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Abstract

The present era is a time of “genomic revolution”. In recent years, dozens of genomes
have been sequenced, proteins and genes have been mapped and learned, their structures
have been inferred and their functions are being understood.

The groundwork for such a rapid progress consists of several breakthroughs in high-
throughput technologies that allow fast sequencing (e.g., Haplotype Map), recording
expressions of thousands of genes simultaneously (e.g., Microarray chips, Comparative
Genomic Hybridization), protein-DNA interactions (ChIP-on-chip), proteome properties
(e.g., Mass Spectrometry, proteins chips) and more. Such technologies, accelerated by
commercial platforms, have made data collection easy, reliable, relatively cheap and fast.

In conjunction with data-collection feasibility, progresses in storage and information
transfer have facilitated the reposition and retrieval of that data. As a result, numerous
online genomic repositories are now publicly available (e.g., NCBI, Stanford Genomics,
Ensemble and UniProt).

This extensive availability of data has opened an opportunity for novel
research directions, many of which were considered futuristic only a few
years ago.Most of these efforts belong to a new discipline, strongly related to
Bioinformatics, called “Systems Biology”. Systems Biology studies aim to determine the
inter-relations among molecules (genes, RNA, metabolites and proteins), how groups of
elements influence biological phenomena and how environmental and metabolic factors
shape the cell’s ecosystem.

The first step to address these ambitious questions is to reveal hidden patterns out of the
‘clouds of data’. Methods that aim to extract information out of large-scale data are
referred to as data mining techniques, and usually include statistical and machine learning
principles. Existing Data Mining algorithms applied in Bioinformatics are either (/)
standard routines that were adapted to the field or (2) algorithms particularly developed
in the field. Examples of the former are most of the feature selection methods (see
below), clustering and classification methods, and for the latter are CLICK, CAST and
Gene-Shaving for clustering gene-expression data and BLAST for matching sequences.

Algorithms, which belong to the first group are generic and perhaps not adequate to



handle genomic data and the others are mostly domain-specific that probably cannot be
generalized to other data types.

It is customary to divide data mining methods based on the stages of the data analysis
in which they are applied (i.e., preprocessing or categorization), and whether they are
supervised or not. One can therefore classify data mining methodologies into four main
classes: (/) unsupervised-preprocessing, (2) unsupervised-categorization (clustering), (3)
supervised-preprocessing and (4) supervised-categorization (classification).

The focus of this research is to investigate and develop data mining techniques, which
belong to the four partitions described above. In particular, much emphasis is put on

unsupervised methods, and studying relatively less explored fields.

Unsupervised-Preprocessing
The first step of most data analysis procedures is usually preprocessing. It functions
mostly to prepare the dataset (e.g., normalization, missing values imputation), eliminate
noise, filter out irrelevant instances or features that describe each instance, and to reduce
the dimensionality of the data.

One popular unsupervised approach to achieve normalization, dimensionality reduction
and noise filtering, is feature extraction. However, ICA, PCA, SVD and other extraction
methods transform all features to a lower dimension space, and do not allow attaching
meaning to some relevant features in the set as in feature selection.

Although most analysts, often inattentively, do apply some unsupervised schemes (e.g.,
filtering out thousands of genes with small variance), surprisingly, only a few solutions
have been suggested to select features in an unsupervised manner. Most of them are very
naive e.g., range, fold-change, threshold, entropy and variance calculated on each feature
individually.

The importance of unsupervised feature selection to Bioinformatics, and the absence of
unbiased, efficient, stable and effective solutions to address this issue, was our rationale
to develop an unsupervised feature filtering algorithm (UFF). UFF differs from other
unsupervised selection schemes in the following aspects (/) It does not involve a target
function as the selection criterion and (2) it considers the interplay of all features. UFF
scores each one of the features according to its contribution to the SVD-entropy of the

dataset. Scoring a feature is based on a leave-one-out principle.
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We have shown on several datasets (e.g., gene-expression, amino-acid composition
counts) that: (/) Selection of only a few features according to UFF leads to improved
clustering results as compared to other unsupervised methods or to using the complete
set, (2) UFF is robust even in cases of severe information loss, (3) selected features are
correlated with biological importance in cancer studies, (4) an a-priori criterion can
provide an estimation of the effectiveness of the method for a given dataset and (5) the

method can be generalized to select instances rather than features.

Unsupervised-Categorization (Clustering)

Clustering algorithms aim to find distinctive and, hopefully, relevant groups of instances
in the dataset. This popular approach was very effective in clustering genes and tissues in
gene-expression experiments and proteins according to their sequence similarities. Two
aspects in clustering, addressed in our work, are the global considerations in clustering
and their evaluation.

Global considerations in clustering: As noted above, some algorithms were initially
developed to handle genome-specific data, while others are general machine learning
procedures. One of the most popular standard routines is the agglomerative hierarchical
algorithm, which is applied in a vast majority of cases. A clear limitation of this
algorithm is its tendency to neglect global factors. In order to embed global
considerations in clustering, we developed two algorithms: (/) TDQC: a novel Top-
Down hierarchical algorithm based on genuine density of the data-points, and (2) a
global-local (‘glocal’) variation of the agglomerative algorithm, which is based on all
relationships within the data (all distances). A comprehensive analysis shows that the two
new algorithms outperform other divisive and agglomerative methods. This assessment
was tested in multiple domains, including gene-expression, stock trade records and
functional protein families.

Clustering evaluation: High-throughput biological data is often noisy and of extremely
large size (both in number of instances and in number of features). Therefore, manual or
visual evaluation of clustering results is practically impossible. As the variability of data
i1s so broad, no single clustering algorithm can always be effective, and preferred to
others. Furthermore, because many algorithms encounter various limitations, determining

the best solution is a very challenging task. We therefore designed and implemented three
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algorithmic and software frameworks that provide platforms to handle the above
mentioned obstacles: (1) The Clustering Algorithms Optimizer, which is a completely
unsupervised set of procedures that scan the clustering solutions space and identify the
optimal solution vis-a-vis an internal measure, based on the Bayesian Information
Criterion (BIC). This methodology performs well and overcomes intrinsic limitations of
many clustering algorithms that rely on some predetermined parameters or involve
nondeterministic factors. (2) COMPACT: Comparative Package for Clustering
Assessment- A methodology and set of procedures that allow statistical and visual options
to compare many algorithms and asses their results. (3) ClusTree: A graphical software

package to analyze and compare hierarchical clustering.

Supervised-Preprocessing (feature selection)

As opposed to the unsupervised selection methods described above, supervised feature
selection algorithms have been extensively studied and applied. Popular examples are:
forward insertion, backward elimination, stepwise selection and ranking according to

statistical criteria (e.g., -test).

Supervised-Categorization (classification)

Classification algorithms learn patterns in the data, according to a training set, and try to
induce a generalization rule, which fits the entire data. As in clustering, Support Vector
Machine (SVM), decision trees, and other supervised methods, were effective in
classifying gene-expression or sequence-based data.

In a research combining the two steps of supervised analysis (selection and
classification), we hypothesized that high-level functional groups of proteins may be
classified by a very small set of biochemical global features (e.g., molecular weight,
hydrophobicity, amino-acid composition). To test this assumption, proteins represented
by those global features, were classified using SVM. Furthermore, using various feature
selection strategies, the contribution of specific subsets of features to the classification
quality was thoroughly investigated. Our results show that a small set of global features
that, sometimes, can be further reduced, provides effective information for protein family
classification. Moreover, we found that a combination of global and local sequence

features significantly improves classification performance.
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Several general motivations led to these studies. First, when possible, unsupervised
algorithms were preferred. The rationales to prefer the unsupervised approach in genomic
data mining are: (/) Being less biased deriving from irrelevant factors, allowing for the
emergence of more reliable and sometimes surprising results. (2) Only a relatively small
portion of genomic items are fully labeled. (3) The train-test splitting, performed in
supervised methods, is often problematic, (might cause over-fitting, sampling bias etc.).

The algorithms we suggest are based on mathematical and statistical principles,
ignoring any specific biological considerations. Therefore, our methods are generic and
not limited to a specific biological dataset, yet they are all well suited for large scale
biological data. We should note however, that since biological understanding was our
motivated force, inference was a principal focal point part of each study.

In addition, in data mining, and particularly in the cases of noisy biological data, it is
very unlikely to expect a “one size fits all” practice, in other words, for every particular
case a different algorithm and configuration should be preferred. Therefore, we put a
strong emphasis on developing appropriate evaluation methods.

Most of the directions we explored have not been well studied in the literature, in
particular, unsupervised feature filtering and global hierarchical algorithms. This research
suggests that currently overlooked approaches should not be neglected. Surprisingly,
these methods are shown to be effective when exploring genomic and proteomic data.

Our research was guided by realistic and applicative motivations, not limited only to
theoretic perspectives. As a result, all our algorithms were applied to experimental
datasets. In all cases, a software tool was developed for the corresponding algorithm. For
instance, the COMPACT package, which has been made freely available for academic
usage, has been accessed to date, more than 6,000 times, downloaded more than 800
times and was the basis for two graduate courses. Because potential users of these tools
may be biologists or medical researchers who are not data mining experts, providing
intuitive graphical and user-friendly applications was essential.

Finally, throughout the research, we were motivated to follow the principle of Occam’s
razor. Hence, we favored solutions that are easy to comprehend and fast to implement.
Additionally, a main focus of our research was to find a minimal set of features or

parameters that describe hidden patterns in the data.
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Chapter 1

Introduction

Imagine a world in which doctors could diagnose most malicious diseases way before the
apparent symptoms can be observed. In such a world, preventive medicine can really be
efficient. Moreover, in cases when the illness has progressed, doctors would prescribe the right
dose of the right drug at the right time, reducing the current trail-and-error practices. Such a
personalized medicine is still a hope, yet science has made some significant steps toward
fulfilling this ambitious goal.

The most significant progress in recent years was made in improving diagnosis. This was
allowed by embedding genomic factors in the analysis. The study of the genome and the
proteome has undergone some revolutionary advances due to the introduction of new
technologies that can rapidly and accurately measure thousands of records. A prominent example
of these technologies is the DNA-chip that simultaneously measures the expression of the entire
genome (tens of thousands of genes), in a living-organism’s tissue.

A typical experimental setting that uses these chips often consists of samples of dozens of
tissues, taken from different individuals (either human or other species). A researcher that
analyzes such an experiment may ask several questions: does the overall genomic signature
correlate with some biological understanding (i.e., are there some meaningful patterns in the
data?); according to the expression of the genes, can distinctive groups of instances be observed?
Are there groups of genes that are similarly expressed? Is there a minimalist subset of the genes
in the array that may be used for identifying a given biological phenomenon or a disease? The
last question is of high importance, as it may lead to better understanding of the underlying
processes involved in that phenomenon. Moreover, the genes included in such a set may serve as
biomarkers for accurate diagnosis. Indeed, in recent years some diagnostic chips (e.g., for breast
cancer) have been introduced.

Our research was motivated by these questions. In particular, our aim was to extract hidden
patterns out of large-scale genomic and proteomic data and to suggest computational methods for

revealing relevant groups (or subgroups) of entities in them.



1.1. Thesis outline

Chapter 1, the introduction, gives a brief description of the tools and the specific practices that
were used throughout the research. Section 1.2 includes technical definitions; sections 1.3 and
1.4 describe the datasets and data types that were analyzed, respectively. Sections 1.5 and 1.6
include a high-level overview of data mining in general and data mining for genomic and
proteomics in particular. The following sections include presentation of several data mining
procedures that are applied in bioinformatics and are relevant to this research.

Chapter 2 describes a novel framework for unsupervised feature filtering (UFF). UFF is a
unique approach for selection of features without previous knowledge of their classification, yet
considering the interplay of all features. Selection according to this approach is effective and
stable under incomplete information. It leads to interesting biological observations (Varshavsky,
et al., 2006; Varshavsky, et al., 2007).

Chapter 3 includes an analysis of hierarchical unsupervised categorization (clustering). This
analysis shows that global considerations, embedded in hierarchical clustering, can improve
clustering results and reveal meaningful patterns in data. Furthermore, two new procedures,
TDQC (Top-Down-Quantum-Clustering) and ‘Glocal’ (Global-Local) algorithms are suggested
and shown to be highly effective for clustering data of different domains.

Chapter 4 includes a number of tools used for clustering evaluation. “Clustering algorithms
optimizer”, based on an internal criterion is suggested for usage in an unsupervised internal
assessment (section 4.1). Two tools (COMPACT and ClusTree) are based on external criteria,
and provide visual comparison and quantitative assessment routines (sections 4.2 and 4.3,
respectively). These tools, providing access to several clustering algorithms (partitioning and
hierarchical), were successfully applied to various datasets.

Chapter 5 presents a study based on supervised learning practices (feature selection and
classification). This study shows that often only a small set of global features suffices to perform
functional classification of proteins.

Chapter 6 concludes the thesis and provides a unifying discussion of our studies. A summary
of conclusions common to the different studies is provided. Supplementary information
completes the dissertation (for simplicity and coherence, relevant references are provided at the

end of each chapter).



In order to orient the reader, an arranged view of the chapters, according to the different stages

of the data mining process, is presented in Table 1.

Table 1: Methods applied in standard data mining application, arranged according to the stages in the analysis
process (rows) and appearance in the thesis (columns)

Step | Analysis Introduction Ch. 2 Ch. 3 Ch. 4 Ch. 5
1 Data Preparation 1.5.1 + +
2 Data Representation | 1.4
Feature-space 1.4 + + + +
Similarity-space 1.4 + + +
3 | Preprocessing 1.52,1.7.1,1.7.3
No +
Extraction 1.7.1 + +
Selection 1.7.1,1.7.3 + +
4 | Categorization
| Clustering 1.7.2
| Hierarchical 1.7.2.1
No 1.7.2.1 + + +
Bottom Up 1.7.2.1 + +
Top Down 1.7.2.1 + +
| Evaluation 1722
Internal 1.7.2.2 +
External 1.7.2.2 + + + +
| Classification 1.7.3 +
S | Biological Inference + + +

1.2. Notation, definitions and assumptions

Data: Let us consider a dataset comprising n instances Apuxa; = {41, A2,..., 4;,..., A} , where each

instance, or observation, 4;is a vector of m measurements or features describing it.

Categorization: Categorization is defined as systematically arranging instances into specific
groups. In a categorization task (Figure 1), every instance, 4; has a label Y;, where Y; is a

categorical parameter (Y, €{y,, 7,,...x, } ). A categorization algorithm is a function f that assigns

a label, Y; to an instance (f (4) > Y). An algorithm is usually evaluated according to how well
each predicted label, Y, can be mapped to the true label Y.

Throughout this work we refer to any algorithm that assigns instances to labels as “a
categorization algorithm”. We distinguish between clustering (unsupervised categorization) and

classification (supervised categorization) algorithms.
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Figure 1: Schematic representation of a dataset in a categorization task, comprising n instances, each described
by m measurements, and a label Y;assigned to it.

Assumptions: We assume that ‘v’al.j € R (all records are real numbers), and that A is complete

(i.e., there are no missing values). In data preparation and UFF descriptions (sections 1.5.1, and
2.2, respectively) we discuss cases with missing values.

Terminology: This work relates to genomic (i.e., belonging the genome) and proteomic (i.e.,
belonging to the proteome) analyses. The scientific field, in which genomic and proteomic

problems are studied through computational and algorithmic tools, is called Bioinformatics.

1.3. High-throughput genomic and proteomics experiments

In the last several years, some high-throughput technologies that collect genomic and proteomic
data were introduced. These technologies are considered as breakthroughs since they allow fast
sequencing, recording the expressions of thousands of genes simultaneously, locating
interactions between tens of thousands proteins and DNA and measuring many properties of the
proteome. Most of these technologies were initially developed in universities and research

centers, but have become readily available, cheaper and more reliable once produced by



commercial companies. In conjunction with the data-collection feasibility, the progress in
storage management (i.e., databases) and information transfer (in particular, the internet
revolution), have facilitated the reposition and enabled more efficient retrieval of data.
Therefore, numerous online genomic repositories have become publicly available.

We briefly describe in this section the high-throughput technologies of DNA and CGH chips.
A more in-depth overview and descriptions of other methods (e.g., Haplotype Map, ChIP-on-
chip, Mass Spectrometry, and protein chips) can be found in corresponding references. Data

repositories that have been used in the research are also presented.
1.3.1. Technologies

1.3.1.1. Gene expression microarrays (DNA chips)

Gene expression microarray is probably the best known high-throughput technology that has
been applied to genomic data. This technology allows for miniaturization of hybridization filters
and as a result, measurement of thousands of different RNA molecules representing the

expression of thousands of genes and even a complete genome.
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Figure 2: The microarray concept (left) and results (right). Shown are (A) samples, (B)
genes, and (C) two-way comparisons. Data taken from an experiment done in the lab
(Affymetrix RAE 230A, chip)

Researchers can either use in-house, per-demand microarrays or standard, off-the-shelf chips
that are produced by one of the commercial manufacturers (e.g., Affymetrix, Agilent). The

introduction of commercial DNA-chips has significantly reduced the cost of each experiment and



its complexity, and accelerated the popularity of gene-expression studies. In addition, recent
studies showed that this technology has reached maturity (Shi, et al., 2006), sufficing to yield
reliable results (Klebanov and Yakovlev, 2007).

A typical experimental configuration would consist of several chips, allowing a multipurpose
analysis (Figure 2): (A) disease diagnostics based on samples comparison (between different
tissues or different conditions). (B) Gene discovery and taxonomy based on genes comparison
(genes that similarly vary along the different experimental settings) and (C) Two-way
comparisons (finding groups of genes whose expressions correspond to subsets of the samples
provided).

As gene-expression experiments have become so popular and the potential of analysis is so

wide, most of the algorithms and tools presented in this work were applied to this type of data.

1.3.1.2. Comparative Genomic Hybridization (CGH)

Similarly to DNA chips, the relatively new CGH technology provides simultaneous recording of
thousands of genomic changes. However, while DNA chips measure affinity for cell molecules
and the chip’s probes, the CGH classifies copy number alternations as DNA gains and losses,
and its results are considered to be more reliable than DNA chips.

Despite the fact that this technology has not reached maturity yet, it is becoming very popular,
with increasing number of experiments utilizing it (Baudis and Cleary, 2001).

We have applied our novel filtering method (UFF) to a noisy, incomplete CGH benchmark
(Varshavskys, et al., 2007, section 2.2), and showed that the method can successfully handle this

data, suggesting some potentially interesting biological interpretations.

1.3.2. Repositories

In parallel, and as a result of the availability in high throughput technology, several publicly
available data collections hold thousands of experimental results. These open repositories include
results of gene-expression experiments, many sequenced genomes and functional, cellular and

other annotations related to genes and proteins.



1.3.2.1. Gene expression

Microarray experimental results can be easily accessed in several gene expression repositories.
Collections such as Stanford Microarray database (Ball, et al., 2005), Gene Expression Omnibus
of NCBI (Barrett, et al., 2007) and ArrayExpress at EBI (Sarkans, et al., 2004), archive
thousands of datasets (in October 2007, the numbers of datasets were 15238, 12376 and 2644,
each holding dozens of cases). Each set includes raw and processed data, corresponding
publication and supplementary information. In addition, open repositories holding the fast
growing CGH data have become available (e.g., the progenetix database with 16252 cases from

634 publications, Baudis and Cleary, 2001).

1.3.2.2. Sequences

Today it has become easier to gain access to sequenced genomes. Sequence related databases
provide different perspectives on sequenced data. While in 2003, about 1 million sequences were
stored in the UniProt database (release 1.0), today (release 12) it contains about five million
protein sequences, and this collection is expected to grow (Wu, et al., 2006). This database also
provides non-redundant subsets of the entire list (UniRef90 and UniRef50) yielding a reduction
to 3 and to 1.5 million sequences, respectively. In those instances, no two sequences are
permitted to share more than 90% or 50% sequence identity, respectively.

The Pfam database holds a collection of multiple sequence alignments and protein domains,
classified into around 9000 families (Finn, et al., 2006). Other databases hold a clustered view of
the genome (Kaplan, et al., 2005) and structural information (Berman, et al., 2000; Balaji, et al.,

2001; Bhat, et al., 2001).

1.3.2.3. Annotations

In addition to the sequences of each protein or gene, several databases keep functional, cellular
compartment and other annotation of genes (e.g., GO, Camon, et al., 2004) or proteins (e.g.,
UniProtKB, Kriventseva, et al., 2001). Several of these annotations are manually curated, while
other are based on a combination of biological understanding and algorithmic power. This
information is usually considered as an ‘expert’ view of the instances, and thus is utilized for

evaluation of categorization algorithms.



Categorization of sequenced proteins is presented and assessed in chapters 3 and 5
(Varshavskys, et al., 2007). A discussion of the limitation of this ‘expert’ based evaluation and the

capability of our approach to reduce it is provided in the conclusions of these chapters.

1.4. Data types

Data may come in two possible representations: feature-space or similarity-space.

A [mXn] feature-space matrix represents each instance according to its features or attributes.
For example: Gene expression (Figure 2), 3D coordinates of protein structures, global features
(hydrophobicity, length, Cai, et al., 2003; Syed and Yona, 2003; Varshavsky, et al., 2007).

A [nXn] similarity (or dissimilarity) matrix represents each instance by its similarity
(dissimilarity) to another instance (Figure 3). When a distance function defines the dissimilarity
between instances, this square representation leads to a symmetric matrix. The popular distance

functions are:

Norm /1 distance”d(x,y)”1 :|x1 - y1|+...+|xm - ym|

|2

Norm /2 (Euclidian) distance |d(x, )|, = \/|x1 [+, -y,

Correlation coefficient distance ||d(x, y) _Cov(x.y)

ced :1

0.0,

Figure 3: Distance (translated to E-score) between protein sequences, as
displayed by the ProtoMesh web-tool (www.protonet.cs.huji.ac.il/mesh?2)



In some cases, similarity between elements are directly extracted (without transforming from
feature-space). Examples are: BLAST (Altschul, et al., 1997) or Smith-Waterman (Smith and
Waterman, 1981; Smith, et al., 1981) matrices in proteomics. Given only the similarity, feature-
space cannot be reconstructed (except for approximations as in Multidimensional Scaling,
Kruskal and Wish, 1981). In the context of categorization, most algorithms operate on distances
between elements (e.g., agglomerative hierarchical algorithm), while others on feature-space (K-

Means, QC, see section 1.7.2, chapter 3 below and Duda, et al., 2000).

1.5. Data Mining

Knowledge Discovery in Databases (KDD), known as “Data Mining”, is an approach based on
statistical, algorithmical and other mathematical methods used to extract nontrivial information
from data (Frawley, et al., 1992). In recent years, large-scale data has become available in many
scientific and applicative domains. Due to the complexity of the data and the questions, there is a
strong emphasis on applying automated routines with the least amount of user interaction.
Therefore, data mining is a flourishing field. Examples of data applications are: marketing
(CRM, customers segmentation, markets trends, customers loyalty), stocks (trades patterns,
associates stocks or correlations with external factors), text mining (document classification),
intelligence, internet (web search, ad-sense), finance (fraud detection) and of course in biology
(Azuaje, 20006).

Analysis based on data mining includes several stages, that can vary according to the data at
hand and the task. The procedures listed below are frequently used in data mining of biological

datasets.

1.5.1. Data preparation

Experimental data are often noisy, not fully reliable and incomplete. In order to improve the
accuracy of the analysis, several data preparation procedures are usually applied. The standard
methods are values transformation (e.g., log-transform in DNA chips), handling categorical
features, discretization and normalization (e.g., to mean O and standard deviation 1). Other
quality control methods are background elimination (e.g., dummy probes in DNA chips that do
not attach to any molecule, whose recorded values should be deducted from the values of the real

probes) and replicates based analysis (Singh and Nagaraj, 2006). In our work we assume that



data’s origin is one meta-distribution, so that genuine values carry significant information.
Therefore, we do not address in this work data transformation and it is not specifically applied
nor studied. Moreover, assuming all features are real, handling categorical features is not
required. Implicitly we assume that the data have already passed the quality control procedures.
Absent values becomes a challenge when handling experimental data, particularly in
experimental high-throughput genomic datasets (de Brevern, et al., 2004; Scheel, et al., 2005).
Several methods were developed to address this issue (Troyanskaya, et al., 2001; Gan, et al.,
2006; Tuikkala, et al., 2006; Hua and Lai, 2007), starting from the naive zero or average
replacements (i.e., each missing value is replaced by O or by the average of all present values in
the set, respectively), to more sophisticated ones (e.g., KNNImpute, where each missing value is
replaced by the standard average of samples of the K nearest neighbors of a relevant feature,
Troyanskaya, et al., 2001). This issue is discussed in chapter 2.1 (Varshavsky, et al., 2007),
where the UFF method is evaluated in noisy datasets. Applying it to incomplete data that has
undergone several imputation procedures, it is shown that the method can sustain high accuracy
levels even after substantial loss. Furthermore, it can assess in an unsupervised manner the

various imputation procedures.

1.5.2. Preprocessing

Data preparation is often followed by data preprocessing. Various procedures may be included at
this stage, but most of them have similar aims: dimensionality reduction, outliers removal,
selection of the most informative features and noise filtering (also known as increasing signal to
noise ratio).

All these methods aim to reduce the size of data analyzed and minimize the complexity of the
problem. Compression of datasets is essential to incorporate algorithms that cannot perform well
on large-scale data, or have generalization limitations in higher dimensions. In addition, an
accurate partition between relevant and obscuring elements can improve interpretation extracted
from the analysis. Descriptions of several representative preprocessing methods, relevant to the

research, appear in sections 1.7.1 and 1.7.3.
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1.5.3. Model fitting

After preprocessing of data, several analysis procedures can be applied. These methods can be
classified according to several criteria: unsupervised (do not rely on labels), or supervised (using
a labeled train set), categorization (where the labels are categorical variables) or regression
(labels are continuous variables).

The focus of this research is unsupervised and supervised categorization (clustering and
classification, respectively). Regression, association rules, generative models, decision trees and

other popular data mining techniques lie outside the scope of this work.

1.6. Data mining in genomic and proteomics

Breakthroughs in technology and the improved effectiveness of data mining lead to what has
been described as “a paradigm shift in biological investigation, such that the bottleneck in
research is shifting from data generation to data analysis” (Sherlock, 2000). The following
paragraphs provide a brief review of the special characterizations of genomic and proteomic
data.

The accelerated growth in the size of the UniProt repository from one to five million sequences
in less than five years (Wu, et al., 2006), which is typical of biological data, poses a significant
challenge which is almost unsolvable by traditional research techniques. For example, the 5-fold
multiplication in the size of the repository leads to 25-fold more calculations in clustering
methods that involve computation of all relations between elements (e.g., Kaplan, et al., 2005).
Data observation, analysis and inference need therefore advanced procedures.

In many fields where data mining is applied, the number of features is quite limited. For
example, in marketing applications, records collected from potential customers may amount to
only a few hundreds. However, the number of features in genomic data is tremendous (e.g., tens
of thousands gene-expression records per tissue). Simplistic observation of such data is
impossible. In addition to that, in tasks where learning about the instances is required, the
number of dimensions (genes) is significantly bigger than the number of instances (samples).
Such a phenomenon is referred to as the “curse of dimensionality” problem (Bellman, 1961), in
which in learning rules, an exponential increase in the number of instances is required when

adding extra dimensions. The major challenge of this problem is that no experimental setting can
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be learnt and generalized unless thousands of instances are measured (Ein-Dor, et al., 2006).
Dimensionality reduction is therefore an essential preprocessing procedure.

A fundamental characteristic of biological data is the great number of intervening factors.
These factors include the underlying variance between biological observations, differences
between experimental settings, technology (that although becoming more stable, still has various
flaws (e.g., Irizarry, et al., 2003), imprecision of scanning devices, recording and software. All of
them increase the relative noise flux in data, and therefore call for efficient noise filtering
techniques.

Another obstacle, almost exclusive to this field, is the difficulty of inference. While in other
disciplines (e.g., in document mining), it is relatively easy to assign experts to validate the results
and provide a ‘ground-truth’ benchmark, in genomic and proteomics, current knowledge is still

inadequate; hence, many proteins are still unlabeled.

1.6.1. Applications

Categorization is the most common data mining practice applied in bioinformatics. Popular
categorization tasks are grouping instances (samples) according to their gene-expression pattern
(Golub, et al., 1999; Sharan, et al., 2002; D'Haeseleer, 2005), grouping genes that are similarly
expressed along different experimental settings (Spellman, et al., 1998), grouping proteins
according to their sequence (Kaplan, et al., 2004; Kaplan, et al., 2005) or other properties (Cai, et
al., 2003; Varshavsky, et al., 2007). These tasks can be applied either in unsupervised or
supervised manner.

Many dimensionality reduction, noise filtering and feature selection methods have been
suggested to address challenges presented by genomic and proteomic data. A major part of this
research was devoted to study, analyze and develop efficient, data-driven compression methods.

Other efficient data mining procedures, not discussed here, are sequence motifs search
(Skoufos, 1999; Kriventseva, et al., 2001; Kunik, et al., 2005), systems and network
dependencies analysis (known as interactome study, Fattore and Arrigo, 2005; Singh and
Nagaraj, 2006) and text/literature mining. During recent years much effort is devoted to dig into
the abundance of data covered in the literature (Hirschman, et al., 2002; Jensen, et al., 2006).
These efforts, based on knowledge from NLP (Natural Language Processing), archiving and

document classification, try to extract interesting biological knowledge.
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1.7. Algorithms

Data mining algorithms in bioinformatics are either: (/) routines developed in other domains
(e.g., Physics, Mathematics, Statistics and Computational Neuroscience), that were adapted to
the deal with genomic or proteomic problems, or (2) algorithms that were specifically designed
to mine gene-expression or sequence based data. Examples of routines developed in other
domains are most of the feature selection methods (Saeys, et al., 2007), clustering and
classification methods (D'Haeseleer, 2005). Examples of designated methods are CLICK (Sharan
and Shamir, 2000), CAST (Ben-Dor, et al., 1999; Ben-Dor, et al., 2001) and Gene-Shaving
(Hastie, et al., 2000) for clustering gene-expression data, and BLAST (Altschul, et al., 1997) for
matching sequences. Algorithms which belong to the first group are generic and perhaps not
adequate to handle genomic data and the others are mostly domain-specific and probably cannot
be generalized to other data types.

It is customary to divide data mining methods according to stages of the data analysis in which
they operate: preprocessing or categorization, supervised or not. One can therefore classify data
mining methodologies into four main classes: (/) unsupervised-preprocessing, (2) unsupervised-
categorization (clustering), (3) supervised-preprocessing and (4) supervised-categorization

(classification).

1.7.1. Unsupervised preprocessing

Preprocessing is applied to facilitate analysis of the data. Preprocessing methods are either
applied for preparation (see section 1.5.1, above), or for dimensionality reduction. The
significantly large size of the data gathered using high-throughput technology makes
dimensionality reduction a necessity. According to (Guyon and Elisseeff, 2003; Saeys, et al.,
2007), the major objectives of dimensionality reduction are: reducing over-fitting, improving
model performance, lowering runtime and other costs and providing a better insight of
underlying processes. Dimensionality reduction methods are described as feature extraction or
feature selection. Feature extraction methods transform all features to a lower dimension space
and feature selection methods select some relevant features in the set.

In our research, Singular Value Decomposition (SVD) was used for extraction. SVD represents
any real matrix A as a product of three matrices A=UXV’, where U and V are orthonormal

matrices and 2'is a diagonal matrix whose eigenvalues s; (singular values) appear in decreasing

13



order (Figure 4). The columns of U and V define two independent vector spaces. This
decomposition is unique (up to overall phases) and holds for any real matrix of size m by n. The
number of non-zero entries in 2 equals the rank of A. A common practice of application of SVD
for dimensionality reduction is replacing 2 with a truncated version 2’, where only a small
number r, of leading singular values, is retained and the rest are replaced by zeros. The resulting
reconstructed matrix A’=UX"V’, is the best least-mean-squares approximation of A obtainable
by any matrix of rank r.

An alternative utilization of the SVD procedure consists of focusing attention on the matrices
U and V which, in gene-expression datasets, form gene and sample spaces, respectively. It is
within these spaces, now reduced to rank r that one can look for data patterns (Alter, et al., 2000;
Alter and Golub, 2006; Horn and Axel, 2003; Wall, et al., 2003). Such an extraction application
is presented in chapter 4 (Varshavsky, et al., 2005; Varshavsky, et al., 2007).
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Figure 4: Visualization of SVD routine as applied to gene-expression data (see appendix 2)

There exist only a handful of unsupervised feature selection algorithms (Guyon and Elisseeff,
2003; Saeys, et al., 2007). As described in (Dy and Brodley, 2004), such methods can be applied
at three different stages: before, during and after the clustering process. Methods which operate
before clustering are referred to as filter methods. These methods are the least biased of all, as
they do not depend on the clustering implementation. Common methods of unsupervised feature
filtering rank features according to (1) their projection on the first principal component
(Hartmann, 2006; Zou, et al., 2006) , (2) their normalized range,(3) entropy or (4) variance of the
feature as calculated from its values on all instances (Guyon and Elisseeff, 2003; Herrero, et al.,

2003).
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We present a novel unsupervised feature filtering (UFF) framework, which differs from other
unsupervised selection schemes in the following aspects: (/) it does not involve a target function
as the selection criterion and (2) it considers the interplay of all features (chapter 2, Varshavsky,

et al., 2006; Varshavsky, et al., 2007).

1.7.2. Clustering

In the last few years several clustering algorithms were found useful in handling genomic and
proteomics data, for example: diagnosis of different conditions (between sick and healthy
tissues), and classification to subtypes of a disease (Golub, et al., 1999; D'Haeseleer, 2005). An
additional conclusion to the application of such algorithms to gene-expression data was the
discovery of functional classes of genes among the thousands used in experimental settings
(Eisen, et al., 1998). Furthermore, it became possible and useful to isolate groups of relevant
genes that mostly contribute to a particular condition, a procedure called two-way or bi-

clustering (Cheng and Church, 2000).

1.7.2.1. Clustering algorithms

Clustering algorithms are often classified as nonhierarchical (partitioning) or hierarchical.
Nonhierarchical clustering algorithms define a complete partition of the data (for comprehensive
reviews see Jain and Dubes, 1988; Duda, et al., 2000; D'Haeseleer, 2005). Because they suggest
multiple levels of organization, hierarchical algorithms are perhaps the most popular clustering
methods used (Spellman, et al., 1998).

Hierarchical methods can be further divided into Bottom-Up (BU, agglomerative) and Top-
Down (TD, divisive) types (Jain and Dubes, 1988; Duda, et al., 2000; Planet, et al., 2001). BU
algorithms start with every instance as a cluster and repeatedly merge clusters until a unified
cluster is formed. TD methods work in the opposite direction and are rarely used for biological
data. Algorithms can be alternatively classified by the following criteria (/) being deterministic
or not, (2) being model-based or heuristic. Deterministic algorithms assume that the data was
generated from a specific 'meta’ distribution and the algorithms’ objective it to reconstruct that
distribution.

In this study we explored clustering algorithms in depth, focusing on hierarchical algorithms

(chapter 3). In addition to that, we present two novel algorithms: (/) TDQC: Top-Down-
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Quantum-Clustering algorithm, derived from QC (Quantum-Clustering) algorithm that was
successfully applied to gene-expression data (Horn and Axel, 2003) and (2) a global-local
(‘glocal’) variation of the agglomerative algorithm which is based on all relationships within the

data (all distances).

1.7.2.2. Evaluation

Since different results can be obtained by different clustering algorithms, evaluation of this
variety is an essential step of the analysis (Handl, et al., 2005; Varshavsky, et al., 2005). Other
factors influencing evaluation and inference are: (/) the number of clusters contained in the
dataset. Clustering algorithms usually require selecting a set of parameters, turning each
application into a set of subjective choices. If no prior knowledge is available, assessing the
correct number of clusters (e.g., as required by the K-Means algorithm), is almost impossible.
Other algorithms do not explicitly accept the number of clusters as an input; however this
number is directly derived from their parameters. (2) Algorithms such as K-Means, and others,
being nondeterministic, are inconsistent as they depend on starting points and other stochastic
factors.

Clustering assessment can be based on internal or external measurements. Internal criteria
evaluate results solely on the data distribution and clustering partitions. In chapter 4.1
(Varshavsky, et al., 2007) we adopt the Bayesian Information Criterion (BIC), a model-based
driven internal criterion (Fraley and Raftery, 1998) to compare between different algorithms, and
select the optimal solution.

External criteria evaluate clustering results according to the labels of the instances, as assigned
by experts. This post-analysis evaluation reflects the algorithm — real-world correspondence.
Evaluations based on external criteria are presented and discussed in chapters 4.2 (Varshavsky,

et al., 2005) and 4.3.

1.7.3. Supervised learning: Feature selection & Classification

In supervised learning, selecting the most relevant features and classifying the instances
according to them, are two common procedures. Supervised selection approaches prioritize
features according to the goodness of their fit to a classification task, and are usually defined

according to logical relation to this task (Guyon and Elisseeff, 2003; Saeys, et al., 2007).
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Selection methods are either filter, wrapper or embedded. Filter methods score each feature
according to some criteria (e.g., -test), and select the highest-scoring features. Wrappers try to
optimize the classification task in an iterative way by adding a feature (forward insertion),
removing a feature (backward elimination), adding or removing features (stepwise) or applying
some more sophisticated, often randomized routines. Embedded methods are more related to the
classification algorithm, selecting features that incorporate intrinsic consideration (e.g., selecting
features with high correlation to the weights of the vectors resulted by SVM).

In bioinformatics, supervised learning is a very common strategy, and many of its aspects have
been studied. In particular, genes have been ranked and selected according to how they classify
instances to different cancer types (Khan, et al., 2001; Beer, et al., 2002). In our study, we
employed various feature selection methods to a proteins dataset. In this dataset, proteins are
characterized according to a few global features, derived from their sequence. By following a
parsimony theme (central to this research), we showed that a very small set of features suffices to

classify proteins to functional groups (chapter 5 and Varshavsky, et al., 2007).
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ABSTRACT

Motivation: Many methods have been developed for selecting small
informative feature subsets in large noisy data. However, unsupervised
methods are scarce. Examples are using the variance of data collected
for each feature, or the projection of the feature on the first principal
component. We propose a novel unsupervised criterion, based on SVD-
entropy, selecting a feature according to its contribution to the entropy
(CE) calculated on a leave-one-out basis. This can be implemented in
four ways: simple ranking according to CE values (SR); forward selec-
tion by accumulating features according to which set produces highest
entropy (FS1); forward selection by accumulating features through the
choice of the best CE out of the remaining ones (FS2); backward elim-
ination (BE) of features with the lowest CE.

Results: We apply our methods to different benchmarks. In each case
we evaluate the success of clustering the data in the selected feature
spaces, by measuring Jaccard scores with respect to known classifica-
tions. We demonstrate that feature filtering according to CE outperforms
the variance method and gene-shaving. There are cases where the
analysis, based on a small set of selected features, outperforms the
best score reported when allinformation was used. Our method calls for
an optimal size of the relevant feature set. This turns out to be just a few
percents of the number of genes in the two Leukemia datasets that we
have analyzed. Moreover, the most favored selected genes turn out to
have significant GO enrichment in relevant cellular processes.
Abbreviations: Singular Value Decomposition (SVD), Principal
Component Analysis (PCA), Quantum Clustering (QC), Gene
Shaving (GS), Variance Selection (VS), Backward Elimination (BE)
Contact: royke @cs.huiji.ac.il

Conflicts of Interest: not reported

1 INTRODUCTION

Feature selection is an important tool in many biological studies.
Given the large complexity of biological data, e.g. the number of
genes in a microarray experiment, one naturally looks for a small
subset of features (e.g. small number of genes) that may explain the
properties of the data that are being investigated. This type of
motivation fits into the general scheme of feature exploration,
i.e. searching for features because of their direct biological relev-
ance to the problem. An alternative motivation is that of pre-
processing: searching for a small set of features to simplify
computational constraints, to allow for the handling of high

*To whom correspondence should be addressed.

throughput biological experiments, and to separate signal from
noise. Practically, selection of a small set of genes is of ultimate
importance when a small set of informative genes can be the basis
for cancer diagnosis and a basis for development of gene associated
therapy.

Preprocessing often involves some operation on feature-space in
order to reduce the dimensionality of the data. This is referred to as
feature extraction, e.g. restricting oneself to the first r principal
components of a PCA routine. Note that superpositions of features
appear in this example. Alternatively, in feature selection we limit
ourselves to particular features of the original problem. This is the
subject to be studied here. Let us refer to Guyon and Elissef (2003)
for a comprehensive survey.

It is conventional to distinguish between wrapper and filter
modes of the feature selection process. Wrapper methods contain
a well-specified objective function, which should be optimized
through the selection. The algorithmic process usually involves
several iterations until a target or convergence is achieved. Feature
filtering is a process of selecting features without referring back to
the data classification or any other target function. Hence we find
filtering as a more suitable process that may be applied in an
unsupervised manner.

Unsupervised feature selection algorithms belong to the field of
unsupervised learning. These algorithms are quite different from the
major bulk of feature selection studies that are based on supervised
methods (e.g., Guyon and Elissef, 2003, Liu and Wong, 2002), and
compared to the latter are relatively overlooked. Unsupervised stud-
ies, unaided by objective functions, may be more difficult to carry
out, nevertheless they convey several important theoretical advant-
ages: they are unbiased, by neither the experimental expert nor by
the data-analyst, can be preformed well when no prior knowledge is
available, and they reduce the risk of overfitting (in contrast to
supervised feature selection that may be unable to deal with a
new class of data). The downside of the unsupervised approach
is that it relies on some mathematical principle, like the one to
be suggested in this study, and no guarantee is given that this
principle is universally valid for all data. A common practice to
resolve this quandary is to demonstrate the success of the method on
various biological datasets and compare the results obtained by the
method with external knowledge.

Existing methods of unsupervised feature filtering include rank-
ing of features according to range or variance (e.g., Herrero, 2003,
Guyon and Elissef, 2003), selection according to highest rank of the
first principal component (‘Gene shaving’ of Hastie et al. 2000,
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Fig. 1. A comparison of two eigenvalue distributions; the left has high entropy (0.87) and the right one has low entropy (0.14).

Ding 2003) and other statistical criteria. An example of the latter is
Ben-Dor et al., (2001) where all possible partitions of the data are
considered and the corresponding features are labeled. The parti-
tions with statistical significant overabundance are selected.
Another example is of Wolf et al., (2005), who optimize a function
based on the spectral properties of the Laplacian of the features.

Here we present an intuitive, efficient and deterministic principle,
leaning on authentic properties of the data, which serves as a reliable
criterion for feature ranking. We demonstrate that this principle can
be turned into efficient and successful feature selection methods.
They compete favorably with other popular methods.

2 METHODS

2.1 Mathematical framework and notations

Let us consider a dataset of n instances’ Apxm) = {A1L A2, Ai ALY
where each instance, or observation, A; is a vector of m

measurements or features. The objective is to define a subset of
features M, of size m. < m, that, in a sense to be defined below, best
represents the data.

In PCA (or SVD) studies it is conventional to regard the best representa-
tion as the minimal least-square approximation of the original matrix (Wall
et al., 2003). This principle can be followed also in feature extraction but it
has the disadvantage that it may preserve too many properties of the data,
including systematic noise. We will define our ‘best approximation’ using a
principle based on SVD-entropy, and subject it to an a-posteriori test: given
different selection rules of features choose the ones that prove useful as basis
for the best fit to labeled data, e.g., perform clustering within the data-space
spanned by the selected features and compare the results with known clas-
sification. This comparison will be performed using the Jaccard score.

T — M

nyp + nop + nio

where 7y, is the number of pairs of instances that are classified together,
both in the ‘expert’ classification and in the classification obtained by the
algorithm; n;o is the number of pairs that are classified together in
the ‘expert’ classification, but not in the algorithm’s classification; ng; is
the number of pairs that are classified together in the algorithm’s classifica-
tion, but not in the ‘expert’ classification.

The Jaccard score reflects the ‘intersection over union’ between the algor-
ithm’s clustering assignments and the expected classification. Its values
range from O (no match) to 1 (perfect match).

2.2 Ranking by SVD-Entropy

Alter et al., (2000) have defined an SVD-based entropy of the dataset.
Denote by s; the singular values of the matrix A. s]2 are then the eigenvalues
of the nxn matrix AA’. Let us define the normalized relative values (Wall

"In this paper A (or Apxm)) is @ matrix and A (or A;) is a vector.
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et al., 2003): and the resulting
V= s}z/ Z 57 (2)
k
dataset entropy (Alter et al., 2000):
1 N
= - T ®3)

log (N) = Vj log (Vj)

This entropy varies between 0 and 1. E = 0 corresponds to an ultra-
ordered dataset that can be explained by a single eigenvector (problem of
rank 1), and E = 1 stands for a disordered matrix in which the spectrum is
uniformly distributed. Figure 1 demonstrates two examples of 5 eigenvalues,
one with high entropy (left, 0.87) and the other with low entropy (right, 0.14).
As can be seen in Figure 1, when the entropy is very low, one expects a very
non-uniform behavior of eigenvalues. One should not confuse the standard
definition of entropy, based on probabilities (Shannon, 1948), with the one
used here, which is based on the distribution of eigen- (or singular) values.
Although standard entropy considerations appear in feature selection meth-
ods, such as the supervised bottleneck approach (Tishby et al., 2000), the use
of SVD-entropy for feature selection is a novel approach.

We define the contribution of the i-th feature to the entropy (CE;) by a
leave-one-out comparison according to

CE; = E(Ajuxm) — E(Apx(m-1))) 4)

where, in the last matrix, the i-th feature was removed.

Thus we can sort features by their relative contribution to the entropy. Let
us define the average of all CE to be ¢ and their standard deviation to be d.
We distinguish then between three groups of features:

(1) CE; > ¢ + d, features with high contribution
(2) ¢+ d > CE; > c-d features with average contribution

(3) CE; < c-d features with low (usually negative) contribution

Features in the first group (high CE) lead to entropy increase; hence they
are assumed to be very relevant to our problem. Retaining these features we
expect the instances to be more evenly spread in the truncated SVD space.
The features of the second group are neutral. Their presence or absence does
not change the entropy of the dataset and hence they can be filtered out
without much information loss. The third group includes features that reduce
the total SVD-entropy (usually c-d <0). Such features may be expected to
contribute uniformly to the different instances, and may just as well be
filtered out from the analysis.

The first feature selection method that we propose is to limit oneself to the
first group of features according to the CE ranking. A will then be represented
by a new matrix of rank m,, the number of features in group 1. Several other
feature selection methods are suggested in the next section. In all of them we
assume that the same value of m, continues to serve as the right guide for
optimal dimensionality reduction.

2.3 Three Feature Selection Methods

Entropy maximization can be implemented in three different ways, as is also
the case in other feature selection methods.
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1. Start with M1 = & and M/ = M
2 Belect the element with the highes“._:
CE. Remove 1t from M’, insert it into M
3. While size of M < im.-
a.For each element in M’ (YmeM ) compute
its CE score on M- {Efdy-Eid)
b. Select the element with the highest CE
Score =2 remove from M', insert into M-
4. End

Box 1: Pseudo-code of Forward Selection method FS1

Start with M = & and m’
2. While size of M < m.

a. Select the element in M’ {vmgﬁ) with
the highest CE Score

b. BRemove from M,
3. End

=

M

insert intoc M-

Box 2: Pseudo-code of Forward Selection in method FS2

=9

. start with M = M and M’
2. While size of M > m.

a. Select the element in M with the lowest
CE Score
b. Remove from M, insert inte M’
3. End

Box 3: Pseudo-code of Backward Elimination method BE

(1) Simple ranking (SR): select m,. features according to the highest
ranking order of their CE values.

(2) Forward Selection (FS): here we consider two implementations.

(a) FS1: Choose the first feature according to the highest CE. Choose
among all other features the one which, together with the first
feature, produces a 2-feature set with highest entropy. Continue
with iteration over all m-2 features to choose the third according to
maximal entropy, etc, until m,. features are selected (Box 1).

(b) FS2: Choose the first feature as before. Recalculate the CE values
of the remaining set of size m-/ and select the second feature
according to the highest CE value. Continue the same way until
m, features are selected (Box 2).

(3) Backward Elimination (BE): Eliminate the feature with the lowest CE
value. Recalculate the CE values and iteratively eliminate the lowest
one until mc features remain (Box 3).

One may view the different methods also as specifying alternative
ranking methods. Whereas SR ranks the features according to their original
CE values, FS1, FS2 and BE introduce other ranking orders through the
algorithms defined above. In the examples studied below we display
rankings for the entire range of 1 to m.

In an appendix we analyze the computational complexity of all these
methods. SR is the fastest one and BE is the most cumbersome one for
large numbers of features. In the examples to be discussed next, we will
compare the different methods with one another. However, because of
complexity, the BE method will be used in only one of the examples.

-0.02

AAC

Fig. 2. CE of the 18 Amino Acid Compositions (AAC) of the virus dataset.
ASX stands for ASN and ASP and GLX for GLN and GLU. The dashed line
represents the value of ¢ and the dot-dashed line the value of c+d.

3 Results

Our four feature filtering methods were compared with each
other and with two known methods: Variance Selection (VS) and
Gene Shaving (GS). The latter is a variation of a method of Hastie
et al. (2000) which removes features iteratively according to their
lowest correlations with the first principal component. For compar-
ison we also look at results of random feature selection on several
benchmarks.

3.1 The viruses dataset of Fauquet, 1988

This is a dataset of 61 rod-shaped viruses affecting various crops
(tobacco, tomato, cucumber and others) originally described by
Fauquet er al. (1988) and analyzed more thoroughly by Ripley
(1996). There are 18 measurements of Amino Acid Compositions
(AAC) for the coat proteins of the virus that serve as 18 features.
The viruses are known to be classified into four classes:
Hordeviruses (3), Tobraviruses (6), Tobamoviruses (39) and
Furoviruses (13).

Figure 2 displays the CE values of all 18 features. Our criterion
sets m. = 3. We test the performance of the system for the entire m
range to see if this choice makes sense. Before doing so, let us
display the ranking orders of all methods in Table 1. By definition,
SR has the same ranking order as CE in Figure 2. In this problem,
BE turns out to lead to the same order as FS1, and all our three
methods agree with each other on the first three features to be
selected. We include in Table 1 also the ranking order of VS (vari-
ance selection) and GS (gene shaving). The two last ones are highly
correlated with each other (Spearman correlation 0.76) but highly
uncorrelated with our three methods (see Supplementary Material
for more details). In particular note that VS chooses ASX and GLX
as its second and third features, whereas for our three methods these
two features are unfavorable (15" to 18™) choices.

Next we evaluate the subset selection using the Jaccard score.
This is done by applying the QC clustering algorithm (Horn and
Gottlieb, 2002) on the 61 viruses described by the selected subset of
features. QC was applied after reduction of each space to normal-
ized 3-space dimensions, using the parameter o = 0.5 (for details
see Varshavsky ez al., 2005, and COMPACTZ). Results are shown in

2http://adios.tau.ac.il/compact or http://www.protonet.cs.huji.ac.il/compact
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Table 1. Ranking of the 18 Amino Acid Compositions of the virus dataset
according to various feature filtering methods. Colors from white to black
match the numbers that reflect the ranking of each method

AAC

SR FS1/BE FS2
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Fig. 3. Filtering quality of the virus dataset is tested by Jaccard scores of
clustering performed in spaces spanned by them (see text). Best results are
obtained for FS1 (identical with BE in this case) and SR for m. = 3. FS1
continues to perform very well with more features. Feature selection accord-
ing to VS performs worse. For comparison we include also an evaluation
based on a large group of random order rankings.

Figure 3 for three of our four methods. All three do exceedingly well
at the three features level (J > 0.9) whereas the variance method
obtains J = 0.4. Note that our methods, with our choice of m,, lead to
a much better result than J = 0.6, obtained when all 18 features are
taken into account. This exemplifies the importance of keeping
features that maximize the entropy. The feature ranking of FSI
and BE is the only one that keeps performing very well with
more than three selected features. Similar relative successes
of feature selection evaluation (although less favorable
J-scores) were obtained with other clustering methods, such as
K-means. This comparison, as well as other details that could

0.9
—a—SR -
081 AIlF I 1
- — eatures L /§\1
0.7 Jl—e— Variance L L i
© 06 T
e
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Number of features selected

Fig. 4. Clustering quality of two feature selection methods. Results are
averages of 100 runs of K-Means clustering.

not be fitted into this paper, can be found in the Supplementary
Material®.

Fauquet et al. (1987) have argued that the AAC of the coat protein
of plant viruses are specific to the structure of the viral particle, to
the mode of transmission and to sub-grouping of viruses to distinct-
ive classes. Our results indicate that choosing only 3-4 features
correctly, not only preserves the classification but allows much
better performance with minimal failure. It is interesting to note
that the 3 highest-ranking amino acids, GLY, THR and LYS are not
dominating the coat proteins. These amino acids account for only
13-21.5% of the coat proteins, a fraction that is similar to the
average percentage in the entire proteins database (18.3%). Further
investigation shows that neither their size nor polarity or electric
charges differentiate these three amino acids from the remaining.
Nevertheless, since GLY, THR, LYS and MET (the fourth ranked
AAC, according to the FS1 method) represent different functional
groups, we conclude that the FS1/BE ranking is consistent
with selecting amino acids that carry different physico-chemical
properties.

3.2 The MLL dataset of Armstrong ef al., 2002

The second dataset that we apply our methods to is that of
Armstrong et al., 2002, who have attempted to cluster data of
three Leukemia classes: lymphoblastic Leukemia with MLL trans-
locations and conventional acute lymphoblastic (ALL) and acute
myelogenous Leukemias (AML). In the experiment, 12582 gene
expressions were recorded, using Affymetrix U95A chips on
72 patients, 20 of which diagnosed as MLL, 24 ALL and
28 AML. They showed that these 3 Leukemia types can be divided
according to some gene expression. However, when filtering in an
unsupervised manner (selecting 8700 genes that show some vari-
ability in expression level), the clustering results were unsatisfact-
ory and much inferior to a supervised selection of 500 genes that
best separate between the cancer patients.

Applying our CE criteria we use the method SR, and compare
clustering of these feature-filtered data with VS (Figure 4). Clus-
tering was performed by K-Means, averaging over 100 runs and
using K = 3 with data projected onto a unit sphere in 3D-reduced
space (Varshavsky et al., 2005). The asymptotic Jaccard score is
J = 0.426 for this K-Means method. As can be seen in Figure 4 VS
provides no improved quality, whereas SR leads to J-values

3http://adios.tau.ac.il/compact/UFF/SUPP
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Fig. 5. CE of the 7129 genes of the Golub dataset (¢ = 0, dashed lines
represent ¢ * d). The inset zooms into the highest-ranked 300 genes, with
bright dots signifying the top 100 features according to the FS1 method

between 0.7 and 0.8 for filtered gene groups of sizes 250 to 450. The
preferred m, value according to ¢ + d of SR is 254. Better results can
be obtained by using the QC algorithm, but the same trend and
conclusions regarding feature selection hold also there. It is
interesting to note that QC clustering of our unsupervised SR
method, for m. = 254, reaches J = 0.85 (see supplementary).

We display the K-Means analysis in Figure 4, in spite of its poorer
performance compared to QC, in order to emphasize that the quality
of the feature filtering method is independent of the clustering-test
performed on the filtered data.

3.3 The Leukemia dataset of Golub ef al., 1999

After demonstrating the effectiveness of our methods on both small
and large datasets, we choose a third dataset (Golub et al., 1999) that
has served as a benchmark for several clustering algorithms (Sharan
and Shamir, 2000, Getz et al., 2000 and more) and feature selection
methods (e.g., Liu B. er al., 2004, Liu H. et al., 2002). The experi-
ment sampled 72 Leukemia patients with two types of Leukemia,
ALL and AML. The ALL set is further divided into T-cell Leukemia
and B-cell Leukemia and the AML set is divided into patients who
have undergone treatment and those who did not. For each patient,
an Affymetrix GeneChip measured the expression of 7129 genes.
The task is clustering into the four correct groups within the 72
patients in a [7129x72] gene-expression matrix. This clustering task
is quite difficult. Using the QC method (in normalized 5 dimensions
with o = 0.54), applied to the data without feature selection, one
obtains J = 0.707, which is the best score for a variety of clustering
algorithms (Varshavsky et al., 2005).

The CE values for the 7129 features of this problem are displayed
in Figure 5. Most of the features have a zero score. There are
about 150 large CE values (see Figure 5) and about the same number
of small CE values. The bright color within the inset indicates the
first 100 features selected by FS1. While their ordering is different
from the SR ranking, most of them belong, as expected, to the class
of large CE values. The overlaps of the first leading features of SR

Fig. 6. Venn diagram of relations among the first 100 features selected by
different methods.
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Fig. 7. Jaccard scores of QC clustering for different feature filtering methods
on small gene subsets of the Golub data.

with those of FS1 and FS2 are shown in the Venn diagrams of
Figure 6.

Next we turn to testing the filtering methods to see how well they
do in the clustering task, i.e. what are the Jaccard scores that are
obtained by applying an identical clustering algorithm to the dif-
ferent spaces spanned by the selected features. The clustering
algorithm is the QC method mentioned above. Figure 7 shows
that good results can be obtained by our filtering methods once
the gene subset is larger than 100 or so. For feature sets of sizes
120 to 200 we find selections (of FS1 and SR) that lead to Jaccard
scores that are better than J = 0.707, the asymptotic limit. Gene
subsets larger than 300 result in Jaccard scores below the asymptotic
limit (for a complete list, see supplementary). Also in this problem
the GS results are inferior to those of the other methods.

3.3.1 Biological interpretations of the Leukemia dataset of Golub
etal., 1999 ltis clearly of interest to look at the 100 or so genes
that participate in the sections that lead to the best Jaccard score. In
Figure 6 we saw that there exists a substantial overlap between the
choices of our three different methods. To study the biological
significance of our subset of overlapping 54 genes we have run a
GO enrichment analysis (NetAffx™ web t0014) on this subset. As

“http://www.affymetrix.com/analysis/index.affx
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Fig. 8. Diacyclic graph of GO enrichment. Shown are GO nodes
(Camon et al, 2004) with significant p-value of enrichment as determined
by the NetAffx™ tool* (p-value < 5e-4). The color of each node matches
its significance level (along the spectrum of red shades, light: lowest to
dark: highest).

displayed in Figure 8 (and supplementary), we are able to assign
some prevalent biological processes to the selected genes.

The association of our selected 54 genes with functional annota-
tion related to defense, inflammation and response to pathogen (with
p-value ranging from e-7 to e-22) is intriguing (Figure 8). It may
underlie the difference in AML and ALL in view of the different
susceptibility of the patients to treatment such as chemo and
radiotherapy. Thus the listed protein processes may not only be
considered as ‘subtype cancer markers’ but as an indication of
the biological properties of the cancerous cells. Specifically,
cellular response to pathogen, to stress and to inflammation may
be different for AML and ALL. It may also provide a focused
hypothesis towards the processes and mechanisms that can be
used as a follow up in monitoring the outcome of therapy in
case of Lymphoma.

4 Discussion

We have introduced a novel principle for unsupervised feature
filtering that is based on maximization of SVD-entropy. The fea-
tures can be ranked according to their CE-values. We have proposed
four methods based on this principle and have tested their usefulness
on three different biological benchmarks. Our methods outperform
other conventional unsupervised filtering methods. This is clearly
brought out by the examples that we have analyzed. More details are
provided by our Supplementary Material®. In particular, it is striking
to note how much more successful our methods are compared to VS,
the popular variance ordered method.

The major theoretical difference between the two approaches is
that VS relies on a measurement of one feature at a time. The
entropy-based approach, as implemented by the CE calculation,
takes into account the interplay of all features. In other words,

Shttp://adios.tau.ac.il/compact/UFF/SUPP

the contribution of a feature, its CE, depends on the behavior of
all other features in the problem. Thus variance is only one of the
factors that affect the CE value. The CE value depends also on
the correlations (or the absence thereof) of a given feature with
all others. The difference between the ranking of SR and VS
in Table 1 bears evidence to the difference between the two
methods.

We have demonstrated that our selected features have important
biological significance, through a GO enrichment analysis of the
genes in the Golub dataset. A similar analysis of the Armstrong
dataset is presented in the Supplementary Material®. In the virus
dataset, we have shown that the FS1/BE filtering method works
exceedingly well for a large range of numbers of features. The
biological significance of the relevant choices of amino-acids
remains to be uncovered.

The CE ranking leads to an estimate of the optimal m,. choice.
This is an important point by itself. In other methods, such as VS, it
is almost impossible to make this choice on the basis of variation of
feature properties. Conventionally one makes therefore an arbitrary
choice, such as selecting 10% or 50% of the features. In the three
datasets discussed in our paper it seems quite clear that our sug-
gested optimal m,, as judged from the CE scores, leads indeed to
optimal results. The improved Jaccard scores indicate that the selec-
ted m, features have biological significance.

Our four methods differ in computational complexity. SR is the
simplest one, since it relies just on sorting the initial CE values. In an
appendix we compare its complexity with that of the other methods.
The relative values depend on the choice of m,. (the size of the
subset).

FS1 chooses features that lie high on the original CE-score, hence
its optimal selected set will have a large intersection with that of SR.
Nonetheless, for small numbers of selected features, the order may
be very important. Thus, in the virus problem, FS1 turns out to be
much more successful than SR. In the Leukemia datasets, where
reasonable results were obtained for larger feature sets, FS1 was not
found to be significantly better than SR. Biologically one may
expect the appearance of features that are degenerate with one
another, i.e. have quite identical behavior on all instances. Such
duplicity can be included by the SR method but excluded by the FS1
one.

Our optimal feature-filtered sets in the two Leukemia problems
turn out to include just few percents of all genes. Thus a CE-analysis
indicates that a small subgroup of all genes is the most relevant one
to the data in question. We have seen that this relevance is borne out
by both Jaccard scores and GO enrichment analysis. The pursuit of
small feature sets is often guided by wishful thinking that the
essence of biological importance can be reduced to a small causal
set. Here we find that the small number obtained in our analysis is an
emerging phenomenon, and may be regarded as a true biological
result.
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APPENDIX

Computational complexity of the four methods

In the following calculations, we will assume that m,. < n, which
will give upper bound to the complexity. We will not assume that
m < n.

The computation of all eigenvalues for a dense symmetric matrix
requires O(p”) operations, where p is the size of the matrix
(Anderson, 1999).

We will define the complexity of the initial computation of all
CEs to be O(m*min(n,m)’) = K.

e SR: The computational complexity is lowest for the SR method.
There’s only one calculation of all CEs, followed by sorting.
Hence the complexity is O(K + m*logm).

e FS1: Calculation of all CEs followed by (m. —1) repetitive
diagonalization of a growing matrix (from 2 to (m. —1)), leading
to O(K + m.m?).

e FS2: Calculation of all CEs followed by (m. —1) repetitive
diagonalization of a decreasing matrix (from m-2 to (m-m.)),
leading to 0(m5-(m-m(.)5 ). Note that here, if n < (m-m.), the
complexity is O( mmn’)

e BE: Calculation of all CEs followed by (m-m,-1) repetitive diag-
onalization of a decreasing matrix (from m-2 to (m.-1)), leading
to O(m’-m)). Note that here, if n < m, the complexity is reduced
to O((m*-m>)n).

Clearly computational complexity is lowest for the SR method,
since only one calculation of all CEs is needed. BE or FS2 have the
highest complexity, depending on whether m > 2m,. or not.
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ABSTRACT

Motivation: Feature selection methods aim to reduce the complexity
of data and to uncover the most relevant biological variables. In
reality, information in biological datasets is often incomplete as a
result of untrustworthy samples and missing values. The reliability of
selection methods may therefore be questioned.

Method: Information loss is incorporated into a perturbation
scheme, testing which features are stable under it. This method is
applied to data analysis by unsupervised feature filtering (UFF). The
latter has been shown to be a very successful method in analysis of
gene-expression data.

Results: We find that the UFF quality degrades smoothly with
information loss. It remains successful even under substantial
damage. Our method allows for selection of a best imputation
method on a dataset treated by UFF. More importantly, scoring
features according to their stability under information loss is shown
to be correlated with biological importance in cancer studies. This
scoring may lead to novel biological insights.

Contact: royke@cs.huiji.ac.il

Supplementary information and code availability: Supplementary
data are available at Bioinformatics online.

1 INTRODUCTION

Computational biology has undergone a revolution in the
last decade. One of the prominent characteristics of this
revolution is the development of high-throughput technologies,
allowing for gathering of large-scale data, both in the number
of samples and in their features. Examples are microarray
gene-expression experiments (Beer er al., 2002; Khan et al.,
2001) and comparative genomic hybridization (CGH) (Snijders
et al., 2005).

A popular strategy for facilitating the analysis and inter-
pretation of such large-scale data is selecting informative
features from the thousands measured in each experiment
(Guyon and Elisseeff, 2003; Herrero et al., 2003). Feature
selection methods are divided into two types: supervised, when a
target function is known, and unsupervised, in which one has
no, or limited, information regarding the samples. Supervised

*To whom correspondence should be addressed.

feature selection methods are abundant, in particular in the
computational biology field, where they were found useful
in improving classifications tasks (Be and Jonassen, 2002).
Nevertheless, it was argued that such methods do not lead
to a unique set of selected features (Ein-Dor et al., 2006).
This is probably due to the fundamental variability within
the data and the small number of samples (which is further
reduced due to train-test partition), in comparison to the
number of features.

Less studied approach is the unsupervised feature selection.
Selection methods that are applied before clustering are often
referred to as filter methods. Most methods of unsupervised
feature filtering include ranking of features according to
different criteria: correlation with the first principal component,
range, fold-change, threshold, entropy and variance calculated
on each feature individually (Guyon and Elisseeff, 2003;
Herrero et al., 2003). An underlying assumption for these
selection methods is that only features that significantly vary
along the samples carry the relevant information. Although it
seems that unsupervised methods are scarce and less powerful
than the supervised ones, most analysts (often inattentively),
do apply some unsupervised schemes: in practice, almost every
microarray analysis starts with filtering out thousands of genes
with small variance or those that are below a predetermined
fold-change threshold.

Recently, we have suggested an unsupervised feature filtering
(UFF) framework (Varshavsky et al., 2006) that was success-
fully applied to several datasets with various representations
(e.g. gene-expression, amino-acid composition counts). UFF
differs from other popular unsupervised selection schemes by
(1) not involving a target function as the selection criterion
[e.g. optimizing clustering results (Dy and Brodley, 2004)] and
(2) considering the interplay of all features. It has been shown
on several datasets of different types that a selection of only a
few features according to the UFF method leads to improved
clustering results relative to other unsupervised methods or to
using the complete set.

Here, we investigate the effect of missing information on
feature selection strategies. We employ UFF and study whether
it remains valid when fractions of data are eliminated. In
particular, we put emphasis on the stable features that continue
to be selected under these conditions.

© The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
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Experimental data are prone to errors or information loss
because of two major reasons: (i) missing or untrustworthy
samples (Wang et al., 2006); (ii)) missing values: unarguably,
this is one of most bothering issues when handling gene-
expression microarray datasets (de Brevern et al., 2004; Scheel
et al., 2005); other microarray-based technologies (e.g. tiling
array, ChIP on Chip and CGH screening) impose similar
challenges. There exists a continuous drive to overcome these
problems by improving the hardware (Shi et al., 2006), and
developing imputation methods to replace missing values
(Gan et al., 2006; Hua and Lai, 2007; Troyanskaya et al.,
2001; Tuikkala et al., 2006). “White noise’ was shown to have
negligible effect on the analysis (Klebanov and Yakovlev, 2007)
and thus should not be considered.

Facing the fact that any data may be afflicted by missing
information, we argue that a feature selection method should
be relatively stable with respect to such errors. This assertion
can be tested by simulating information loss and studying its
effect on the method at hand. We evaluate UFF under such
conditions, suggest viewing stability as a new criterion for
feature selection, and study its use on biological data, leading to
interesting new insights.

2 DATA AND METHODS

Figure 1 summarizes the analysis protocol. The original dataset
(Section 2.1) is perturbed (Section 2.2) and filtered by UFF (Section
2.3). The selected features are then evaluated (Section 2.4) and tested
with respect to their biological relevance (Section 2.5).

2.1 Datasets

A comparative analysis is performed on two (complete) gene-expression
benchmarks, with known classifications, and a practical application is
then applied to a Comparative Genomic Hybridization (CGH) dataset
that inherently contains some missing values.

(1) SRBCT: the small round blue cell tumor gene-expression
dataset includes glass-based cDNA microarray measurements of
2308 genes (features) for 83 patients (samples). The samples
are categorized into four types of tumors: Burkitt lymphoma,

Ewing sarcoma, Neuroblastoma and Rhabdomyosarcoma
(Khan et al., 2001).
Input Data

Missing Samples
Analysis [ UFF ]
r 4

b Y
Evaluation X
Methodology Biological
Validation Inference

Fig. 1. Schematic representation of the analysis protocol.

Perturbations

(2) Lung: this HUGeneFL Affymetrix oligonucleotide gene-
expression dataset (Beer er al., 2002), includes 86 primary lung
adenocarcinomas and 10 non-neoplastic lung samples. Total 4966
genes are measured for each sample (features).

(3) CGH: this dataset (Snijders et al., 2005) comprises 1979 clones
(features) for 89 instances (samples). The expression value of each
record is the logyratio normalized to the genome median logyratio.
The dataset contains 5807 missing values (3.3%).

2.2 Perturbations

Assuming the complete dataset is a full [m x n] matrix 4, with m
features describing n samples (or observations) we simulate information
loss in two ways:

(1) Missing samples (Wang ef al., 2006) are simulated by eliminating
some of the columns in the matrix. We consider cases where 1%,
2%, 5%, 10%, 20% and 50% of all samples are randomly
removed. Total 50 random eliminations were applied to each
group size (in the leave-one-out case, all possibilities are
considered).

@

~

Missing values are modeled by randomly eliminating 1%, 2%, 5%,
10%, 20% and 50%, of all matrix elements. Total 50 random
deletions were selected for each group size. The removed matrix
elements are then imputed according to one of three imputation
methods:

(a) Standard average: each missing value is replaced with the
average of all present values in the set.

(b) Weighted average: each missing value is replaced by: [average
(row) * average (column))/average (matrix).

(¢) KNNImpute according to Troyanskaya er al. (2001), each
missing value is replaced by the standard average of samples of
the K nearest neighbors of a relevant feature (K= 10).

For clarity, (1) description of the KNNImpute method, (2) results of
50% data loss and (3) SDs appear in Supplementary Material.

2.3 Unsupervised feature filtering (UFF)

UFF scores each one of the features according to its contribution to the
SVD entropy of the dataset. Computation of the score is based on a
leave-one-out principle [for a complete description see Varshavsky ez al.
(2006)].

Let A denote a matrix, whose elements A;; are the measurement of
feature / on sample j, e.g. expression of gene i under condition j. We
base our method on the Singular Value Decomposition (SVD)
procedure. It decomposes the original matrix 4 into A= USVT,
where U and V are unitary matrices whose columns form orthonormal
bases. The diagonal, non-negative matrix S is composed of singular
values (s;).ordered from highest to lowest. Let / be the rank of the
matrix [/ <min (m,n)], Using the normalized relative values, p;

)
pr = szklsz (1)
a SVD-entropy (H) can be defined (Alter ez al., 2000):
1 d
H= —m;m log(px) (&)

SVD-entropy varies between 0 and 1. Low entropy datasets are
characterized by only a few high singular values whereas the rest are
significantly smaller. This pattern reflects a great redundancy in
the dataset. In contrast, non-redundant datasets result in uniformity
in the singular values spectrum and in high entropy.
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UFF scores each feature i using a leave-one-out calculation of the
SVD-entropy: H is calculated for the entire matrix and for the matrix
without feature i. The difference in the values defines the score of
feature i. Figure 2 displays the results after applying the UFF algorithm
to the SRBCT dataset, and sorting the features according to decreasing
UFF scores. Clearly, one can divide the features into three groups:

(1) Features with positive score. These features increase the entropy.
(2) Neutral features that have negligible influence on the entropy.

(3) Negative score features. These features decrease the entropy.

Note that a majority of features falls into group 2 (~92%), while
groups | and 3 represent minorities (~4% in each). The features
selected according to the UFF approach are the positive score features
[lying above the threshold of mean(score)+ SD(score)]. The rationale
behind picking group 1 features is that, because they increase the
entropy, they decrease redundancy. Hence, we may expect samples to
be better separated in the space spanned by these features.

UFF score

- ane .

0 500 1000 1500 2000 2500

Fig. 2. UFF Scores of the 2308 genes of SRBCT features, ordered by
decreasing scores. Dashed lines represent mean(score) £ SD(score).
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2.4 Methodology evaluation

Given a set of selected features we evaluate it according to how
successful it is in clustering correctly the set of samples, and how
much it overlaps with the set of UFF selected features of the
unperturbed data.

e Clustering quality. Clustering quality is measured both on
perturbed and on perturbed-then-filtered datasets. Cases where
the latter representation leads to higher quality indicate that
the filtering is effective even though the dataset is damaged.
This quality is measured using the Jaccard score: J=mny/
(nyy +ny9+ng), where ny; is the number of pairs of samples that
are classified together, both in a known classification and in the
clusters obtained by the algorithm; 7y, is the number of pairs that
are classified together in the true classification, but not in the
clustering and ng; is the number of pairs that are classified together
by clustering but not in the true classification. In order to ensure
that the evaluation is not biased by the clustering method, two
clustering methods were compared and shown to provide
consistent behavior patterns. In the two microarray datasets both
QC [o= ", dims=5, (Horn and Axel, 2003)] and hierarchical
(Euclidian distance, average linkage) methods were considered.

o Filtering stability. Filtered features of the original and perturbed
datasets are compared (Scheel et al., 2005). The degree of
intersection (similarity score) indicates the method’s stability
under the perturbation.

2.5 Stability scores

On average, each dataset has undergone ~1200 perturbations. Stability
of a feature is defined as the probability of this feature to be selected
under all perturbations. The features may be then ranked according to
this criterion.

3 RESULTS

3.1 Methodology validation: filtering quality and
stability

3.1.1 Smooth degradation of clustering quality under

perturbations  Figure 3 displays the clustering quality of the
perturbed SRBCT and Lung datasets (missing samples and
missing values with three imputation methods). UFF always

B 1
XX
o X
8 0.75
ks
Tromairgn g
0.5 T T .‘ ------- J

% Loss

Fig. 3. Clustering results of the (A) SRBCT and (B) Lung datasets, following perturbations: missing samples (a) and missing values (with three
imputation methods: (b) average, (c) weighted average and (d) KNNImpute). Dashed lines denote the clustering quality of the perturbed datasets
after various levels of information loss and the continuous lined denote the corresponding quality of perturbed and then filtered sets (results shown
are averages of 50 random perturbations). Detailed results for the two datasets appear in Supplementary Material.
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improves clustering quality. The results degrade smoothly as
a function of the amount of missing data. This allows us to
draw two important conclusions: (1) UFF continues to be
a good filtering method even under severe information loss. (2)
There does not seem to exist a critical amount of loss beyond
that clustering quality suffers a sudden drop.

In all missing sample perturbations cases, application of
UFF improves considerably the clustering quality even under
substantial information loss. This is also the case with missing
values perturbations. Clustering after UFF outperforms
clustering without UFF. Comparing between three imputation
methods, we learn that the best method for the SRBCT
dataset is the KNNImpute while for the Lung dataset it is the
weighted average.

3.1.2 UFF is stable under perturbations The stability of
filtering is measured by the similarity between the original list
of features (selected when the information is complete) and the
lists that are generated from the perturbed sets. The lists for the
SRBCT and Lung datasets (comprising 88 and 62 genes,
respectively) appear in the Supplementary Material.

Figure 4 displays the similarity scores of the perturbed
SRBCT and Lung datasets as a function of the lost data. As
shown, in the missing samples perturbation, the intersection
levels remain high even after substantial loss. This means that
UFF is stable under missing samples perturbations.

A 100

©
[&)]
]

—O— Missing Samples
—/\— Missing Values (KNNImpute)

% Similarity
©
o

85
>~ Missing Values (Average)
—O— Missing Values (Weighted)
80 T T T
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B 100
95
2
-‘—é‘ 90 -
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80 T T T 1
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% Loss

Fig. 4. Similarity levels as a function of lost data of the (A) SRBCT and
(B) Lung datasets. Detailed results for the two datasets appear in
Supplementary Material.

In the missing values perturbation, not all imputation
methods perform equally. In both cases the simple average
method performs relatively bad, while the weighted imputation
method performs very well. In the SRBCT dataset the
KNNimpute yields high similarity results, yet in the Lung
dataset this method is found to result in less stable lists. Overall,
similarity is seen to decrease linearly with information loss.
In both perturbation schemes the intersection is high (~85%)
even after substantial loss (20%). Similar qualitative results
have been obtained by Scheel et al. (2005) in a supervised
selection task.

3.2 Application to a faulty dataset

Given the CGH dataset that contains 3.3% missing values
(see Section 2.1), we apply to it further artificial information
loss in order to estimate (1) how damaging is the 3.3% original
loss, and (2) which is the best imputation method.

The analysis starts with applying the three imputation
methods to the dataset. Applying UFF to the three recon-
structed forms, results in three lists of selected features,
comprising 88, 83 and 85 clones for the average, weighted
average and KNNImpute, respectively. These three lists, that
are referred to as baselines, have 72 clones in common
(Table S3). As shown in Figure 5, the dataset is further
perturbed, both by missing values and by missing samples
protocols. The resulting lists of features are then compared with
their corresponding baseline lists. Figure 5 displays the

A 100
90 .
£ ;
© K
80, E
n .
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0 . —o— Weighted Average
—— KNNImpute
60 . T T T
0 5 10 15 20
% Missing values
B 100
951

% Similarity
©
o

—»<— Average Impute

85 —O— Weighted Average
—— KNNImpute
80 T T T 1
0 5 10 15 20
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Fig. 5. Similarity scores as a function of lost data of the CGH dataset
with (A) missing values and (B) missing samples perturbations. Note
that the missing values analysis starts with the original 3.3% loss.
Detailed results appear in Supplementary Material.
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similarity scores as a function of the information loss. Note,
that since three baseline lists are defined, three comparisons are
applied to both protocols.

Clearly, under all perturbations, the similarity levels degrade
smoothly (almost linearly), retaining high intersections (~85%)
with the original lists even after substantial loss (20%). The
high similarity levels may testify that, as far as clones selection
is considered, the original 3.3% damage is not crucial. This
observation matches the one found in the gene-expression case,
which suggests that the stability characteristic of UFF is
generic. Furthermore, both protocols lead to similar ranking of
the different methods with weighted average inferior to the
other two imputation methods.

4 BIOLOGICAL INFERENCE

In this section, we wish to study whether the stability criterion
is also biologically meaningful, i.e. are the stable features
causally related to the biological problem at hand?

4.1 Ranking stable features

Figure 6 displays the stability scores of the 88 first UFF genes
in the SRBCT dataset (according to 0 and Varshavsky et al.,
2006). There exists a positive correlation between the rank
order of the UFF score and stability. They are compared to the
ranking of Khan et al. (2001) based on a supervised criterion.
Out of 88, 37 of the UFF genes are common to the two lists
(hypergeometric enrichment P-value of 1.7E ~'2).

Among the 10 and 20 top stable genes, 8§ and 13, genes
appear in the supervised-selection based list, respectively.
The 20 most stable genes are listed in Table 1 (complete lists
of the two datasets appear in the Supplementary Material,
Tables S1A,B and S2).

4.2 Comparing stable and ‘less-stable’ SRBCT genes

4.2.1 Statistical analysis We conducted a statistical com-
parison of top 20 stable genes, with the 20 genes that were
originally selected by the UFF algorithm, but found to be less
stable (with stability score ranging from 0.85 to 0.51). The
top stable genes have relatively low skewness and kurtosis,
compared to the less stable genes. Since imputation methods
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Fig. 6. Stability scores of the top scored UFF-based selection (88 genes)
in the SRBCT dataset.

tend to smooth distributions, wide symmetrical distributions
should indeed be more resistant to perturbations.

4.2.2  Functional analysis for the most stable genes The
malignant tumors analyzed tend to occur in childhood. From
a morphological view, subtle clues distinguish between the
tumors. At present, analysis for chromosomal abnormalities
and molecular probes are being used to assist the pathologists.
The list of most stable features in the SRBCT set is intriguing.
Among the top stable genes, several genes corroborate each
other. Figure 7 illustrates protein—protein interactions that were
experimentally validated. Several of the top 20 stable genes
appear in these networks. The appearance of representative

Table 1. Top 20 stable genes in the SRBCT dataset

Stability Stability Genes name UFF Khan’s
ranking  score ranking ranking
1-11 1 Human DNA for insulin-like 1 2
growth factor II (IGF-2);
exon 7 and additional ORF
1-11 1 Insulin-like growth factor 2 2 1
(somatomedin A)
1-11 1 Collagen, type III, alpha 1 3 40
(Ehlers-Danlos syndrome
type IV, autosomal
dominant)
1-11 1 Insulin-like growth factor 5 8
binding protein 2 (36kD)
1-11 1 Human insulin-like growth 6 62
factor binding protein 5
(IGFBP5) mRNA
—11 1 SMA3 11 -
1-11 1 Actin, alpha 2, smooth 14 83
muscle, aorta
1-11 1 Antigen identified by mono- 51 73
clonal antibodies 12E7,
F21 and O13
1-11 1 IM-379708 23 -
1-11 1 Growth-associated protein 43 7 31
1-11 1 Spectrin, beta, non- 52 -
erythrocytic 1
12-15 0.99 Regenerating islet-derived 1 20 57
alpha (pancreatic stone
protein, pancreatic thread
protein)
12-15 0.99 Nucleolin 22 -
12-15 0.99 Gelsolin (amyloidosis, 16 -
Finnish type)
12-15 0.99 Troponin T2, cardiac 13 25
16-19 0.98 Crystallin, alpha B 12 79
16-19 0.98 Secreted protein, acidic, 37 -
cysteine-rich (osteonectin)
16-19 0.98 Collagen, type I, alpha 2 9 -
16-19 0.98 Follicular lymphoma variant 30 75
translocation 1
20 0.97 Cyclin D1 (PRADI: para- 10 3

thyroid adenomatosis 1)

In addition, the ranking of the genes according to Khan ez a/. (2001) is given. -
denote that a gene is not included in the reported 96 genes list (Khan ez al., 2001).
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Fig. 7. Experimentally identified gene networks (von Mering et al., 2007). (A) IGF-2 and interacting proteins; (B) Actins (ACT) and Gensolin (GSN)
and (C) Collagen (COL), Osteonectin (SPARC) and TFGS (TGFB). Genes included in Table 1 are framed (dashed frame indicates a UFF selected

gene, but not among the top 20).

genes within protein networks is an indication for the
importance of the identified biological process in the classifica-
tion. The most evident property is that the stable genes are
strongly involved in regulatory networks. In general, several
genes are involved in signal transduction (i.e. IGF response),
regulation of cytoskeleton and extracellular signaling.

Some genes, listed among the top ranked genes, belong to
cytoskeleton elements and their regulators (including actin,
gelsolin, troponin, cardiac actin alpha 2, alpha B crystalline and
beta spectrin). Their roles as tumor subtype classifiers are not
evident and should be experimentally validated.

The biological properties of the less stable genes are different
from the top ranked 20 genes. In general, many of these genes
associate with a nuclear function and thus may belong to the
tumorigenesis process. Among these genes are H2A histone,
DEAD/H hnRNP K, FMRI interacting protein 2, Cyclin-
dependent kinase 2-associated protein 1 and more. It is possible
that they are altered in tumors, but play a weaker role in
distinguishing among the different types.

5 DISCUSSION

We have subjected UFF to a perturbation-based analysis
and found it to obey the condition of stability. A similar
perturbation-based selection was shown to be efficient in
supervised tasks (selection and classification) (Chen et al.,
2007). Ours is the first unsupervised perturbation-based
selection procedure. We recommend using stability under
perturbations as an important diagnostic tool when searching
for a feature selection method.

Although for practical reasons, perturbation of even 10%
should be already considered as significantly severe, in this
study we extended our analysis to much higher damage levels
(up to 50% of the data, see Supplementary Material). The
reason for doing so is twofold: (i) acquire a deep understanding
of the nature of the method and the data. It is of interest to
investigate whether extensive damage, beyond some critical
amount, leads to a collapse of our method (known as critical
transition or percolation in various physical systems). In the
problem studied here we observe a smooth, almost linear
degradation in performance. (ii) In the context of gene
expression, the number of unreliable or suspicious samples
might often reach a significant fraction of the entire dataset.
Often these samples are not literally missing but result from

unreliable RNA extraction, low quality labeling, etc. We were
therefore motivated to examine how removing many samples
influences the lists of selected features (genes).

We have found that the effect of missing samples is very
similar to the one of missing values (followed by imputation).
In both, even a substantial loss of data does not significantly
alter the list of the selected features, reaching a similarity
of ~85%. Nevertheless, it should be emphasized that this
argument should be limited to datasets with no inherent
dependency among the samples. Examples for such dependen-
cies are: time series, cell-cycle and pre-post treatment for the
same individuals.

Differences in the imputation methods are identified,
emphasizing that imputation method needs to be data-driven.
For instance, KNNImpute is usually found perform best in the
low loss region while the two average-based imputations
achieve higher similarity levels at the high loss region. This
last finding can be explained by the local nature of the
KNNImpute method (relying only on nearest neighbors). This
understanding may assist in selecting among the various
imputation methods.

In the cases analyzed, a high correlation between the external
and internal criteria (clustering quality and filtering stability,
respectively) is reported. Specifically, in both gene-expression
benchmarks the two evaluation criteria rank the imputation
methods identically. This observation can be exploited to select
an imputation method given a dataset. Interestingly, when
applying the NRMSE (Normalized Root Mean Square Error),
the standard internal criterion for evaluating imputation
methods, a different methods-ranking is reported (see
Supplementary Material). This suggests that our unsupervised,
internal, similarity measure may be a more reliable criterion for
selecting an imputation method. We therefore suggest testing
the imputation method in conjunction with an unsupervised
feature selection method, such as UFF. Not only does it test
stability of the selected features, it also points out the best
imputation method to be used under these conditions.

Identifying genes as biomarkers for tumor detection and
classifications and for the multiple neurological malfunctions is
of ultimate importance. Many genes selected by our stability
criterion are in agreement with the ones that were found in a
supervised manner. However, some potential new features are
suggested. Identifying new potential markers may be due to the
lack of bias in our analysis, neither from sample labeling nor
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from pre-selected classifier algorithm. Moreover, by applying
the method on the entire dataset (without train-test splitting),
we manage to reduce the well-known pitfall of over-fitting.
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Chapter 3

Global Considerations in Hierarchical Clustering

Reveal Meaningful Patterns in Data

Abstract’

Background: A hierarchy, characterized by tree-like relationships, is a natural method of
organizing data in various domains. When considering an unsupervised machine learning
routine, such as clustering, a bottom-up hierarchical (BU, agglomerative) algorithm is
used as a default and is often the only method applied.

Methodology/Principal Findings: We show that hierarchical clustering that involve
global considerations, such as top-down (TD, divisive), or glocal (global-local)
algorithms are better suited to reveal meaningful patterns in the data. This is
demonstrated, by testing the correspondence between the results of several algorithms
(TD, glocal and BU) and the correct annotations provided by experts. The
correspondence was tested in multiple domains including gene expression experiments,
stock trade records and functional protein families. The performance of each of the
algorithms is evaluated by statistical criteria that are assigned to clusters (nodes of the
hierarchy tree) based on expert-labeled data. Whereas TD algorithms perform better on
global patterns, BU algorithms perform well and are advantageous when finer granularity
of the data is sought. In addition, a novel TD algorithm that is based on genuine density
of the data points is presented and is shown to outperform other divisive and
agglomerative methods.

Application of the algorithm to more than 500 protein sequences belonging to ion-

channels illustrates the potential of the method for inferring overlooked functional

‘A preliminary version of this study (Roy Varshavsky, David Horn and Michal Linial. "Recursive
Top-Down Quantum Clustering of Biological Data") was orally presented at ISMB, PLoS Track,
2006.
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annotations. ClustTree, a graphical Matlab toolbox for applying various hierarchical
clustering algorithms and testing their quality is made available.

Conclusions: Although currently rarely used, global approaches, in particular, TD or
glocal algorithms, should be considered in the exploratory process of clustering. In
general, applying unsupervised clustering methods can leverage the quality of manually-
created mapping of proteins families. As demonstrated, it can also provide insights in

erroneous and missed annotations.

Introduction

Clustering is a common unsupervised machine learning procedure. It is often used for
preprocessing, and usually provides a general overview, especially when dealing with
large datasets. Its applications range from astronomy to economics, psychology
marketing, text mining and other areas. Recent advances in genomic biology high-
throughput techniques have led to a growing need for efficient and powerful clustering
algorithms (D'Haeseleer, 2005). For instance, in large-scale gene expression data,
clustering algorithms are useful in the diagnosis of different samples (e.g., diseased and
healthy patients, labeling of tissues by disease subtype), as well as for their ability to
reveal functional classes of genes among the thousands often used in experimental
settings (Eisen, et al., 1998; D'Haeseleer, 2005).

Clustering algorithms are often classified as either nonhierarchical (partitioning) or
hierarchical. The former define a complete partition of the data (for comprehensive
reviews see (Jain and Dubes, 1988; Duda, et al., 2000; D'Haeseleer, 2005). Because they
suggest multiple levels of organization, hierarchical algorithms are best suited for
describing data that have some inherent breakdown resolution. Organizing complex
arrangements into hierarchies is a common technique in many fields, such as grammar
description in computational linguistics, industrial organization (NAICS - The North
American Industry Classification), object oriented programming, biological taxonomy
and evolutionary organization of proteins, genes or species. Hierarchical clustering has
been successfully applied to protein sequences, chemical entities, 3D structural

information and protein catalytic activities (Handl, et al., 2005).
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The outcomes of hierarchical algorithms can be represented as a tree, where each node
branches into two (a 'binary tree') or more nodes. Ideally, the tree has some underlying
basis; for instance, sub-industry breakdown, or protein families that reflect evolutionary
diversification. In any case, it can represent many clustering solutions corresponding to
different groupings of nodes. A collection of nodes may be viewed as natural cuts in the
tree. Some of the clustering possibilities may match an expert’s view. Other clusters may
correspond to a pattern exposing the nesting in the data (sub-classes) which a given
expert may not have been aware of. In fact, this is the rationale behind the clustering
approach; namely, finding new internal patterns in the data. Since hierarchical clustering
provides alternative clustering possibilities, it is usually considered as a richer tool than
the single, nonhierarchical, clustering solution.

Hierarchical methods can be further divided into Bottom-Up (BU, agglomerative) and
Top-Down (TD, divisive) types (Jain and Dubes, 1988; Duda, et al., 2000; Planet, et al.,
2001). BU algorithms start with each instance as a cluster and repeatedly merge clusters
until a unified cluster is formed. They are popular in genomics (gene expression,
(D'Haeseleer, 2005) and proteomics (Rune, 2007), and have been implemented in
resources such as ClusTr (Apweiler, et al., 2001) and ProtoNet (Sasson, et al., 2003). TD
methods work in the opposite direction and are rarely used for these types of data.
Although most tutorials present the two strategies, and some works have recently
suggested ways to combine them (Chipman and Tibshirani, 2006), BU algorithms are
significantly more popular than TD algorithms. A survey of all articles published in PLoS
in the last two years (years 2006-2007) shows that out of 86 publications that apply
hierarchical clustering to analyze data, only 3 do not utilize the standard BU approach.
This significant bias toward the BU approach is mostly due to its availability in software
packages (Eisen, et al., 1998; MathWorld) and intuitive appeal. Furthermore, the
reliability at the beginning of the clustering process is evident and no assumption on any
statistical model in the data is required. These reasons probably led most researchers to
neglect the TD approach as a potential approach for unlabeled data.

Although less popular, several recent TD algorithms have been found to be highly
efficient, especially in document classification problems. One such example is the

Bisecting K-Means algorithm, based on the divide-and-conquer scheme of repeated K-
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means (K=2). It outperforms both standard K-Means and agglomerative clustering
(Steinbach, et al., 2000), and is computationally efficient (Cimiano, et al., 2004). It
suffers, however, from the usual problems of the K-means approach; namely a bias
toward spherical clusters and a dependency on initial conditions. The second such
example is Principal Direction Divisive Partitioning (PDDP), which is based on repeated
divisions of instances according to the sign of their projection on the first principal
component (Boley, 1998). PDDP outperforms the bisecting K-Means algorithm in quality
and stability (Savaresi and Boley, 2004) and will thus be used here as a benchmark for a
state-of-the-art TD algorithm.

This paper examines the advantages of involving global approaches in clustering, and
demonstrates that they can generate meaningful results near the top of the hierarchy tree.
It tests and compares different approaches on three extensively studied benchmarks. The
TD algorithms succeed better in capturing the expert assignment as compared to the
state-of the-art BU clustering methods. Moreover, a novel TD algorithm, called TDQC
(Top-Down Quantum Clustering) is then presented and shown to outperform other
algorithms. TDQC is based on an algorithm which has been applied to gene expression
datasets (Varshavsky, et al., 2005) that were initially processed by SVD. In addition, an
intermediate approach, named ‘glocal’, which is a BU based clustering with global
consideration, is suggested to handle datasets represented by distances (and not in their
feature space).

The datasets and the algorithm are described in the next section. After the comparative
study of various TD and BU algorithms on the three benchmarks we apply them to a
functionally coherent protein dataset. The application of TD to a protein set leads to
biological insights that can reveal intriguing patterns in the data. ClusTree, a new
validation and visualization tool that was used to compare the performance of the

different hierarchical classification methods is provided.
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Materials and Methods

Datasets

Various clustering methods are applied to four different types of datasets. These sets are
the basis for a comparative analysis of previous studies and existing algorithms. Two of
the sets are known benchmarks of gene-expression experiments. The third set is a known
stock-market dataset, and forth is a biological dataset of ion-channel proteins.

Cell Cycle genes Spellman et al. identified 798 genes as cell cycle regulated in the yeast
Saccharomyces cerevisiae and catalogued them into five classes that correspond
to different stages of the yeast cell cycle (marked as M/G1, G1, S, G2 and M). Expression
levels of those genes were recorded at 72 continuous time-points yielding a [798 genes
x72 time-points] matrix.

Leukemia patients The Golub er al. dataset has served as a benchmark for several
clustering methods (Golub, et al., 1999; Getz, et al., 2000; Sharan and Shamir, 2000). The
experiment sampled 72 patients with two types of leukemia, ALL and AML. The ALL
set is further divided into T-cell and B-cell leukemia and the AML set is divided into
patients who underwent treatment and those who did not. For each patient, the expression
levels of 7129 genes is reported. The clustering task is to find the four cancer groups
within the 72 patients in a [72 patients x7129 genes] gene expression matrix.

Standard and Poor (S&P) We used the stocks dataset of (Slonim, et al., 2005), who
collected day-to-day fractional changes in the price of all stocks in the Standard and
Poor’s 500 list during the 273 trading days of one year. 487 of the stocks are divided in
10 different industry segmentations. The dataset is organized in a [487 stocks X 273 trade
days] matrix.

Ion Channel proteins: The dataset is extracted from the SwissProt database (version
40.28). For the 614 proteins that are annotated as ‘ion channel activity’ (according to
Gene Ontology, ID-5126), all-against-all BLAST E-values are recorded (Altschul, et al.,
1997). All E-values lower than 100 are kept in a matrix and E-values higher than 100 are
limited to be 100. 518 of these proteins are annotated by the InterPro

(http://www.ebi.ac.uk/interpro/, version 7.0) collection, thus resulting a [518 proteins x

518 proteins] distances matrix. Only exclusive InterPro labels were considered. There are
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~40 exclusive InterPro labels that are associated with at least 2 proteins each. Several
levels of granularity are associated with this protein set. The 3 group labels are ‘ligand-
gated channel’, ‘voltage gated’ and ‘others’. These 3 classes describe a gross partition.
This gross classification can be nested into 11 classes which can be further nested into 19
classes. The 3 resolution levels are considered gross, medium and detailed mapping

(Table 1, supplementary material).

The TDQC algorithm

The TDQC algorithm is defined in Box 1:

TDQC Algorithm:

0. Define original dataset (Number of sets = 1)

1. [Optional] Apply preprocessing to each set

2. Run QC (Quantum Clustering) on each set

3. Divide each set into two sets containing:
a. Instances Dbelonging to the cluster with the global

minimum (A in Fig. 1)

b. All the rest (B in Fig. 1)

4. Recursively go-to 1 for each set including more than 2
instances

Preprocessing

In order to transform the data into a compressed, manageable and hopefully noise-free
representation, it is recommended to use the Singular Value Decomposition (SVD)
method. SVD represents any real matrix X of size [nXm] as a product X=UXV", where U
and V are orthonormal matrices and 2’ is a diagonal matrix whose eigenvalues s; (singular
values) appear in decreasing order. In this context, n is the number of instances (or
elements), and m is the number of features (or attributes), describing each instance. The
columns of U and V define two independent vector spaces. Rather than studying the
resulting low-rank matrix X’=UZX"V" (by zeroing all singular values at locations i>r, one
can compress the data into an r-dimensional space), we focus our attention on the r first
columns of the unitary matrices U and V. It is within these vector spaces that we look for

cluster structures (Alter, et al., 2000; Horn and Axel, 2003; Varshavsky, et al., 2005).
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Following the experience of Latent Semantic Analysis (LSA), in computation linguistic
(Landauer, et al., 1998), we define distances among the r-dimensional vectors in terms of

cosines of the angles among them, as d=1-cos(0).

Quantum Clustering (QC)
The Quantum Clustering (QC) algorithm (Horn and Gottlieb, 2002) begins with a Parzen
window approach, assigning a Gaussian of width o to each data-point, thereby

constructing ¥(x), where

N _(X_x,‘ )2

2

p=2e >

¥(x) can serve as a probability density that could have generated the data. Assuming this
function to be the ground-state (lowest eigenvalue) of the Hamiltonian H of the

Schrodinger equation:

Hy = (—%vz +V()W(x) = By (x),

one can solve for the potential energy V uniquely, determining E through the condition
that min(V(x))=0. The Schrodinger equation can be understood as a model balancing a
clustering force (represented by the potential V) and a dispersive force (the second
derivative term), that it is responsible for the fact that the data are not concentrated at the
minima of V (bottoms of the potential energy).

An example of V(x) is shown in Fig. 1 for a dataset that comprises 798 genes. The
classification of the genes into phases of the cell-cycle is illustrated by the different
colors. The original data are given in 72 dimensions (time points). SVD is used to reduce
them to two dimensions. The x-axis of this figure corresponds to cos(®) of each of the
2D vectors representing the genes. As Fig.1 displays a cyclic trend is well observed. In
conventional QC one would cluster the instances according to the valleys of V that they
belong to. In TDQC we separate the data into two sets, a and B, where set a is defined by
the deepest valley of V. To each dataset we reapply preprocessing, QC and division in a
recursive manner. The stopping criterion of the recursion is when a subset contains no

more than 2 data points. It is noteworthy that although SVD preprocessing is not a
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mandatory step, according to our experience, this routine is found very effective in both

improving the clustering results and in significantly reducing the algorithm’s runtime.
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Fig 1. Potential values of the cell cycle dataset. Data were projected onto the two leading SVD
components, and represented in terms of the angle in these coordinates. Dashed lines mark the

partitioning of the dataset into two groups (o and P). For details see text. The color code

represents Spellman's expert view for the 5 cell cycle phase (G1-brown, number of instances, S-
green, S/G2- yellow, G2/M-red, M/G1-blue).

‘Glocal’ Hierarchical Approach: considering global information in
bottom-up clustering

Data may come in two possible representations: (/) Feature space (a [nXm] matrix): each
instance is measured according to its features (or attributes). Examples are: Gene
expression, 3D coordinates of protein structures. (2) Distances or similarities (a [nXn]
matrix): each instance is presented by its distance or similarity to another instance.

Examples are: BLAST or Smith-Waterman matrices in proteomics. This representation

leads to a square, and often, symmetric matrix.
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Clearly, the second representation is less informative than the first. It can be calculated
from the first but, given only the distances, feature space cannot be reconstructed (except
approximately as in Multidimensional Scaling (Kruskal and Wish, 1981)), as shown in
Fig. 2 (A, and B). Standard BU relies on distances only, even when the data are given in
feature space (e.g., in gene-expression analysis): distances are first derived and iterative
lineage is performed on them (Planet, et al., 2001).

In the cases where data is represented only by distances (Fig 2B), we argue that
considering only the ‘nearest neighbors’ as the standard BU algorithms suggest, might
end up neglecting relevant information in the data. We therefore suggest adding a global
perspective to local clustering, namely glocal (global-local) clustering. This may be
achieved by treating the distance matrix as an instance-by-feature matrix, i.e. using the
instances as defining feature-space, after which BU is applied (Fig 2C). The instance-by-
feature matrix allows one also to apply processing routines (e.g., SVD, PCA) to achieve
dimensionality reduction before applying the clustering algorithm (see, e.g., Varshavsky,

et al., 2005).
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Fig. 2. Three possible ways to handle data for generalized BU clustering: (A). Standard
workflow when data are presented in feature space. (B). Standard workflow when only
the distance matrix is known. (C). Our ‘glocal’ algorithm manipulates the distance matrix
by using feature-space methods. Light gray arrows denote optional steps and dotted
frames denote global consideration, such as SVD or PCA manipulations.
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Statistical Criteria for Classification Quality

A clear limitation of hierarchical clustering (whether TD or BU) is the inherent difficulty

in the evaluation scheme. Jain & Dubes argue that the hierarchy of clustering can be

evaluated only when an expert-hierarchy is available (we use the term ‘expert’ to describe

the external data labeling (Jain and Dubes, 1988)). Quite often such expert-hierarchies are

unavailable and no gold standard criterion exists (Cimiano, et al., 2004). Alternative

measures that do not capture the hierarcy per-se have been suggested (Torrente, et al.,

2005).

We address the instances where expert-classification of data is provided, and combine 3

assessment methods to describe different qualities of the clustering tree.

1.

Node Score Since each node specifies a cluster, enrichment p-values can be
calculated to assign the given node with one of the classes in the data. This is done by
using the hypergeometric probability density function. The significance p-value of

observing k instances assigned by the algorithm to a given category in a set of n

instances is given byp=zn:(Kj(N_Kj/ (Nj where K is the total number of
=Z\x )\ n—x n
instances assigned to the class (the category) and N is the number of instances in the
dataset. The p-values for all nodes and all classes may be viewed as dependent set
estimations; hence we apply the False Discovery Rate (FDR) criterion to them
requiring ¢g<0.05 (Benjamini and Hochberg, 1995). P-values that do not pass this
criterion are considered non-significant. We further apply another conservative
criterion; namely, a node is considered significant only if k>n/2 (i.e., the majority of
its instances belongs to the enriched category).

Level Score A level [ of the tree contains all nodes that are separated by / edges from
the root, i.e., that share the same Breadth First Search (BFS) mapping. Each level
specifies a partition of the data into clusters. Choosing for each node, the class for
which it turned out to have a significant node score, we evaluate its Jaccard-score
(J=tp/(tp+fn+fp), where tp is the number of true positive cases, fi the number of false
negative cases and fp the number of false positive cases) . If the node in question has
been judged to be non-significant by the enrichment criterion, its J-score is set to null.

The level score is defined as the average of all J-scores at the given level.
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* 1 . * * .
3. Tree Score We define the weighted best-J-Score (J ZNZ”M ) where J ; is the best

J-Score for class i in the tree, n; 1s the number of instances in class i, ¢ is the number
of classes and N is the number of instances in the dataset. This criterion provides a
single number specifying the quality of the tree based on a few nodes that contain
optimal clusters. This score or its close variation has been applied to measure the
quality of proteins families (Kaplan, et al., 2004) and document classification

(Steinbach, et al., 2000; Zhao and Karypis, 2002).

Results

All datasets were analyzed using two nonhierarchical algorithms, QC and K-Means,
several variants of Bottom-Up algorithms, single-linked (BU-S), average-linked (BU-A)
and complete-linked (BU-C) (Jain and Dubes, 1988; Duda, et al., 2000) and two Top-
Down algorithms, PDDP and our TDQC.

The results of the hierarchical algorithms were evaluated using a combination of the 3
scoring methods presented above as follows. (A) The node-score, the clustering tree is
presented with its enrichment markers for every tree node. It combines a qualitative and
graphical description of the results. Recall that the graphical description is presented for
visualization purposes only. (B) The level-score, the average J-score of each level in the
tree, which provides both qualitative and quantitative information on the algorithm’s
performance along the hierarchy. (C) The tree score, the weighted best J-scores. Being a
single score, the tree score provides a criterion for comparison of hierarchical algorithms
to algorithms that are nonhierarchical in nature.

Fig. 3 A, B displays the trees as generated by a BU-A algorithm (using Euclidean
metric and average linkage), and the TDQC algorithm when applied to the Cell Cycle
dataset. Note that the BU-A performed best out of all the BU variants (Table 1).
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Fig 3. Hierarchical trees of the 798 cell cycle genes for BU-A (A) and TDQC (B)
algorithms. Color codes specify the five cell cycle classes as in (Fig. 1). Dot sizes
indicate statistical enrichment levels (larger sizes correspond to smaller p-values).
Uncolored nodes represent non-significant enrichment.

Some prominent patterns emerge from Fig. 3 A, B and almost identical conclusions can
be drawn from all other datasets: /. The BU tree is far more unbalanced relative to the
TD tree. 2. The TD algorithm performs best on higher levels of the tree, whereas the BU

algorithm performs better on lower levels of the tree. This can be seen here by observing

where the statistical enrichment of nodes is highest. 3. TD clusters (sub-trees) are very
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coherent, i.e. it is very rare for significant nodes of one color to have children of another
color.

Next we turn to measuring clustering quality by comparing level-scores in Fig 4. The
TDQC algorithm has a high maximal score (0.44) and displays an almost monotonic
decrease with increasing tree-level. The BU algorithm exhibits significantly different
behavior. Namely, it leads to a bimodal distribution and its much smaller (0.13) maximal

score is located at low hierarchy levels.
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Fig. 4. Level scores of (A) BU-A and (B) TDQC for the cell cycle dataset. Tree levels are
counted from the root. Note the different scale for the Y-axes.

The two trees also differ in their tree depth. The depth of the tree (D) is defined as the
distance between the root and the farthest leaf. A completely balanced (binary) tree with
N nodes is logy(N) deep whereas a completely unbalanced tree is N deep. Figure 5
displays the relative depths ((D- log2(N))/(N- log,(N))) of all trees generated by different
BU and TD algorithms when applying them to the 4 datasets presented in this study.
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Fig. 5. The relative depths of the trees generated by the various algorithms when applied
to 4 gene expression, stock market and protein family.

Despite the fact that each of the datasets used in this study comprises a different
number of instances and is differently represented (e.g., similarity, raw data), we observe
common trends in Fig. 5 and conclude that the nature of the algorithm governs the shape
of the tree. TD algorithms tend to generate more balanced trees, and as a result have
fewer levels (in the PDDP algorithm each binary division is essentially into sub-clusters
of equal sizes); BU algorithms usually generate deeper trees where single-linked (BU-S)
algorithms tend to produce chain-like trees, whereas complete-linked algorithms (BU-C)
create more balanced trees (Hansen and Delattre, 1978)

Finally we turn to the global measures of clustering quality, based on comparisons with
expert classifications. Table 1 summarizes the tree scores of all algorithms when applied
to the gene-expression and the stock-market benchmarks. The TD algorithms outperform
the BUs in all these cases. This is presumably due to the fact that the expert
classifications represent global partitions of the data, whereas the BU approaches are
fairly poor (BU-S in particular, D'Haeseleer, 2005). TDQC outperforms all other

algorithms, including the nonhierarchical QC.
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Elements | Features Classes Non- Hierarchical
hierarchical BU TD
QC K- BU-S BU-A BU-C | PDDP | TDQC
Means
Cell cycle | 798 72 5 0.613 | 0.537 ] 0.265 | 0.472 | 0.409 ] 0.542 0.646
(0.06)
Leukemia | 72 7129 4 0.758 | 0.519 | 0.465 | 0.522 | 0.53 ] 0.545 0.804
(0.1)
S&P 487 273 10 0.400 | 0.306 | 0.2 0.261 | 0.445] 0.441 0.504
(0.05)

Table 1. Clustering scores (tree score) of nonhierarchical (QC, K-Means) and hierarchical
algorithms. K-Mean was performed 10 times and averaged (and std is in parenthesis),
Hierarchical algorithms are BU (S, A and C marks the Single, Average, Complete, respectively)
and TD (PDDP, TDQC) algorithms. Best scores are bold faced.

Evaluation of Different Granularity Levels in Protein Sets

In order to expand our analysis on data that are inherently hierarchical, we analyzed a
set of proteins associated with annotation of channels. This set comprises well-studied
proteins to which functional annotations are assigned based on experimental evidence
and evolutionary homology relationships (Ren and Paulsen, 2005). Our set is composed
of proteins associated with ‘ion channel activity’, which form a subset of proteins
belonging to ‘transporters and channels’ (Gene Ontology ID-6811). These are
membranous proteins that function in the directional translocation of substances across
membranes. The directional translocation is between cell compartments and between
cells and the environment. These proteins are defined by InterPro experts as belonging to
3 classes according to their gating mode: ligand-gated, voltage-gated and ‘others’. The
last group includes proteins that are gated by nucleotides (e.g., as in the case of the cystic
fibrosis chloride channel) and several channels that have a mixed gating mode or yet
undefined properties. This ‘gating mode’ property dominates other characteristics of the
channels and receptors including their multimeric nature, the number and nature of their
accessory subunits, the number of transmembrane domains, etc. These 3 classes are
further divided into other granularity levels of 11 and 19 classes respectively (see

Methods).
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We tested the various clustering algorithms to see how well they met the different
granularity levels (Table 2). This served to show which approaches are appropriate at

different granularity levels.

Classes Non-hierarchical Hierarchical
BU TD
QC K-Means BU-S | BU-A | BU-C | PDDP | TDQC
3 0.6859 | 0.565 (0.13) ] 0.613 | 0.395 | 0.382 | 0.771 | 0.808
11 0.4626 | 0.533 (0.05) 1 0.338 | 0.34 | 0.245 | 0.567 | 0.61
19 0.3218 | 0.515 (0.06) 1 0.23 | 0.32 0.268 | 0.64 0.655

Table 2. Clustering scores of different algorithms applied to the ion channel proteins. Scores are
measured according to the appropriate granularity level (for 3, 11 and 19 classes).
Clearly, comparing the performance of the different algorithms for different granularity

levels (Table 2) shows the inferior performance of the BU algorithms. To address the
question of suitability of the algorithm to the data, we compared the best TD to the best
BU algorithms (TDQC and BU-A, respectively). Since the BU level-scores have a
bimodal pattern (as in Fig 4) with maxima occurring in the 1% and 4" quartiles, we

compared the maxima of the level scores of the two algorithms in these two quartiles.
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Fig 6. Comparing the two extreme parts of the level scores for the TDQC (top), and BU-
A (bottom) algorithms for different levels of granularity (3, 11 and 19 classes). ‘High’
and ‘Low’ refer to the 1** and 4™ quartiles for the levels in the resulting trees. Note the

different scale for the Y-axes.
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As depicted in Fig 6, the results show that in the high levels of the tree, the TD
algorithm outperforms the BU. The performance of the TD algorithm declines when the
granularity from 3 to 19 is increased, whereas the BU performance only improves
gradually. At the other end of the scale (low levels of the trees), the scores of both
methods improve when granularity increases. However, at all granularity levels, the BU
algorithm outperforms TD. Note that in both methods, the overall performance is rather
poor for the 4t quartiles of the trees (level score < 0.22). For the 1% quartile, the score of
the TDQC reaches 0.78. Similar conclusions were obtained when applying different
scoring methods, such as counting the significant nodes in each level (not shown).

Since the high levels reflect a global view of the data whereas low levels account for
local aspects, TD algorithms appear to be more appropriate in describing the high level

patterns, whereas the opposite holds for local patterns of the data.

Glocal clustering improves the quality of BU algorithms

In the Ion Channel dataset, the instances (proteins) are represented by their distance from
each other (E-value). Following the standard BU approach involves jointing sub-clusters
solely according to their mutual distance. As suggested above (see Methods), we argue
that considering the distances of all sub-clusters in the clusters-merging process may
improve the clustering quality. We therefore applied the glocal protocol to the dataset and
compared its results with the standard BU algorithms. Fig. 7 displays the trees as
generated by the BU (A) and Glocal (B) algorithms. In this case both methods use

Euclidian distance and single linkage; similar trend was observed in other combinations.
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Fig. 7. The hierarchical tree of the BU (A) and glocal (B) algorithms, as applied to the Ion
channel dataset. Single linkage wad used in both algorithms.

As Fig 7 shows, the glocal tree is more balanced than the BU tree. Moreover, three
clusters are well observed in the glocal tree, while no apparent partition is detected in the
BU tree. As the two trees display significantly different structures, we turned to evaluate
how well they capture the expert classification at the three resolution levels. Fig .8
displays the tree scores of both algorithms, given the 3 granulation levels.

As displayed in Fig. 8, the glocal protocol improved the clustering results at all
granulation levels. The tree, as generated in this way is also more balanced and more
informative. Overall, in many other datasets (not shown), we found that adopting this
very simple approach may significantly improve clustering results, when comparing to

the standard BU implementation.
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Fig. 8. Tree scores of BU and glocal algorithms for different levels of granularity (3, 11 and
19 classes). Shown are the best results for each approach (single, average or complete).
Biological Interpretations Based on TDQC

With the rapid expansion of available biological data, the reference to an ‘expert’ often
means there has been a combination of automatic and manual efforts. The automatic
TDQC algorithm was very successful (score of 0.808) in classifying the coarse
granularity of the 518 proteins into 3 classes (Table 2). Nevertheless, the algorithm can
also reveal partitions of the data overlooked by these experts (Fig 9). It can be seen in the
graph that a group of 35 proteins marked as ‘others’ is embedded within the sub-tree of
‘voltage gated channels’ (blue nodes within a brown sub-tree). Inspecting this set of 35
proteins indicates that they are composed of 2 functionally different glutamate ionotropic
receptors belonging to NMDA (19 proteins) and Kainate (12 proteins) families (known as
NR1-2 and GIuR5-7, respectively). For an additional 4 proteins in this set, no clear
assignment is provided. Interestingly, an additional set of ionotrophic glutamate receptors
set known as AMPA (with 12 proteins, GluR1-4) are separated from the NMDA-Kainate
group. Thus, the TDQC partitioned the AMPA ionotrophic glutamate receptors separately
from the Kainate and NMDA. Other properties of these receptors including their
selectivity, multimeric structures and evolutionary relatedness indeed favor the partition
of the AMPA receptors away from the Kinate-NMDA (Zorumski and Thio, 1992). In
high quality annotation systems (such as Pfam, SMART and the InterPro integration

system) no such separation appeared.
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A1
A2

Fig. 9. Hierarchical tree produced by the TDQC algorithm for 518 proteins of ion channels. Red,
blue and brown are assigned to the 3 classes: “others”, “ligand-gated” and ‘“voltage-gated”,
respectively. The bottom inset is a zoom of a subset of the tree marked by the frame and
according to level of granularity of 11 classes. Sub-trees are all indicated in brown and marked by
their identity. A1, A2 - K+ channels ; B — NMDA and Kianate receptors (35 proteins); C -
Ryanodine receptors (10 — proteins); D - Na+/H+ exchangers (11 proteins); E - TRP channels (18
proteins). Al and A2 are separate branches with A1 (73 proteins) including all Kv channels, and
A2 with the Cyclic nucleotide-gated channel (51 proteins). Recall, that the top and bottom panels
show the same tree.

We further investigated the relationship between the various subtypes of voltage gated
channels (marked in brown, Fig. 9) by using a finer granularity of 11 classes (Table 1,

supplement). A clear partition was generated by the TDQC and the Kainate-NMDA set
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(Fig 9, bottom, marked B). This set is more closely related to the C and D clusters than to
Al and A2. All proteins in cluster A2 are voltage-gated K™ channels that belong to the
Kv1 superfamily and the cyclic regulated channels (whereas the proteins in Al are Kvl1-
Kvll). The C cluster comprises a group of 18 TRP channels. All TRP channels are
permeable to cations. Although only 2 of the channels (TRPM4 and TRPMS) are
impermeable to Ca®, 2 others (TRPV5 and TRPV6) are highly Ca® permeable
(Owsianik, et al., 2006). Cluster D includes Ryanodine and Inositol 1, 4, 5-trisphosphate
(IP3) receptors that are intracellular Ca’* release channels (Berridge, 2004). Cluster E
represents a class of Na'/H" exchangers (Orlowski and Grinstein, 2004). Thus the close
relationship of the NMDA-Kainate group to Ca** channels (in clusters C and D) supports
their functional relevance and the shared mode of their regulation. Thus, TDQC provides
a tree- like structure that not only captures the expert partition but exposes additional
connectivity that was overlooked. This group of channels is of special interest as they are
targets for pharmaceutical strategies in neurodegenerative diseases and mental
pathologies. Their functional partition is far richer than that reflected by their ion

conductance properties (Kaczmarek, 2006).

Discussion

We carried out a comparative analysis of five hierarchical clustering algorithms and two
nonhierarchical ones, applying them to different types of datasets from various sources.
We showed that TD algorithms are consistently superior to BU and nonhierarchical
algorithms. In particular, TDQC was found to outperform both TD and BU state-of-the-
art algorithms. This applies to data from gene expression, protein families and the stock
market.

BU algorithms have some advantages in identifying local relations in the data whereas
TD methods capture global patterns. When general patterns are sought, as is the often the
case in preliminary stages of data analysis, conventional BU clustering methods should
be avoided and replaced by TDs. The latter result in more balanced trees and may be
halted — if desired — well before generating the entire tree.

When the data are provided as similarities or distances between instances, we find that

a simple manipulation based on all relationships within the data (all distances), may
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significantly improve the clustering results of the BU approach. This glocal algorithm
imposes some global information on the BU making it more competitive with TD algorithms. In
summary, global approaches in the exploratory process of clustering, in particular TD or
glocal algorithms, are strategies that should not be overlooked.

Although there are ongoing efforts to establish expert hierarchies in various domains,
these attempts are riddled with difficulties. High level annotations, often manually
catalogued (e.g., GO, UniProt keywords in proteomics) are strongly biased by current
knowledge. As a result, that part of the data (in, e.g., protein families) that has been
thoroughly studied may possess a rich tree-structure whereas the rest is poorly mapped
and weakly annotated. Applying unsupervised methods, such as the TD clustering
methods presented here, can leverage the quality of these manually-created mappings. As
demonstrated, it can also provide insights into areas that have been missed and correct
erroneous annotations.

ClustTree, a graphical Matlab toolbox for applying various hierarchical clustering
algorithms and testing their quality is provided and freely available at

http://adios.tau.ac.il/clustree/ or http://www.protonet.cs.huji.ac.il/clustree (alternative).
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Chapter 4

Clustering Evaluation

This chapter contains the following research papers:

[4A] Roy Varshavsky, Michal Linial and David Horn. "Clustering Algorithms
Optimizer: A Framework for Large Datasets" (2007, ISBRA, Lecture Notes in
Bioinformatics (4463), 85-96).

[4B] Roy Varshavsky, Michal Linial, David Horn. "COMPACT: A Comparative

Package for Clustering Assessment" (2005, ISPA, Lecture Notes in Computer
Science (3759), 159-167).
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Clustering Algorithms Optimizer: A Framework

for Large Datasets
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Clustering Algorithms Optimizer: A Framework for
Large Datasets

Roy Varshavsky'”*, David Horn?, and Michal Linial®

"'School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
rovke@cs.huji.ac.il
2 School of Physics and Astronomy, Tel Aviv University, Israel
3 Deptartment of Biological Chemistry, Institute of Life Sciences, The Hebrew University of
Jerusalem, Israel

Abstract. Clustering algorithms are employed in many bioinformatics tasks,
including categorization of protein sequences and analysis of gene-expression
data. Although these algorithms are routinely applied, many of them suffer from
the following limitations: (i) relying on predetermined parameters tuning, such
as a-priori knowledge regarding the number of clusters; (ii) involving
nondeterministic procedures that yield inconsistent outcomes. Thus, a
framework that addresses these shortcomings is desirable. We provide a data-
driven framework that includes two interrelated steps. The first one is SVD-
based dimension reduction and the second is an automated tuning of the
algorithm’s parameter(s). The dimension reduction step is efficiently adjusted
for very large datasets. The optimal parameter setting is identified according to
the internal evaluation criterion known as Bayesian Information Criterion
(BIC). This framework can incorporate most clustering algorithms and improve
their performance. In this study we illustrate the effectiveness of this platform
by incorporating the standard K-Means and the Quantum Clustering algorithms.
The implementations are applied to several gene-expression benchmarks with
significant success.

Abbreviations and Keywords: Bayesian Information Criterion (BIC), Quantum
Clustering (QC), Optimal K-Means (OKM), Optimal Quantum Clustering
(OQC), Principal Component Analysis (PCA), Singular Value Decomposition
(SVD).

1 Introduction’

In the field of genomics and proteomics, as well as in many other disciplines,
categorization is a fundamental challenge. Categorization is defined as systematically
arranging elements (data-points) into specific groups. Clustering, being an unsupervised
learning problem, may be regarded as a special case of categorization with unknown

* Corresponding author.
1Availability and Supplementary material: The framework has been implemented in
MATLAB (Version 6.5), and is freely available at http://adios.tau.ac.il/compact/framework

I. Mindoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 85-96, 2007.
© Springer-Verlag Berlin Heidelberg 2007 67
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labels (for further details see [1, 2]). Some algorithms such as CLICK [2], CTWC [3, 4]
and CAST [5] were primarily developed for large sets of biological data while others
were adopted from other fields (e.g., K-Means, Fuzzy C-means [6], Agglomerative
Hierarchical Clustering, Self Organized Maps). One of the algorithms that we will
expand on is Quantum Clustering (QC), the effectiveness of which has been
demonstrated on gene-expression data [7, 8].

In large scale gene-expression tasks, clustering algorithms are useful for diagnosis
of different samples (e.g., differentiating sick and healthy tissues, associating tissues
with subtypes of a disease) as well as revealing functional classes of genes among the
thousands often used in experimental settings [9].

Methods for collecting expression levels on a genome-wide level have been rapidly
improving, leading to increased amounts of data to be analyzed. Additionally, much
of the biological data is represented in high dimensions. Some clustering algorithms
do not perform well when applied to large high-dimensional datasets. In particular,
several model-based algorithms that are shown to be very efficient on limited size
datasets [10], are found unfeasible when large scale datasets arc introduced (for
computational complexity discussion see [11] and supplementary). The hope is that
efficient preprocessing will address the task of computational feasibility while
efficiently remove noise, thus allowing exposure of meaningful features of the data.

It would be presumptuous to propose one preprocessing protocol that works for all
kinds of data. Different preprocessing methods are based on averaging and variance
standardization, excluding genes with low variance between conditions [2], PCA,
Fourier transforms [12], and more.

One fundamental preprocessing direction is dimension reduction. Ding et al. claim
that the dimension should be correlated with the expected number of clusters [13].
However, this may not hold for real biological data, since this argument is based on a
model in which data are generated by independent Gaussian distributions. Moreover,
in many cases the number of clusters is unknown.

Several efforts to develop efficient and accurate filtering schemes and compression
tools have been proposed [14, 15]. A routine scheme for gene-expression data (including
commercial analysis tools provided by various platforms) is to filter elements in a
supervised manner. For example, genes whose variance is below a certain threshold for
different experimental conditions are discarded. Obviously, such filtering is often biased
and misses a genuine property of the data.

In addition to preprocessing, clustering algorithms usually require selecting a set of
parameters, thus turning each application into a set of subjective choices. If no prior
knowledge is available, assessing the correct number of clusters (e.g., as required by
the K-Means algorithm), is almost impossible. This choice is avoided by hierarchical
algorithms that propose some O(N) possible partitions® of varying sizes, and the
decision on the best partition is user determined.

Several of the most successful algorithms in the field of gene-expression do not
explicitly accept the number of clusters K as an input; however this number is directly
derived from their parameters. Amongst them are (i) the CAST algorithm [5], in
which the affinity threshold determines the number of clusters, (ii) the CLICK

% In the paper N refers to the number of elements in the data, and K denotes the number of
clusters.
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algorithm [2], in which the homogeneity value determines K by controlling the
kernels and the definition of singletons. (iii) The CTWC algorithm [4] where some
parameters (such as stability threshold and minimal group size) determine K, and (iv)
QC [7] where the Parzen window size (o) determines the number of clusters.

Moreover, algorithms such as K-Means, Fuzzy C-Means and others, being
nondeterministic, are inconsistent as they depend on starting points and other
stochastic factors. Some methods such as averaging clustering results, following a
majority rule, or applying other heuristics [16] have been suggested.

Since different results may be obtained by the numerous clustering algorithms that
exist, evaluation of this variety is an essential step of the analysis [17, 18], and a
reliable method is required. In this study we present a framework to overcome the
pitfalls described above by (i) a generic method for preprocessing and (ii) a measure
based on an internal criterion that can be incorporated in any clustering algorithm.

2 Methods

Our proposed framework includes two interrelated steps: preprocessing and parameter
tuning. We outline the rationale of the method and describe its implementation on two
different kinds of clustering algorithms.

2.1 Preprocessing

Singular Value Decomposition (SVD) serves as a good and efficient preprocessing
step and is useful for dimension reduction [8, 12, 19].

SVD represents any real matrix X as a product X=UXV’, where U and V are
orthonormal matrices and 2" is a diagonal matrix whose eigenvalues s; (singular
values) appear in decreasing order. The columns of U and V define two independent
vector spaces. This decomposition is unique (up to overall phases) and holds for any
real matrix of size m by n. The number of non-zero entries in 2’ equals the rank of X.
A common application of SVD is dimension reduction: this is performed by replacing
2’ with a truncated version where only a small number (r) of leading singular values is
retained and the rest are replaced by zeros. The resulting reconstructed matrix X’
(X’=UZX"V"), is the best least-mean-squares approximation of X obtainable by any
matrix of rank r.

We focus our attention on the matrices U and V. In a problem where X is a matrix
of m genes by n samples, U and V form representations of gene and sample spaces
respectively. It is within these spaces, now reduced to rank r that we look for cluster
structures [8].

How does one choose the rank r of the truncated space? The singular values s; have
the meaning of standard deviations. Defining the relative variance V; of component i
(see Fig 1A and supplementary), one may come up with several principles for
truncation.

N
V.=s! /Z sJZ. (1)
j=1
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Wall [12] suggested the following guidelines: (1) ignore components beyond the point
where the cumulative relative variance becomes larger than a certain threshold (e.g.
85%), (2) ignore components with relative variance below a certain threshold (e.g.
1%), or (3) stop when a sudden decrease is observed in the relative variance graph.
We suggest using SVD- entropy [19] as a guide for choosing among the possibilities.

1 N
D Vilog(V) 2)

E(Data) =—- Tog(V) 4

E varies between 0 and 1. E = 0 corresponds to an ultra ordered dataset that can be
explained by a single eigenvector (problem of rank 1) and £ = 1 stands for a
disordered matrix in which the spectrum is uniformly distributed. We find that in
gene-expression datasets, entropy values are higher than 0.5, reflecting a disordered
distribution. If E is very low, a sudden decrease in the spectrum is a good indicator for
the best r values. Otherwise we prefer criteria (/) and (2).

Truncation to dimension r is equivalent to projecting the vectors of our problem
(e.g. the genes or samples vectors) onto an r-dimensional subspace. The vectors, as
defined in this subspace, have different norms. It is preferable to renormalize the
vectors, i.e. project them onto the unit hyper-sphere in r-space. This approach
considers similarity between vectors in the truncated space in terms of the cosine of
the angle between them, and is consistent with the standard application of Latent
Semantic Analysis (LSA) [20]. It is worth mentioning that, although we suggest using
SVD, other truncation methods may be used (e.g., Fourier transforms, PCA).

2.2 Parameter Tuning

The validity and reliability of clustering algorithms may be questioned on two
grounds: (/) subjectivity, i.e. using supervised criteria in the parameter setting and (2)
inconsistency, i.e. obtaining different results upon repeated application of
nondeterministic algorithms.

In order to reduce these pitfalls to a minimum, we suggest using an internal
criterion. The criterion we choose to adopt is the Bayesian Information Criterion
(BIC). Fraley and Raftery [21] developed it in a model-based analysis that assumed
the data to be generated by a mixture of underlying normal probability distributions.
The parameters of the underlying distributions were set by an EM algorithm. The BIC
criterion is used to evaluate the number of clusters and the quality of the suggested
clustering. BIC is defined as follows:

BIC =21,,(x,0)—m,, log(N) = 2log p(x| M)+ const 3)

where /j,(x,0) is the mixture log likelihood (of the data x and the predicted model ©),
which is maximized under the constraint that m,, (a function of the number of
independent parameters®), is minimized. It is assumed that a higher BIC score reflects
better clustering quality. Recently, Teschendorff et al. have applied an EM algorithm
to find a partition that maximizes the BIC criterion [10]. Here we do not optimize the

> We choose my=dim*K* (K+dim), where dim is the number of dimensions and K is the
number of clusters.
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BIC score. Trusting the clustering algorithms we just use this score, in a way befitting
the algorithms, to find the best clustering parameters.

3 Implementation

We demonstrate our method on two fundamentally different clustering algorithms.
They differ in some fundamental aspects thus testing the generality of our framework.

Optimized K-Means (OKM)

K-Means is a very popular, fast and intuitive algorithm. This naive algorithm has two
known drawbacks: First, it requires the number of clusters as an input, and thus is
limited to scenarios where external knowledge is available. Secondly, the algorithm is
nondeterministic, and is thus inconsistent.

The OKM implementation applies the K-Means algorithm 50 times for each
number of clusters (K=1 to 20 in our examples) and computes the BIC score for each
application. The application that leads to the maximal BIC score is considered to be
the optimal solution.

Optimized QC (0QC)
The QC algorithm [7] uses the Schrodinger equation to provide an effective clustering
description of the data. It requires one parameter, 6, a Parzen window width. This
parameter controls the number of clusters that are identified by the algorithm with
larger values of ¢ yielding fewer clusters. Different ¢ may also yield the same number
of clusters but different clustering assignments (see Fig. 2B). Contrary to K-Means
this algorithm is deterministic, has less constraints than K-means (since noise is
integrated within the model), and does not assume spherical properties of the clusters.
Recently, a variation of the algorithm's convergence, using the mean-shift approach,
was suggested [22]. Here we employ the standard implementation [7].

OQC consists of applying QC once for a set of ¢ values (50 values in the range of
0.1 to 0.9, in our examples), and computes the BIC score for each c. The maximal
BIC is considered as the optimal solution.

4 Results

Here we describe our results on three gene-expression datasets that are well known
benchmarks. In the first [23] and the second [24] examples, samples were clustered (2
and 4 clusters, respectively) while in the third dataset [25] clustering was performed
on the genes. All three cases have assignments that were manually curated. The
assignments serve to estimate the performance of the clustering algorithms, using the
Jaccard score which reflects the ‘intersection over union' between the algorithm's
clustering assignments and the expected classification®:

n
Jaccard = 1l 4)
n,+ny, +ng

* We refer to supplementary material for further explanation.
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4.1 The Colon Dataset of Alon et al. (1999)

In the dataset of [23], 62 gene-expression samples were taken from colon cancer
patients. 40 of them were taken from sick tissues, and 22 from healthy tissues. Each
sample contains the expression of 7479 genes. We follow [23, 24] who chose 2000
genes with the highest confidence in the measured expression levels.

In order to emphasize the influence of preprocessing on the clustering results, we
compare SVD (see methods) with Principal Components Analysis (PCA)’. Fig 1A
displays the singular values of the [2000x62] matrix.

The compression guidelines (see methods), suggests that only 2 or 3 components
may be needed for a good description of the data (the relatively low entropy: 0.28, see
equation 2). This yields compression rates of 1x10~ and 1.5x107, respectively.

08

Singular values after SVD procedure

. DE J
ool
_ 04—
: 024
0.02
0.01
, )

0 Lun .
0 10 20 30 40 50 60

Component # Raw data SVD2D|ms PCMD\ms SVDBDms PCA3D|ms

o
©

2 o
< | =
T

°
B
Jdaccard

o
o
R

Relative Variance
-
2

o
=
3

Fig. 1. A. (left) Singular values of the colon dataset (dashed line denotes the 'cut’ decision). B.
(right) Jaccard scores of the KM on raw data (left bar) and different preprocessing options.

As shown in Fig. 1A, preprocessing procedure influences the clustering quality.
We conclude that this step deserves substantial attention. Moreover, when selecting
the correct compression method (SVD in 3 dimensions), the clustering results are
improved, as reflected by the increase in the Jaccard score (from 0.52 to 0.6).

The optimal results are obtained for SVD reduction to 3 dimensions. At this stage,
the data are compressed to 62 vectors on a 3 dimensional unit sphere. Fig. 2A displays
the OKM results (50 executions for 2-20 putative clusters) for different choices of K.
For each K the maximal BIC of all 50 trials was chosen. The overall maximal BIC
value is obtained for K=2. Note that the farther the number of clusters is from the
correct solution, the larger is the dispersion of the corresponding BIC values.
Comparing the internal (BIC) and external (Jaccard) criteria, one finds that the K=2
assignments were also the closest to the experts opinion. This testifies to the
usefulness of BIC as an indicator of the proper clustering of the data.

5 Matlab code: princomp (zscore (X'X)) .
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Fig. 2. A. (left) BIC Values when applying OKM (SVD reduced to 3 dimensions) on the colon
dataset. B. (right) The number of clusters obtained in the colon dataset as a function of the ¢
input parameter of the QC algorithm.

Next we apply OQC to the compressed colon dataset. Recall that QC is a
deterministic algorithm, thus, a single application is required for each ¢ value. Fig. 2B
displays the number of clusters when varying ¢. Note that different ¢ values may lead
to the same number of clusters but different assignments, hence BIC may vary when
the number of clusters remains constant.
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Fig. 3. A. (left) Comparison of the internal (BIC) and external (Jaccard) criteria for the colon
dataset (OQC). B. (right) Comparison of the standard and optimized versions of the KM and
QC algorithms.

Both BIC and Jaccard scores display the same behavior in the neighborhood of their
maximal values (Fig. 3A). The maximal BIC was obtained for 6=0.55, where QC
leads to 2 clusters. The corresponding Jaccard score for this ¢ is 0.715.

Since both OKM and OQC share the same preprocessing step, their clustering
results can be compared. The maximal BIC value achieved by OQC is higher than the
one achieved by OKM (-95 and -300, respectively). Similarly, the Jaccard score of the
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OQC 1is higher than the one of OKM (0.715 and 0.678, respectively). Fig. 3B
compares these results with what the same algorithms obtain on the original datasets
without preprocessing (0.52 and 0.4 for KM and QC, respectively). The results are
even more impressive when compared to other state-of-the-art algorithms (Tablel).

Table 1. Jaccard scores of various algorithms when applied to the Alon dataset

Method Jaccard
K-Means (raw data, 50 repeats) 0.52 (0.1)
OKM (Preprocessing & BIC) 0.678

QC (raw data) 04

0OQC (Preprocessing & BIC) 0.715
CLICK [2] 0.64
CAST [2,5] 0.682
CTWC ([4], and®) 0.508

4.2 The Leukemia Dataset of Golub et al., 1999

The dataset of Golub et al. has served as a benchmark for several clustering methods
[2, 4 and 24]. The experiment sampled 72 leukemia patients with two types of
leukemia, ALL and AML. The ALL set is further divided into T-cell leukemia and
B-cell leukemia and the AML set is divided into patients who have undergone
treatment and those who did not. For each patient, an Affymetrix GeneChip measured
the expression of 7129 genes. The clustering task is to find the four cancer groups
within the 72 patients in a [7129x72] gene expression matrix. We select the first five
eigenvectors, achieving a compression rate of 7x10™ (from [7129x72] to [5x72]).

BIC is maximized for K=2 in OKM, as is the Jaccard score (Fig. 4A). Hence we
conclude that OKM can identify only the two major groups in the data and cannot
detect a partition into four groups. This finding is consistent with the CAST and
CLICK algorithms that have also failed to identify the subtypes [2]

Since QC cannot be applied to the raw dataset, preprocessing is of essence. OQC
proves to be very effective. As displayed in Fig. 4B, the correlation between the BIC
and the Jaccard scores is quite high around the maximum of both curves. Moreover,
the maximum BIC is at 6 =0.548, which dictates partitioning into 4 clusters, similar to
what would be expected from the data. The corresponding Jaccard score for this o is
0.69 (Fig. 4B). 4 clusters are predicted by QC throughout the range 0.47<6<0.56.

4.3 The Yeast Dataset of Spellman et al. (1998)

The dataset of [25] presents a somewhat more challenging task than the previous
examples, since we examine our method on clustering of genes. Spellman et al.
identified 798 genes as cell cycle regulated and assigned them to 5 different stages of
the yeast cell cycle (M/G1, G1, S, G2 and M). Expression levels of these genes were
recorded at 72 time points, yielding a [798x72] matrix.

® http://www.weizmann.ac.il/physics/complex/compphys/ctwc/
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Fig. 4. A. (left) BIC and Jaccard scores of the Golub dataset (OKM), B. (right)Comparison of
internal (BIC) and external (Jaccard) criteria of the leukemia dataset (OQC)

Contrary to the first examples, the distribution of relative variances is gradual and
the entropy is significantly higher (0.705, see supplement). This result is consistent
with the argument that high entropy reflects data that were preprocessed, since genes
were intentionally selected by their functional annotation. We selected the first four
leading eigenvectors (note the dashed line in the figure) achieving a compression rate
of 5x107 (from [798x72] to [798x4]).

The external expert [25] suggests that there are 5 groups of cell cycle related genes.
When applying the OKM protocol to the compressed dataset a maximized BIC is
observed at 6 clusters. Comparing to the standard application of K-Means, the OKM
shows no improvement: both applications yield Jaccard scores of 0.4.

Application of OQC to the compressed dataset yields a somewhat different result
than that of OKM. BIC is maximized at 6=0.5, where 4 clusters are identified. Taking
a closer look at the OQC clusters suggests that the S and G2 stages are joined by QC
into one cluster. Here the correlation between the BIC and Jaccard scores is not
perfect (see supplementary). Nevertheless, the Jaccard score it yields is relatively high
(0.5 comparing to 0.4 in many other algorithms, see supplement table).

5 Conclusion

We present a general ‘clustering improver’ scheme. This unsupervised, data-driven
two-step clustering framework uses intrinsic properties of the dataset to determine the
SVD-based compression. After dimension reduction, several iterations of a clustering
algorithm are applied, each with a different parameter. They are then compared with
each other by the BIC criterion. The parameter that yields the best BIC score is
chosen and is declared to be the optimal one. This generic framework is also
computationally efficient: it processes these large-scale datasets on a standard PC in
less than a minute (e.g., 50 runs of each of the different number of clusters in OKM).
Preprocessing of experimental data is an essential step. The raw data often come in
a large-scale, un-normalized and noisy representation. These distractions have to be
treated. Nevertheless, due to the diversity of the experiments one cannot provide a
universal preprocessing method. In our study, we emphasize the importance of
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compression, and present some examples of the variations that different preprocessing
methods can yield. We recommend SVD-based compression, which provides a
normalized, filtered and ultra-compressed representation of the data. We also suggest
guidelines regarding the extent of the compression.

The second step of our methodology is parameter tuning, which is based on the BIC
score. Choosing this score has two advantages: (/) being an internal measurement, it
allows an unbiased, automated method with no external intervention, and (2) its
capability to be computed after the algorithm has terminated its application allows this
independent criterion to be ‘plugged in’ to any clustering algorithm.

BIC is useful for finding the best solution amongst many local maxima, for
both deterministic and nondeterministic clustering algorithms. Some heuristics are
proposed in order to overcome the inconsistency problem of nondeterministic
algorithms. In cases where many applications of the same algorithm lead to suboptimal
solutions and only a few suggest good solutions, BIC maximization represents
considerable improvement over other methods such as majority voting. Even if BIC
does not point to the best clustering solution, it chooses one that is close to the best. It
can therefore assist in narrowing down the search for best parameters.

Our methodology is especially well adapted to algorithms that assume spherical
distribution (e.g., K-Means) of clusters, but it can be applied to algorithms that do not
assume such a distribution. Surprisingly, it performs very well for methods that do not
subsume spherical clustering such as QC and SOM (not shown). The optimized
algorithms described here outperform the published results of CTWC, CLICK and
CAST. We assume the same methodology to the latter algorithms could improve their
performance even further.

Nevertheless, we identify some limitations. First, as we have not suggested any
modification in any clustering algorithm per se, the improvement is bounded to the
algorithm’s best performance. If the solution space does not describe the underlying
structure of the dataset, we cannot obtain a high quality solution.

Second, the BIC score assumes a specific hyper-elliptic organization of clusters.
When, as in the yeast dataset, clusters have different distributions, BIC has less
descriptive strength. In such cases BIC may not fit the properties of the dataset. Third,
the BIC value, computed by the EM method, usually cannot converge when the number
of dimensions surpasses some threshold (of the order of 10). An efficient preprocessing
is therefore a prerequisite for the BIC to be computed.

Finally, since BIC fits a model to a specific data distribution, it cannot be used to
compare models of different datasets. For the same reasons it cannot be used to
choose among different preprocessing methods or truncated dimensions.

Different clustering algorithms are currently included in analysis suites that are
applied by experimentalists to gene expression data. A standard practice is to apply
several algorithms with a few configurations and choose among them on the basis of
some known classification. Our framework may serve as a platform for systematic
comparison between different clustering algorithms. In all comparisons, analysis is
applied to an identical experimental benchmark. The large variation in performance of
each algorithm supports the notion that there is no 'one-size-fits-all' method. This
study attempts to reduce the subjectivity in data interpretation by providing a platform
for comparisons that can be adopted by any algorithm.
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Abstract. There exist numerous algorithms that cluster data-points from large-
scale genomic experiments such as sequencing, gene-expression and pro-
teomics. Such algorithms may employ distinct principles, and lead to different
performance and results. The appropriate choice of a clustering method is a sig-
nificant and often overlooked aspect in extracting information from large-scale
datasets. Evidently, such choice may significantly influence the biological in-
terpretation of the data. We present an easy-to-use and intuitive tool that com-
pares some clustering methods within the same framework. The interface is
named COMPACT for Comparative-Package-for-Clustering-Assessment.
COMPACT first reduces the dataset's dimensionality using the Singular Value
Decomposition (SVD) method, and only then employs various clustering tech-
niques. Besides its simplicity, and its ability to perform well on high-
dimensional data, it provides visualization tools for evaluating the results.
COMPACT was tested on a variety of datasets, from classical benchmarks to
large-scale gene-expression experiments. COMPACT is configurable and ex-
pendable to newly added algorithms.

1 Introduction

In the field of genomics and proteomics, as well as in many other disciplines, classifi-
cation is a fundamental challenge. Classification is defined as systematically arrang-
ing entities (data-points) into specific groups. Clustering, being an unsupervised
learning problem, may be regarded as a special case of classification with unknown
labels (for more details see [1], [2]). In gene expression microarray technology, a
hierarchical clustering algorithm was first applied to gene-expression data at different
stages of cell cycle in yeast [3]. During recent years several algorithms, originating
from various theoretical disciplines (e.g., physics, mathematics, statistics and compu-
tational neuroscience), were adopted and adjusted to gene expression analysis. They

* Corresponding author.
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© Springer-Verlag Berlin Heidelberg 2005 81
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are useful for diagnosis of different conditions for example differentiating between
sick and healthy tissues, and classification to subtypes of a disease. An additional
outcome of applying such algorithms to gene-expression data was the revealing of
functional classes of genes among the thousands used in experimental settings [4].
Furthermore, it became possible, and useful, to isolate groups of relevant genes that
mostly contribute to a particular condition, in the correlative or derivative perspective,
a procedure called bi clustering [5].

By their nature, data points that are collected from large-scale experimental set-
tings suffer from being represented in a high dimensional space. This fact presents a
computational and an applicative challenge. Compression methods that maintain the
fundamental properties of the data are called for.

As clustering algorithms are rooted in different scientific backgrounds and follow
different basic principles, it is expected that different algorithms perform differently
on varied inputs. Therefore, it is required to identify the algorithm that suits best a
given problem. One of the targets of COMPACT is to address this requirement, and to
supply an intuitive, user-friendly interface that compares clustering results of different
algorithms.

In this paper we outline the key steps in using COMPACT and illustrate it on two
well-known microarray examples of Leukemia [4], and yeast datasets [6]. For a com-
parative analysis we included routinely used clustering algorithms and commonly
applied statistical tests, such as K-Means, Fuzzy C-Means and a competitive neural
network. One novel method, Quantum Clustering (QC) [7], was added to evaluate its
relative performance. The benefit of applying COMPACT to already processed data is
demonstrated. All four algorithms that were applied in analyzing these datasets were
compared with a biologically based validated classification. We conclude that the
compression of data that comprises the first step in COMPACT, not only reduces
computational complexity but also improves clustering quality. Interestingly, in the
presented tested datasets the QC algorithm outperforms the others.

2 Implementation

After downloading and configuring COMPACT, four steps should be followed: defin-
ing input parameters, preprocessing, selecting the clustering method and presenting
the results.

2.1 Input Parameters

COMPACT receives two input parameters that are Matlab variables: data (a two-
dimensional matrix) — represents the elements to be clustered, and 'real classification'
(an optional, one-dimensional vector) — representing the elements according to an
expert view and is based on bulk biological and medical knowledge.

2.2 Preprocessing

a) Determining the matrix shape and which vectors are to be clustered (rows or
columns).
b) Preprocessing Procedures: SVD, normalization and dimension selection.
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2.3 Selecting the Clustering Method

a) Points' distribution preview and clustering method selection: The elements of
the data matrix are plotted. If a 'real classification' exists, each of its classes is
displayed in a different color. One of the clustering methods, K-means, FCM
(fuzzy C-means), Competitive NN (Neural Network) or QC (Quantum Cluster-
ing) is to be chosen from the menu.

b) Parameters for clustering algorithms: depending on the chosen method, a spe-
cific set of parameters should be defined (e.g., in the K-Means method — num-
ber of clusters).

24 COMPACT Results

Once COMPACT completes its run, the results are displayed in both graphical and
textual formats (results can be displayed also in a log window). In the graphical dis-
play, points are tagged by the algorithm. The textual display represents Purity and
Efficiency (also known as precision and recall or specificity and sensitivity, respec-
tively) as well as the joint Jaccard Score'. These criteria for clustering assessment are
defined as follow:

<) |Clusters Tool (step 5/5) [ZJ@EI

File:

Clustreing Resulfs
QG Classificafion g0 Heralions, sigma = 0.54073)

Real Classification

dimension 2 <l M2 dimensian 1
| II I

10 20 30 4 B0 70
Resultz of golubData: QC Classification @o iterations, sigma =o.54073)
Jaccard score: 0.70745, Purity: 078953, Efficiency. 0.as7s4

= W b =

] : L : : : Input data: 5 dimensions were selected
o 0.2 0.4 & 08 Efficiency Franraressing. SV 4 normalizatinn ware annlied nn data Flements ara
l <= Back l l\/iew Log...l l End ]

Fig. 1. A screenshot of the graphical view on the results produced by COMPACT

! The Jaccard score reflects the ‘intersection over union' between the algorithm and ‘real’ clus-
tering, and its values range from O (void match) to 1 (perfect match).
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M Efficiency = " Jaccard =— (1
n, 1y, 1, n, +ny +n,

Purity =

Where:

e ny;is the number of pairs that are classified together, both in the ‘real’ classifica-
tion and in the classification obtained by the algorithm.

e nyis the number of pairs that are classified together in the correct classification,
but not in the algorithm’s classification.

e 1y, is the number of pairs that are classified together in the algorithm’s classifi-
cation, but not in the correct classification.

Ending the application will add a new variable to the Matlab workspace: calcMapping
- a one-dimensional vector that represents the calculated classification of the ele-
ments.

3 Results

We applied several of the most commonly used clustering algorithms for gene expres-
sion data. By analyzing the results of COMPACT we observe significant variations in
performance. In the following we compare the performance on different datasets. We
choose to use datasets that were heavily studied and for which an expert view is
accepted.

3.1 COMPACT Tests of Leukemia Microarray Expression Data

We tested COMPACT on the dataset of Golub et al. [4] that has served already as a
benchmark for several clustering tools (e.g. [2], [8], [9], [10], [11]). The experiment

Table 1. COMPACT based comparison for the Golub dataset [4]. For details see text.

Method Jaccard  Purity Efficiency
Raw data
K Means 0.257 0.369 0.459
Fuzzy C Means (FCM) 0.272 0.502 0.372
Competitive Neural Network (NN) 0297 0.395 0.547
Quantum Clustering (QC) NA NA NA
Preprocessing (SVD)

K Means

0.4 0.679 0.494
Fuzzy C Means (FCM) 0.316 0.584 0.408
Competitive Neural Network (NN) 0442 0.638 0553
Quantum Clustering (o= 0.54) 0.707 0.77 0.898
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Fig. 2. Jaccard scores of the four algorithms tested by COMPACT on the Golub dataset. Left:
before compression, Right: following application of the SVD compression step. Note that an
improvement is detected for all methods by a preprocessing step.
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Fig. 3. A graphical comparison of COMPACT results on Leukemia dataset. The samples (pa-
tients) are ordered by their groups: samples 1-37: group #1, samples 38-47: group #2, samples
48-62: group #3 and samples 63-72: group #4. The four ‘real’ classes are distinguished by the
background color (white, gray, white and gray), whereas black bars demonstrate the algo-
rithm’s classification. For example, in (a) the first sample belongs to the ‘correct’ first group
(white background); while the algorithm placed it in the second group (the black bar is at group
#2). Shown are the results of (a) K-means (K=4) and (b) QC (Quantum clustering, ¢ = 0.54) for
clustering the AML/ALL cancer cells after SVD truncation to 5 dimensions.

sampled 72 leukemia patients with two types of leukemia, ALL and AML. The ALL
set is further divided into T-cell leukemia and B-cell leukemia and the AML set is
divided into patients who have undergone treatment and those who did not. For each
patient an Affymetrix chip measured the expression of 7129 genes.

The clustering results for four selected clustering algorithms are shown in Table 1.
A comparison of the Jaccard scores for all algorithms is displayed in Figure 2 and two
clustering assignments are compared in Figure 3. Applying the selected algorithms to
the raw data (i.e., without an SVD preprocessing) yields poor outcomes.

Next we applied the SVD preprocessing step selecting and normalizing the 5 lead-
ing SVD components (‘eigengenes' according to Alter, [12]) thus reducing the matrix
from 7129X72 to 5X72. Clustering has improved after dimensional truncation, yet not
all algorithms correctly cluster the samples. Note that only QC shows a substantial
degree of consistency with the ‘real’ classification (Jaccard. = 0.707, Purity = 0.77
and Efficiency = 0.898, for discussion see Horn & Axel [13]).
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3.2 COMPACT Tests of Yeast Cell Cycle Data

Next we test the performance of COMPACT for clustering of genes rather than sam-
ples. For this goal we explore the dataset of yeast cell cycle presented by Spellman et
al. [6]. This dataset was used as a test-bed for various statistical and computational
methods 14]. The expression levels of 798 genes were collected from 72 different

Jaccard Scores
o
w
L

K NN FCM K FCM NN Qc
Means Means
Raw data Preprocessed data

Fig. 4. Jaccard scores of the algorithms in the COMPACT based comparison for the Spellman
dataset (shown are results for four clusters analysis)

Table 2. COMPACT based comparison to the Spellman dataset of Cell cycle in Yeast [6]

Method Jaccard Purity Efficiency
Raw data
K Means (5 clusters) 0.435 0.617 0.596
K Means (4 clusters) 0.488 0.64 0.673
Fuzzy C Means (5 clusters) 0.425 0.663 0.542
Fuzzy C Means (4 clusters) 0.438 0.458 0.912
Competitive Neural Network (4 clusters) 0.424 0.53 0.68
Quantum Clustering NA NA NA
Preprocessing
K means (5 clusters) 0.406 0.636 0.528
K means (4 clusters) 0.46 0.626 0.634
Fuzzy C means (5 clusters) 0.4 0.63 0.522
Fuzzy C means (4 clusters) 0.459 0.624 0.634
Competitive Neural Network (5 clusters)  0.33 0.55 0.458
Competitive Neural Network (4 clusters)  0.516 0.658 0.706
QC after SVD (o =0.595) 0.554 0.664 0.77
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conditions that reflect different time points in the yeast cell cycle. The task in this
case is to cluster these 798 genes into five classes identified by Spellman et al.
through functional annotations of individual genes.

We applied COMPACT both to ‘raw’ data and to SVD compressed data. In the lat-
ter case we selected two leading normalized SVD components (‘eigensamples' accord-
ing to Alter, [12]), thus reducing the matrix size from 798X72 to 798X2. All four
clustering methods were tested as before. Once again the results obtained by the QC
are moderately superior.

We have tested all methods for both 4 and 5 clusters (Table 2 and Figure 4). Inter-
estingly enough, 4 clusters seem to be a better choice in all cases, although the 'real’
classification defines 5 classes.

4 Discussion

In this paper we demonstrate how different clustering algorithms may lead to different
results. The advantage of COMPACT is in allowing many algorithms to be viewed
and evaluated in parallel on a common test set. Through COMPACT one can evaluate
the impact of changing the algorithm or its parameters (e.g., sigma value in QC, num-
ber of iterations for the Competitive Neural Network, starting points of K-Means,
Fuzzy C-Means and more). Being able to run a number of clustering algorithms, ob-
serve their results (quantitatively and graphically) and compare between them is bene-
ficial for researchers using gene expression, proteomics, and other technologies that
produce large datasets. We find it advisable to start with a problem that has a known
classification (referred to as ‘real classification’) and use the statistical criteria (i.e.,
efficiency, purity and Jaccard score) to decide on the favorable clustering algorithm.
For general research problems, where no known classification exists, the same statis-
tical tools may be used to compare results of different clustering methods with one
another. We presented here a comparative analysis of some well-known clustering
methods with one relatively new method, QC. For the two datasets that we have ex-
plored, QC outperformed the other methods.

We have shown that dimensionality reduction improves the clustering quality. This
observation is highly relevant when handling genomic data. Recall that for Affy-
metrix microarrays the number of genes tested reaches all known transcripts from the
selected organism, producing 20,000-30,000 data points for a mammalian genome.
Similarly, the application of the new SNP discovery chip produces a huge number of
noisy data points in a single experiment. Besides its computational complexity, one of
the major challenges when using massive data is to identify features and to filter out
noise. Often handling such high dimensional noisy inputs can be a barrier. Hence it is
important to develop more efficient and accurate tools to tackle these problems (see
examples in [3], [4], [15], [16]). Thus, constructing a method that can significantly
reduce data volume, and at the same time keep the important properties of that data, is
obviously required.

COMPACT offers easy-to-use graphical controls for users to select and determine
their own preferences, and graphical displays where the results can be presented or
saved for later usage. It offers several clustering algorithms and allows the user to
compare them to one another.
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Although similar tools have already been proposed (e.g., [17], or [18]), the novel-
ties of COMPACT are: (i) presenting an integrative, light package for clustering and
visualization, (ii) integrating an efficient compression method and (iii) introducing the
QC algorithm as part of the available clustering options.

The beginners will find this user-friendly tool with its graphical and textual dis-
plays useful in their data analysis. The experts will benefit from its flexibility and
customizability that enables expanding the tool and modifying it for advanced, spe-
cialized applications.
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Section 4.3

ClusTree: A Simple Graphical Tool for Analysis of

Hierarchical Clustering

Abstract

Summary: ClusTree is a graphical tool that enables an easy and intuitive way to apply,
analyze, visualize and compare various hierarchical clustering methods. This expandable,
Matlab package can either apply hierarchical clustering to experimental datasets (e.g.,
gene-expression), or visually and statistically evaluate trees which resulted from any
hierarchical algorithms.

An obvious strength of the ClusTree tool is its capability to easily apply numerous
algorithms to different inputs, and thus to be utilized for a wide range of data, ranging

from gene-expression to proteins or nucleic acids sequences.

1. Introduction

Clustering is a common procedure in genomic and proteomic studies. Clustering
algorithms are classified as either nonhierarchical (flat, partitioning) or hierarchical.
While the former define a single partition of the data (e.g., K-Means), hierarchy, by its
nature, suggests multiple levels of organization (for comprehensive reviews see Jain and
Dubes, 1988; Duda, et al., 2000; D'Haeseleer, 2005).

The results of hierarchical clustering can be represented as a tree, where each grouping
of nodes may define a cluster. A collection of nodes may be viewed as natural cuts in the
tree. Cutting the tree can be done at different heights, which are in essence, provide
multiple clustering solutions. For this reason, hierarchical clustering is usually considered
as a richer organization method than nonhierarchical clustering. Some of the clustering
possibilities may match an expert’s view, while others may identify clusters that were not

previously recognized as such.
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Hierarchical clustering has been successfully applied to protein sequences (Sasson, et
al., 2003), chemical entities, ontologies, 3D structural information, protein catalytic
activities (Handl, et al., 2005), and in many large-scale gene expression experiments
(Spellman, et al., 1998; D'Haeseleer, 2005). They have been implemented in applications
such as (Eisen, et al., 1998; Saldanha, 2004; MathWorld, 2007), ClusTr (Apweiler, et al.,
2001) and ProtoNet (Sasson, et al., 2003).

We present a new, intuitive graphical tool, named ClusTree, with novel improved
capabilities. ClusTree is a very simple user-friendly collection of several algorithms. In
addition to the standard agglomerative procedures (MathWorld, 2007), it provides an
access to advanced top-down algorithms. In addition, introducing an array of statistical
routines and visualization options it may assist in evaluating and comparing clustering
results. Furthermore, being a self-explanatory graphical application, ClusTree can be
easily comprehended by non-computational users; yet by suggesting an advance mode, it
can be expanded by more sophisticated analysts. Finally, being a generic toolbox it is
capable of handling datasets from various domains (e.g., gene-expression, sequence

analysis).
2. Functionalities Provided

2.1. ClusTree Workflow

Figure 1 displays the workflow of the ClusTree tool. ClusTree can either cluster a given
experimental dataset (input A, see 2.2) or visualize and analyze a dataset that has already

been clustered (input B).

/ Experimental ! Hierarchical
Data Clusterin
9 Nodes

Input A : . Analysis +
. : Visualization

Levels

Input B

: . Tree
*

Fig. 1. ClusTree workflow: input (section 2.2), clustering (2.3), analysis and visualization 2.4.-

2.5 and 2.6, respectively).
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2.2. Input types

ClusTree is a generic tool that accepts two types of input: experimental data in feature-
space (i.e., raw data as in most gene-expression experiments) or distance matrices, in
which each element is the distance (or similarity) between two instances (e.g., pairwise
distances from BLAST, marked by their statistical significance, e-values (Altschul, et al.,

1997)).

2.3. Clustering options

The tool includes an interface to the standard hierarchical procedures provided in the
statistical toolbox of Matlab. There are 10 common distance measures (euclidean,
seuclidean, cityblock, mahalanobis, minkowski, cosine, correlation, hamming, jaccard
and chebychev), and 7 linkage options (single, complete, average, weighted, centroid,
median and ward). Altogether there are 70 combinations that are applicable. In addition,
we provide two top-down hierarchical algorithms: PDDP (Boley, 1998) and TDQC, that

were shown to be very effective in comparison to bottom-up ones (see Chapter 3).

2.4. Clustering evaluation

After the dataset is clustered, it can be visualized and analyzed. When expert-
classification is provided (the term ‘expert’ refers to external data labelling, e.g., GO
annotation (Camon, et al., 2004), we apply three combined assessment methods to
describe different qualities of the clustering tree.

(1) Node Score: Each node specifies a cluster (of all its descendants). An enrichment p-
value is calculated to assign any node with one of the classes in the data. This is done by
using the hypergeometric probability function (Rivals, et al., 2007). The p-values for all
nodes may be viewed as dependent set estimations, hence we apply the False Discovery
Rate (FDR) criterion to them (Benjamini and Hochberg, 1995). p-values which fail to
pass this criterion are considered not significant. An additional criterion is also provided:
a node is considered significant only if a certain fraction (default is 50%) of its elements
belongs to the enriched category.

(2) Level Score: Level [ of the tree includes all clusters that are [ edges away from the

root. Choosing for each node the class for which it turned out to have a significant node
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score, we evaluated its Jaccard-score (J=tp/(tp+fn+fp), where tp is the number of true
positive cases, fn the number of false negative cases and fp the number of false positive
cases) (Sharan, et al., 2002; Varshavsky, et al., 2005). If the node in question is not
significant by the enrichment criterion, its J-score is set to null. The level score is defined

as the average of all J-scores at the given level.
(3) Tree Score is the weighted best-J-Score, J = N Z n,J, , where J ;is the best J-

Score for class i in the tree, n; is the number of instances in class i, ¢ is the number of
classes and N is the number of instances in the dataset. This score or its close variation
has been applied to measure the quality of protein families (Kaplan, et al., 2005) and
document classification (Steinbach, et al., 2000; Zhao and Karypis, 2002 ).

2.5. Additional scoring options

Alternative tree scores calculated by the tool are the C and F scores:
C Score is the relative number of significant nodes (# significant nodes/ # nodes in the
tree).

F Score is analogous to the J* tree score, defined as the weighted best-F-Score:

. 1 & . . " * ..
F = FZ n.F,  where F; is the best F-Score, F —Score = 2" recall * precision

recall + precision

)
, precision = P
p+ fn i+ fp

For class i in the tree, n; is the number of data-points in class i, ¢ is the number of classes

where recall =

and N is the number of data-points in the dataset.

2.6. Clustering visualization

Figures 2 and 3 display examples of ClusTree graphical outputs. Displayed in Figure 2 is
a hierarchy tree example. The tree is colored according to the node scores. A node size is
proportional to its statistical-enrichment level. In addition, selecting a node (by clicking

it, Figure 2) further analysis can be performed (e.g., querying included instances).
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Fig. 2. A screenshot of the ClusTree results. Dot sizes indicate statistical enrichment levels
where larger sizes correspond to smaller, more significant p-values. Empty nodes represent no

enrichment. The black square is a clicked node whose properties are quoted in the tool-tip.

A different perspective is provided by the level scores display (Figure 3), allowing a

condensed view of the distribution of the significant nodes along the tree.
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Fig. 3. A screenshot of the level scores window. Presented are J and C scores for each tree level.

As shown, the best clustering quality is observed at level 3.

2.7. Additional functionalities

In addition to the standard routines, some advanced functionalities are available (detailed
descriptions provided in the manual).

Ultrametric view: a tree, whose edges are viewed as discrete integer distances, dictates
an ultrametric space hosting the data points. This representation can be observed,
exported and studied.

Export/save options: a tree and its graphical representation can be saved either as a
Matlab variable, text file or as a figure.

Expand the toolbox: the software was designed so that adding new algorithms can be

easily done.
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3. Conclusions

Hierarchical clustering is a routinely used strategy. We provide simple, intuitive software
for applying various hierarchical clustering algorithms, and analyzing their results.
Analysis can be performed both in a quantitative way, by scoring different resolutions
within the tree, and in a qualitative way, by visualizing the resulting trees. These methods
allow for straightforward and comprehensive comparisons between competing and

complementing algorithms.
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Chapter 5

When Less is More: Improving Classification of
Protein Families with a Minimal Set of Global

Features

This chapter contains the following research paper:

[SA] Roy Varshavsky, Menachem Fromer, Amit Man and Michal Linial. "When Less is
More: Improving Classification of Protein Families with a Minimal Set of Global

Features" (2007, WABI, Lecture Notes in Computer Science (4645), 12-24).
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Abstract. Sequence-derived structural and physicochemical features
have been used to develop models for predicting protein families. Here,
we test the hypothesis that high-level functional groups of proteins may
be classified by a very small set of global features directly extracted from
sequence alone. To test this, we represent each protein using a small num-
ber of normalized global sequence features and classify them into func-
tional groups, using support vector machines (SVM). Furthermore, the
contribution of specific subsets of features to the classification quality
is thoroughly investigated. The representation of proteins using global
features provides effective information for protein family classification,
with comparable results to those obtained by representation using local
sequence alignment scores. Furthermore, a combination of global and lo-
cal sequence features significantly improves classification performance.

Keywords and Abbreviations: Support Vector Machines (SVM),
Feature Selection, Olfactory Receptor, Porins protein family.

1 Introduction

Protein classification is a central task in computational biology. A routinely-used
principle in classification relies on a distance measure between protein sequences,
as obtained by the Smith-Waterman local alignment algorithm or by one of a
large number of heuristic search methods such as BLAST, PSI-BLAST [1], search
by HMM [2, 3] models and by profile-profile search [4, 5]. These methods are
typically based on matching subsequences, i.e. local sequence features.

Despite the observed strength of these methods, many functional assignments
for proteins fail to be detected by such local sequence-based methods [6], thus
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yielding a larger than desired fraction of false negatives, especially at more
coarse-grained (higher) levels of protein classification hierarchies. The short-
comings of the methods outlined above are partly derived from the fact that
there exist many proteins that share very low sequence similarity and are thus
considered to be in the "twilight zone”, but nonetheless share strong structural
similarity that reflects their homology [7]. Short proteins represent another set of
proteins that often fail to be classified by their sequence similarity due to their
low statistical significance scores [8]. Finally, for many proteins the sequence
similarity methods fail in detecting related sequences and as a result, a large
fraction of singletons are reported within the protein space [9].

An additional confounding factor is that, in practice, the large number of pro-
tein sequences currently available imposes a computational challenge for the pro-
tein family classification problem. Currently, > 4.5 million sequences are stored
in the UniProt database, and this collection is expected to grow [10]. A reduc-
tion to 3 and to 1.5 million sequences is achieved by UniRef90 and UniRef50,
respectively (i.e., no two sequences are permitted to share more than 90% or 50%
identity, respectively). Since even such vast reductions in redundancy yield very
large quantities of sequences, the power of the ubiquitously used local sequence
similarity methods are severely strained. Similarly, each new multi-cellular eu-
karyotic genome sequenced introduces thousands of new sequences that wait for
functional assignments, again burdening the local sequence similarity algorithms.

To address the challenges in large-scale functional assignment, a complemen-
tary line of research has used a spectrum of sequence features ranging from
amino acid (aa) composition to the appearance of short sequence motifs [11].
Besides perhaps improving upon the results of local-based methods, this re-
search is expected to provide information for classification of more distantly
related protein families, where local-based methods may often fail. One such
attempt was presented by SVM-Prot [12]. The classification system was trained
from representative proteins for ~50 functional families extracted from Pfam
[13]. Using a large number of features and an SVM classifier, high success in
separating these protein families was reported. A different approach was carried
out in [14], where a mixture of probabilistic decision trees for direct prediction
of protein functions was applied. In [14], the proteins are represented by hun-
dreds of features, including secondary structure assignment and structural-based
information.

Despite their success, these approaches do not always allow for interpretations
and inferences based on the full interplay among features. In addition, the large
set of features used could inadvertently conceal the fact that the prediction task
is easier than it seems: it may be sufficient to consider only a small set of global
features. While it may seem overly ambitious to expect the task of protein family
classification to succeed based only on a small set of sequence features, similar
features were successfully applied for restricted, but related, tasks. Successful
examples include distinguishing membranous and globular proteins, separating
sub-cellular localization, [15], determination of topology for multi-pass proteins
[16], and even prediction of protein quaternary structure [17].
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Herein we assume a minimalist feature-based approach, which for reductionism-
based motivations does not take into account secondary or tertiary structure infor-
mation, even when reliable predictions are available. Moreover, we ignore features
derived from short motifs that are currently known to be associated with specific
protein families, functions, or subcellular localizations. We thus address the follow-
ing questions regarding a small set of easily extracted global sequence features: (i)
Does there exist a small (minimal) set of features that provides high-quality pro-
tein family characterization? (4i) Is the information conveyed by global features
redundant or, rather, complementary to that provided by the local features? (7ii)
And, more generally, are there some biological insights that predict the prototyp-
ical successes and failures of feature-based classifications?

To define the minimal set of features sufficient for functional classification,
we: (i) test the capacity of predetermined, small subsets of features, and (%i)
incorporate machine learning tools (specifically, feature selection) to automat-
ically determine those features. Feature selection is a fundamental component
in large-scale data analysis as a preprocessing step. In general, preprocessing
involves some operation on the feature-space intended to reduce the dimension-
ality. In feature selection, only a particular subset of features is chosen and used
in subsequent computational tasks. There are two major classes of feature selec-
tion strategies: filters and wrappers. Filter methods rank and choose the features
according to some criterion (e.g., data separation). Wrapper methods optimize
an objective function, through the selection of features. For a comprehensive
survey, see [18]. Herein, we apply one filter and two wrappers to the data.

2 Data and Methods

2.1 Data

As a test case, we consider 10 large protein groups that represent the known
diversity of cellular processes and functions. Protein sequences and annotationss
were retrieved from the UniProt 8.1 database [10]. In order to avoid redundancy,
we used the UniRef50 database [10]. Groups were selected based on Gene On-
tology (GO) assignments [19], such that their sizes would range from 300-1000
proteins each. 5,471 proteins in total are included in the analysis (Table 1).

2.2 Preprocessing

We compare two alternative representations of these ~5,500 proteins: either
according to local sequence similarities, or according to global sequence features:

1. Local Sequence similarities
All pairs of proteins were aligned using the Smith-Waterman (SW) local
alignment algorithm [20]. Since the SW score is strongly dependent on pro-
tein length, the raw scores matrix was transformed to a matrix of normalized
scaled scores, based on the percentile binning of scores in each column. As
a result, the range of values in the scaled matrix is [0,1]. Note that the
column-by-column transformation yields an asymmetric matrix.
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Table 1. Representative set of 10 groups derived from the GO systems: cellular com-
ponent (CC), molecular function (MF) and biological process (BP)

Group|Type|CO Term name GO ID|Group Size (UniRef50)
1 CC |Nucleosome 786 319
2 MF  |Olfactory receptor activity 4984 478
3 CC |Vacuole 5773 533
4 CC |Microtubule 5874 913
5 CC |Plasma membrane 5886 781
6 BP  |Tricarboxylic acid cycle 6099 476
7 BP |DNA unwinding duringreplication| 6268 520
8 CC  |Thylakoid 9579 448
9 MF  |Porin activity 15288 644
10 CC |Myosin complex 16459 359
Total 5471
2. Global Sequence Features

Extracting the features: Only features that are ”global” and can be applied
to proteins with minimal biological pre-knowledge are included (e.g., the cal-
culated isoelectric point of a protein). Biologically known signatures such as
localization signals were not included. In summary, for each protein, 5 major
attribute types (for a total of 70 features) are analyzed:

Amino acid composition [AAC] (20 features).

Amino acid grouped compositions [AAG]| (11 features, see Table 3, Sup-
plementary Data).

Post-translational modifications [PTM] (14 features, see Table 4, Sup-
plementary Data). The PTM signatures are treated as regular expressions.
Such patterns have been extracted from the Prosite database [21]. Only
PTMs that are highly abundant in the database are included.
Biophysical properties of the full sequence [PHYS]| (5 features):

(a) Length - The number of amino acids in the sequence

(b) Molecular weight [22]

(c) predicted pl [22]

(d) Instability factor: based on the observation that the frequency of occur-
rence of certain dipeptides is significantly different in unstable proteins
as compared to stable ones [23].

(e) ’Gravy’ hydrophobicity index [24]

Amino acid enrichment [RICH] (20 features). We sampled an overlapping
window of 20 aa in size, from the beginning of the sequence to the end. For
each such window, the frequency of a certain aa was counted if it occurs at
least 5 times its frequency in the UniProtKB database.

Scaling the features: Since the selected features represent properties that ap-
pear in vastly different representations (e.g., logarithmic scale for pl, percentage
for AAC, frequency for RICH), we applied a scaling protocol by referring to a
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background level of a randomly selected set of approximately 40K proteins from
the UniProtKB database. For each of the 70 features the percentile bins of the
background were computed. Each feature was transformed according to its per-
centile, yielding values in the range [0, 1]. We also applied the scaling using a
background set of the 5,500 proteins in our set (Table 1) and the results were
practically identical to that of the randomly selected background set.

2.3 Classification

Firstly, the 10 groups were randomly partitioned into 3 subsets (groups 1-4, 5-
7, and 8-10), where it was attempted to separate each group of proteins from
the other groups in its subset. The classification algorithm chosen for the task
was SVM (linear kernel, one-against-all classification), which has been proven
to be very efficient for this type of task (e.g. [12, 11]). For each dataset in every
representation used, the following procedures were applied:

1. Random selection of the train (80%) and test (20%) sets.
2. Use the train set: train and validate SVM (5-fold Cross validation).
3. Apply the resulting classifier to the test set, for prediction and assessment.

In order to reduce bias toward extreme train-test partitions, procedures 1-3
(which we refer to as the classification block) were repeated 5 times (which we
refer to as the classification compound).

2.4 Feature Selection

We consider two strategies for selection of the global sequence features, applying
the classification compound for each. Note that the selections and wrappings are
applied only to the train set.

— Selection based on a-priori knowledge. The original (scaled) dataset is parti-
tioned according to the 5 different feature categories: AAC (20), AAG (11),
PTM (14), PHYS (5) and RICH (20).

— Supervised feature selection methods. Here, various approaches are applied:

1. Single-wise selection (GREEDY) — a filter method: the 70 features in the
train set are ranked according to their t-test separability criterion — the
first 10 features are selected.

2. Forward Filtering (FF) — a wrapper method, which starts out with 0
features and adds the most contributing feature to the predictive score
(Jaccard, see below) of the train set. Feature addition is continued until
no improvement in the score is achieved.

3. Backward Elimination (BE) — a wrapper method, which starts out with
all features and removes the least contributing feature to the predictive
score (Jaccard, see below) of the train set. Feature removal is continued
until no improvement in the score is achieved.
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2.5 Evaluation

For each classification block, TP, TN, FP, and FN counts are recorded (where
TP, TN, FP, and FN denote the number of true positive, true negative, false
positive, and false negative outcomes, respectively (detailed tables of all values
appear in the Supplementary Data). We have applied the strict Jaccard score
(J-score) that combines precision (specificity) and recall (sensitivity), but does
not take into account the TN. The J-score is defined as: J = TP/(TP+FP+FN).

3 Results

In order to demonstrate both the strengths and limitations of the framework, we
describe the results for two example groups. Detailing both computational and
biological aspects, we demonstrate different scenarios that directly derive from
the groups’ characterization (for the remaining 8 groups, see Supplementary
Data); we then discuss the overall patterns, suggest a unique feature combina-
tion platform and draw some conclusions. We analyzed large sets of proteins
based on their GO annotations. For representative sets, we ensured that their
sizes (at a level of lower than 50% identity for any pair in the set) ranged
from 300-1000 and that, overall, they represent a broad range of functionality
of enzymes, membranous components (olfactory and transporters), cytoskeletal
elements (myosin) and compartment-based annotations (i.e. vacuole).

3.1 Olfactory Receptor Activity Proteins

The first group we consider is the olfactory receptor activity proteins, consisting
of ~500 proteins (3,900 proteins in UniProtKB), which are cell surface receptors
that recognize chemical compounds (odorants). Odorant binding to its cognate
receptor leads to membrane depolarization, activating a signaling cascade.

Could we gain any insight into the group, by revisiting the features selected to
separate it from the other groups tested? Here, the FF approach performs almost
as well as using all features (0.89 and 0.91, respectively, Fig. 1). Only 8 features
are chosen by FF: AAG (hydrophilic), AAC (G), RICH (Y), PHYS (instability),
AAC (T), AAG (sulfur-containing), AAC (V), and AAG (helix-redundant aa).

The most powerful feature selected under the FF protocol marks the hy-
drophilic nature of this protein group. Even though the olfactory receptors are
characterized by their seven membrane-transversing helices, the hydrophobic na-
ture of these helices was not among the separating features. On the other hand,
the leading feature chosen was the hydrophilic signal of the molecule, derived
from the region of the protein facing the aqueous environment on either side of
the membrane (protein loops and tails). In an effort to characterize motifs that
specify the olfactory receptors, 10 short motifs were determined, and they were
all found to reside in the loops and tails of the proteins [25]. Similarly, 5 short
PSSM motifs were used to characterize this family by BLOCKS [26]. Again, four
of them are indeed in the hydrophilic segments of the proteins.
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Fig. 1. J-score results of SVM classification, for various protein representations, of
the olfactory receptor activity group. Bars are of all 70 global features (All: black),
the 5 different feature types (AAC, AAG, PTM, PHYS and RICH: gray), and the 3
automated feature selection schemes (GREEDY, FF and BE: blue). As a reference, a
random classification of the dataset is shown (100 iterations, RAND: white).

Other features yielded by FF include the frequency of glycine (G) and threo-
nine (T). Also, among the features that contributed to separation is the richness
of tyrosine (Y). It has been noted that tyrosine is quite abundant, and specifi-
cally a short sequence of '"MAYDRY"’ (tyrosine at positions 3 and 6) is conserved
among most of the olfactory receptors in the group [27]. This short sequence has
led to significant enrichment over the entire tested set. The rest of the selected
features are cysteine (C) and methionine (M) (grouped as sulfur-containing aa),
valine (V), and, the helix redundant amino acids group. The fact that this group
of transmembrane proteins was distinguished from the other groups through the
use of helix redundant amino acids is not completely surprising, since the pro-
teins’ membrane-spanning segments are composed of alpha helices. This detailed
example illustrates that the selection of the most informative features (8 features
in this case) covers diverse but complementary properties of the proteins.

3.2 Porin Proteins

The other group we discuss is that of bacterial porin, consisting of about 650
proteins (3,500 proteins in UniProtKB) that are localized to the outer membrane
of Gram-negative bacteria, but also found in plastidae and mitochondria [28].
As one of the major outer membrane proteins in bacteria, they form large chan-
nels that allow the diffusion of small hydrophilic molecules (< 1000 daltons).
Classification results for the porin proteins group are displayed in Fig. 2.
Classification quality reaches a J-score of ~0.75. The global feature methods
outperform the local feature method (J-score ~0.66). Interestingly, FF requires
only three features for successful classification (J-score 0.68): AAC (G), AAC
(I), and AAG (aromatic). To evaluate the relative contribution of each of these
features, we have applied the classification compound using either the first 1, 2
or 3 features. The results (Fig. 3) show that the first feature by itself has a strong
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Fig. 2. Results of SVM classification, for various protein representations, of the porin
activity proteins (notations, axes and colors are as in Fig. 1)
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Fig. 3. The contribution of the first 3 features, selected by the FF method, to the clas-
sification quality of the porins group. The results are of random classification (white),
classification using the single most, two most, and three most contributing features
(AAC (G), AAC (I), and AAG (aromatic), gray), and all 70 features (black).

classification capability, with marginal contributions by the following two. The
remaining 67 features have only a negligible contribution.

3.3 Group Size, Selection Method and Success

In order to estimate which protein families are best characterized by global
features and which methods are preferred, we have applied several analyses. We
computed the number of selected features in BE and FF. For the 10 groups of
proteins presented here, the average number of features eliminated in the BE
protocol is 5.4, and for FF an average of 5 features were selected. The extreme
cases for the FF are the 3 features of the Porin group and 8 features for the
olfactory protein group. These numbers and the average success in classification
show no correlation with the number of proteins in the group (not shown).
Next, we compare the various selection methods. The scores for the selection
methods are displayed in Table 2. As shown, the selection method that yields

108



20 R. Varshavsky et al.

Table 2. Average and standard deviation of the classification scores, according to the
various selection methods

Selection Method|Number of Features|Average J-score|J-score StDev
All 70 0.67 0.126
AAC 20 0.63 0.149
AAG 11 0.57 0.188
PTM 14 0.45 0.171
PHYS 5 0.52 0.185
RICH 20 0.45 0.148
GREEDY 10 0.26 0.150
FF 5 0.56 0.163
BE 64.6 0.65 0.126

the highest scores is BE, followed by AAC (average J-scores 0.65 and 0.63, re-
spectively). Not surprisingly, however, these are also the ones that retain high
numbers of features (64.6 and 20, respectively). Nevertheless, it is noteworthy
that the FF method yields a relatively high average score (J-score 0.56), although
it uses as few as 5 features, on average. Another observation is that the more
features selected, the lower the standard deviation of the J-score; this suggests
that selection methods that use more features are more stable in their quality.

For some of the groups classified, a large number of the original features are
essential to reach maximal performance, while in other cases, only a few features
are sufficient for good separability. For example, as observed above, very few
features are required to separate the porin group (only 3 features).

Finally, we are unable to find any specific subset of features that consistently
dominates the entire set; the chosen ones range from AAC (e.g., in vacuole pro-
teins) and AAG (the nucleosome group) to others, but only rarely includes the
PTMs. The last observation seems to indicate that these signatures do not pre-
dict functional protein groupings, perhaps since identical modifications are often
performed on differently functioning proteins [29]. The biophysical and enrich-
ment features (25 features) are also rarely selected by the FF or BE protocols.

3.4 Global vs. Local Features

As can be discerned from Fig. 4 (top), a representation of proteins using global
features compares to local comparison-based features (SW), as classification us-
ing the global features (all or partial) yields superior results in 6 of the 10 groups.
Also shown is that classification using only a subset of features, as obtained by
the BE and FF methods, yields good results.

The quality in classification performance using global feature representations
varies across the different groups tested. Some protein groups failed to classify
with high precision (e.g., tricarboxylic acid cycle), while in other groups a very
small set of features was found sufficient (e.g., porin activity). Nonetheless, using
all 70 global features provided a very successful classification for all groups.
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Fig. 4. Top: SVM results for the protein groups: local sequence similarities (SW:
stripes), all 70 global features (All Features: black) and the best feature selection scheme
(Best F'S: gray). Bottom: Combination of both representations (SW + features: green),
local sequence similarities (SW: stripes) and a random classification (RAND: white).

3.5 Combining Local with Global Features

Since both feature sets (SW and global) were transformed and scaled to a com-
mon representation (see Methods), it is possible to combine them into a unified
dataset. This was performed in the following way: assuming that the N proteins
are described by M global features, then the feature dataset matrix is [NzM] and
the SW one is [NzN/. Combining the matrices is simply performed by appending
them, resulting in a [Nz(M+N)] matrix.

Fig. 4 (bottom) demonstrates that naive combination of global and local fea-
tures significantly improves the classification quality, compared to relying on
either of them alone (paired t-test < 0.001, and < 0.05, respectively). This sug-
gests that the two representations contain complementary information. Thus it
would seem that combining these features is an effective practice and should be
adopted for large-scale functional protein classification.

4 Discussion

In this study we show that characterization of protein families can be obtained
by relying on a small set of global features that, in some cases, can be further
reduced. In previous studies, when much richer feature sets were used [11, 12], the
comparison with local features (SW) showed lower success rates. We hypothesize
that the high-quality results described here are due to the small number of
features that describe the data. This small size may facilitate the training and
predictive capabilities of the classifier and, as a result, improves the classification.

We attempted to determine which global features and feature selection algo-
rithms perform best in the task of protein function prediction. There is no one
feature set that performed this task equally well for all groups, since only some
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groups seem ”easy” to predict in that they require few features to characterize
them well. Nevertheless, when a given group was found to be "easy”, then it
was usually discovered by the FF method (or by using one of the predefined
classes of features). On the other hand, single-wise feature selection (GREEDY)
was prone to over-fitting and inferior to methods that consider the interplay
between features and attempt to separate the training set in a holistic fashion
(FF and BE). Therefore, it would seem wise to avoid such greedy methods that
independently select features.

In summary, we have observed that the use of global sequence features com-
pares with the use of local features in functional protein classification. Since the
calculation of such global features is much faster (theoretically and in practice)
than computation of local sequence alignments for all pairs of proteins to be
compared, in future work we plan to assess the protein function classification
problem using global features on a much larger scale (from the GO resource). In
addition, since we have also shown that the combination of local and global se-
quence features succeed more than either method alone, it is certainly worthwhile
for large-scale prediction algorithms to incorporate both protein representations.
For computationally heavier methods that already use local sequence informa-
tion (local alignment algorithms), the assimilation of global sequence properties
as described here could be done at minimal overhead, yielding stronger predic-
tion algorithms with little or no increase in computing time.

The scheme presented here was also applied to protein sets of major biological
importance and to a 10-fold larger set (not shown). Success in separating kinases
(the serine-threonine, tyrosine and uncharacterized), as well as nuclear proteins
of the DNA from RNA biosynthesis proteins, suggest that, at the coarse level
of classification, protein groups may be characterized by a very minimal set of
global features. On the other hand, substantial improvement was achieved for
proteins that often fail by sequence similarity, such as snake toxins and cytokines.
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Epilogue

In this section we aim to provide several comprehensive statements, rather than provide
summaries and conclusions. The latter are provided at the end of each chapter. We wish to

emphasize six basic truths that emerge from our analysis.

o  “When possible, let the data speak for themselves”

A basic motivation of our research was to extract information, and thus infer significant
biological knowledge, merely by observing the data. We interpret this motivation by preferring
unsupervised methods when possible. While the statement above may sound quite simplistic and
it certainly cannot be applied to all scientific fields, we find that the special characteristics of
genomic data dictate such an approach, at least in the exploratory stage. The rationale behind
adopting the unsupervised strategy was: (1) lack of agreed labeled data, (2) over-fitting,
sampling bias and other failings that are results of the train-test splitting in supervised methods
and (3) the hope to allow for the emergence of more reliable and sometimes surprising results by
acting in an unbiased manner.

Following this principle we focused on developing unsupervised algorithms (chapter 2-3), and
provided several data-driven criteria for evaluating those algorithms. Examples for the latter are
(1) in UFF, the pattern of CE scores over all features, may testify how well the method fits a
given dataset (see Appendix A), (2) the UFF method may also serve as an internal test-bed for
comparing between several imputation methods (chapter 2.1), (3) in hierarchical clustering, the
structure of the tree may reflect the number of clusters and the algorithm-data fit (chapter 3), and

(4) the algorithms optimizer as a data-driven comparison framework for clustering (chapter 4.1).

o “When possible, let mathematics help interpreting biology”

The algorithms we suggest are based solely on mathematical and statistical foundations, ignoring
any specific biological considerations. Following this principle, we were able to obtain less
biased results while providing generic, large-scale compatible algorithms. However, as the
research was originally motivated by biological questions, all algorithms were applied to
biological data. Furthermore, biology was a principal focal point of the inference part of each
study. These mathematical driven algorithms led to some intriguing biological observations, such

as relevant genes selected by UFF (chapter 2), surprising protein groups suggested by TDQC
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algorithm (chapter 3) and unexpected global features characterizing families of proteins (chapter

5).

o “When mining genomic and proteomic data, don’t expect a ‘one-size-fits-all’ method”

Throughout the research we realized, that the diversity of the data, ‘polluted’ by numerous
intervening factors, makes it impossible to provide a single overall solution that best handles all
cases. As a result, for every particular case a different algorithm and configuration may be
preferred. Therefore, we put large emphasis on developing appropriate evaluation methods for

comparing between imputations, filtering and clustering algorithms.

e “Do not ignore less explored directions”

Most of the directions we explored have not been well studied in the literature, particularly in
computational biology. For example, there are only a handful of global (Top Down) hierarchical
clustering algorithms or unsupervised feature filtering methods. Furthermore, these methods are
rarely applied to experimental data. This research suggests that currently overlooked approaches
should not be neglected. Surprisingly, according to our experience, these methods are shown to

be very effective when exploring genomic and proteomic data.

o “Any model must be backed up by praxis”

Our research was guided by realistic and applicative motivations, not limited only to theoretic
perspectives. As a result, all our algorithms were applied to experimental datasets. Always, a
software tool was developed for the corresponding algorithm. For instance, the COMPACT
package, which has been made freely available to academic usage, has been accessed to date
more than 5,500 times, downloaded more than 750 times and served as the basis for two graduate
courses. As users of these tools may be biologists or medical researchers who are not data

mining experts, providing intuitive, graphical and user-friendly applications is of prime interest.

o “When possible, follow the Occam’s Razor principle”

Last but not least, throughout the research, we were motivated to follow the law of parsimony.
Hence, we favored solutions that are easy to comprehend and fast to implement. Additionally, a
main focus of our research was to find a minimalist set of features or parameters that describe

hidden patterns in the data.
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Chapter 7

Appendix: Unsupervised Feature Filtering and Instance

Selection

Assaf Gottlieb ™
Michal Linial ™
Abstract

Feature selection is an important preprocessing task in
the analysis of complex data. Selecting an appropriate
subset of features can improve classification or
clustering and lead to better understanding of the data.
An important example is that of finding an informative
group of genes out of thousands that appear in gene-
expression analysis. Numerous supervised methods have
been suggested but only a few unsupervised ones exist.

We present an Unsupervised Feature Filtering (UFF)
approach, based on estimating the contribution of each
feature to the Singular Value Decomposition (SVD) of
the data. The estimate is based on SVD-entropy, thus
taking into account the context of all other features. UFF
ranks all features and provides a natural selection of the
preferred group of features. We demonstrate that UFF
outperforms other unsupervised selection methods, and
analyze the statistical nature of its selected features. In
addition, we propose criteria indicating which datasets
are amenable to feature selection by UFF. Relying on a
formalism similar to UFF we propose also an
Unsupervised Instance Selection (UIS) method. UIS
allows selection of instances whose -characteristics
deviate from all others. The latter may be disregarded at
the clustering stage. Our methods are demonstrated and
tested on known benchmarks.

Supplementary Material: http://adios.tau.ac.il/UFF
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1. Introduction

The present information age is characterized by
exponentially increasing data, e.g. in documents, records
of wvarious kinds or biological data. Improved
experimental techniques, such as high throughput
methods in biology, allow for the measurement of
thousands of features (genes) for each instance (single
gene-expression microarray per patient). This leads to a
flood of data, whose analysis calls for preprocessing in
order to reduce noise and enhance the signal through
dimensionality reduction. This is important for both
enabling the application of various categorization
techniques and allowing for biological inference from
the data.

Dimensionality reduction algorithms are usually
categorized as extraction or selection methods. In
feature extraction, all features are transformed into a
lower dimension space, while in feature selection, a
subset of the original features is selected. A benefit of
the latter is the ability to attach meaning to the selected
features. This is important both for exploration of the
biological reality and for preparing a more concise
experimental layout. The methods to be studied here are
categorized as feature selection.

It is customary to divide feature selection methods into
two types: supervised, in which a target function is
known and one tries to rank features or optimize some
objective function relative to it, and unsupervised, in
which one has no information regarding the instances. In
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practice, due to the abundance of data, most of it
unlabelled, it seems that most problems call for an
unsupervised approach.

While supervised feature selection methods are
abundant, unsupervised methods are scarce, most of
them tested on labeled data [9]. Nevertheless,
unsupervised feature selection methods may play an
important role even in supervised cases. Being unbiased
by the labeling of the instances, unsupervised feature
selection can be used as a preprocessing tool for
supervised learning algorithms providing reduction of
overfitting (for a comprehensive review we refer to [9]).
As described in [5], feature selection from unsupervised
data can be applied at three different stages: before,
during and after clustering. Methods that operate before
clustering are referred to as filter methods. Common
methods of unsupervised feature filtering rank features
according to either (/) their projection on the first
principal components [25] , (2) their normalized
range,(3) entropy or (4) variance of the feature as
calculated from its values on all instances [9] [13]. All
these methods estimate the importance of each feature
independently of all others.

Our Unsupervised Feature Filtering (UFF) algorithm
[23] differs from aforementioned methods in that it
ranks features based on a criterion that involves all other
features. It also provides a natural cutoff for selecting
the number of features. Our aim in this article is to
suggest UFF as a strong preprocessing tool by (1)
exploring the properties of UFF and the features it
selects, (2) suggesting indicators for the ability to apply
the method to certain datasets and (3) extending it by
proposing a method called Unsupervised Instance
Selection (UIS) for inspecting and eliminating potential
outlier instances.

The outline of the article is as follows: in the next
sections we introduce the concept of UFF (in section
2.1), explore the properties of UFF using example
datasets (2.2), compare UFF with other (filtering
methods (2.3), analyze which datasets can be evaluated
by the UFF method (2.4). Finally we describe the UIS
method in section 3, and discuss some aspects of our
findings in section 4.

2. Unsupervised Feature Filtering (UFF)

2.1 Selecting Features

In many problems, such as gene expression, all features
are of similar nature, yet only some of them bear
relevance to the data under investigation. Looking for
the relevant features is the goal of feature selection. The
main idea of our approach is to eliminate one feature at
a time from the data matrix in order to estimate the
effect of this feature on the data. In practice we use the
Singular Value Decomposition (SVD) procedure. Let A
denote a matrix, whose elements A; denote the
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measurement of feature i on instance j, e.g. expression
of gene i under condition j. SVD decomposes the
original matrix A into A=USVT, where U and V are
unitary matrices whose columns form orthonormal
bases. The diagonal matrix S is composed of singular
values (s;) ordered from highest to lowest. SVD is a
common technique for dimensionality reduction.
Conventionally, it is either used in feature extraction by
truncating S using only the first » singular values, which
results in the best r-rank approximation of the original
matrix in the least-square sense, or by exploring the r
leading eigenvectors [24] [1]. UFF uses the information
contained in the singular values differently, in order to
select the features.

Let g be the rank of the matrix (¢g<min(n,m), where n is
the number of instances and m is the number of
features). Using the singular values, s;, one may define
the normalized relative squared values p; [24] [1]:

q

2 2
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A dataset that is characterized by only a few high
normalized singular values, whereas the rest are
significantly smaller, reflects large redundancy in the
data. On the other hand, non-redundant datasets lead to
uniformity in the singular values spectrum. UFF exploits
the property of the spectrum in order to measure how
each feature i influences this redundancy, while favoring
features which decrease redundancy. The score of a
feature i is defined using a leave-one-out principle. A
function f is calculated on the set of all singular values
for the original matrix and for the corresponding set of
the matrix without feature i. The difference in the values
of f defines the score of each feature i. In this work, we
use the SVD-entropy (H) as the function f [1] [4] (note
that this 'Shannon'-like function does not use
probabilities). The score of a feature can be thus
regarded as its contribution to the SVD-entropy.
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Other functions may be used instead of H. They have to
be monotonic and vary from a maximum, when all
singular values are equal, to a minimum when there is
only one singular value bigger than zero. Two such
functions that we tested are the negative value of sum of
squares and the geometric mean (expressions 3 and 4,
respectively). The results using these functions are very
similar to those obtained using the SVD-entropy, hence
we will not elaborate further on them.
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Figure 1 displays the results after applying the UFF
algorithm to two different datasets (see section 2.3), and
sorting the features according to the decreasing score of
the UFF. Clearly, one can divide the features into three
groups:

1. Features with positive score. These features increase
the entropy.

2. Neutral features. These features have negligible
influence on the entropy.

3. Negative score features. These features decrease the
entropy.

Note that a majority of all features falls into group 2,
while groups 1 and 3 represent minorities. We argue that
the most relevant features belong to group 1. The
rationale behind picking the positive score features is
that, because they increase the entropy, they decrease
redundancy. Hence we may expect that instances may be
better separated in the space spanned by these features.
Further analysis of this group and its comparison with
the two other groups is presented in section 2.2.
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Figure 1. UFF Scores of the (A) 2308 genes of SRBCT and
(B) 18 virus features, ordered by decreasing scores. Dashed
lines represent mean(score)+std(score). Note that the two
different datasets have similar characteristics. Irrespective of
the number of features and the values of their scores, we find
clear separation into three groups of features.
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Features whose scores lie above the mean+std are
selected as the relevant ones. The division supplied by
the std defines a set of m, selected features (m.<m). We
refer to this selection as Simple Ranking (SR). Two
alternative selection methods are Forward Selection and
Backward Elimination [23]. Here we will concentrate on
SR. Results of the alternative UFF methods appear in
the supplementary material.

2.2 Properties of Selected Features
We investigate the features selected by UFF, by looking at
their statistical properties. First we plot in Figure 2 the
mean (A) and variance (B) of all features (as measured on
all instances). These are shown for the SRBCT dataset used
in Figure 1A. Most features belonging to the second
(neutral) group possess low mean and variance. It is evident
that both the positive score features and the negative score
features have high mean and variance. This explains a
major difference between UFF and the Variance Selection
method: while UFF selects features from group 1, Variance
Selection chooses features from both groups 1 and 3. In this
context, it is noteworthy that datasets of this nature (such as
of gene-expression) should not undergo any zero-mean
normalization, as the averages of the various feature bares
meaningful information.
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Figure 2. (A) mean and (B) variance of the SRBCT dataset (X
axis refers to genes ordered according to UFF score).
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Figure 3. Projection on the 83 principal components of a
typical - (A) positive score (B) negative score - feature from

the SRBCT dataset. Note the outstanding value of PC1 in B.

An important difference between the positive (group 1)
and negative (group 3) features is displayed in Figure 3.
This figure shows the projection of typical positive and
negative features (A and B, respectively) on the SVD
eigenvectors (or principal components, PCs) of the
original data matrix. Positive score features have
relatively evenly distributed projections on the PCs,
while negative score features project strongly on the
first. It is the latter property that explains the negative
score: by preferring the leading principal component
these features decrease SVD-entropy. We present in the
Appendix a proof that when a feature lies only on the
first PC, it is bound to have a negative score. The proof
for the SVD-entropy function can be extended to cover
also the alternative measures of equations 3 and 4.

The differences in projection on the principal
components between the positive and negative scored
features, may provide an explanation for the difference
between our approach and the sparse-PCA approach that
have recently been suggested [25]. The latter selects
features that in essence, correlate mainly with the first
leading principal components, while UFF prefers
features that tend to distribute evenly along most of the
principal components.

Furthermore, we also find that the negative score
features have skewness close to zero and kurtosis close
to three. Hence we conclude that group 3 features,
discarded by UFF but selected by Variance Selection,

120

possess wide Gaussian distributions. This means that
Variance Selection contains noisy features and explains
their inferior results demonstrated in the next section.

2.3 Data and Results

In order to demonstrate the performance of UFF, and to
compare it with other feature selection methods, we
apply it to two representative datasets. The first is the
small round blue cell tumor (SRBCT) gene-expression
dataset that was first introduced in [16], and includes
cDNA microarray measurements of 2308 genes
(features) for 83 patients (instances). The instances are

categorized into four types of tumors: Burkitt
lymphoma, Ewing sarcoma, Neuroblastoma and
Rhabdomyosarcoma. The second dataset, originally

described by [6] and analyzed more thoroughly by [19],
contains 61 rod-shaped viruses affecting various crops.
There are 18 measurements of Amino Acid
Compositions (AAC) for the coat proteins of the virus
serving as 18 features. The viruses are classified into
four classes: Hordeviruses, Tobraviruses,
Tobamoviruses and Furoviruses. It is worth mentioning,
that neither the UFF nor the other algorithms use these
labels either at the filtering or at the clustering stage.

In order to assess the quality of the filtering methods,
clustering of the instances is performed on the filtered
dataset. In the cases described below, clustering is based
on the QC algorithm [11] (it is shown in [23] and in the
supplementary material that similar conclusions
regarding feature filtering are obtained when applying
other clustering algorithms, e.g., hierarchical clustering
and K-Means). Assessment of clustering quality with
respect to expert classification of the data is measured
using the popular criterion of Jaccard score (J) [10, 14,
20]

Figures 4 and 5 display the clustering results for the
SRBCT and viruses datasets, respectively, when several
unsupervised filtering methods are applied. The methods
compared are UFF, normalized range (range values of
the feature normalized by the minimal value), Variance
and Entropy (of feature values over the instances), and
random selection (for each number of features we use 50
repeats of random selections from the total set of
features). The dashed line denotes the score obtained
when using all features.
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Figure 4. Clustering results (Jaccard score, Y axis) of the
SRBCT dataset as a function of the number of features
selected by each method: (A) UFF, (B)Normalized range, (C)
Variance, (D) All, (E) Feature Entropy and (F) Random.
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Figure 5. Clustering results (Jaccard score, Y axis) of the viruses
dataset as a function of the number of features selected by each
method: (A) UFF, (B) Normalized range, (C) Variance, (D) All,
(E) Feature Entropy and (F) Random

The two figures show that UFF outperforms other
methods, especially when the selected group of features
is relatively small. Whereas the results are shown as
function of the number of features that are retained, note
that UFF contains an estimate (m.) of the number of
features to be selected. These values are 88 for the
SBRCT dataset (Figure 4) and 3 for the virus data
(Figure 5). At both values we witness the largest
difference in clustering quality between UFF and the
other methods.

2.4 When is UFF Applicable

While UFF works very well on many datasets, including
most gene-expression data, we have found datasets where
selection according to UFF is not effective. Figure 6
presents two such examples: datasets of stocks [21] and
cell-cycle gene-expression [22]. On both, UFF did not lead
to improved clustering (not shown). We note that the
distributions in Figures 6 and 7 are somewhat different from
Figure 1. In particular, group 2 features display large
variance among their scores.

121

-3 . |

UFF score

-4 B

-6-

7, 100 150 200 250

=1

-2

-3t o |

UFF score

-4 |

-5 B B
..
6o 10 20

70
Figure 6. UFF Scores of (A) stocks dataset and (B) cell-cycle
gene-expression dataset, ordered by decreasing UFF score.

40

60

30 50 80

Working with more than a dozen datasets from different
domains, all shown in the supplementary material, we have
found measures that allow for separation between 7 datasets
on which UFF is effective from 5 datasets in which it is not.
One such measure is the normalized entropy of the squares
of UFF scores. This, as well as another measure, is
presented in the Appendix. They allow for a prior estimate
on whether UFF should be employed.

3. Unsupervised Instance Selection (UIS)

The data-matrix A contains information on instances in
terms of features and features in terms of instances, and
the singular values are common to both. One may
therefore consider a 'leave-one-out' measure applied to
instances. This is the Unsupervised Instance Selection
(UIS) method, to be studied here. It turns out to be
useful for identifying outliers among the instances that
may be removed in order to provide a more
homogeneous dataset.
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Figure 7. UIS scores of the instances of the SRBCT dataset,
ordered by decreasing score

Evaluation of the UIS method is done in the same
manner as for UFF, i.e. clustering the remaining
instances and comparing against expert labeling. Table 1
displays clustering results for the SRBCT and viruses
datasets for (a) all features and instances, (b) the UIS-
filtered instances while keeping all features, (c) the UFF
features and all instances, and, (d) the joint selection of
instances and features by UIS and UFF respectively. UIS
followed by UFF markedly improves the clustering
quality, having Jaccard scores of 0.88 and 0.95 for the
two datasets, respectively. The results were compared to
clustering done on the datasets in which instances were
randomly removed (13 and 6 instances, in the SRBCT
and viruses datasets respectively). No improvement of
the Jaccard score was found. Hence we conclude that
removal of UIS selected instances is indeed efficient.
The UIS eliminated instances are found to be distributed
homogenously among the four classes in both datasets.
Other datasets appear in the supplementary material.

Table 1: Clustering quality (Jaccard scores) for SRBCT and
viruses datasets using all the features, UIS, UFF and
UFF+UIS

All UIS UFF UIS+UFF
SRBCT 0.21 0.20 0.65 0.88
Virus 0.59 0.68 0.93 0.95

4. Conclusions

We present and explore UFF, an unsupervised approach
that scores and ranks each feature according to its
influence on the singular values distribution. By
applying a leave-one-out method, scoring of each
feature is determined with regard to all other features,
and not independently as by other standard methods.

A statistical characterization of the selected features
shows that our method selects features of high variance
(over instances), but only those that do not have large
correlation with the first principal component. It turns
out that thus we ignore noisy features that have Gaussian
distributions.
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By studying various empirical datasets and evaluating
different scoring functions we show that our approach is
generic, and can identify the subset of relevant features.
In contradistinction to other methods we can estimate
the size of the group of selected relevant features.

UFF is a heuristic method which exposes its strength in
realistic application. Nevertheless, not all datasets are
amenable to feature selection by UFF. We propose
criteria for deciding when UFF application is effective.

We extend the capabilities of UFF by introducing the
Unsupervised Instance Selection (UIS) method.
Application of the latter followed by UFF fulfills three
important goals: (1) identify and remove outliers from
the dataset, (2) identify and select the most informative
features and (3) improve the clustering quality.
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5. Appendix

5.1 Negative Score Feature Proof

One can prove that in the extreme case, where a feature
is lying only on the first PC, it is bound to have a
negative score. We shall now prove it for the SVD-
entropy function. This proof can be extended to cover
also the alternative measures in Equations 3 and 4.

Starting with the positive-definite correlation matrix C,
defined as
C=A"A=VSV" (%)
for the data matrix A of M features by N instances

(where, without loss of generality we assume N<M), we
use its eigenvalues to define:

5 c. N N ~(6)
=S, p =?’, T=ch, K =—ch10g(cj,
j=1 j=1

T is positive definite. SVD entropy can be related to K
through

N

K
§ ==2_pilog(p,) = —-+1og(T)

i=1

(7N

where, for simplicity, we dropped the normalization
constant (log(N)) in the definition of S

Consider the small perturbation of adding one feature to
the matrix A. The assumption of a small perturbation
generally holds for a large enough number of features.
Using equation (7), we can write the resulting change of
S as

TdS =dK +(1—- ?)dT (3)

If an added feature projects only on the first PC, it can
change only the first singular value. It follows then that

dT =dc,, dK =-dc,(1+log(c,)) 9)

Plugging the terms in (9) into equation (8), we arrive at
_TdK+(T -K)dT _
T

which means that adding such a feature always leads to
reduction of entropy.

Tds —%(K+T10g(cl))<0 (10)

To complete the proof we show that the right hand side
is indeed negative. T is positive, and so is also the sum
of the two terms in the bracket, since c; is the leading
eigenvalue and the following inequality holds:



N
—K:chln(cj)<Tlog(cl) (1)

We now prove that dc;>0. Note that, by definition,
dci = Z Vmicman‘

m,n

(12)

The first order perturbation of the eigenvalues of C is
related to the change of the original matrix C by the
original unitary transformation V. This follows from the
unitarity constraint on V

Zm dei‘/mi = 0

and is the discrete analog of the Hellman-Feynman
theorem[11], [12], [7].

Adding a row to A, i.e. adding the feature vector f*' of
size N, the correlation matrix C changes to

Cmn % Cmn _+_ fﬂM+1me .

(13)

(14)

Plugging it back into equation (12), we conclude the
proof with showing the dc, is positive according to:

de, = (fMH -Vi)z

where V; is the i.-th eigenvector of C.

(15)

Adjusting appropriately S and K, it is easy to prove this
also for the sum of squares and the geometric mean
functions mentioned in 2.1.

5.2 When is UFF applicable?

We present two measures that allow for a separation
between datasets on which UFF is effective, from those in
which it is not. The first is SE, an entropy-like measure on
normalized squares of UFF score-values.

W, = MScorek2
Z Score] (10)
i=1 ;
:_szlwklog(wk) (17)

and the second is VE, an entropy-like measure on the
variance-values (i.e. variance of feature-values on all
instances).

2, = MVar(fk)
> Var(f) (%)
111 )
= —m - 2 log(zk) (19)

Suitable datasets can then be defined as those lying below
certain thresholds in both measures. We tested 7 'suitable’
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and 5 'not-suitable' datasets using UFF and clustering
algorithms. VE seems to provide a better margin of
separation between the two groups of datasets ('suitable’
datasets' VE range between 0.6 and 0.86, whereas 'not-
suitable' datasets' VE range between 0.96 and 0.98). The
datasets' description appear in section 5.3 and UFF graphs
are provided in the supplementary material.

5.3 Datasets

The numbers in curly brackets denote the number of
features x the number of instances. The numbers in square
brackets reference the references section.

1. Small-Round-Blue-Cell-Tumor (SRBCT) {2308x83}
[16]

Leukemia dataset 1 {7129x72} [8]
Leukemia dataset 2 {12582x72} [2]
Yeast microarray {5827x133} [18]
Virus {18x61} [6]

Facial-slopes {3486x91} [15]
Lung cancer {4966x96} [3]

Stocks {273x487} [21]
Facial-distances {3486x91} [15]
10. Orange Juice {700x218} [17]

11. Cell Cycle {72x798} [22]

12. Movies {943x1682} [21]

N A R o
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