cycle and pre-post treatment for the

same individuals.
Differences in the imputation methods are identified,

emphasizing that imputation method needs to be data-driven.

For instance, KNNImpute is usually found perform best in the

low loss region while the two average-based imputations

achieve higher similarity levels at the high loss region. This

last finding can be explained by the local nature of the

KNNImpute method (relying only on nearest neighbors). This

understanding may assist in selecting among the various

imputation methods.
In the cases analyzed, a high correlation between the external

and internal criteria (clustering quality and filtering stability,

respectively) is reported. Specifically, in both gene-expression

benchmarks the two evaluation criteria rank the imputation

methods identically. This observation can be exploited to select

an imputation method given a dataset. Interestingly, when

applying the NRMSE (Normalized Root Mean Square Error),

the standard internal criterion for evaluating imputation

methods, a different methods–ranking is reported (see

Supplementary Material). This suggests that our unsupervised,

internal, similarity measure may be a more reliable criterion for

selecting an imputation method. We therefore suggest testing

the imputation method in conjunction with an unsupervised

feature selection method, such as UFF. Not only does it test

stability of the selected features, it also points out the best

imputation method to be used under these conditions.

Identifying genes as biomarkers for tumor detection and

classifications and for the multiple neurological malfunctions is

of ultimate importance. Many genes selected by our stability

criterion are in agreement with the ones that were found in a

supervised manner. However, some potential new features are

suggested. Identifying new potential markers may be due to the

lack of bias in our analysis, neither from sample labeling nor

A B C

Fig. 7. Experimentally identified gene networks (von Mering et al., 2007). (A) IGF-2 and interacting proteins; (B) Actins (ACT) and Gensolin (GSN)

and (C) Collagen (COL), Osteonectin (SPARC) and TFG� (TGFB). Genes included in Table 1 are framed (dashed frame indicates a UFF selected

gene, but not among the top 20).
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from pre-selected classifier algorithm. Moreover, by applying

the method on the entire dataset (without train-test splitting),

we manage to reduce the well-known pitfall of over-fitting.
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Chapter 3 

Global Considerations in Hierarchical Clustering 

Reveal Meaningful Patterns in Data 

Abstract
⋅⋅⋅⋅ 

Background: A hierarchy, characterized by tree-like relationships, is a natural method of 

organizing data in various domains. When considering an unsupervised machine learning 

routine, such as clustering, a bottom-up hierarchical (BU, agglomerative) algorithm is 

used as a default and is often the only method applied.  

Methodology/Principal Findings: We show that hierarchical clustering that involve 

global considerations, such as top-down (TD, divisive), or glocal (global-local) 

algorithms are better suited to reveal meaningful patterns in the data. This is 

demonstrated, by testing the correspondence between the results of several algorithms 

(TD, glocal and BU) and the correct annotations provided by experts. The 

correspondence was tested in multiple domains including gene expression experiments, 

stock trade records and functional protein families. The performance of each of the 

algorithms is evaluated by statistical criteria that are assigned to clusters (nodes of the 

hierarchy tree) based on expert-labeled data. Whereas TD algorithms perform better on 

global patterns, BU algorithms perform well and are advantageous when finer granularity 

of the data is sought. In addition, a novel TD algorithm that is based on genuine density 

of the data points is presented and is shown to outperform other divisive and 

agglomerative methods.  

Application of the algorithm to more than 500 protein sequences belonging to ion-

channels illustrates the potential of the method for inferring overlooked functional 

                                                 

⋅
A preliminary version of this study (Roy Varshavsky, David Horn and Michal Linial. "Recursive 

Top-Down Quantum Clustering of Biological Data") was orally presented at ISMB, PLoS Track, 

2006.  
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annotations. ClustTree, a graphical Matlab toolbox for applying various hierarchical 

clustering algorithms and testing their quality is made available. 

Conclusions: Although currently rarely used, global approaches, in particular, TD or 

glocal algorithms, should be considered in the exploratory process of clustering. In 

general, applying unsupervised clustering methods can leverage the quality of manually-

created mapping of proteins families. As demonstrated, it can also provide insights in 

erroneous and missed annotations.  

Introduction 

Clustering is a common unsupervised machine learning procedure. It is often used for 

preprocessing, and usually provides a general overview, especially when dealing with 

large datasets. Its applications range from astronomy to economics, psychology 

marketing, text mining and other areas. Recent advances in genomic biology high-

throughput techniques have led to a growing need for efficient and powerful clustering 

algorithms (D'Haeseleer, 2005). For instance, in large-scale gene expression data, 

clustering algorithms are useful in the diagnosis of different samples (e.g., diseased and 

healthy patients, labeling of tissues by disease subtype), as well as for their ability to 

reveal functional classes of genes among the thousands often used in experimental 

settings (Eisen, et al., 1998; D'Haeseleer, 2005).  

Clustering algorithms are often classified as either nonhierarchical (partitioning) or 

hierarchical. The former define a complete partition of the data (for comprehensive 

reviews see (Jain and Dubes, 1988; Duda, et al., 2000; D'Haeseleer, 2005). Because they 

suggest multiple levels of organization, hierarchical algorithms are best suited for 

describing data that have some inherent breakdown resolution. Organizing complex 

arrangements into hierarchies is a common technique in many fields, such as grammar 

description in computational linguistics, industrial organization (NAICS - The North 

American Industry Classification), object oriented programming, biological taxonomy 

and evolutionary organization of proteins, genes or species. Hierarchical clustering has 

been successfully applied to protein sequences, chemical entities, 3D structural 

information and protein catalytic activities (Handl, et al., 2005). 
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The outcomes of hierarchical algorithms can be represented as a tree, where each node 

branches into two (a 'binary tree') or more nodes. Ideally, the tree has some underlying 

basis; for instance, sub-industry breakdown, or protein families that reflect evolutionary 

diversification. In any case, it can represent many clustering solutions corresponding to 

different groupings of nodes. A collection of nodes may be viewed as natural cuts in the 

tree. Some of the clustering possibilities may match an expert’s view. Other clusters may 

correspond to a pattern exposing the nesting in the data (sub-classes) which a given 

expert may not have been aware of. In fact, this is the rationale behind the clustering 

approach; namely, finding new internal patterns in the data. Since hierarchical clustering 

provides alternative clustering possibilities, it is usually considered as a richer tool than 

the single, nonhierarchical, clustering solution. 

Hierarchical methods can be further divided into Bottom-Up (BU, agglomerative) and 

Top-Down (TD, divisive) types (Jain and Dubes, 1988; Duda, et al., 2000; Planet, et al., 

2001). BU algorithms start with each instance as a cluster and repeatedly merge clusters 

until a unified cluster is formed. They are popular in genomics (gene expression, 

(D'Haeseleer, 2005) and proteomics (Rune, 2007), and have been implemented in 

resources such as ClusTr (Apweiler, et al., 2001) and ProtoNet (Sasson, et al., 2003). TD 

methods work in the opposite direction and are rarely used for these types of data. 

Although most tutorials present the two strategies, and some works have recently 

suggested ways to combine them (Chipman and Tibshirani, 2006), BU algorithms are 

significantly more popular than TD algorithms. A survey of all articles published in PLoS 

in the last two years (years 2006-2007) shows that out of 86 publications that apply 

hierarchical clustering to analyze data, only 3 do not utilize the standard BU approach. 

This significant bias toward the BU approach is mostly due to its availability in software 

packages (Eisen, et al., 1998; MathWorld) and intuitive appeal. Furthermore, the 

reliability at the beginning of the clustering process is evident and no assumption on any 

statistical model in the data is required. These reasons probably led most researchers to 

neglect the TD approach as a potential approach for unlabeled data. 

Although less popular, several recent TD algorithms have been found to be highly 

efficient, especially in document classification problems. One such example is the 

Bisecting K-Means algorithm, based on the divide-and-conquer scheme of repeated K-
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means (K=2). It outperforms both standard K-Means and agglomerative clustering 

(Steinbach, et al., 2000), and is computationally efficient (Cimiano, et al., 2004). It 

suffers, however, from the usual problems of the K-means approach; namely a bias 

toward spherical clusters and a dependency on initial conditions. The second such 

example is Principal Direction Divisive Partitioning (PDDP), which is based on repeated 

divisions of instances according to the sign of their projection on the first principal 

component (Boley, 1998). PDDP outperforms the bisecting K-Means algorithm in quality 

and stability (Savaresi and Boley, 2004) and will thus be used here as a benchmark for a 

state-of-the-art TD algorithm. 

This paper examines the advantages of involving global approaches in clustering, and 

demonstrates that they can generate meaningful results near the top of the hierarchy tree. 

It tests and compares different approaches on three extensively studied benchmarks. The 

TD algorithms succeed better in capturing the expert assignment as compared to the 

state-of the-art BU clustering methods. Moreover, a novel TD algorithm, called TDQC 

(Top-Down Quantum Clustering) is then presented and shown to outperform other 

algorithms. TDQC is based on an algorithm which has been applied to gene expression 

datasets (Varshavsky, et al., 2005) that were initially processed by SVD. In addition, an 

intermediate approach, named ‘glocal’, which is a BU based clustering with global 

consideration, is suggested to handle datasets represented by distances (and not in their 

feature space).  

The datasets and the algorithm are described in the next section. After the comparative 

study of various TD and BU algorithms on the three benchmarks we apply them to a 

functionally coherent protein dataset. The application of TD to a protein set leads to 

biological insights that can reveal intriguing patterns in the data. ClusTree, a new 

validation and visualization tool that was used to compare the performance of the 

different hierarchical classification methods is provided.  
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Materials and Methods 

Datasets 

Various clustering methods are applied to four different types of datasets. These sets are 

the basis for a comparative analysis of previous studies and existing algorithms. Two of 

the sets are known benchmarks of gene-expression experiments. The third set is a known 

stock-market dataset, and forth is a biological dataset of ion-channel proteins.  

Cell Cycle genes Spellman et al. identified 798 genes as cell cycle regulated in the yeast 

Saccharomyces cerevisiae and catalogued them into five classes that correspond 

to different stages of the yeast cell cycle (marked as M/G1, G1, S, G2 and M). Expression 

levels of those genes were recorded at 72 continuous time-points yielding a [798 genes 

x72 time-points] matrix. 

Leukemia patients The Golub et al. dataset has served as a benchmark for several 

clustering methods (Golub, et al., 1999; Getz, et al., 2000; Sharan and Shamir, 2000). The 

experiment sampled 72 patients with two types of leukemia, ALL and AML. The ALL 

set is further divided into T-cell and B-cell leukemia and the AML set is divided into 

patients who underwent treatment and those who did not. For each patient, the expression 

levels of 7129 genes is reported. The clustering task is to find the four cancer groups 

within the 72 patients in a [72 patients x7129 genes] gene expression matrix. 

Standard and Poor (S&P) We used the stocks dataset of (Slonim, et al., 2005), who 

collected day-to-day fractional changes in the price of all stocks in the Standard and 

Poor’s 500 list during the 273 trading days of one year. 487 of the stocks are divided in 

10 different industry segmentations. The dataset is organized in a [487 stocks X 273 trade 

days] matrix.  

Ion Channel proteins: The dataset is extracted from the SwissProt database (version 

40.28). For the 614 proteins that are annotated as ‘ion channel activity’ (according to 

Gene Ontology, ID-5126), all-against-all BLAST E-values are recorded (Altschul, et al., 

1997). All E-values lower than 100 are kept in a matrix and E-values higher than 100 are 

limited to be 100. 518 of these proteins are annotated by the InterPro 

(http://www.ebi.ac.uk/interpro/, version 7.0) collection, thus resulting a [518 proteins x 

518 proteins] distances matrix. Only exclusive InterPro labels were considered. There are 
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~40 exclusive InterPro labels that are associated with at least 2 proteins each. Several 

levels of granularity are associated with this protein set. The 3 group labels are ‘ligand-

gated channel’, ‘voltage gated’ and ‘others’. These 3 classes describe a gross partition. 

This gross classification can be nested into 11 classes which can be further nested into 19 

classes. The 3 resolution levels are considered gross, medium and detailed mapping 

(Table 1, supplementary material).  

The TDQC algorithm  

The TDQC algorithm is defined in Box 1: 

 

Preprocessing 

In order to transform the data into a compressed, manageable and hopefully noise-free 

representation, it is recommended to use the Singular Value Decomposition (SVD) 

method. SVD represents any real matrix X of size [nXm] as a product X=UΣVT
, where U 

and V are orthonormal matrices and Σ is a diagonal matrix whose eigenvalues si (singular 

values) appear in decreasing order. In this context, n is the number of instances (or 

elements), and m is the number of features (or attributes), describing each instance. The 

columns of U and V define two independent vector spaces. Rather than studying the 

resulting low-rank matrix X’=UΣ’VT
 (by zeroing all singular values at locations i>r, one 

can compress the data into an r-dimensional space), we focus our attention on the r first 

columns of the unitary matrices U and V. It is within these vector spaces that we look for 

cluster structures (Alter, et al., 2000; Horn and Axel, 2003; Varshavsky, et al., 2005).  

TDQC Algorithm: 

0. Define original dataset (Number of sets = 1) 
1. [Optional] Apply preprocessing to each set 
2. Run QC (Quantum Clustering) on each set 
3. Divide each set into two sets containing: 

a. Instances belonging to the cluster with the global 

minimum (A in Fig. 1) 

b.  All the rest (B in Fig. 1) 
4. Recursively go-to 1 for each set including more than 2 

instances 
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Following the experience of Latent Semantic Analysis (LSA), in computation linguistic 

(Landauer, et al., 1998), we define distances among the r-dimensional vectors in terms of 

cosines of the angles among them, as d=1-cos(Θ).  

Quantum Clustering (QC) 

The Quantum Clustering (QC) algorithm (Horn and Gottlieb, 2002) begins with a Parzen 

window approach, assigning a Gaussian of width σ to each data-point, thereby 

constructing Ψ(x), where 
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Ψ(x) can serve as a probability density that could have generated the data. Assuming this 

function to be the ground-state (lowest eigenvalue) of the Hamiltonian H of the 

Schrödinger equation: 
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one can solve for the potential energy V uniquely, determining E through the condition 

that min(V(x))=0. The Schrödinger equation can be understood as a model balancing a 

clustering force (represented by the potential V) and a dispersive force (the second 

derivative term), that it is responsible for the fact that the data are not concentrated at the 

minima of V (bottoms of the potential energy). 

An example of V(x) is shown in Fig. 1 for a dataset that comprises 798 genes. The 

classification of the genes into phases of the cell-cycle is illustrated by the different 

colors. The original data are given in 72 dimensions (time points). SVD is used to reduce 

them to two dimensions. The x-axis of this figure corresponds to cos(Θ) of each of the 

2D vectors representing the genes. As Fig.1 displays a cyclic trend is well observed. In 

conventional QC one would cluster the instances according to the valleys of V that they 

belong to. In TDQC we separate the data into two sets, α and β, where set α is defined by 

the deepest valley of V. To each dataset we reapply preprocessing, QC and division in a 

recursive manner. The stopping criterion of the recursion is when a subset contains no 

more than 2 data points. It is noteworthy that although SVD preprocessing is not a 
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mandatory step, according to our experience, this routine is found very effective in both 

improving the clustering results and in significantly reducing the algorithm’s runtime. 

 

Fig 1. Potential values of the cell cycle dataset. Data were projected onto the two leading SVD 

components, and represented in terms of the angle in these coordinates. Dashed lines mark the 

partitioning of the dataset into two groups (α and β). For details see text. The color code 

represents Spellman's expert view for the 5 cell cycle phase (G1-brown, number of instances, S-

green, S/G2- yellow, G2/M-red, M/G1-blue).  

 ‘Glocal’ Hierarchical Approach: considering global information in 

bottom-up clustering 

Data may come in two possible representations: (1) Feature space (a [nXm] matrix): each 

instance is measured according to its features (or attributes). Examples are: Gene 

expression, 3D coordinates of protein structures. (2) Distances or similarities (a [nXn] 

matrix): each instance is presented by its distance or similarity to another instance. 

Examples are: BLAST or Smith-Waterman matrices in proteomics. This representation 

leads to a square, and often, symmetric matrix. 
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Clearly, the second representation is less informative than the first. It can be calculated 

from the first but, given only the distances, feature space cannot be reconstructed (except 

approximately as in Multidimensional Scaling (Kruskal and Wish, 1981)), as shown in 

Fig. 2 (A, and B). Standard BU relies on distances only, even when the data are given in 

feature space (e.g., in gene-expression analysis): distances are first derived and iterative 

lineage is performed on them (Planet, et al., 2001).  

In the cases where data is represented only by distances (Fig 2B), we argue that 

considering only the ‘nearest neighbors’ as the standard BU algorithms suggest, might 

end up neglecting relevant information in the data. We therefore suggest adding a global 

perspective to local clustering, namely glocal (global-local) clustering. This may be 

achieved by treating the distance matrix as an instance-by-feature matrix, i.e. using the 

instances as defining feature-space, after which BU is applied (Fig 2C). The instance-by-

feature matrix allows one also to apply processing routines (e.g., SVD, PCA) to achieve 

dimensionality reduction before applying the clustering algorithm (see, e.g., Varshavsky, 

et al., 2005). 

Fig. 2. Three possible ways to handle data for generalized BU clustering: (A). Standard 

workflow when data are presented in feature space. (B). Standard workflow when only 

the distance matrix is known. (C). Our ‘glocal’ algorithm manipulates the distance matrix 

by using feature-space methods. Light gray arrows denote optional steps and dotted 

frames denote global consideration, such as SVD or PCA manipulations. 
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Statistical Criteria for Classification Quality 

A clear limitation of hierarchical clustering (whether TD or BU) is the inherent difficulty 

in the evaluation scheme. Jain & Dubes argue that the hierarchy of clustering can be 

evaluated only when an expert-hierarchy
 
is available (we use the term ‘expert’ to describe 

the external data labeling (Jain and Dubes, 1988)). Quite often such expert-hierarchies are 

unavailable and no gold standard criterion exists (Cimiano, et al., 2004). Alternative 

measures that do not capture the hierarcy per-se have been suggested (Torrente, et al., 

2005). 

We address the instances where expert-classification of data is provided, and combine 3 

assessment methods to describe different qualities of the clustering tree.  

1. Node Score Since each node specifies a cluster, enrichment p-values can be 

calculated to assign the given node with one of the classes in the data. This is done by 

using the hypergeometric probability density function. The significance p-value of 

observing k instances assigned by the algorithm to a given category in a set of n 

instances is given by /
n

x k

K N K N
p

x n x n=

−    
=     −    
∑ , where K is the total number of 

instances assigned to the class (the category) and N is the number of instances in the 

dataset. The p-values for all nodes and all classes may be viewed as dependent set 

estimations; hence we apply the False Discovery Rate (FDR) criterion to them 

requiring q<0.05 (Benjamini and Hochberg, 1995). P-values that do not pass this 

criterion are considered non-significant. We further apply another conservative 

criterion; namely, a node is considered significant only if k≥n/2 (i.e., the majority of 

its instances belongs to the enriched category). 

2. Level Score A level l of the tree contains all nodes that are separated by l edges from 

the root, i.e., that share the same Breadth First Search (BFS) mapping. Each level 

specifies a partition of the data into clusters. Choosing for each node, the class for 

which it turned out to have a significant node score, we evaluate its Jaccard-score 

(J=tp/(tp+fn+fp), where tp is the number of true positive cases, fn the number of false 

negative cases and fp the number of false positive cases) . If the node in question has 

been judged to be non-significant by the enrichment criterion, its J-score is set to null. 

The level score is defined as the average of all J-scores at the given level.  
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3. Tree Score We define the weighted best-J-Score (
* *1 c

i i
i

J n J
N

= ∑ ) where J*
i is the best 

J-Score for class i in the tree, ni is the number of instances in class i, c is the number 

of classes and N is the number of instances in the dataset. This criterion provides a 

single number specifying the quality of the tree based on a few nodes that contain 

optimal clusters. This score or its close variation has been applied to measure the 

quality of proteins families (Kaplan, et al., 2004) and document classification 

(Steinbach, et al., 2000; Zhao and Karypis, 2002). 

Results 

All datasets were analyzed using two nonhierarchical algorithms, QC and K-Means, 

several variants of Bottom-Up algorithms, single-linked (BU-S), average-linked (BU-A) 

and complete-linked (BU-C) (Jain and Dubes, 1988; Duda, et al., 2000) and two Top-

Down algorithms, PDDP and our TDQC.  

The results of the hierarchical algorithms were evaluated using a combination of the 3 

scoring methods presented above as follows. (A) The node-score, the clustering tree is 

presented with its enrichment markers for every tree node. It combines a qualitative and 

graphical description of the results. Recall that the graphical description is presented for 

visualization purposes only. (B) The level-score, the average J-score of each level in the 

tree, which provides both qualitative and quantitative information on the algorithm’s 

performance along the hierarchy. (C) The tree score, the weighted best J-scores. Being a 

single score, the tree score provides a criterion for comparison of hierarchical algorithms 

to algorithms that are nonhierarchical in nature. 

Fig. 3 A, B displays the trees as generated by a BU-A algorithm (using Euclidean 

metric and average linkage), and the TDQC algorithm when applied to the Cell Cycle 

dataset. Note that the BU-A performed best out of all the BU variants (Table 1).  
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A

 

 

 

B

Fig 3. Hierarchical trees of the 798 cell cycle genes for BU-A (A) and TDQC (B) 

algorithms. Color codes specify the five cell cycle classes as in (Fig. 1). Dot sizes 

indicate statistical enrichment levels (larger sizes correspond to smaller p-values). 

Uncolored nodes represent non-significant enrichment.  

Some prominent patterns emerge from Fig. 3 A, B and almost identical conclusions can 

be drawn from all other datasets: 1. The BU tree is far more unbalanced relative to the 

TD tree. 2. The TD algorithm performs best on higher levels of the tree, whereas the BU 

algorithm performs better on lower levels of the tree. This can be seen here by observing 

where the statistical enrichment of nodes is highest. 3. TD clusters (sub-trees) are very 
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coherent, i.e. it is very rare for significant nodes of one color to have children of another 

color. 

Next we turn to measuring clustering quality by comparing level-scores in Fig 4. The 

TDQC algorithm has a high maximal score (0.44) and displays an almost monotonic 

decrease with increasing tree-level. The BU algorithm exhibits significantly different 

behavior. Namely, it leads to a bimodal distribution and its much smaller (0.13) maximal 

score is located at low hierarchy levels. 

Fig. 4. Level scores of (A) BU-A and (B) TDQC for the cell cycle dataset. Tree levels are 

counted from the root. Note the different scale for the Y-axes.  

The two trees also differ in their tree depth. The depth of the tree (D) is defined as the 

distance between the root and the farthest leaf. A completely balanced (binary) tree with 

N nodes is log2(N) deep whereas a completely unbalanced tree is N deep. Figure 5 

displays the relative depths ((D- log2(N))/(N- log2(N))) of all trees generated by different 

BU and TD algorithms when applying them to the 4 datasets presented in this study.  
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Fig. 5. The relative depths of the trees generated by the various algorithms when applied 

to 4 gene expression, stock market and protein family. 

Despite the fact that each of the datasets used in this study comprises a different 

number of instances and is differently represented (e.g., similarity, raw data), we observe 

common trends in Fig. 5 and conclude that the nature of the algorithm governs the shape 

of the tree. TD algorithms tend to generate more balanced trees, and as a result have 

fewer levels (in the PDDP algorithm each binary division is essentially into sub-clusters 

of equal sizes); BU algorithms usually generate deeper trees where single-linked (BU-S) 

algorithms tend to produce chain-like trees, whereas complete-linked algorithms (BU-C) 

create more balanced trees (Hansen and Delattre, 1978) 

Finally we turn to the global measures of clustering quality, based on comparisons with 

expert classifications. Table 1 summarizes the tree scores of all algorithms when applied 

to the gene-expression and the stock-market benchmarks. The TD algorithms outperform 

the BUs in all these cases. This is presumably due to the fact that the expert 

classifications represent global partitions of the data, whereas the BU approaches are 

fairly poor (BU-S in particular, D'Haeseleer, 2005). TDQC outperforms all other 

algorithms, including the nonhierarchical QC. 
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Table 1. Clustering scores (tree score) of nonhierarchical (QC, K-Means) and hierarchical 

algorithms. K-Mean was performed 10 times and averaged (and std is in parenthesis), 

Hierarchical algorithms are BU (S, A and C marks the Single, Average, Complete, respectively) 

and TD (PDDP, TDQC) algorithms. Best scores are bold faced. 
 

Evaluation of Different Granularity Levels in Protein Sets  

In order to expand our analysis on data that are inherently hierarchical, we analyzed a 

set of proteins associated with annotation of channels. This set comprises well-studied 

proteins to which functional annotations are assigned based on experimental evidence 

and evolutionary homology relationships (Ren and Paulsen, 2005). Our set is composed 

of proteins associated with ‘ion channel activity’, which form a subset of proteins 

belonging to ‘transporters and channels’ (Gene Ontology ID-6811). These are 

membranous proteins that function in the directional translocation of substances across 

membranes. The directional translocation is between cell compartments and between 

cells and the environment. These proteins are defined by InterPro experts as belonging to 

3 classes according to their gating mode: ligand-gated, voltage-gated and ‘others’. The 

last group includes proteins that are gated by nucleotides (e.g., as in the case of the cystic 

fibrosis chloride channel) and several channels that have a mixed gating mode or yet 

undefined properties. This ‘gating mode’ property dominates other characteristics of the 

channels and receptors including their multimeric nature, the number and nature of their 

accessory subunits, the number of transmembrane domains, etc. These 3 classes are 

further divided into other granularity levels of 11 and 19 classes respectively (see 

Methods). 

Hierarchical Non-

hierarchical BU TD 

 Elements Features Classes 

QC K-

Means 

BU-S BU-A BU-C PDDP TDQC  

Cell cycle 798 72 5 0.613 0.537 

(0.06) 

0.265 0.472 0.409 0.542 0.646 

Leukemia 72 7129 4 0.758 0.519  

(0.1) 

0.465 0.522 0.53 0.545 0.804 

S&P 487 273 10 0.400 0.306 

(0.05) 

0.2 0.261 0.445 0.441 0.504 
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We tested the various clustering algorithms to see how well they met the different 

granularity levels (Table 2). This served to show which approaches are appropriate at 

different granularity levels.  

 

 

Table 2. Clustering scores of different algorithms applied to the ion channel proteins. Scores are 

measured according to the appropriate granularity level (for 3, 11 and 19 classes). 

Clearly, comparing the performance of the different algorithms for different granularity 

levels (Table 2) shows the inferior performance of the BU algorithms. To address the 

question of suitability of the algorithm to the data, we compared the best TD to the best 

BU algorithms (TDQC and BU-A, respectively). Since the BU level-scores have a 

bimodal pattern (as in Fig 4) with maxima occurring in the 1st and 4th quartiles, we 

compared the maxima of the level scores of the two algorithms in these two quartiles. 

Fig 6. Comparing the two extreme parts of the level scores for the TDQC (top), and BU-

A (bottom) algorithms for different levels of granularity (3, 11 and 19 classes). ‘High’ 

and ‘Low’ refer to the 1st and 4th quartiles for the levels in the resulting trees. Note the 

different scale for the Y-axes. 

Hierarchical Non-hierarchical 

BU TD 
Classes 

QC K-Means BU-S BU-A BU-C PDDP TDQC  

3  0.6859 0.565 (0.13) 0.613 0.395 0.382 0.771 0.808 

11  0.4626 0.533 (0.05) 0.338 0.34 0.245 0.567 0.61 

19  0.3218 0.515 (0.06) 0.23 0.32 0.268 0.64 0.655 
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As depicted in Fig 6, the results show that in the high levels of the tree, the TD 

algorithm outperforms the BU. The performance of the TD algorithm declines when the 

granularity from 3 to 19 is increased, whereas the BU performance only improves 

gradually. At the other end of the scale (low levels of the trees), the scores of both 

methods improve when granularity increases. However, at all granularity levels, the BU 

algorithm outperforms TD. Note that in both methods, the overall performance is rather 

poor for the 4
th

 quartiles of the trees (level score < 0.22). For the 1
st
 quartile, the score of 

the TDQC reaches 0.78. Similar conclusions were obtained when applying different 

scoring methods, such as counting the significant nodes in each level (not shown). 

Since the high levels reflect a global view of the data whereas low levels account for 

local aspects, TD algorithms appear to be more appropriate in describing the high level 

patterns, whereas the opposite holds for local patterns of the data. 

Glocal clustering improves the quality of BU algorithms 

In the Ion Channel dataset, the instances (proteins) are represented by their distance from 

each other (E-value). Following the standard BU approach involves jointing sub-clusters 

solely according to their mutual distance. As suggested above (see Methods), we argue 

that considering the distances of all sub-clusters in the clusters-merging process may 

improve the clustering quality. We therefore applied the glocal protocol to the dataset and 

compared its results with the standard BU algorithms. Fig. 7 displays the trees as 

generated by the BU (A) and Glocal (B) algorithms. In this case both methods use 

Euclidian distance and single linkage; similar trend was observed in other combinations.  
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A

B

Fig. 7. The hierarchical tree of the BU (A) and glocal (B) algorithms, as applied to the Ion 

channel dataset. Single linkage wad used in both algorithms.  

As Fig 7 shows, the glocal tree is more balanced than the BU tree. Moreover, three 

clusters are well observed in the glocal tree, while no apparent partition is detected in the 

BU tree. As the two trees display significantly different structures, we turned to evaluate 

how well they capture the expert classification at the three resolution levels. Fig .8 

displays the tree scores of both algorithms, given the 3 granulation levels. 

As displayed in Fig. 8, the glocal protocol improved the clustering results at all 

granulation levels. The tree, as generated in this way is also more balanced and more 

informative. Overall, in many other datasets (not shown), we found that adopting this 

very simple approach may significantly improve clustering results, when comparing to 

the standard BU implementation. 
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Fig. 8. Tree scores of BU and glocal algorithms for different levels of granularity (3, 11 and 

19 classes). Shown are the best results for each approach (single, average or complete). 

Biological Interpretations Based on TDQC 

With the rapid expansion of available biological data, the reference to an ‘expert’ often 

means there has been a combination of automatic and manual efforts. The automatic 

TDQC algorithm was very successful (score of 0.808) in classifying the coarse 

granularity of the 518 proteins into 3 classes (Table 2). Nevertheless, the algorithm can 

also reveal partitions of the data overlooked by these experts (Fig 9). It can be seen in the 

graph that a group of 35 proteins marked as ‘others’ is embedded within the sub-tree of 

‘voltage gated channels’ (blue nodes within a brown sub-tree). Inspecting this set of 35 

proteins indicates that they are composed of 2 functionally different glutamate ionotropic 

receptors belonging to NMDA (19 proteins) and Kainate (12 proteins) families (known as 

NR1-2 and GluR5-7, respectively). For an additional 4 proteins in this set, no clear 

assignment is provided. Interestingly, an additional set of ionotrophic glutamate receptors 

set known as AMPA (with 12 proteins, GluR1-4) are separated from the NMDA-Kainate 

group. Thus, the TDQC partitioned the AMPA ionotrophic glutamate receptors separately 

from the Kainate and NMDA. Other properties of these receptors including their 

selectivity, multimeric structures and evolutionary relatedness indeed favor the partition 

of the AMPA receptors away from the Kinate-NMDA (Zorumski and Thio, 1992). In 

high quality annotation systems (such as Pfam, SMART and the InterPro integration 

system) no such separation appeared. 
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Fig. 9. Hierarchical tree produced by the TDQC algorithm for 518 proteins of ion channels. Red, 

blue and brown are assigned to the 3 classes: “others”, “ligand-gated” and “voltage-gated”, 

respectively. The bottom inset is a zoom of a subset of the tree marked by the frame and 

according to level of granularity of 11 classes. Sub-trees are all indicated in brown and marked by 

their identity. A1, A2 - K+ channels ; B – NMDA and Kianate receptors (35 proteins); C - 

Ryanodine receptors (10 – proteins); D - Na+/H+ exchangers (11 proteins); E - TRP channels (18 

proteins). A1 and A2 are separate branches with A1 (73 proteins) including all Kv channels, and 

A2 with the Cyclic nucleotide-gated channel (51 proteins). Recall, that the top and bottom panels 

show the same tree.  

We further investigated the relationship between the various subtypes of voltage gated 

channels (marked in brown, Fig. 9) by using a finer granularity of 11 classes (Table 1, 

supplement). A clear partition was generated by the TDQC and the Kainate-NMDA set 

60



(Fig 9, bottom, marked B). This set is more closely related to the C and D clusters than to 

A1 and A2. All proteins in cluster A2 are voltage-gated K
+
 channels that belong to the 

Kv1 superfamily and the cyclic regulated channels (whereas the proteins in A1 are Kv1-

Kv11). The C cluster comprises a group of 18 TRP channels. All TRP channels are 

permeable to cations. Although only 2 of the channels (TRPM4 and TRPM5) are 

impermeable to Ca
2+

, 2 others (TRPV5 and TRPV6) are highly Ca
2+

 permeable 

(Owsianik, et al., 2006). Cluster D includes Ryanodine and Inositol 1, 4, 5-trisphosphate 

(IP3) receptors that are intracellular Ca2+ release channels (Berridge, 2004). Cluster E 

represents a class of Na
+
/H

+
 exchangers (Orlowski and Grinstein, 2004). Thus the close 

relationship of the NMDA-Kainate group to Ca
2+

 channels (in clusters C and D) supports 

their functional relevance and the shared mode of their regulation. Thus, TDQC provides 

a tree- like structure that not only captures the expert partition but exposes additional 

connectivity that was overlooked. This group of channels is of special interest as they are 

targets for pharmaceutical strategies in neurodegenerative diseases and mental 

pathologies. Their functional partition is far richer than that reflected by their ion 

conductance properties (Kaczmarek, 2006).  

Discussion 

We carried out a comparative analysis of five hierarchical clustering algorithms and two 

nonhierarchical ones, applying them to different types of datasets from various sources. 

We showed that TD algorithms are consistently superior to BU and nonhierarchical 

algorithms. In particular, TDQC was found to outperform both TD and BU state-of-the-

art algorithms. This applies to data from gene expression, protein families and the stock 

market.  

BU algorithms have some advantages in identifying local relations in the data whereas 

TD methods capture global patterns. When general patterns are sought, as is the often the 

case in preliminary stages of data analysis, conventional BU clustering methods should 

be avoided and replaced by TDs. The latter result in more balanced trees and may be 

halted – if desired – well before generating the entire tree.  

When the data are provided as similarities or distances between instances, we find that 

a simple manipulation based on all relationships within the data (all distances), may 
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significantly improve the clustering results of the BU approach. This glocal algorithm 

imposes some global information on the BU making it more competitive with TD algorithms. In 

summary, global approaches in the exploratory process of clustering, in particular TD or 

glocal algorithms, are strategies that should not be overlooked.  

Although there are ongoing efforts to establish expert hierarchies in various domains, 

these attempts are riddled with difficulties. High level annotations, often manually 

catalogued (e.g., GO, UniProt keywords in proteomics) are strongly biased by current 

knowledge. As a result, that part of the data (in, e.g., protein families) that has been 

thoroughly studied may possess a rich tree-structure whereas the rest is poorly mapped 

and weakly annotated. Applying unsupervised methods, such as the TD clustering 

methods presented here, can leverage the quality of these manually-created mappings. As 

demonstrated, it can also provide insights into areas that have been missed and correct 

erroneous annotations.  

ClustTree, a graphical Matlab toolbox for applying various hierarchical clustering 

algorithms and testing their quality is provided and freely available at 

http://adios.tau.ac.il/clustree/ or http://www.protonet.cs.huji.ac.il/clustree (alternative). 
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Chapter 4 

Clustering Evaluation 

This chapter contains the following research papers: 

 
[4A] Roy Varshavsky, Michal Linial and David Horn. "Clustering Algorithms 

Optimizer: A Framework for Large Datasets" (2007, ISBRA, Lecture Notes in 

Bioinformatics (4463), 85-96). 

 

[4B] Roy Varshavsky, Michal Linial, David Horn. "COMPACT: A Comparative 

Package for Clustering Assessment" (2005, ISPA, Lecture Notes in Computer 

Science (3759), 159-167). 
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Abstract. Clustering algorithms are employed in many bioinformatics tasks, 

including categorization of protein sequences and analysis of gene-expression 

data. Although these algorithms are routinely applied, many of them suffer from 

the following limitations: (i) relying on predetermined parameters tuning, such 

as a-priori knowledge regarding the number of clusters; (ii) involving 

nondeterministic procedures that yield inconsistent outcomes. Thus, a 

framework that addresses these shortcomings is desirable. We provide a data-

driven framework that includes two interrelated steps. The first one is SVD-

based dimension reduction and the second is an automated tuning of the 

algorithm’s parameter(s). The dimension reduction step is efficiently adjusted 

for very large datasets. The optimal parameter setting is identified according to 

the internal evaluation criterion known as Bayesian Information Criterion 

(BIC). This framework can incorporate most clustering algorithms and improve 

their performance. In this study we illustrate the effectiveness of this platform 

by incorporating the standard K-Means and the Quantum Clustering algorithms. 

The implementations are applied to several gene-expression benchmarks with 

significant success. 

Abbreviations and Keywords: Bayesian Information Criterion (BIC), Quantum 

Clustering (QC), Optimal K-Means (OKM), Optimal Quantum Clustering 

(OQC), Principal Component Analysis (PCA), Singular Value Decomposition 

(SVD). 

1   Introduction
1
 

In the field of genomics and proteomics, as well as in many other disciplines, 

categorization is a fundamental challenge. Categorization is defined as systematically 

arranging elements (data-points) into specific groups. Clustering, being an unsupervised 

learning problem, may be regarded as a special case of categorization with unknown 

                                                           

* Corresponding author. 
1
  Availability and Supplementary material: The framework has been implemented in 

MATLAB (Version 6.5), and is freely available at http://adios.tau.ac.il/compact/framework  

ă
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labels (for further details see [1, 2]). Some algorithms such as CLICK [2], CTWC   [3, 4] 

and CAST [5] were primarily developed for large sets of biological data while others 

were adopted from other fields (e.g., K-Means, Fuzzy C-means [6], Agglomerative 

Hierarchical Clustering, Self Organized Maps). One of the algorithms that we will 

expand on is Quantum Clustering (QC), the effectiveness of which has been 

demonstrated on gene-expression data [7, 8]. 

In large scale gene-expression tasks, clustering algorithms are useful for diagnosis 

of different samples (e.g., differentiating sick and healthy tissues, associating tissues 

with subtypes of a disease) as well as revealing functional classes of genes among the 

thousands often used in experimental settings [9].  

Methods for collecting expression levels on a genome-wide level have been rapidly 

improving, leading to increased amounts of data to be analyzed. Additionally, much 

of the biological data is represented in high dimensions. Some clustering algorithms 

do not perform well when applied to large high-dimensional datasets. In particular, 

several model-based algorithms that are shown to be very efficient on limited size 

datasets [10], are found unfeasible when large scale datasets arc introduced (for 

computational complexity discussion see [11] and supplementary). The hope is that 

efficient preprocessing will address the task of computational feasibility while 

efficiently remove noise, thus allowing exposure of meaningful features of the data.  

It would be presumptuous to propose one preprocessing protocol that works for all 

kinds of data. Different preprocessing methods are based on averaging and variance 

standardization, excluding genes with low variance between conditions [2], PCA, 

Fourier transforms [12], and more.  

One fundamental preprocessing direction is dimension reduction. Ding et al. claim 

that the dimension should be correlated with the expected number of clusters [13]. 

However, this may not hold for real biological data, since this argument is based on a 

model in which data are generated by independent Gaussian distributions. Moreover, 

in many cases the number of clusters is unknown. 

Several efforts to develop efficient and accurate filtering schemes and compression 

tools have been proposed [14, 15]. A routine scheme for gene-expression data (including 

commercial analysis tools provided by various platforms) is to filter elements in a 

supervised manner. For example, genes whose variance is below a certain threshold for 

different experimental conditions are discarded. Obviously, such filtering is often biased 

and misses a genuine property of the data. 

In addition to preprocessing, clustering algorithms usually require selecting a set of 

parameters, thus turning each application into a set of subjective choices. If no prior 

knowledge is available, assessing the correct number of clusters (e.g., as required by 

the K-Means algorithm), is almost impossible. This choice is avoided by hierarchical 

algorithms that propose some O(N) possible partitions
2 

of varying sizes, and the 

decision on the best partition is user determined.  

Several of the most successful algorithms in the field of gene-expression do not 

explicitly accept the number of clusters K as an input; however this number is directly 

derived from their parameters. Amongst them are (i) the CAST algorithm [5], in 

which the affinity threshold determines the number of clusters, (ii) the CLICK 

                                                           
2 In the paper N refers to the number of elements in the data, and K denotes the number of 

clusters. 
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algorithm [2], in which the homogeneity value determines K by controlling the 

kernels and the definition of singletons. (iii) The CTWC algorithm [4] where some 

parameters (such as stability threshold and minimal group size) determine K, and (iv) 

QC [7] where the Parzen window size ( ) determines the number of clusters.  

Moreover, algorithms such as K-Means, Fuzzy C-Means and others, being 

nondeterministic, are inconsistent as they depend on starting points and other 

stochastic factors. Some methods such as averaging clustering results, following a 

majority rule, or applying other heuristics [16] have been suggested.  

Since different results may be obtained by the numerous clustering algorithms that 

exist, evaluation of this variety is an essential step of the analysis [17, 18], and a 

reliable method is required. In this study we present a framework to overcome the 

pitfalls described above by (i) a generic method for preprocessing and (ii) a measure 

based on an internal criterion that can be incorporated in any clustering algorithm. 

2   Methods  

Our proposed framework includes two interrelated steps: preprocessing and parameter 

tuning. We outline the rationale of the method and describe its implementation on two 

different kinds of clustering algorithms.  

2.1   Preprocessing 

Singular Value Decomposition (SVD) serves as a good and efficient preprocessing 

step and is useful for dimension reduction [8, 12, 19].  

SVD represents any real matrix X as a product X=U V
T
, where U and V are 

orthonormal matrices and   is a diagonal matrix whose eigenvalues si (singular 

values) appear in decreasing order. The columns of U and V define two independent 

vector spaces. This decomposition is unique (up to overall phases) and holds for any 

real matrix of size m by n. The number of non-zero entries in   equals the rank of X. 

A common application of SVD is dimension reduction: this is performed by replacing 

  with a truncated version where only a small number (r) of leading singular values is 

retained and the rest are replaced by zeros. The resulting reconstructed matrix X’ 

(X’=U ’V
T
), is the best least-mean-squares approximation of X obtainable by any 

matrix of rank r.  

We focus our attention on the matrices U and V. In a problem where X is a matrix 

of m genes by n samples, U and V form representations of gene and sample spaces 

respectively. It is within these spaces, now reduced to rank r that we look for cluster 

structures [8].  

How does one choose the rank r of the truncated space? The singular values si have 

the meaning of standard deviations. Defining the relative variance Vi of component i 

(see Fig 1A and supplementary), one may come up with several principles for 

truncation.  

2 2

1

/
N

i i j

j

V s s
=

=   (1) 
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Wall [12] suggested the following guidelines: (1) ignore components beyond the point 

where the cumulative relative variance becomes larger than a certain threshold (e.g. 

85%), (2) ignore components with relative variance below a certain threshold (e.g. 

1%), or (3) stop when a sudden decrease is observed in the relative variance graph. 

We suggest using SVD- entropy [19] as a guide for choosing among the possibilities. 

E varies between 0 and 1. E = 0 corresponds to an ultra ordered dataset that can be 

explained by a single eigenvector (problem of rank 1) and E = 1 stands for a 

disordered matrix in which the spectrum is uniformly distributed. We find that in 

gene-expression datasets, entropy values are higher than 0.5, reflecting a disordered 

distribution. If E is very low, a sudden decrease in the spectrum is a good indicator for 

the best r values. Otherwise we prefer criteria (1) and (2). 

Truncation to dimension r is equivalent to projecting the vectors of our problem 

(e.g. the genes or samples vectors) onto an r-dimensional subspace. The vectors, as 

defined in this subspace, have different norms. It is preferable to renormalize the 

vectors, i.e. project them onto the unit hyper-sphere in r-space. This approach 

considers similarity between vectors in the truncated space in terms of the cosine of 

the angle between them, and is consistent with the standard application of Latent 

Semantic Analysis (LSA) [20]. It is worth mentioning that, although we suggest using 

SVD, other truncation methods may be used (e.g., Fourier transforms, PCA). 

2.2   Parameter Tuning 

The validity and reliability of clustering algorithms may be questioned on two 

grounds: (1) subjectivity, i.e. using supervised criteria in the parameter setting and (2) 

inconsistency, i.e. obtaining different results upon repeated application of 

nondeterministic algorithms.  

In order to reduce these pitfalls to a minimum, we suggest using an internal 

criterion. The criterion we choose to adopt is the Bayesian Information Criterion 

(BIC). Fraley and Raftery [21] developed it in a model-based analysis that assumed 

the data to be generated by a mixture of underlying normal probability distributions. 

The parameters of the underlying distributions were set by an EM algorithm. The BIC 

criterion is used to evaluate the number of clusters and the quality of the suggested 

clustering. BIC is defined as follows:  

ˆ2 ( , ) log( ) 2log ( | )M MBIC l x m N p x M const≡ Θ − ≈ + 
 

(3) 

where lM(x,!) is the mixture log likelihood (of the data x and the predicted model !), 

which is maximized under the constraint that mM (a function of the number of 

independent parameters3), is minimized. It is assumed that a higher BIC score reflects 

better clustering quality. Recently, Teschendorff et al. have applied an EM algorithm 

to find a partition that maximizes the BIC criterion [10]. Here we do not optimize the 

                                                           
3
 We choose mM=dim*K* (K+dim), where dim is the number of dimensions and K is the 

number of clusters. 

1

1
( ) log( )

log( )

N

i i

i

E Data V V
N =

= −  
 

 
(2) 
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BIC score. Trusting the clustering algorithms we just use this score, in a way befitting 

the algorithms, to find the best clustering parameters.  

3   Implementation 

We demonstrate our method on two fundamentally different clustering algorithms. 

They differ in some fundamental aspects thus testing the generality of our framework.  

Optimized K-Means (OKM) 
K-Means is a very popular, fast and intuitive algorithm. This naïve algorithm has two 

known drawbacks: First, it requires the number of clusters as an input, and thus is 

limited to scenarios where external knowledge is available. Secondly, the algorithm is 

nondeterministic, and is thus inconsistent.  

The OKM implementation applies the K-Means algorithm 50 times for each 

number of clusters (K=1 to 20 in our examples) and computes the BIC score for each 

application. The application that leads to the maximal BIC score is considered to be 

the optimal solution.  

Optimized QC (OQC) 

The QC algorithm [7] uses the Schrödinger equation to provide an effective clustering 

description of the data. It requires one parameter,  , a Parzen window width. This 

parameter controls the number of clusters that are identified by the algorithm with 

larger values of   yielding fewer clusters. Different   may also yield the same number 

of clusters but different clustering assignments (see Fig. 2B). Contrary to K-Means 

this algorithm is deterministic, has less constraints than K-means (since noise is 

integrated within the model), and does not assume spherical properties of the clusters. 

Recently, a variation of the algorithm's convergence, using the mean-shift approach, 

was suggested [22]. Here we employ the standard implementation [7]. 

OQC consists of applying QC once for a set of   values (50 values in the range of 

0.1 to 0.9, in our examples), and computes the BIC score for each  . The maximal 

BIC is considered as the optimal solution.  

4   Results  

Here we describe our results on three gene-expression datasets that are well known 

benchmarks. In the first [23] and the second [24] examples, samples were clustered (2 

and 4 clusters, respectively) while in the third dataset [25] clustering was performed 

on the genes. All three cases have assignments that were manually curated. The 

assignments serve to estimate the performance of the clustering algorithms, using the 

Jaccard score which reflects the ‘intersection over union' between the algorithm's 

clustering assignments and the expected classification
4
:  

 11

11 01 10

n
Jaccard

n n n
=

+ +
 

(4) 

                                                           
4 We refer to supplementary material for further explanation. 
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4.1   The Colon Dataset of Alon et al. (1999) 

In the dataset of [23], 62 gene-expression samples were taken from colon cancer 

patients. 40 of them were taken from sick tissues, and 22 from healthy tissues. Each 

sample contains the expression of 7479 genes. We follow [23, 24] who chose 2000 

genes with the highest confidence in the measured expression levels. 

In order to emphasize the influence of preprocessing on the clustering results, we 

compare SVD (see methods) with Principal Components Analysis (PCA)
5
. Fig 1A 

displays the singular values of the [2000x62] matrix.  

The compression guidelines (see methods), suggests that only 2 or 3 components 

may be needed for a good description of the data (the relatively low entropy: 0.28, see 

equation 2). This yields compression rates of 1x10
-3

 and 1.5x10
-3

, respectively. 

  

Fig. 1. A. (left) Singular values of the colon dataset (dashed line denotes the 'cut' decision). B. 

(right) Jaccard scores of the KM on raw data (left bar) and different preprocessing options.  

As shown in Fig. 1A, preprocessing procedure influences the clustering quality. 

We conclude that this step deserves substantial attention. Moreover, when selecting 

the correct compression method (SVD in 3 dimensions), the clustering results are 

improved, as reflected by the increase in the Jaccard score (from 0.52 to 0.6).  

The optimal results are obtained for SVD reduction to 3 dimensions. At this stage, 

the data are compressed to 62 vectors on a 3 dimensional unit sphere. Fig. 2A displays 

the OKM results (50 executions for 2-20 putative clusters) for different choices of K. 

For each K the maximal BIC of all 50 trials was chosen. The overall maximal BIC 

value is obtained for K=2. Note that the farther the number of clusters is from the 

correct solution, the larger is the dispersion of the corresponding BIC values. 

Comparing the internal (BIC) and external (Jaccard) criteria, one finds that the K=2 

assignments were also the closest to the experts opinion. This testifies to the 

usefulness of BIC as an indicator of the proper clustering of the data.  

                                                           
5 Matlab code: princomp(zscore(X'X)). 
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Fig. 2. A. (left) BIC Values when applying OKM (SVD reduced to 3 dimensions) on the colon 

dataset. B. (right) The number of clusters obtained in the colon dataset as a function of the   

input parameter of the QC algorithm. 

Next we apply OQC to the compressed colon dataset. Recall that QC is a 

deterministic algorithm, thus, a single application is required for each   value. Fig. 2B 

displays the number of clusters when varying  . Note that different   values may lead 

to the same number of clusters but different assignments, hence BIC may vary when 

the number of clusters remains constant. 

  

Fig. 3. A. (left) Comparison of the internal (BIC) and external (Jaccard) criteria for the colon 

dataset (OQC). B. (right) Comparison of the standard and optimized versions of the KM and 

QC algorithms. 

Both BIC and Jaccard scores display the same behavior in the neighborhood of their 

maximal values (Fig. 3A). The maximal BIC was obtained for  =0.55, where QC 

leads to 2 clusters. The corresponding Jaccard score for this   is 0.715. 

Since both OKM and OQC share the same preprocessing step, their clustering 

results can be compared. The maximal BIC value achieved by OQC is higher than the 

one achieved by OKM (-95 and -300, respectively). Similarly, the Jaccard score of the  
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OQC is higher than the one of OKM (0.715 and 0.678, respectively). Fig. 3B 

compares these results with what the same algorithms obtain on the original datasets 

without preprocessing (0.52 and 0.4 for KM and QC, respectively). The results are 

even more impressive when compared to other state-of-the-art algorithms (Table1). 

 
Table 1. Jaccard scores of various algorithms when applied to the Alon dataset  

Method Jaccard

K-Means (raw data, 50 repeats) 0.52 (0.1)

OKM (Preprocessing & BIC) 0.678 

QC (raw data) 0.4 

OQC (Preprocessing & BIC) 0.715 

CLICK [2] 0.64 

CAST [2,5] 0.682 

CTWC ([4], and
6
) 0.508 

4.2   The Leukemia Dataset of Golub et al., 1999 

The dataset of Golub et al. has served as a benchmark for several clustering methods 

[2, 4 and 24]. The experiment sampled 72 leukemia patients with two types of 

leukemia, ALL and AML. The ALL set is further divided into T-cell leukemia and  

B-cell leukemia and the AML set is divided into patients who have undergone 

treatment and those who did not. For each patient, an Affymetrix GeneChip measured 

the expression of 7129 genes. The clustering task is to find the four cancer groups 

within the 72 patients in a [7129x72] gene expression matrix. We select the first five 

eigenvectors, achieving a compression rate of 7x10
-4 

(from [7129x72] to [5x72]).  

BIC is maximized for K=2 in OKM, as is the Jaccard score (Fig. 4A). Hence we 

conclude that OKM can identify only the two major groups in the data and cannot 

detect a partition into four groups. This finding is consistent with the CAST and 

CLICK algorithms that have also failed to identify the subtypes [2] 

Since QC cannot be applied to the raw dataset, preprocessing is of essence. OQC 

proves to be very effective. As displayed in Fig. 4B, the correlation between the BIC 

and the Jaccard scores is quite high around the maximum of both curves. Moreover, 

the maximum BIC is at   =0.548, which dictates partitioning into 4 clusters, similar to 

what would be expected from the data. The corresponding Jaccard score for this   is 

0.69 (Fig. 4B). 4 clusters are predicted by QC throughout the range 0.47< <0.56. 

4.3   The Yeast Dataset of Spellman et al. (1998) 

The dataset of [25] presents a somewhat more challenging task than the previous 

examples, since we examine our method on clustering of genes. Spellman et al. 

identified 798 genes as cell cycle regulated and assigned them to 5 different stages of 

the yeast cell cycle (M/G1, G1, S, G2 and M). Expression levels of these genes were 

recorded at 72 time points, yielding a [798x72] matrix. 

                                                           
6 http://www.weizmann.ac.il/physics/complex/compphys/ctwc/  
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Fig. 4. A. (left) BIC and Jaccard scores of the Golub dataset (OKM), B. (right)Comparison of 

internal (BIC) and external (Jaccard) criteria of the leukemia dataset (OQC) 

Contrary to the first examples, the distribution of relative variances is gradual and 

the entropy is significantly higher (0.705, see supplement). This result is consistent 

with the argument that high entropy reflects data that were preprocessed, since genes 

were intentionally selected by their functional annotation. We selected the first four 

leading eigenvectors (note the dashed line in the figure) achieving a compression rate 

of 5x10
-2 

(from [798x72] to [798x4]). 

The external expert [25] suggests that there are 5 groups of cell cycle related genes. 

When applying the OKM protocol to the compressed dataset a maximized BIC is 

observed at 6 clusters. Comparing to the standard application of K-Means, the OKM 

shows no improvement: both applications yield Jaccard scores of 0.4.  

Application of OQC to the compressed dataset yields a somewhat different result 

than that of OKM. BIC is maximized at  =0.5, where 4 clusters are identified. Taking 

a closer look at the OQC clusters suggests that the S and G2 stages are joined by QC 

into one cluster. Here the correlation between the BIC and Jaccard scores is not 

perfect (see supplementary). Nevertheless, the Jaccard score it yields is relatively high 

(0.5 comparing to 0.4 in many other algorithms, see supplement table). 

5   Conclusion  

We present a general ‘clustering improver’ scheme. This unsupervised, data-driven 

two-step clustering framework uses intrinsic properties of the dataset to determine the 

SVD-based compression. After dimension reduction, several iterations of a clustering 

algorithm are applied, each with a different parameter. They are then compared with 

each other by the BIC criterion. The parameter that yields the best BIC score is 

chosen and is declared to be the optimal one. This generic framework is also 

computationally efficient: it processes these large-scale datasets on a standard PC in 

less than a minute (e.g., 50 runs of each of the different number of clusters in OKM). 

Preprocessing of experimental data is an essential step. The raw data often come in 

a large-scale, un-normalized and noisy representation. These distractions have to be 

treated. Nevertheless, due to the diversity of the experiments one cannot provide a 

universal preprocessing method. In our study, we emphasize the importance of 
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compression, and present some examples of the variations that different preprocessing 

methods can yield. We recommend SVD-based compression, which provides a 

normalized, filtered and ultra-compressed representation of the data. We also suggest 

guidelines regarding the extent of the compression.  

The second step of our methodology is parameter tuning, which is based on the BIC 

score. Choosing this score has two advantages: (1) being an internal measurement, it 

allows an unbiased, automated method with no external intervention, and (2) its 

capability to be computed after the algorithm has terminated its application allows this 

independent criterion to be ‘plugged in’ to any clustering algorithm.  

BIC is useful for finding the best solution amongst many local maxima, for  

both deterministic and nondeterministic clustering algorithms. Some heuristics are 

proposed in order to overcome the inconsistency problem of nondeterministic 

algorithms. In cases where many applications of the same algorithm lead to suboptimal 

solutions and only a few suggest good solutions, BIC maximization represents 

considerable improvement over other methods such as majority voting. Even if BIC 

does not point to the best clustering solution, it chooses one that is close to the best. It 

can therefore assist in narrowing down the search for best parameters.  

Our methodology is especially well adapted to algorithms that assume spherical 

distribution (e.g., K-Means) of clusters, but it can be applied to algorithms that do not 

assume such a distribution. Surprisingly, it performs very well for methods that do not 

subsume spherical clustering such as QC and SOM (not shown). The optimized 

algorithms described here outperform the published results of CTWC, CLICK and 

CAST. We assume the same methodology to the latter algorithms could improve their 

performance even further.  

Nevertheless, we identify some limitations. First, as we have not suggested any 

modification in any clustering algorithm per se, the improvement is bounded to the 

algorithm’s best performance. If the solution space does not describe the underlying 

structure of the dataset, we cannot obtain a high quality solution. 

Second, the BIC score assumes a specific hyper-elliptic organization of clusters. 

When, as in the yeast dataset, clusters have different distributions, BIC has less 

descriptive strength. In such cases BIC may not fit the properties of the dataset. Third, 

the BIC value, computed by the EM method, usually cannot converge when the number 

of dimensions surpasses some threshold (of the order of 10). An efficient preprocessing 

is therefore a prerequisite for the BIC to be computed.  

Finally, since BIC fits a model to a specific data distribution, it cannot be used to 

compare models of different datasets. For the same reasons it cannot be used to 

choose among different preprocessing methods or truncated dimensions.  

Different clustering algorithms are currently included in analysis suites that are 

applied by experimentalists to gene expression data. A standard practice is to apply 

several algorithms with a few configurations and choose among them on the basis of 

some known classification. Our framework may serve as a platform for systematic 

comparison between different clustering algorithms. In all comparisons, analysis is 

applied to an identical experimental benchmark. The large variation in performance of 

each algorithm supports the notion that there is no 'one-size-fits-all' method. This 

study attempts to reduce the subjectivity in data interpretation by providing a platform 

for comparisons that can be adopted by any algorithm. 
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Abstract. There exist numerous algorithms that cluster data-points from large-

scale genomic experiments such as sequencing, gene-expression and pro-

teomics. Such algorithms may employ distinct principles, and lead to different 

performance and results. The appropriate choice of a clustering method is a sig-

nificant and often overlooked aspect in extracting information from large-scale 

datasets. Evidently, such choice may significantly influence the biological in-

terpretation of the data. We present an easy-to-use and intuitive tool that com-

pares some clustering methods within the same framework. The interface is 

named COMPACT for Comparative-Package-for-Clustering-Assessment. 

COMPACT first reduces the dataset's dimensionality using the Singular Value 

Decomposition (SVD) method, and only then employs various clustering tech-

niques. Besides its simplicity, and its ability to perform well on high-

dimensional data, it provides visualization tools for evaluating the results. 

COMPACT was tested on a variety of datasets, from classical benchmarks to 

large-scale gene-expression experiments. COMPACT is configurable and ex-

pendable to newly added algorithms.  

1   Introduction 

In the field of genomics and proteomics, as well as in many other disciplines, classifi-

cation is a fundamental challenge. Classification is defined as systematically arrang-

ing entities (data-points) into specific groups. Clustering, being an unsupervised 

learning problem, may be regarded as a special case of classification with unknown 

labels (for more details see [1], [2]). In gene expression microarray technology, a 

hierarchical clustering algorithm was first applied to gene-expression data at different 

stages of cell cycle in yeast  [3]. During recent years several algorithms, originating 

from various theoretical disciplines (e.g., physics, mathematics, statistics and compu-

tational neuroscience), were adopted and adjusted to gene expression analysis. They 
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are useful for diagnosis of different conditions for example differentiating between 

sick and healthy tissues, and classification to subtypes of a disease. An additional 

outcome of applying such algorithms to gene-expression data was the revealing of 

functional classes of genes among the thousands used in experimental settings  [4]. 

Furthermore, it became possible, and useful, to isolate groups of relevant genes that 

mostly contribute to a particular condition, in the correlative or derivative perspective, 

a procedure called bi clustering  [5]. 
By their nature, data points that are collected from large-scale experimental set-

tings suffer from being represented in a high dimensional space. This fact presents a 

computational and an applicative challenge. Compression methods that maintain the 

fundamental properties of the data are called for. 

As clustering algorithms are rooted in different scientific backgrounds and follow 

different basic principles, it is expected that different algorithms perform differently 

on varied inputs. Therefore, it is required to identify the algorithm that suits best a 

given problem. One of the targets of COMPACT is to address this requirement, and to 

supply an intuitive, user-friendly interface that compares clustering results of different 

algorithms.  

In this paper we outline the key steps in using COMPACT and illustrate it on two 

well-known microarray examples of Leukemia [4], and yeast datasets [6]. For a com-

parative analysis we included routinely used clustering algorithms and commonly 

applied statistical tests, such as K-Means, Fuzzy C-Means and a competitive neural 

network. One novel method, Quantum Clustering (QC) [7], was added to evaluate its 

relative performance. The benefit of applying COMPACT to already processed data is 

demonstrated. All four algorithms that were applied in analyzing these datasets were 

compared with a biologically based validated classification. We conclude that the 

compression of data that comprises the first step in COMPACT, not only reduces 

computational complexity but also improves clustering quality. Interestingly, in the 

presented tested datasets the QC algorithm outperforms the others. 

2   Implementation 

After downloading and configuring COMPACT, four steps should be followed: defin-

ing input parameters, preprocessing, selecting the clustering method and presenting 

the results. 

2.1   Input Parameters 

COMPACT receives two input parameters that are Matlab variables: data (a two-

dimensional matrix) – represents the elements to be clustered, and 'real classification' 

(an optional, one-dimensional vector) – representing the elements according to an 

expert view and is based on bulk biological and medical knowledge. 

2.2   Preprocessing 

a) Determining the matrix shape and which vectors are to be clustered (rows or 

columns). 

b) Preprocessing Procedures: SVD, normalization and dimension selection. 
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2.3   Selecting the Clustering Method 

a) Points' distribution preview and clustering method selection: The elements of 

the data matrix are plotted. If a 'real classification' exists, each of its classes is 

displayed in a different color. One of the clustering methods, K-means, FCM 

(fuzzy C-means), Competitive NN (Neural Network) or QC (Quantum Cluster-

ing) is to be chosen from the menu.  

b) Parameters for clustering algorithms: depending on the chosen method, a spe-

cific set of parameters should be defined (e.g., in the K-Means method – num-

ber of clusters). 

2.4   COMPACT Results 

Once COMPACT completes its run, the results are displayed in both graphical and 

textual formats (results can be displayed also in a log window). In the graphical dis-

play, points are tagged by the algorithm. The textual display represents Purity and 

Efficiency (also known as precision and recall or specificity and sensitivity, respec-

tively) as well as the joint Jaccard Score
1
. These criteria for clustering assessment are 

defined as follow: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A screenshot of the graphical view on the results produced by COMPACT 

                                                           
1 The Jaccard score reflects the ‘intersection over union' between the algorithm and ‘real’ clus-

tering, and its values range from 0 (void match) to 1 (perfect match). 
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11 11 11
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Where: 

• n11 is the number of pairs that are classified together, both in the ‘real’ classifica-

tion and in the classification obtained by the algorithm. 

• n10 is the number of pairs that are classified together in the correct classification, 

but not in the algorithm’s classification. 

• n01 is the number of pairs that are classified together in the algorithm’s classifi-

cation, but not in the correct classification. 

 

Ending the application will add a new variable to the Matlab workspace: calcMapping 

- a one-dimensional vector that represents the calculated classification of the ele-

ments. 

3   Results 

We applied several of the most commonly used clustering algorithms for gene expres-

sion data. By analyzing the results of COMPACT we observe significant variations in 

performance. In the following we compare the performance on different datasets. We 

choose to use datasets that were heavily studied and for which an expert view is  

accepted. 

3.1   COMPACT Tests of Leukemia Microarray Expression Data 

We tested COMPACT on the dataset of Golub et al. [4] that has served already as a 

benchmark for several clustering tools (e.g. [2], [8], [9], [10], [11]). The experiment 

 

Table 1. COMPACT based comparison for the Golub dataset [4]. For details see text. 

 Method Jaccard Purity Efficiency 

Raw data    

 K Means  
0.257 0.369 0.459 

 Fuzzy C Means (FCM) 
0.272 0.502 0.372 

 Competitive Neural Network (NN) 
0.297 0.395 0.547 

 Quantum Clustering (QC) NA NA NA 

Preprocessing (SVD)    

 K Means  
0.4 0.679 0.494 

 Fuzzy C Means (FCM) 
0.316 0.584 0.408 

 Competitive Neural Network (NN) 
0.442 0.688 0.553 

 Quantum Clustering ( = 0.54) 0.707 0.77 0.898 
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Fig. 2. Jaccard scores of the four algorithms tested by COMPACT on the Golub dataset. Left: 

before compression, Right: following application of the SVD compression step. Note that an 

improvement is detected for all methods by a preprocessing step. 

 

a b 

Fig. 3. A graphical comparison of COMPACT results on Leukemia dataset. The samples (pa-

tients) are ordered by their groups: samples 1-37: group #1, samples 38-47: group #2, samples 

48-62: group #3 and samples 63-72: group #4. The four ‘real’ classes are distinguished by the 

background color (white, gray, white and gray), whereas black bars demonstrate the algo-

rithm’s classification. For example, in (a) the first sample belongs to the ‘correct’ first group 

(white background); while the algorithm placed it in the second group (the black bar is at group 

#2). Shown are the results of (a) K-means (K=4) and (b) QC (Quantum clustering,   = 0.54) for 

clustering the AML/ALL cancer cells after SVD truncation to 5 dimensions. 

sampled 72 leukemia patients with two types of leukemia, ALL and AML. The ALL 

set is further divided into T-cell leukemia and B-cell leukemia and the AML set is 

divided into patients who have undergone treatment and those who did not. For each 

patient an Affymetrix chip measured the expression of 7129 genes.  

The clustering results for four selected clustering algorithms are shown in Table 1. 

A comparison of the Jaccard scores for all algorithms is displayed in Figure 2 and two 

clustering assignments are compared in Figure 3. Applying the selected algorithms to 

the raw data (i.e., without an SVD preprocessing) yields poor outcomes.  

Next we applied the SVD preprocessing step selecting and normalizing the 5 lead-

ing SVD components ('eigengenes' according to Alter, [12]) thus reducing the matrix 

from 7129X72 to 5X72. Clustering has improved after dimensional truncation, yet not 

all algorithms correctly cluster the samples. Note that only QC shows a substantial 

degree of consistency with the ‘real’ classification (Jaccard. = 0.707, Purity = 0.77 

and Efficiency = 0.898, for discussion see Horn & Axel [13]). 

85



164 R. Varshavsky, M. Linial, and D. Horn 

3.2   COMPACT Tests of Yeast Cell Cycle Data 

Next we test the performance of COMPACT for clustering of genes rather than sam-

ples. For this goal we explore the dataset of yeast cell cycle presented by Spellman et 

al. [6]. This dataset was used as a test-bed for various statistical and computational 

methods 14]. The expression levels of 798 genes were collected from 72 different 
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Fig. 4. Jaccard scores of the algorithms in the COMPACT based comparison for the Spellman 

dataset (shown are results for four clusters analysis) 

Table 2. COMPACT based comparison to the Spellman dataset of Cell cycle in Yeast [6] 

 Method Jaccard Purity Efficiency 

Raw data    

 K Means (5 clusters) 0.435 0.617 0.596 

 K Means (4 clusters) 0.488 0.64 0.673 

 Fuzzy C Means (5 clusters) 0.425 0.663 0.542 

 Fuzzy C Means (4 clusters) 0.438 0.458 0.912 

 Competitive Neural Network (4 clusters) 0.424 0.53 0.68 

 Quantum Clustering NA NA NA 

Preprocessing     

 K means (5 clusters) 0.406 0.636 0.528 

 K means (4 clusters) 0.46 0.626 0.634 

 Fuzzy C means (5 clusters) 0.4 0.63 0.522 

 Fuzzy C means (4 clusters) 0.459 0.624 0.634 

 Competitive Neural Network (5 clusters) 0.33 0.55 0.458 

 Competitive Neural Network (4 clusters) 0.516 0.658 0.706 

 QC after SVD (  =0.595) 0.554 0.664 0.77 

 

86



 COMPACT: A Comparative Package for Clustering Assessment 165 

conditions that reflect different time points in the yeast cell cycle. The task in this 

case is to cluster these 798 genes into five classes identified by Spellman et al. 

through functional annotations of individual genes.  

We applied COMPACT both to ‘raw’ data and to SVD compressed data. In the lat-

ter case we selected two leading normalized SVD components ('eigensamples' accord-

ing to Alter, [12]), thus reducing the matrix size from 798X72 to 798X2. All four 

clustering methods were tested as before. Once again the results obtained by the QC 

are moderately superior. 

We have tested all methods for both 4 and 5 clusters (Table 2 and Figure 4). Inter-

estingly enough, 4 clusters seem to be a better choice in all cases, although the 'real’ 

classification defines 5 classes. 

4   Discussion 

In this paper we demonstrate how different clustering algorithms may lead to different 

results. The advantage of COMPACT is in allowing many algorithms to be viewed 

and evaluated in parallel on a common test set. Through COMPACT one can evaluate 

the impact of changing the algorithm or its parameters (e.g., sigma value in QC, num-

ber of iterations for the Competitive Neural Network, starting points of K-Means, 

Fuzzy C-Means and more). Being able to run a number of clustering algorithms, ob-

serve their results (quantitatively and graphically) and compare between them is bene-

ficial for researchers using gene expression, proteomics, and other technologies that 

produce large datasets. We find it advisable to start with a problem that has a known 

classification (referred to as ‘real classification’) and use the statistical criteria (i.e., 

efficiency, purity and Jaccard score) to decide on the favorable clustering algorithm. 

For general research problems, where no known classification exists, the same statis-

tical tools may be used to compare results of different clustering methods with one 

another. We presented here a comparative analysis of some well-known clustering 

methods with one relatively new method, QC. For the two datasets that we have ex-

plored, QC outperformed the other methods. 

We have shown that dimensionality reduction improves the clustering quality. This 

observation is highly relevant when handling genomic data. Recall that for Affy-

metrix microarrays the number of genes tested reaches all known transcripts from the 

selected organism, producing 20,000-30,000 data points for a mammalian genome. 

Similarly, the application of the new SNP discovery chip produces a huge number of 

noisy data points in a single experiment. Besides its computational complexity, one of 

the major challenges when using massive data is to identify features and to filter out 

noise. Often handling such high dimensional noisy inputs can be a barrier. Hence it is 

important to develop more efficient and accurate tools to tackle these problems (see 

examples in [3], [4], [15], [16]). Thus, constructing a method that can significantly 

reduce data volume, and at the same time keep the important properties of that data, is 

obviously required.  

COMPACT offers easy-to-use graphical controls for users to select and determine 

their own preferences, and graphical displays where the results can be presented or 

saved for later usage. It offers several clustering algorithms and allows the user to 

compare them to one another.  
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Although similar tools have already been proposed (e.g., [17], or [18]), the novel-

ties of COMPACT are: (i) presenting an integrative, light package for clustering and 

visualization, (ii) integrating an efficient compression method and (iii) introducing the 

QC algorithm as part of the available clustering options. 

The beginners will find this user-friendly tool with its graphical and textual dis-

plays useful in their data analysis. The experts will benefit from its flexibility and 

customizability that enables expanding the tool and modifying it for advanced, spe-

cialized applications.  
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Section 4.3 

ClusTree: A Simple Graphical Tool for Analysis of 

Hierarchical Clustering 

Abstract 

Summary: ClusTree is a graphical tool that enables an easy and intuitive way to apply, 

analyze, visualize and compare various hierarchical clustering methods. This expandable, 

Matlab package can either apply hierarchical clustering to experimental datasets (e.g., 

gene-expression), or visually and statistically evaluate trees which resulted from any 

hierarchical algorithms. 

An obvious strength of the ClusTree tool is its capability to easily apply numerous 

algorithms to different inputs, and thus to be utilized for a wide range of data, ranging 

from gene-expression to proteins or nucleic acids sequences.  

1. Introduction  

Clustering is a common procedure in genomic and proteomic studies. Clustering 

algorithms are classified as either nonhierarchical (flat, partitioning) or hierarchical. 

While the former define a single partition of the data (e.g., K-Means), hierarchy, by its 

nature, suggests multiple levels of organization (for comprehensive reviews see Jain and 

Dubes, 1988; Duda, et al., 2000; D'Haeseleer, 2005).  

The results of hierarchical clustering can be represented as a tree, where each grouping 

of nodes may define a cluster. A collection of nodes may be viewed as natural cuts in the 

tree. Cutting the tree can be done at different heights, which are in essence, provide 

multiple clustering solutions. For this reason, hierarchical clustering is usually considered 

as a richer organization method than nonhierarchical clustering. Some of the clustering 

possibilities may match an expert’s view, while others may identify clusters that were not 

previously recognized as such. 
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Hierarchical clustering has been successfully applied to protein sequences (Sasson, et 

al., 2003), chemical entities, ontologies, 3D structural information, protein catalytic 

activities (Handl, et al., 2005), and in many large-scale gene expression experiments 

(Spellman, et al., 1998; D'Haeseleer, 2005). They have been implemented in applications 

such as (Eisen, et al., 1998; Saldanha, 2004; MathWorld, 2007), ClusTr (Apweiler, et al., 

2001) and ProtoNet (Sasson, et al., 2003). 

We present a new, intuitive graphical tool, named ClusTree, with novel improved 

capabilities. ClusTree is a very simple user-friendly collection of several algorithms. In 

addition to the standard agglomerative procedures (MathWorld, 2007), it provides an 

access to advanced top-down algorithms. In addition, introducing an array of statistical 

routines and visualization options it may assist in evaluating and comparing clustering 

results. Furthermore, being a self-explanatory graphical application, ClusTree can be 

easily comprehended by non-computational users; yet by suggesting an advance mode, it 

can be expanded by more sophisticated analysts. Finally, being a generic toolbox it is 

capable of handling datasets from various domains (e.g., gene-expression, sequence 

analysis). 

2. Functionalities Provided 

2.1. ClusTree Workflow 

Figure 1 displays the workflow of the ClusTree tool. ClusTree can either cluster a given 

experimental dataset (input A, see  2.2) or visualize and analyze a dataset that has already 

been clustered (input B).  

Fig. 1. ClusTree workflow: input (section  2.2), clustering ( 2.3), analysis and visualization  2.4.-

 2.5 and  2.6, respectively). 
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2.2. Input types 

ClusTree is a generic tool that accepts two types of input: experimental data in feature-

space (i.e., raw data as in most gene-expression experiments) or distance matrices, in 

which each element is the distance (or similarity) between two instances (e.g., pairwise 

distances from BLAST, marked by their statistical significance, e-values (Altschul, et al., 

1997)). 

2.3. Clustering options 

The tool includes an interface to the standard hierarchical procedures provided in the 

statistical toolbox of Matlab. There are 10 common distance measures (euclidean, 

seuclidean, cityblock, mahalanobis, minkowski, cosine, correlation, hamming, jaccard 

and chebychev), and 7 linkage options (single, complete, average, weighted, centroid, 

median and ward). Altogether there are 70 combinations that are applicable. In addition, 

we provide two top-down hierarchical algorithms: PDDP (Boley, 1998) and TDQC, that 

were shown to be very effective in comparison to bottom-up ones (see Chapter 3).  

2.4. Clustering evaluation 

After the dataset is clustered, it can be visualized and analyzed. When expert-

classification is provided (the term ‘expert’ refers to external data labelling, e.g., GO 

annotation (Camon, et al., 2004), we apply three combined assessment methods to 

describe different qualities of the clustering tree.  

(1) Node Score: Each node specifies a cluster (of all its descendants). An enrichment p-

value is calculated to assign any node with one of the classes in the data. This is done by 

using the hypergeometric probability function (Rivals, et al., 2007). The p-values for all 

nodes may be viewed as dependent set estimations, hence we apply the False Discovery 

Rate (FDR) criterion to them (Benjamini and Hochberg, 1995). p-values which fail to 

pass this criterion are considered not significant. An additional criterion is also provided: 

a node is considered significant only if a certain fraction (default is 50%) of its elements 

belongs to the enriched category. 

(2) Level Score: Level l of the tree includes all clusters that are l edges away from the 

root. Choosing for each node the class for which it turned out to have a significant node 
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score, we evaluated its Jaccard-score (J=tp/(tp+fn+fp), where tp is the number of true 

positive cases, fn the number of false negative cases and fp the number of false positive 

cases) (Sharan, et al., 2002; Varshavsky, et al., 2005). If the node in question is not 

significant by the enrichment criterion, its J-score is set to null. The level score is defined 

as the average of all J-scores at the given level. 

(3) Tree Score is the weighted best-J-Score,
* *1 c

i i

i

J n J
N

= ∑ , where J
*

i is the best J-

Score for class i in the tree, ni is the number of instances in class i, c is the number of 

classes and N is the number of instances in the dataset. This score or its close variation 

has been applied to measure the quality of protein families (Kaplan, et al., 2005) and 

document classification (Steinbach, et al., 2000; Zhao and Karypis, 2002 ).  

2.5. Additional scoring options 

Alternative tree scores calculated by the tool are the C and F scores: 

C Score is the relative number of significant nodes (# significant nodes/ # nodes in the 

tree). 

F Score is analogous to the J
* tree score, defined as the weighted best-F-Score: 

* *1 c

i i

i

F n F
N

= ∑ , where F
*

i is the best F-Score,
2* *recall precision

F Score
recall precision

− =
+

, 

where 
tp

recall
tp fn

=
+

, 
tp

precision
tp fp

=
+

. 

For class i in the tree, ni is the number of data-points in class i, c is the number of classes 

and N is the number of data-points in the dataset. 

2.6. Clustering visualization 

Figures 2 and 3 display examples of ClusTree graphical outputs. Displayed in Figure 2 is 

a hierarchy tree example. The tree is colored according to the node scores. A node size is 

proportional to its statistical-enrichment level. In addition, selecting a node (by clicking 

it, Figure 2) further analysis can be performed (e.g., querying included instances). 
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Fig. 2.  A screenshot of the ClusTree results. Dot sizes indicate statistical enrichment levels 

where larger sizes correspond to smaller, more significant p-values. Empty nodes represent no 

enrichment. The black square is a clicked node whose properties are quoted in the tool-tip.  

A different perspective is provided by the level scores display (Figure 3), allowing a 

condensed view of the distribution of the significant nodes along the tree. 
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Fig. 3.  A screenshot of the level scores window. Presented are J and C scores for each tree level. 

As shown, the best clustering quality is observed at level 3. 

2.7. Additional functionalities 

In addition to the standard routines, some advanced functionalities are available (detailed 

descriptions provided in the manual). 

Ultrametric view: a tree, whose edges are viewed as discrete integer distances, dictates 

an ultrametric space hosting the data points. This representation can be observed, 

exported and studied. 

Export/save options: a tree and its graphical representation can be saved either as a 

Matlab variable, text file or as a figure. 

Expand the toolbox: the software was designed so that adding new algorithms can be 

easily done. 
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3. Conclusions 

Hierarchical clustering is a routinely used strategy. We provide simple, intuitive software 

for applying various hierarchical clustering algorithms, and analyzing their results. 

Analysis can be performed both in a quantitative way, by scoring different resolutions 

within the tree, and in a qualitative way, by visualizing the resulting trees. These methods 

allow for straightforward and comprehensive comparisons between competing and 

complementing algorithms. 
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Chapter 5 

When Less is More: Improving Classification of 

Protein Families with a Minimal Set of Global 

Features 

This chapter contains the following research paper: 

 

[5A] Roy Varshavsky, Menachem Fromer, Amit Man and Michal Linial. "When Less is 

More: Improving Classification of Protein Families with a Minimal Set of Global 

Features" (2007, WABI, Lecture Notes in Computer Science (4645), 12-24).  
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1 School of Computer Science and Engineering, The Hebrew University of Jerusalem
2 Department of Biological Chemistry, The Hebrew University of Jerusalem
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Abstract. Sequence-derived structural and physicochemical features
have been used to develop models for predicting protein families. Here,
we test the hypothesis that high-level functional groups of proteins may
be classified by a very small set of global features directly extracted from
sequence alone. To test this, we represent each protein using a small num-
ber of normalized global sequence features and classify them into func-
tional groups, using support vector machines (SVM). Furthermore, the
contribution of specific subsets of features to the classification quality
is thoroughly investigated. The representation of proteins using global
features provides effective information for protein family classification,
with comparable results to those obtained by representation using local
sequence alignment scores. Furthermore, a combination of global and lo-
cal sequence features significantly improves classification performance.

Keywords and Abbreviations: Support Vector Machines (SVM),
Feature Selection, Olfactory Receptor, Porins protein family.

1 Introduction

Protein classification is a central task in computational biology. A routinely-used
principle in classification relies on a distance measure between protein sequences,
as obtained by the Smith-Waterman local alignment algorithm or by one of a
large number of heuristic search methods such as BLAST, PSI-BLAST [1], search
by HMM [2, 3] models and by profile-profile search [4, 5]. These methods are
typically based on matching subsequences, i.e. local sequence features.

Despite the observed strength of these methods, many functional assignments
for proteins fail to be detected by such local sequence-based methods [6], thus
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When Less Is More: Improving Classification of Protein Families 13

yielding a larger than desired fraction of false negatives, especially at more
coarse-grained (higher) levels of protein classification hierarchies. The short-
comings of the methods outlined above are partly derived from the fact that
there exist many proteins that share very low sequence similarity and are thus
considered to be in the ”twilight zone”, but nonetheless share strong structural
similarity that reflects their homology [7]. Short proteins represent another set of
proteins that often fail to be classified by their sequence similarity due to their
low statistical significance scores [8]. Finally, for many proteins the sequence
similarity methods fail in detecting related sequences and as a result, a large
fraction of singletons are reported within the protein space [9].

An additional confounding factor is that, in practice, the large number of pro-
tein sequences currently available imposes a computational challenge for the pro-
tein family classification problem. Currently, > 4.5 million sequences are stored
in the UniProt database, and this collection is expected to grow [10]. A reduc-
tion to 3 and to 1.5 million sequences is achieved by UniRef90 and UniRef50,
respectively (i.e., no two sequences are permitted to share more than 90% or 50%
identity, respectively). Since even such vast reductions in redundancy yield very
large quantities of sequences, the power of the ubiquitously used local sequence
similarity methods are severely strained. Similarly, each new multi-cellular eu-
karyotic genome sequenced introduces thousands of new sequences that wait for
functional assignments, again burdening the local sequence similarity algorithms.

To address the challenges in large-scale functional assignment, a complemen-
tary line of research has used a spectrum of sequence features ranging from
amino acid (aa) composition to the appearance of short sequence motifs [11].
Besides perhaps improving upon the results of local-based methods, this re-
search is expected to provide information for classification of more distantly
related protein families, where local-based methods may often fail. One such
attempt was presented by SVM-Prot [12]. The classification system was trained
from representative proteins for ∼50 functional families extracted from Pfam
[13]. Using a large number of features and an SVM classifier, high success in
separating these protein families was reported. A different approach was carried
out in [14], where a mixture of probabilistic decision trees for direct prediction
of protein functions was applied. In [14], the proteins are represented by hun-
dreds of features, including secondary structure assignment and structural-based
information.

Despite their success, these approaches do not always allow for interpretations
and inferences based on the full interplay among features. In addition, the large
set of features used could inadvertently conceal the fact that the prediction task
is easier than it seems: it may be sufficient to consider only a small set of global
features. While it may seem overly ambitious to expect the task of protein family
classification to succeed based only on a small set of sequence features, similar
features were successfully applied for restricted, but related, tasks. Successful
examples include distinguishing membranous and globular proteins, separating
sub-cellular localization, [15], determination of topology for multi-pass proteins
[16], and even prediction of protein quaternary structure [17].
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14 R. Varshavsky et al.

Herein we assume a minimalist feature-based approach,which for reductionism-
based motivations does not take into account secondary or tertiary structure infor-
mation, even when reliable predictions are available. Moreover, we ignore features
derived from short motifs that are currently known to be associated with specific
protein families, functions, or subcellular localizations.We thus address the follow-
ing questions regarding a small set of easily extracted global sequence features: (i)
Does there exist a small (minimal) set of features that provides high-quality pro-
tein family characterization? (ii) Is the information conveyed by global features
redundant or, rather, complementary to that provided by the local features? (iii)
And, more generally, are there some biological insights that predict the prototyp-
ical successes and failures of feature-based classifications?

To define the minimal set of features sufficient for functional classification,
we: (i) test the capacity of predetermined, small subsets of features, and (ii)
incorporate machine learning tools (specifically, feature selection) to automat-
ically determine those features. Feature selection is a fundamental component
in large-scale data analysis as a preprocessing step. In general, preprocessing
involves some operation on the feature-space intended to reduce the dimension-
ality. In feature selection, only a particular subset of features is chosen and used
in subsequent computational tasks. There are two major classes of feature selec-
tion strategies: filters and wrappers. Filter methods rank and choose the features
according to some criterion (e.g., data separation). Wrapper methods optimize
an objective function, through the selection of features. For a comprehensive
survey, see [18]. Herein, we apply one filter and two wrappers to the data.

2 Data and Methods

2.1 Data

As a test case, we consider 10 large protein groups that represent the known
diversity of cellular processes and functions. Protein sequences and annotationss
were retrieved from the UniProt 8.1 database [10]. In order to avoid redundancy,
we used the UniRef50 database [10]. Groups were selected based on Gene On-
tology (GO) assignments [19], such that their sizes would range from 300–1000
proteins each. 5,471 proteins in total are included in the analysis (Table 1).

2.2 Preprocessing

We compare two alternative representations of these ∼5,500 proteins: either
according to local sequence similarities, or according to global sequence features:

1. Local Sequence similarities
All pairs of proteins were aligned using the Smith-Waterman (SW) local
alignment algorithm [20]. Since the SW score is strongly dependent on pro-
tein length, the raw scores matrix was transformed to a matrix of normalized
scaled scores, based on the percentile binning of scores in each column. As
a result, the range of values in the scaled matrix is [0, 1]. Note that the
column-by-column transformation yields an asymmetric matrix.
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Table 1. Representative set of 10 groups derived from the GO systems: cellular com-
ponent (CC), molecular function (MF) and biological process (BP)

Group Type CO Term name GO ID Group Size (UniRef50)

1 CC Nucleosome 786 319
2 MF Olfactory receptor activity 4984 478
3 CC Vacuole 5773 533
4 CC Microtubule 5874 913
5 CC Plasma membrane 5886 781
6 BP Tricarboxylic acid cycle 6099 476
7 BP DNA unwinding duringreplication 6268 520
8 CC Thylakoid 9579 448
9 MF Porin activity 15288 644
10 CC Myosin complex 16459 359
Total 5471

2. Global Sequence Features
Extracting the features: Only features that are ”global” and can be applied
to proteins with minimal biological pre-knowledge are included (e.g., the cal-
culated isoelectric point of a protein). Biologically known signatures such as
localization signals were not included. In summary, for each protein, 5 major
attribute types (for a total of 70 features) are analyzed:

Amino acid composition [AAC] (20 features).
Amino acid grouped compositions [AAG] (11 features, see Table 3, Sup-
plementary Data).
Post-translational modifications [PTM] (14 features, see Table 4, Sup-
plementary Data). The PTM signatures are treated as regular expressions.
Such patterns have been extracted from the Prosite database [21]. Only
PTMs that are highly abundant in the database are included.
Biophysical properties of the full sequence [PHYS] (5 features):

(a) Length - The number of amino acids in the sequence
(b) Molecular weight [22]
(c) predicted pI [22]
(d) Instability factor: based on the observation that the frequency of occur-

rence of certain dipeptides is significantly different in unstable proteins
as compared to stable ones [23].

(e) ’Gravy’ hydrophobicity index [24]

Amino acid enrichment [RICH] (20 features). We sampled an overlapping
window of 20 aa in size, from the beginning of the sequence to the end. For
each such window, the frequency of a certain aa was counted if it occurs at
least 5 times its frequency in the UniProtKB database.

Scaling the features: Since the selected features represent properties that ap-
pear in vastly different representations (e.g., logarithmic scale for pI, percentage
for AAC, frequency for RICH), we applied a scaling protocol by referring to a
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background level of a randomly selected set of approximately 40K proteins from
the UniProtKB database. For each of the 70 features the percentile bins of the
background were computed. Each feature was transformed according to its per-
centile, yielding values in the range [0, 1]. We also applied the scaling using a
background set of the 5,500 proteins in our set (Table 1) and the results were
practically identical to that of the randomly selected background set.

2.3 Classification

Firstly, the 10 groups were randomly partitioned into 3 subsets (groups 1-4, 5-
7, and 8-10), where it was attempted to separate each group of proteins from
the other groups in its subset. The classification algorithm chosen for the task
was SVM (linear kernel, one-against-all classification), which has been proven
to be very efficient for this type of task (e.g. [12, 11]). For each dataset in every
representation used, the following procedures were applied:

1. Random selection of the train (80%) and test (20%) sets.

2. Use the train set: train and validate SVM (5-fold Cross validation).

3. Apply the resulting classifier to the test set, for prediction and assessment.

In order to reduce bias toward extreme train-test partitions, procedures 1-3
(which we refer to as the classification block) were repeated 5 times (which we
refer to as the classification compound).

2.4 Feature Selection

We consider two strategies for selection of the global sequence features, applying
the classification compound for each. Note that the selections and wrappings are
applied only to the train set.

– Selection based on a-priori knowledge. The original (scaled) dataset is parti-
tioned according to the 5 different feature categories: AAC (20), AAG (11),
PTM (14), PHYS (5) and RICH (20).

– Supervised feature selection methods. Here, various approaches are applied:

1. Single-wise selection (GREEDY) – a filter method: the 70 features in the
train set are ranked according to their t-test separability criterion – the
first 10 features are selected.

2. Forward Filtering (FF) – a wrapper method, which starts out with 0
features and adds the most contributing feature to the predictive score
(Jaccard, see below) of the train set. Feature addition is continued until
no improvement in the score is achieved.

3. Backward Elimination (BE) – a wrapper method, which starts out with
all features and removes the least contributing feature to the predictive
score (Jaccard, see below) of the train set. Feature removal is continued
until no improvement in the score is achieved.
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2.5 Evaluation

For each classification block, TP, TN, FP, and FN counts are recorded (where
TP, TN, FP, and FN denote the number of true positive, true negative, false
positive, and false negative outcomes, respectively (detailed tables of all values
appear in the Supplementary Data). We have applied the strict Jaccard score
(J-score) that combines precision (specificity) and recall (sensitivity), but does
not take into account the TN. The J-score is defined as: J = TP/(TP+FP+FN).

3 Results

In order to demonstrate both the strengths and limitations of the framework, we
describe the results for two example groups. Detailing both computational and
biological aspects, we demonstrate different scenarios that directly derive from
the groups’ characterization (for the remaining 8 groups, see Supplementary
Data); we then discuss the overall patterns, suggest a unique feature combina-
tion platform and draw some conclusions. We analyzed large sets of proteins
based on their GO annotations. For representative sets, we ensured that their
sizes (at a level of lower than 50% identity for any pair in the set) ranged
from 300-1000 and that, overall, they represent a broad range of functionality
of enzymes, membranous components (olfactory and transporters), cytoskeletal
elements (myosin) and compartment-based annotations (i.e. vacuole).

3.1 Olfactory Receptor Activity Proteins

The first group we consider is the olfactory receptor activity proteins, consisting
of ∼500 proteins (3,900 proteins in UniProtKB), which are cell surface receptors
that recognize chemical compounds (odorants). Odorant binding to its cognate
receptor leads to membrane depolarization, activating a signaling cascade.

Could we gain any insight into the group, by revisiting the features selected to
separate it from the other groups tested? Here, the FF approach performs almost
as well as using all features (0.89 and 0.91, respectively, Fig. 1). Only 8 features
are chosen by FF: AAG (hydrophilic), AAC (G), RICH (Y), PHYS (instability),
AAC (T), AAG (sulfur-containing), AAC (V), and AAG (helix-redundant aa).

The most powerful feature selected under the FF protocol marks the hy-
drophilic nature of this protein group. Even though the olfactory receptors are
characterized by their seven membrane-transversing helices, the hydrophobic na-
ture of these helices was not among the separating features. On the other hand,
the leading feature chosen was the hydrophilic signal of the molecule, derived
from the region of the protein facing the aqueous environment on either side of
the membrane (protein loops and tails). In an effort to characterize motifs that
specify the olfactory receptors, 10 short motifs were determined, and they were
all found to reside in the loops and tails of the proteins [25]. Similarly, 5 short
PSSM motifs were used to characterize this family by BLOCKS [26]. Again, four
of them are indeed in the hydrophilic segments of the proteins.
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18 R. Varshavsky et al.

Fig. 1. J-score results of SVM classification, for various protein representations, of
the olfactory receptor activity group. Bars are of all 70 global features (All: black),
the 5 different feature types (AAC, AAG, PTM, PHYS and RICH: gray), and the 3
automated feature selection schemes (GREEDY, FF and BE: blue). As a reference, a
random classification of the dataset is shown (100 iterations, RAND: white).

Other features yielded by FF include the frequency of glycine (G) and threo-
nine (T). Also, among the features that contributed to separation is the richness
of tyrosine (Y). It has been noted that tyrosine is quite abundant, and specifi-
cally a short sequence of ’MAYDRY’ (tyrosine at positions 3 and 6) is conserved
among most of the olfactory receptors in the group [27]. This short sequence has
led to significant enrichment over the entire tested set. The rest of the selected
features are cysteine (C) and methionine (M) (grouped as sulfur-containing aa),
valine (V), and, the helix redundant amino acids group. The fact that this group
of transmembrane proteins was distinguished from the other groups through the
use of helix redundant amino acids is not completely surprising, since the pro-
teins’ membrane-spanning segments are composed of alpha helices. This detailed
example illustrates that the selection of the most informative features (8 features
in this case) covers diverse but complementary properties of the proteins.

3.2 Porin Proteins

The other group we discuss is that of bacterial porin, consisting of about 650
proteins (3,500 proteins in UniProtKB) that are localized to the outer membrane
of Gram-negative bacteria, but also found in plastidae and mitochondria [28].
As one of the major outer membrane proteins in bacteria, they form large chan-
nels that allow the diffusion of small hydrophilic molecules (< 1000 daltons).
Classification results for the porin proteins group are displayed in Fig. 2.

Classification quality reaches a J-score of ∼0.75. The global feature methods
outperform the local feature method (J-score ∼0.66). Interestingly, FF requires
only three features for successful classification (J-score 0.68): AAC (G), AAC
(I), and AAG (aromatic). To evaluate the relative contribution of each of these
features, we have applied the classification compound using either the first 1, 2
or 3 features. The results (Fig. 3) show that the first feature by itself has a strong
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Fig. 2. Results of SVM classification, for various protein representations, of the porin
activity proteins (notations, axes and colors are as in Fig. 1)

Fig. 3. The contribution of the first 3 features, selected by the FF method, to the clas-
sification quality of the porins group. The results are of random classification (white),
classification using the single most, two most, and three most contributing features
(AAC (G), AAC (I), and AAG (aromatic), gray), and all 70 features (black).

classification capability, with marginal contributions by the following two. The
remaining 67 features have only a negligible contribution.

3.3 Group Size, Selection Method and Success

In order to estimate which protein families are best characterized by global
features and which methods are preferred, we have applied several analyses. We
computed the number of selected features in BE and FF. For the 10 groups of
proteins presented here, the average number of features eliminated in the BE
protocol is 5.4, and for FF an average of 5 features were selected. The extreme
cases for the FF are the 3 features of the Porin group and 8 features for the
olfactory protein group. These numbers and the average success in classification
show no correlation with the number of proteins in the group (not shown).

Next, we compare the various selection methods. The scores for the selection
methods are displayed in Table 2. As shown, the selection method that yields
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Table 2. Average and standard deviation of the classification scores, according to the
various selection methods

Selection Method Number of Features Average J-score J-score StDev

All 70 0.67 0.126
AAC 20 0.63 0.149
AAG 11 0.57 0.188
PTM 14 0.45 0.171
PHYS 5 0.52 0.185
RICH 20 0.45 0.148
GREEDY 10 0.26 0.150
FF 5 0.56 0.163
BE 64.6 0.65 0.126

the highest scores is BE, followed by AAC (average J-scores 0.65 and 0.63, re-
spectively). Not surprisingly, however, these are also the ones that retain high
numbers of features (64.6 and 20, respectively). Nevertheless, it is noteworthy
that the FF method yields a relatively high average score (J-score 0.56), although
it uses as few as 5 features, on average. Another observation is that the more
features selected, the lower the standard deviation of the J-score; this suggests
that selection methods that use more features are more stable in their quality.

For some of the groups classified, a large number of the original features are
essential to reach maximal performance, while in other cases, only a few features
are sufficient for good separability. For example, as observed above, very few
features are required to separate the porin group (only 3 features).

Finally, we are unable to find any specific subset of features that consistently
dominates the entire set; the chosen ones range from AAC (e.g., in vacuole pro-
teins) and AAG (the nucleosome group) to others, but only rarely includes the
PTMs. The last observation seems to indicate that these signatures do not pre-
dict functional protein groupings, perhaps since identical modifications are often
performed on differently functioning proteins [29]. The biophysical and enrich-
ment features (25 features) are also rarely selected by the FF or BE protocols.

3.4 Global vs. Local Features

As can be discerned from Fig. 4 (top), a representation of proteins using global
features compares to local comparison-based features (SW), as classification us-
ing the global features (all or partial) yields superior results in 6 of the 10 groups.
Also shown is that classification using only a subset of features, as obtained by
the BE and FF methods, yields good results.

The quality in classification performance using global feature representations
varies across the different groups tested. Some protein groups failed to classify
with high precision (e.g., tricarboxylic acid cycle), while in other groups a very
small set of features was found sufficient (e.g., porin activity). Nonetheless, using
all 70 global features provided a very successful classification for all groups.
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Fig. 4. Top: SVM results for the protein groups: local sequence similarities (SW:
stripes), all 70 global features (All Features: black) and the best feature selection scheme
(Best FS: gray). Bottom: Combination of both representations (SW + features: green),
local sequence similarities (SW: stripes) and a random classification (RAND: white).

3.5 Combining Local with Global Features

Since both feature sets (SW and global) were transformed and scaled to a com-
mon representation (see Methods), it is possible to combine them into a unified
dataset. This was performed in the following way: assuming that the N proteins
are described by M global features, then the feature dataset matrix is [NxM] and
the SW one is [NxN]. Combining the matrices is simply performed by appending
them, resulting in a [Nx(M+N)] matrix.

Fig. 4 (bottom) demonstrates that naive combination of global and local fea-
tures significantly improves the classification quality, compared to relying on
either of them alone (paired t-test < 0.001, and < 0.05, respectively). This sug-
gests that the two representations contain complementary information. Thus it
would seem that combining these features is an effective practice and should be
adopted for large-scale functional protein classification.

4 Discussion

In this study we show that characterization of protein families can be obtained
by relying on a small set of global features that, in some cases, can be further
reduced. In previous studies, when much richer feature sets were used [11, 12], the
comparison with local features (SW) showed lower success rates. We hypothesize
that the high-quality results described here are due to the small number of
features that describe the data. This small size may facilitate the training and
predictive capabilities of the classifier and, as a result, improves the classification.

We attempted to determine which global features and feature selection algo-
rithms perform best in the task of protein function prediction. There is no one
feature set that performed this task equally well for all groups, since only some
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groups seem ”easy” to predict in that they require few features to characterize
them well. Nevertheless, when a given group was found to be ”easy”, then it
was usually discovered by the FF method (or by using one of the predefined
classes of features). On the other hand, single-wise feature selection (GREEDY)
was prone to over-fitting and inferior to methods that consider the interplay
between features and attempt to separate the training set in a holistic fashion
(FF and BE). Therefore, it would seem wise to avoid such greedy methods that
independently select features.

In summary, we have observed that the use of global sequence features com-
pares with the use of local features in functional protein classification. Since the
calculation of such global features is much faster (theoretically and in practice)
than computation of local sequence alignments for all pairs of proteins to be
compared, in future work we plan to assess the protein function classification
problem using global features on a much larger scale (from the GO resource). In
addition, since we have also shown that the combination of local and global se-
quence features succeed more than either method alone, it is certainly worthwhile
for large-scale prediction algorithms to incorporate both protein representations.
For computationally heavier methods that already use local sequence informa-
tion (local alignment algorithms), the assimilation of global sequence properties
as described here could be done at minimal overhead, yielding stronger predic-
tion algorithms with little or no increase in computing time.

The scheme presented here was also applied to protein sets of major biological
importance and to a 10-fold larger set (not shown). Success in separating kinases
(the serine-threonine, tyrosine and uncharacterized), as well as nuclear proteins
of the DNA from RNA biosynthesis proteins, suggest that, at the coarse level
of classification, protein groups may be characterized by a very minimal set of
global features. On the other hand, substantial improvement was achieved for
proteins that often fail by sequence similarity, such as snake toxins and cytokines.
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Epilogue  

In this section we aim to provide several comprehensive statements, rather than provide 

summaries and conclusions. The latter are provided at the end of each chapter. We wish to 

emphasize six basic truths that emerge from our analysis.  

•  “When possible, let the data speak for themselves” 

A basic motivation of our research was to extract information, and thus infer significant 

biological knowledge, merely by observing the data. We interpret this motivation by preferring 

unsupervised methods when possible. While the statement above may sound quite simplistic and 

it certainly cannot be applied to all scientific fields, we find that the special characteristics of 

genomic data dictate such an approach, at least in the exploratory stage. The rationale behind 

adopting the unsupervised strategy was: (1) lack of agreed labeled data, (2) over-fitting, 

sampling bias and other failings that are results of the train-test splitting in supervised methods 

and (3) the hope to allow for the emergence of more reliable and sometimes surprising results by 

acting in an unbiased manner.  

Following this principle we focused on developing unsupervised algorithms (chapter 2-3), and 

provided several data-driven criteria for evaluating those algorithms. Examples for the latter are 

(1) in UFF, the pattern of CE scores over all features, may testify how well the method fits a 

given dataset (see Appendix A), (2) the UFF method may also serve as an internal test-bed for 

comparing between several imputation methods (chapter 2.1), (3) in hierarchical clustering, the 

structure of the tree may reflect the number of clusters and the algorithm-data fit (chapter 3), and 

(4) the algorithms optimizer as a data-driven comparison framework for clustering (chapter 4.1). 

• “When possible, let mathematics help interpreting biology” 

The algorithms we suggest are based solely on mathematical and statistical foundations, ignoring 

any specific biological considerations. Following this principle, we were able to obtain less 

biased results while providing generic, large-scale compatible algorithms. However, as the 

research was originally motivated by biological questions, all algorithms were applied to 

biological data. Furthermore, biology was a principal focal point of the inference part of each 

study. These mathematical driven algorithms led to some intriguing biological observations, such 

as relevant genes selected by UFF (chapter 2), surprising protein groups suggested by TDQC 
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algorithm (chapter 3) and unexpected global features characterizing families of proteins (chapter 

5). 

•  “When mining genomic and proteomic data, don’t expect a ‘one-size-fits-all’ method” 

Throughout the research we realized, that the diversity of the data, ‘polluted’ by numerous 

intervening factors, makes it impossible to provide a single overall solution that best handles all 

cases. As a result, for every particular case a different algorithm and configuration may be 

preferred. Therefore, we put large emphasis on developing appropriate evaluation methods for 

comparing between imputations, filtering and clustering algorithms. 

•  “Do not ignore less explored directions” 

Most of the directions we explored have not been well studied in the literature, particularly in 

computational biology. For example, there are only a handful of global (Top Down) hierarchical 

clustering algorithms or unsupervised feature filtering methods. Furthermore, these methods are 

rarely applied to experimental data. This research suggests that currently overlooked approaches 

should not be neglected. Surprisingly, according to our experience, these methods are shown to 

be very effective when exploring genomic and proteomic data. 

• “Any model must be backed up by praxis” 

Our research was guided by realistic and applicative motivations, not limited only to theoretic 

perspectives. As a result, all our algorithms were applied to experimental datasets. Always, a 

software tool was developed for the corresponding algorithm. For instance, the COMPACT 

package, which has been made freely available to academic usage, has been accessed to date 

more than 5,500 times, downloaded more than 750 times and served as the basis for two graduate 

courses. As users of these tools may be biologists or medical researchers who are not data 

mining experts, providing intuitive, graphical and user-friendly applications is of prime interest.  

• “When possible, follow the Occam’s Razor principle” 

Last but not least, throughout the research, we were motivated to follow the law of parsimony. 

Hence, we favored solutions that are easy to comprehend and fast to implement. Additionally, a 

main focus of our research was to find a minimalist set of features or parameters that describe 

hidden patterns in the data. 
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Abstract 

Feature selection is an important preprocessing task in 

the analysis of complex data. Selecting an appropriate 

subset of features can improve classification or 

clustering and lead to better understanding of the data. 

An important example is that of finding an informative 

group of genes out of thousands that appear in gene-

expression analysis. Numerous supervised methods have 

been suggested but only a few unsupervised ones exist. 

We present an Unsupervised Feature Filtering (UFF) 

approach, based on estimating the contribution of each 

feature to the Singular Value Decomposition (SVD) of 

the data. The estimate is based on SVD-entropy, thus 

taking into account the context of all other features. UFF 

ranks all features and provides a natural selection of the 

preferred group of features. We demonstrate that UFF 

outperforms other unsupervised selection methods, and 

analyze the statistical nature of its selected features. In 

addition, we propose criteria indicating which datasets 

are amenable to feature selection by UFF. Relying on a 

formalism similar to UFF we propose also an 

Unsupervised Instance Selection (UIS) method. UIS 

allows selection of instances whose characteristics 

deviate from all others. The latter may be disregarded at 

the clustering stage. Our methods are demonstrated and 

tested on known benchmarks.  

Supplementary Material: http://adios.tau.ac.il/UFF 

 

1. Introduction 

The present information age is characterized by 

exponentially increasing data, e.g. in documents, records 

of various kinds or biological data. Improved 

experimental techniques, such as high throughput 

methods in biology, allow for the measurement of 

thousands of features (genes) for each instance (single 

gene-expression microarray per patient). This leads to a 

flood of data, whose analysis calls for preprocessing in 

order to reduce noise and enhance the signal through 

dimensionality reduction. This is important for both 

enabling the application of various categorization 

techniques and allowing for biological inference from 

the data. 

Dimensionality reduction algorithms are usually 

categorized as extraction or selection methods. In 

feature extraction, all features are transformed into a 

lower dimension space, while in feature selection, a 

subset of the original features is selected. A benefit of 

the latter is the ability to attach meaning to the selected 

features. This is important both for exploration of the 

biological reality and for preparing a more concise 

experimental layout. The methods to be studied here are 

categorized as feature selection. 

It is customary to divide feature selection methods into 

two types: supervised, in which a target function is 

known and one tries to rank features or optimize some 

objective function relative to it, and unsupervised, in 

which one has no information regarding the instances. In 
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practice, due to the abundance of data, most of it 

unlabelled, it seems that most problems call for an 

unsupervised approach. 

While supervised feature selection methods are 

abundant, unsupervised methods are scarce, most of 

them tested on labeled data [9]. Nevertheless, 

unsupervised feature selection methods may play an 

important role even in supervised cases. Being unbiased 

by the labeling of the instances, unsupervised feature 

selection can be used as a preprocessing tool for 

supervised learning algorithms providing reduction of 

overfitting (for a comprehensive review we refer to [9]). 

As described in [5], feature selection from unsupervised 

data can be applied at three different stages: before, 

during and after clustering. Methods that operate before 

clustering are referred to as filter methods. Common 

methods of unsupervised feature filtering rank features 

according to either (1) their projection on the first 

principal components [25] , (2) their normalized 

range,(3) entropy or (4) variance of the feature as 

calculated from its values on all instances [9] [13]. All 

these methods estimate the importance of each feature 

independently of all others.  

Our Unsupervised Feature Filtering (UFF) algorithm 

[23] differs from aforementioned methods in that it 

ranks features based on a criterion that involves all other 

features. It also provides a natural cutoff for selecting 

the number of features. Our aim in this article is to 

suggest UFF as a strong preprocessing tool by (1) 

exploring the properties of UFF and the features it 

selects, (2) suggesting indicators for the ability to apply 

the method to certain datasets and (3) extending it by 

proposing a method called Unsupervised Instance 

Selection (UIS) for inspecting and eliminating potential 

outlier instances.  

The outline of the article is as follows: in the next 

sections we introduce the concept of UFF (in section 

2.1), explore the properties of UFF using example 

datasets (2.2), compare UFF with other filtering 

methods (2.3), analyze which datasets can be evaluated 

by the UFF method (2.4). Finally we describe the UIS 

method in section 3, and discuss some aspects of our 

findings in section 4. 

2.  Unsupervised Feature Filtering (UFF) 

2.1 Selecting Features 
In many problems, such as gene expression, all features 

are of similar nature, yet only some of them bear 

relevance to the data under investigation. Looking for 

the relevant features is the goal of feature selection. The 

main idea of our approach is to eliminate one feature at 

a time from the data matrix in order to estimate the 

effect of this feature on the data. In practice we use the 

Singular Value Decomposition (SVD) procedure. Let A 

denote a matrix, whose elements Aij denote the 

measurement of feature i on instance j, e.g. expression 

of gene i under condition j. SVD decomposes the 

original matrix A into A=USV
T
, where U and V are 

unitary matrices whose columns form orthonormal 

bases. The diagonal matrix S is composed of singular 

values (sk) ordered from highest to lowest. SVD is a 

common technique for dimensionality reduction. 

Conventionally, it is either used in feature extraction by 

truncating S using only the first r singular values, which 

results in the best r-rank approximation of the original 

matrix in the least-square sense, or by exploring the r 

leading eigenvectors [24] [1]. UFF uses the information 

contained in the singular values differently, in order to 

select the features.  

Let q be the rank of the matrix (q≤min(n,m), where n is 

the number of instances and m is the number of 

features). Using the singular values, sk, one may define 

the normalized relative squared values ρk [24] [1]: 

2 2

1

q

k k i

i

s sρ
=

= ∑  (1) 

A dataset that is characterized by only a few high 

normalized singular values, whereas the rest are 

significantly smaller, reflects large redundancy in the 

data. On the other hand, non-redundant datasets lead to 

uniformity in the singular values spectrum. UFF exploits 

the property of the spectrum in order to measure how 

each feature i influences this redundancy, while favoring 

features which decrease redundancy. The score of a 

feature i is defined using a leave-one-out principle. A 

function ƒ is calculated on the set of all singular values 

for the original matrix and for the corresponding set of 

the matrix without feature i. The difference in the values 

of ƒ defines the score of each feature i. In this work, we 

use the SVD-entropy (H) as the function ƒ [1] [4] (note 

that this 'Shannon'-like function does not use 

probabilities). The score of a feature can be thus 

regarded as its contribution to the SVD-entropy. 
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Other functions may be used instead of H. They have to 

be monotonic and vary from a maximum, when all 

singular values are equal, to a minimum when there is 

only one singular value bigger than zero. Two such 

functions that we tested are the negative value of sum of 

squares and the geometric mean (expressions 3 and 4, 

respectively). The results using these functions are very 

similar to those obtained using the SVD-entropy, hence 

we will not elaborate further on them. 
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Figure 1 displays the results after applying the UFF 

algorithm to two different datasets (see section 2.3), and 

sorting the features according to the decreasing score of 

the UFF. Clearly, one can divide the features into three 

groups:  

1. Features with positive score. These features increase 

the entropy. 

2. Neutral features. These features have negligible 

influence on the entropy.  

3. Negative score features. These features decrease the 

entropy. 

Note that a majority of all features falls into group 2, 

while groups 1 and 3 represent minorities. We argue that 

the most relevant features belong to group 1. The 

rationale behind picking the positive score features is 

that, because they increase the entropy, they decrease 

redundancy. Hence we may expect that instances may be 

better separated in the space spanned by these features. 

Further analysis of this group and its comparison with 

the two other groups is presented in section 2.2. 

 

 

Figure 1. UFF Scores of the (A) 2308 genes of SRBCT and 

(B) 18 virus features, ordered by decreasing scores. Dashed 

lines represent mean(score)±std(score). Note that the two 

different datasets have similar characteristics. Irrespective of 

the number of features and the values of their scores, we find 

clear separation into three groups of features. 

Features whose scores lie above the mean+std are 

selected as the relevant ones. The division supplied by 

the std defines a set of mc selected features (mc<m). We 

refer to this selection as Simple Ranking (SR). Two 

alternative selection methods are Forward Selection and 

Backward Elimination [23]. Here we will concentrate on 

SR. Results of the alternative UFF methods appear in 

the supplementary material.  

2.2 Properties of Selected Features 
We investigate the features selected by UFF, by looking at 

their statistical properties. First we plot in Figure 2 the 

mean (A) and variance (B) of all features (as measured on 

all instances). These are shown for the SRBCT dataset used 

in Figure 1A. Most features belonging to the second 

(neutral) group possess low mean and variance. It is evident 

that both the positive score features and the negative score 

features have high mean and variance. This explains a 

major difference between UFF and the Variance Selection 

method: while UFF selects features from group 1, Variance 

Selection chooses features from both groups 1 and 3. In this 

context, it is noteworthy that datasets of this nature (such as 

of gene-expression) should not undergo any zero-mean 

normalization, as the averages of the various feature bares 

meaningful information. 

 

 

Figure 2. (A) mean and (B) variance of the SRBCT dataset (X 

axis refers to genes ordered according to UFF score). 

119



 

 

 

 

Figure 3. Projection on the 83 principal components of a 

typical - (A) positive score (B) negative score - feature from 

the SRBCT dataset. Note the outstanding value of PC1 in B. 

An important difference between the positive (group 1) 

and negative (group 3) features is displayed in Figure 3. 

This figure shows the projection of typical positive and 

negative features (A and B, respectively) on the SVD 

eigenvectors (or principal components, PCs) of the 

original data matrix. Positive score features have 

relatively evenly distributed projections on the PCs, 

while negative score features project strongly on the 

first. It is the latter property that explains the negative 

score: by preferring the leading principal component 

these features decrease SVD-entropy. We present in the 

Appendix a proof that when a feature lies only on the 

first PC, it is bound to have a negative score. The proof 

for the SVD-entropy function can be extended to cover 

also the alternative measures of equations 3 and 4.  

The differences in projection on the principal 

components between the positive and negative scored 

features, may provide an explanation for the difference 

between our approach and the sparse-PCA approach that 

have recently been suggested [25]. The latter selects 

features that in essence, correlate mainly with the first 

leading principal components, while UFF prefers 

features that tend to distribute evenly along most of the 

principal components. 

Furthermore, we also find that the negative score 

features have skewness close to zero and kurtosis close 

to three. Hence we conclude that group 3 features, 

discarded by UFF but selected by Variance Selection, 

possess wide Gaussian distributions. This means that 

Variance Selection contains noisy features and explains 

their inferior results demonstrated in the next section. 

2.3 Data and Results 
In order to demonstrate the performance of UFF, and to 

compare it with other feature selection methods, we 

apply it to two representative datasets. The first is the 

small round blue cell tumor (SRBCT) gene-expression 

dataset that was first introduced in [16], and includes 

cDNA microarray measurements of 2308 genes 

(features) for 83 patients (instances). The instances are 

categorized into four types of tumors: Burkitt 

lymphoma, Ewing sarcoma, Neuroblastoma and 

Rhabdomyosarcoma. The second dataset, originally 

described by [6] and analyzed more thoroughly by [19], 

contains 61 rod-shaped viruses affecting various crops. 

There are 18 measurements of Amino Acid 

Compositions (AAC) for the coat proteins of the virus 

serving as 18 features. The viruses are classified into 

four classes: Hordeviruses, Tobraviruses, 

Tobamoviruses and Furoviruses. It is worth mentioning, 

that neither the UFF nor the other algorithms use these 

labels either at the filtering or at the clustering stage. 

In order to assess the quality of the filtering methods, 

clustering of the instances is performed on the filtered 

dataset. In the cases described below, clustering is based 

on the QC algorithm [11] (it is shown in [23] and in the 

supplementary material that similar conclusions 

regarding feature filtering are obtained when applying 

other clustering algorithms, e.g., hierarchical clustering 

and K-Means). Assessment of clustering quality with 

respect to expert classification of the data is measured 

using the popular criterion of Jaccard score (J) [10, 14, 

20]  

Figures 4 and 5 display the clustering results for the 

SRBCT and viruses datasets, respectively, when several 

unsupervised filtering methods are applied. The methods 

compared are UFF, normalized range (range values of 

the feature normalized by the minimal value), Variance 

and Entropy (of feature values over the instances), and 

random selection (for each number of features we use 50 

repeats of random selections from the total set of 

features). The dashed line denotes the score obtained 

when using all features. 
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Figure 4. Clustering results (Jaccard score, Y axis) of the 

SRBCT dataset as a function of the number of features 

selected by each method: (A) UFF, (B)Normalized range, (C) 

Variance, (D) All, (E) Feature Entropy and (F) Random. 
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Figure 5. Clustering results (Jaccard score, Y axis) of the viruses 

dataset as a function of the number of features selected by each 

method: (A) UFF, (B) Normalized range, (C) Variance, (D) All, 

(E) Feature Entropy and (F) Random 

The two figures show that UFF outperforms other 

methods, especially when the selected group of features 

is relatively small. Whereas the results are shown as 

function of the number of features that are retained, note 

that UFF contains an estimate (mc) of the number of 

features to be selected. These values are 88 for the 

SBRCT dataset (Figure 4) and 3 for the virus data 

(Figure 5). At both values we witness the largest 

difference in clustering quality between UFF and the 

other methods. 

2.4 When is UFF Applicable 
While UFF works very well on many datasets, including 

most gene-expression data, we have found datasets where 

selection according to UFF is not effective. Figure 6 

presents two such examples: datasets of stocks [21] and 

cell-cycle gene-expression [22]. On both, UFF did not lead 

to improved clustering (not shown). We note that the 

distributions in Figures 6 and 7 are somewhat different from 

Figure 1. In particular, group 2 features display large 

variance among their scores. 
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Figure 6. UFF Scores of (A) stocks dataset and (B) cell-cycle 

gene-expression dataset, ordered by decreasing UFF score. 

Working with more than a dozen datasets from different 

domains, all shown in the supplementary material, we have 

found measures that allow for separation between 7 datasets 

on which UFF is effective from 5 datasets in which it is not. 

One such measure is the normalized entropy of the squares 

of UFF scores. This, as well as another measure, is 

presented in the Appendix. They allow for a prior estimate 

on whether UFF should be employed. 

3. Unsupervised Instance Selection (UIS) 

The data-matrix A contains information on instances in 

terms of features and features in terms of instances, and 

the singular values are common to both. One may 

therefore consider a 'leave-one-out' measure applied to 

instances. This is the Unsupervised Instance Selection 

(UIS) method, to be studied here. It turns out to be 

useful for identifying outliers among the instances that 

may be removed in order to provide a more 

homogeneous dataset. 
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Figure 7. UIS scores of the instances of the SRBCT dataset, 

ordered by decreasing score 

Evaluation of the UIS method is done in the same 

manner as for UFF, i.e. clustering the remaining 

instances and comparing against expert labeling. Table 1 

displays clustering results for the SRBCT and viruses 

datasets for (a) all features and instances, (b) the UIS-

filtered instances while keeping all features, (c) the UFF 

features and all instances, and, (d) the joint selection of 

instances and features by UIS and UFF respectively. UIS 

followed by UFF markedly improves the clustering 

quality, having Jaccard scores of 0.88 and 0.95 for the 

two datasets, respectively. The results were compared to 

clustering done on the datasets in which instances were 

randomly removed (13 and 6 instances, in the SRBCT 

and viruses datasets respectively). No improvement of 

the Jaccard score was found. Hence we conclude that 

removal of UIS selected instances is indeed efficient. 

The UIS eliminated instances are found to be distributed 

homogenously among the four classes in both datasets. 

Other datasets appear in the supplementary material. 

Table 1: Clustering quality (Jaccard scores) for SRBCT and 
viruses datasets using all the features, UIS, UFF and 
UFF+UIS 

 All UIS UFF UIS+UFF 

SRBCT 0.21 0.20 0.65 0.88 

Virus 0.59 0.68 0.93 0.95 

4. Conclusions 

We present and explore UFF, an unsupervised approach 

that scores and ranks each feature according to its 

influence on the singular values distribution. By 

applying a leave-one-out method, scoring of each 

feature is determined with regard to all other features, 

and not independently as by other standard methods.  

A statistical characterization of the selected features 

shows that our method selects features of high variance 

(over instances), but only those that do not have large 

correlation with the first principal component. It turns 

out that thus we ignore noisy features that have Gaussian 

distributions. 

By studying various empirical datasets and evaluating 

different scoring functions we show that our approach is 

generic, and can identify the subset of relevant features. 

In contradistinction to other methods we can estimate 

the size of the group of selected relevant features. 

UFF is a heuristic method which exposes its strength in 

realistic application. Nevertheless, not all datasets are 

amenable to feature selection by UFF. We propose 

criteria for deciding when UFF application is effective. 

We extend the capabilities of UFF by introducing the 

Unsupervised Instance Selection (UIS) method. 

Application of the latter followed by UFF fulfills three 

important goals: (1) identify and remove outliers from 

the dataset, (2) identify and select the most informative 

features and (3) improve the clustering quality. 
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5. Appendix 

5.1 Negative Score Feature Proof 
One can prove that in the extreme case, where a feature 

is lying only on the first PC, it is bound to have a 

negative score. We shall now prove it for the SVD-

entropy function. This proof can be extended to cover 

also the alternative measures in Equations 3 and 4. 

Starting with the positive-definite correlation matrix C, 

defined as  

2T TC A A VS V= =  (5) 

for the data matrix A of M features by N instances 

(where, without loss of generality we assume N≤M), we 

use its eigenvalues to define: 

2

1 1

,  ,  ,  log( )
N N

i
i i i j j j

j j

c
c s T c K c c

T
ρ

= =

= = = = −∑ ∑
 

(6) 

T is positive definite. SVD entropy can be related to K 

through 

( )
1

log( ) log
N

i i

i

K
S T

T
ρ ρ

=

= − = +∑  (7) 

where, for simplicity, we dropped the normalization 

constant (log(N)) in the definition of S 

Consider the small perturbation of adding one feature to 

the matrix A.  The assumption of a small perturbation 

generally holds for a large enough number of features. 

Using equation (7), we can write the resulting change of 

S as 

(1 )
K

TdS dK dT
T

= + −  (8) 

If an added feature projects only on the first PC, it can 

change only the first singular value. It follows then that 

( )1 1 1,  - (1 log )dT dc dK dc c= = +  (9) 

Plugging the terms in (9) into equation (8), we arrive at 

( )1
1

( )
( log ) 0

dcTdK T K dT
TdS K T c

T T

+ −
= = − + <  (10) 

which means that adding such a feature always leads to 

reduction of entropy.  

To complete the proof we show that the right hand side 

is indeed negative. T is positive, and so is also the sum 

of the two terms in the bracket, since c1 is the leading 

eigenvalue and the following inequality holds: 
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1

1

ln( ) log( )
N

j jK c c T c− = <∑  (11) 

We now prove that dc1>0. Note that, by definition, 

,

i mi mn ni

m n

dc V C V=∑  (12) 

The first order perturbation of the eigenvalues of C is 

related to the change of the original matrix C by the 

original unitary transformation V.  This follows from the 

unitarity constraint on V 

0mi mim
dV V =∑  (13) 

and is the discrete analog of the Hellman-Feynman 

theorem[11], [12], [7].  

Adding a row to A, i.e. adding the feature vector f 
M+1

 of 

size N, the correlation matrix C changes to  

1 1M M

mn mn n mC C f f
+ +→ +  (14) 

Plugging it back into equation (12), we conclude the 

proof with showing the dc1 is positive according to: 

( )2
1M i

idc f V
+= ⋅  (15) 

where Vi is the i--th eigenvector of C. 

Adjusting appropriately S and K, it is easy to prove this 

also for the sum of squares and the geometric mean 

functions mentioned in 2.1. 

5.2 When is UFF applicable? 
We present two measures that allow for a separation 

between datasets on which UFF is effective, from those in 

which it is not. The first is SE, an entropy-like measure on 

normalized squares of UFF score-values. 
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(17) 

and the second is VE, an entropy-like measure on the 

variance-values (i.e. variance of feature-values on all 

instances). 
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1

1
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k k

k

VE z z
M =

=− ∑  (19) 

Suitable datasets can then be defined as those lying below 

certain thresholds in both measures. We tested 7 'suitable' 

and 5 'not-suitable' datasets using UFF and clustering 

algorithms. VE seems to provide a better margin of 

separation between the two groups of datasets ('suitable' 

datasets' VE range between 0.6 and 0.86, whereas 'not-

suitable' datasets' VE range between 0.96 and 0.98). The 

datasets' description appear in section 5.3 and UFF graphs 

are provided in the supplementary material. 

5.3 Datasets 
The numbers in curly brackets denote the number of 

features x the number of instances. The numbers in square 

brackets reference the references section. 

1. Small-Round-Blue-Cell-Tumor (SRBCT) {2308x83} 

[16] 

2. Leukemia dataset 1 {7129x72} [8] 

3. Leukemia dataset 2 {12582x72} [2] 

4. Yeast microarray {5827x133} [18] 

5. Virus {18x61} [6] 

6. Facial-slopes {3486x91} [15] 

7. Lung cancer {4966x96} [3] 

8. Stocks {273x487} [21] 

9. Facial-distances  {3486x91} [15] 

10. Orange Juice  {700x218} [17] 

11. Cell Cycle  {72x798} [22] 

12. Movies {943x1682} [21] 
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כל האלגוריתמים נוסו על , לאור זאת. י מניעים יישומיים וריאליסטיים" הונחה עשערכנומחקרנו 

בכל המקרים חבילת תוכנה פותחה וסופקה עם ).  סימולציהל בסיסולא ע(נתונים מחקריים אמיתיים 

, המסופקת באופן חופשי לשימוש אקדמי באינטרנט, COMPACTלדוגמה לחבילת . האלגוריתם

החבילה אף היוותה בסיס לשני קורסים מתקדמים .  הורדות800 צפיות ומעל 6000נרשמו מעל 

 שמרבית המשתמשים הפוטנציאליים של תוכנות אלו עשויים מכיוון, זאת ועוד. באוניברסיטות שונות

פתח כלים גראפיים חיוני היה ל, אשר אינם מומחי כריית מידע,  רפואייםםלהיות ביולוגים או חוקרי

  .ידידותיים למשתמש

 הפרסימוניות של אוקהםדיו שאפנו לציית לעקרון בולאורך כל ר, בכל שלבי המחקר, לסיום

)Occam’s razor principle .(דגש , בנוסף. קלים להסבר ולמימוש, לכן העדפנו פתרונות פשוטים

  .מתארים תבניות חבויות בנתוניםה, של תכוניות או פרמטריםר קבוצות מינימליות ותימיוחד ניתן לא



 ח 

  )בחירת תכוניות(קדם תהליך מפוקח 

ם של ויישומי, שיטות מפוקחות נלמדו באופן מעמיק בתחום, בחירת תכוניות לא מפוקחתשונה מב

הוצאה , ')forward insertion(' הכנסה קדימה' דוגמאות נפוצות הינן .שיטות אלו נפוצים מאוד

ודירוג לפי מדדים ) stepwise selection(בחירה בשלבים , )backward elimination(' אחורה

   ).t-testלדוגמה (סטטיסטיים 

  )סיווג(קטגוריזציה מפוקחת 

 כלל הכללה התקף לשאר ק ומנסים להסי,לפי קבוצת אימון מתויגתאלגוריתמי סיווג לומדים תבניות 

 ושיטות  עצי החלטהSupport Vector Machine (SVM),, בדומה לאשכול. )קבוצת המבחן(הפריטים 

  .ייםפ נמצאו כיעילות בסיווג נתוני ביטוי גנים או נתונים רצ,מפוקחות אחרות

 כי ניתן לסווג ,הנחנו, )רת תכוניות וסיווגבחי(מפוקחת הלמידה ההמשלב את שני שלבי , במחקר

המתוארים בעזרת קבוצה קטנה במיוחד של תכונות ביוכימיות , מחלקות פונקציונליות של חלבונים

, חלבונים, כדי לבחון הנחה זו). נפיצות של חומצות אמינו, הידרופוביות, כגון משקל מולקולרי(

שימוש באסטרטגיות בחירת , בנוסף. SVMגוריתם  סווגו בעזרת אל,י אותן תכונותל ידהמתוארים ע

תוצאות . מדידת התרומה של כל אחת מן התכוניות למשימת הסיווגאת אפשר , תכוניות שונות

 אשר במצבים מסוימים יכולה אף להצטמצם,  כי קבוצה קטנה של תכוניות גלובליות,המחקר הראו

 ,מצאנו, זאת ועוד.  פונקציונליות ואחרותמספקת מידע מהותי לגבי שייכות החלבונים לקבוצות, יותר

  . את איכות הסיווג, באופן מובהק,לוקליות וגלובליות משפר) מבוססות רצף( כי שילוב של תכונות

  

 אלגוריתמים , היהככל שניתן, ראשית. כי מספר מוטיבציות כלליות הניעו את המחקר, לסיום נציין

י ל ידפחות עמוטים  בהיותם )1(:  גנומי הינןע מידהסיבות להעדפה זו בכריית. לא מפוקחים הועדפו

דע הגנומי  המי)2( ; צפויותי תופעות שאינן מאפשרים גילואלגוריתמים אלו, גורמים לא רלבנטיים

 החלוקה לקבוצות אימון ומבחן בלמידה מפוקחת טומנת בחובה מספר )3( ;טרם מופה ותויג במלואו

  ).הטיית המדגם, כגון התאמת יתר(בעיות 

ומתעלמים , על עקרונות מתמטיים וסטטיסטיים, באופן בלעדי, האלגוריתמים שהצגנו מבוססים

מוגבלות לסוג נתונים ביולוגי השיטות הינן כלליות ולא , כתוצאה מכך. לחלוטין משיקולים ביולוגים

 על כל האלגוריתמים נוסו ויושמו, מכיוון שהבנה ופרשנות ביולוגיים היו בסיס המחקר . או אחרכזה

  . דגש רב ניתן להפקת פרשנות ביולוגית בסוף כל מחקר. נתונים גדולים אלו

, רועשיםרבים וובפרט במקרים של נתונים ביולוגים , ביישומי כריית מידעכאשר עוסקים , בנוסף

לכל מקרה יש להתאים את הפתרון , כלומר.  סביר שגישה אחת תתאים לכל הבעיותאין זה

מחקרנו שם דגש רב על פיתוח שיטות הערכה והשוואה ,  בשל כך.יטבייםוקונפיגורציית הערכים המ

  .אלגוריתמים וקונפיגורציות שונותבין 

 בלתי שיטות בחירת תכוניות ,בפרט.  אינם נפוצים בספרות המדעיתתם חקרנומרבית הכיוונים או

. ם במחקריםכמעט ואינם מתוארים ומיושמיאשר , מפוקחות ואלגוריתמי אשכול היררכיים גלובליים

אותן שיטות , באופן מפתיע. להתעלם מהן, בדרך כללמחקר זה מציע לא להזניח גישות ושיטות שנהוג 

  .בחקירת מידע גנומי וחלבוני, נמצאו כיעילות ביותר



 ז 

 של מידת אפקטיביותמציע הערכה , המסופק עם האלגוריתם, מדד פנימי) 4( ;ביולוגית במחקרי סרטן

 השיטה הינה כללית דיה להיות מוכללת לסינון פריטים במקום )5( ;.בהינתן הנתונים, השיטה

  .תכוניות

  אשכול

, גישה מקובלת זו. בעלי רלבנטיות, ובשאיפה, ותאלגוריתמי אשכול מופעלים כדי למצוא קבוצות נבדל

ס הדמיון " ובקיבוץ חלבונים ענמצאה כיעילה ביותר בקיבוץ גנים או דוגמאות בניסויי ביטוי גני

והערכת , ים באשכוליאשר נחקרו הינם שיקולים גלובל, השייכים לאשכול, שני תחומים. הרצפי

  .האשכול

 ל מנתאלגוריתמי אשכול מסוימים פותחו מלכתחילה ע, לעיל כפי שפורט .שיקולים גלובליים באשכול

. הינם יישומים סטנדרטים של שיטות למידה חישובית, להתמודד עם נתונים גנומיים ואילו אחרים

 agglomerative(בב וּהוא האשכול ההיררכי המג ביותר ים הנפוצם הסטנדרטיהאלגוריתמים מן אחד

hierarchical .(מגבלה בולטת של אלגוריתם .  המוחלט של המחקריםם ברובשיטת אשכול זו מיושמת

, לשם הטמעת שיקולים אלו באשכול. זה נעוצה בהתעלמותו משיקולים גלובליים בתהליך הגיבוב

גישה היררכית חדשנית ): Top-Down-Quantum-Clustering (TDQC )1(: פיתחנו שני אלגוריתמים

לוקאלית - גרסה גלובלית)2(. למטה ומבוססת על צפיפות הפריטים במרחב-הפועלת מלמעלה

בחינה מקיפה . המשקללת את כל יחסי הדמיון בין הפריטים, של אלגוריתם הגיבוב) 'גלוקאלית'(

. רכיים אחרים כי שני אלגוריתמים אלו מציגים ביצועים עדיפים על פני אלגוריתמים היר,הראתה

, מסחר מניות, הכוללים ביטוי גנומי, בחינת האלגוריתמים בוצעה על נתונים מתחומים שונים

  . של חלבוניםתוקבוצות פונקציונאליו

 משימוש בטכנולוגיות המתקבליםוכאלו ,  מניסוים ביולוגיים בכללנתונים .הערכת האשכול

התפיסה . )הפריטים והן במספר התכוניותהן במספר (הינם רועשים ורבים מאוד , החדשניות בפרט

הערכה , כתוצאה מכך. רב מימדים ורועש, האנושית אינה מותאמת לבחינה של מידע כה גדול

שכן מדובר (מכיוון שהשונות בנתונים הביולוגים כה רבה . ויזואלית של תוצאות אשכול איננה ישימה

האחרים פני  על ףמצא יעיל ועדייל יחיד י שאלגוריתם אשכוסבירזה  אין, )תנאי ניסוי ומחקר שוניםב

 הפתרון המיטבי הינה מציאת, מכיוון שאלגוריתמים רבים שונים באופיים, יתרה מכך. בכל מצב

המיועדות ,  פיתחנו שלוש תשתיות אלגוריתמיות יישומיות,כתוצאה מכך. משימה מאתגרת ביותר

הינו ) The Clustering Algorithms Optimizer (מטייב אלגוריתמי אשכול )1( :לסייע במשימות אלו

 ובוחרות את הפיתרון ,אשר סורקות את מרחב פתרונות האשכול,  פרוצדורות לא מפוקחותקבוצת

קריטריון זה מבוסס על קריטריון האינפורמציה . התלוי רק בנתונים,  קריטריון פנימיל סמךהמיטבי ע

כגון , שיטה זו מתגברת על מגבלות שכיחוֹת). Bayesian Information Criterion BIC(הבייסיינית 

 )2( ;או גורמים לא דטרמיניסטים) לדוגמה מספר האשכולות(התבססות על פרמטרים חיצוניים 

COMPACT )Comparative Package for Clustering Assessment( מציג שיטה וקבוצת 

וכן מכיל מדדים פרוצדורות המאפשרות השוואה ויזואלית וסטטיסטית של מספר אלגוריתמים 

 הינה חבילת תוכנה ClusTree )3( ;להערכת התוצאות) על תיוג הפריטיםהמבוססים (חיצונים 

  . גראפית לאנליזה והשוואת אלגוריתמי אשכול היררכיים



 ו 

תהליכי או -קדם(השלבים באנליזה בהם הם מופעלים נהוג לחלק את שיטות כריית המידע לפי 

מכאן ). unsupervised (בלתי מפוקחיםאו ) supervised(ים ועל בסיס היותם מפוקח, )קטגוריזציה

 unsupervised(תהליך לא מפוקח - קדם)1(: שניתן לסווג שיטות כריית מידע לארבע קבוצות עיקריות

preprocessing(; )2( קטגוריזציה לא מפוקחת )קטגוריזציה )4( ;תהליך מפוקח- קדם)3( ;)אשכול 

כך שקיימות שיטות , וקה זו אינה בלעדית וגבולותיה מטושטשיםשחל,  יש לציין).סיווג(מפוקחת 

  .המשלבות בין הקבוצות

ובפרט , כריית מידע מכל אחת מארבע הקבוצות לעילאלגוריתמים של במחקר זה נלמדו ופותחו 

 פחות , יחסית,אשר נעשו ניסיונות לפתח שיטות בתחומיםכן . חותקמפובלתי  שיטותניתן דגש על 

  .נחקרו עד כה

   מפוקחבלתיתהליך -קדם

הנתונים מוכנים , בשלב זה. אחד השלבים הראשונים ברוב תהליכי האנליזה הינו קדם התהליך

 שאינןאו תכוניות , )instances(פריטים , קהוּמנ' רעש, ')מילוי ערכים חסרים, נרמול,  ניקוילדוגמה(

  .וממדיות מערך הנתונים מופחתת, סריםוּרלבנטיות מ

 feature (מיצוי תכוניותהפחתת מימד וסינון רעשים בנתונים היא , ות לנרמולהגישות הנפוצאחת 

extraction .(אולם ,ICA ,PCA ,SVD התכוניות למימד נמוךכל ושיטות מיצוי אחרות מעבירות את  ,

) feature selection( בחירת תכוניותכפי ששיטות , ולכן לא מספקות פרשנות לתכוניות מסוימות

  .מאפשרות

 מפוקחות בלתימפעילים מספר שיטות בחירה ,  מודעשאינו באופן בעיקר,  החוקריםמרבית

מספר ,  באופן מפתיע, עם זאת,)פריטיםסינון אלפי גנים בעלי שונות ביטוי נמוכה במרחב ה, לדוגמה(

רוב השיטות הקיימות כיום .  הוצעו לבחירת תכוניות באופן בלתי מפוקחאלגוריתמיםמועט מאוד של 

בחירת תכוניות עם , יחס בין ערכי מקסימום למינימום, לדוגמה טווח ערכים, יביות באופייןהינן נא

אלו הוא שערכי כל תכונית המשותף לשיטות . אנטרופיה או שונות, ערכים מעל סף תחתון מסוים

  . באופן בלתי תלוי באחרותיםמחושב)  שונותלמשל(

ויעילות הובילו אותנו לפתח אלגוריתם , יציבות, מוטות-חשיבות הנושא והמחסור בשיטות לא

 שונה UFF) Unsupervised Feature Filtering .(UFFלסינון בלתי מפוקח של תכוניות בשם 

 )2(הוא אינו מערב פונקצית מטרה כמדד לבחירה ו  )1(: מסכמות בחירה לא מפוקחות בשני מובנים

 מנקד כל תכונית לפי תרומתה UFF. שקלל את ההשפעות ההדדיות של כל אחת מן התכוניותמ הוא

-leave(' בחוץ-אחד-שארה'תרומה זו נמדדת לפי עקרון ה .  של מערך הנתוניםSVDלאנטרופיית ה 

one-out.(  

נפיצות חומצות ,  ביטוי גנילמשל(מסוגים שונים , ישום השיטה במספר רב של בסיסי נתונים

 של תכוניות מסייעת לשיפור איכות  בחירה של מספר קטן מאוד)1(: הראה כי) אמינו ברצפי חלבון

או , ס שיטות לא מפוקחות אחרות"שנבחרו ע, בגודל דומה, בהשוואה לקבוצות אחרות(האשכול 

נמצאה כעמידה גם  UFF  הגישת )2( ;)י כל התכוניות"כשאלו מיוצגים ע, בהשוואה לאשכול הפריטים

 חשיבות ות השיטה נמצאו כבעלס" התכוניות שנבחרו ע)3( ;במצבים של איבוד אינפורמציה חמור



 ה 

  תקציר

 מאותגנומים של בשנים האחרונות ". מהפכה הגנומית"ים מכנים את התקופה הנוכחית כרב

.  נלמדו)וחלבונים, RNAמולקולות ( ותוצריהם וּפוּמגנים של אותם אורגניזמים , וּצפוּראורגניזמים 

הפונקציות התאיות של כל אותן מולקולות .  של עשרות אלפי חלבונים נובא ונצפהיםמבניהם המרחבי

  . בקצב מואץתורהמתב

אשר מאפשרות ריצוף מהיר של , הבסיס להאצה זו נעוץ במספר פריצות דרך טכנולוגיות

 Comparativeאו , DNAלדוגמה מערכי (מדידת ביטוי גנומי , )Haplotype Mapלדוגמה (מולקולות 

Genomic Hybridization( ,מדידת הקישוריות בין חלבונים לDNA)  לדוגמהChIP-on-chip( ,

המשותף לכל אותן . ועוד) Mass Spectrometry,  מערכי חלבוניםלדוגמה(נות הפרוטאום תכו

י "שפיתוחם הואץ ע, כלים אלו.  עשרות ומאות אלפי נתוניםתטכנולוגיות הוא יכולתן למדוד בו זמני

  .מהיר וזול, אמין, איסוף הנתונים לפשוטהפכו את , חברות מסחריות

 תעברהאחסון ו, התפתחויות טכנולוגיות בעיבוד, הנתוניםבמקביל לשיפורים ביכולת איסוף 

גישה חופשית למספר רב של כיום קיימת , כתוצאה מכך. הקלו על אפסון הנתונים ושליפתם, מידע

  ).UniProt ו NCBI ,Stanford Genomics, Ensemble, לדוגמה(מאגרי נתונים גנומיים באינטרנט 

אשר ,  צוהר לשאלות רבות ולכיווני מחקר חדשיםופתח, תהגדולו יוכמויותו, נגישותו של מידע זה

,  מדעית חדשההרבים ממאמצי המחקר משויכים לדיסציפלינ.  לפני שנים ספורות אךנחשבו דמיוניים

 ,קשורה קשר הדוק לתחום הביואינפורמטיקהביולוגיה מערכתית . "ביולוגיה מערכתית"הנקראת 

 להסיק  החוקריםמנסים, קרים בביולוגיה מערכתיתמחבעזרת . שהתפתח אף הוא בשנים האחרונות

ללמוד כיצד קבוצות , )חלבונים ומטבוליטים, RNA, גנים(על הקשרים ההדדיים בין מולקולות בתא 

וכיצד גורמים סביבתיים ומטבולים מעצבים ,  על תהליכים ביולוגיםותעימסוימות של מולקולות משפ

  . תאבאת המערכת האקולוגית 

הינו חשיפת תבניות , המוצגות לעיל, דרך למתן מענה לשאלות השאפתניותהשלב הראשון ב

, השואפות לחלץ מידע מכמויות נתונים גדולות מאוד, שיטות. 'ענני נתונים'חבויות מתוך אותם 

סטטיסטיים , משלבת עקרונות מתמטיים, כריית מידע לרוב. מוגדרות כטכניקות של כריית מידע

 )1( בביואינפורמטיקה הינם ם של כריית מידע המיושמים באנליזותאלגוריתמי. ולמידה חישובית

ת  כדי להתמודד עם שאלובמיוחדאלגוריתמים שפותחו  )2(ליות שהותאמו לסוג הנתונים או שיטות כל

 רוב שיטות בחירת התכונוית ןהינ,  השייכים לקבוצה הראשונהדוגמאות לאלגוריתמים. מן התחום

)feature selection ,(ל וּשכאּ, )לןראה להclustering ( ומיון)classification.( דוגמאות לשיטות 

 ואלגוריתם, Gene-Shavingו  CLICK, CAST גניםכי ר אלגוריתמי אשכול למעןשפותחו בתחום ה

BLASTויתכן , הינם מאוד כוללנים, אלגוריתמים השייכים לקבוצה הראשונה.  להשוואת רצפים

ואילו אלגוריתמים , מיוחדים שהמידע הגנומי והחלבוני מציביםשאינם מתאימים לטיפול באתגרים ה

ונראה שאינם מתאימים לפתרון בעיות מתחומי מחקר , הינם תלויי תחום, מן הקבוצה השנייה

  .אחרים
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שלמי תודות



 ב 

עבודה זו נעשתה בהדרכתם של פרופסור מיכל ליניאל ופרופסור דוד הורן



  

  

  

        כלים ופרשנויותכלים ופרשנויותכלים ופרשנויותכלים ופרשנויות, , , , אלגוריתמיםאלגוריתמיםאלגוריתמיםאלגוריתמים: : : : כריית מידע גנומי ופרוטאומיכריית מידע גנומי ופרוטאומיכריית מידע גנומי ופרוטאומיכריית מידע גנומי ופרוטאומי

  

  

  חיבור לשם קבלת תואר דוקטור לפילוסופיה 

  

  מאת

  

        רועי ורשבסקירועי ורשבסקירועי ורשבסקירועי ורשבסקי

        

  

  ,הוגש לסינט האוניברסיטה העברית בירושלים

  2007דצמבר 


