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Abstract

Cultured in wvitro neuronal networks are known to exhibit synchronized
bursting events (SBE), during which most of the neurons in the system spike
within a time window of approximately 100msec. Such phenomena can be
obtained in model networks based on Markram-Tsodyks frequency-dependent
synapses. We point out that in order to account correctly for the detailed
behavior of SBEs, several modifications have to be implemented in such models.
Random input currents have to be introduced to account for the rising profile of
SBEs. Dynamic thresholds and inhomogeneity in the distribution of neuronal
resistances enable us to describe the profile of activity within the SBE and
the heavy-tailed distributions of inter-spike-intervals and inter-event-intervals.
Thus we can account for the interesting appearance of Lévy distributions in
the data.
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1 Introduction

How an ensemble of neurons links together to form a functional unit is a fun-
damental problem in neuroscience. The difficulty in visualizing and measuring
the activity of in vivo neuronal networks has accelerated the tendency to pur-
sue surrogate methods. As a result, much effort has been devoted to studying
cultured neuronal networks in vitro. It has been suggested (Marom & Sha-
haf, 2002; Shahaf & Marom, 2001) that large random networks in vitro are
probably the most appropriate experimental model to study the formation of
activity of groups of neurons, and the response of this functional connectivity
to stimulation. Unlike ¢n vivo networks, randomly formed in vitro networks are
free of any predefined functional role, and enable one to study how a system
self-organizes.

Many different forms of synchronized activity of populations of neurons
have been observed in the central nervous system (CNS) throughout the years.
However, the role of synchronization in the neural code and information pro-
cessing is still a matter of considerable debate. Recently Segev et al. (Segev
et al., 2001a; Segev et al., 2001b) performed long-term measurements of spon-
taneous activity of in vitro neuronal networks placed on multi-electrode arrays.
These developing networks show interesting temporal and spatio-temporal prop-
erties on many time scales. At early stages (up to a week) the neurons spike
sporadically, after which they begin to correlate, leading to the emergence of
synchronized bursting events (SBEs). A SBE involves extensive spiking of a
large fraction of neurons in the system during approximately 100msec. One
hypothesis (Segev, 2002) is that these dynamical SBEs are the substrate for
information encoding at the network level, in analogy with action potentials
at the neuronal level.

Different morphological structures and sizes of networks were explored



(Segev et al., 2001a). All networks exhibit: 1. Long-term correlation of the
SBEs’ time sequence manifested by power-law decay of the power-spectrum
density. 2. Temporal-scaling behavior of neuronal activity during the SBEs
(where most of the activity takes place). 3. Temporal-scaling behavior of the
SBEs’ time sequence. Temporal-scaling is usually expressed by a power-law
decay. The time sequences of spikes and SBEs were well-fitted to a Lévy
distribution, that has a power-law decay. Such scale-invariant behavior is
characteristic of dynamical systems which are composed of many non-linear
components (Mantegna & Stanley, 1995; Peng et al., 1993).

Our goal is to elucidate the underling mechanisms and properties of the
different elements in the system, that are responsible for the generation and

structure of the observed neuronal (synchronized) activity.

2 Experimental Observations

The experimental system is based on a two-dimensional (2D) 60 multi-electrode
array on which the biological system is grown. The biological system is com-
posed of both neurons and glia, taken from the cortex of a baby rat. The cou-
pling between the electrodes and the neuronal membranes enables the record-
ing of neuronal electric activity (action potentials). Different morphological
types and sizes of networks were explored (Segev et al., 2001a): 1. quasi one-
dimensional (1DS) - a small network composed of 50 cells. 2. rectangular
(2DM) - a medium-sized network composed of 10* cells. 3. circular (2DL) - a
large size network composed of 10° cells. All these networks shared the same
characteristic patterns of activity. The mean rate of SBEs increases with the

size of the network, while the variance decreases but only up to a factor of 2.



2.1 Synchronized Bursting Events

Figure 1 illustrates a characteristic raster plot, revealing the appearance of
SBEs and their structure. The SBE involves rapid spiking of almost all the
neurons in the network. It starts abruptly and decays during a 100msec period.
During the SBE each neuron has its own firing pattern, consisting of up to 20
spikes. The SBEs are separated by long quiescent periods (1-10sec) during
which there is almost no activity except for few sporadic spikes. The mean

rate of SBEs is between 0.1Hz and 0.4Hz.

2.2 Distribution of Neuronal Activity

The distributions of ISI at the neuron level, and inter-event interval (IEI)
at the network level, were analyzed (Segev et al., 2001a). Since the SBE
width is of order 100msec, this defines the resolution of IEIs. The ISI and
IEI distributions of experimental data reveal heavy tails, indicating possible
temporal-scaling behavior. To study the appearance of heavy tails in ISI and

IEI, the distributions of the ISI and IEI increments, defined by
AISI(t) =1ISI(t)—ISI(t—1) (1)

AIEI(t) = IEI(t) — IEI(t — 1) (2)

were investigated. Unlike the ISI and TEI, the increments have symmetric sta-
tionary distributions with zero mean. Figure 2 displays the histograms of the
ISI increments of three different neurons, as well as the average of all exper-
imental data and the margin of variation. We note that since the activity is
very low between any two consecutive SBEs, the first part of the histogram
(up to 100msec) is separated from the second part (from  2sec) which re-
veals the heavy-tailed distribution of the IEI increments (since ISI increments

larger than 1-2sec are caused mainly by the SBEs). Between 100msec to 2sec
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Figure 1: Typical activity of the experimental network. Upper frame: The
raster plot of lmsec time-bins reveals SBEs.

SBEs. Lower frame: Detailed structure of a SBE, displayed by the number of

spikes in the network per time-bin.

Middle frame: zoom into the



the probability increases slightly for each neuron due to both the synchrony
and sporadic activity in the system. We also calculate the distance between
the individual neurons’ histograms and the averaged histogram using the KL

divergence measure defined by:

Dk = ZP(x) -loga(P(2)/Q()) (3)

The values are given in the figure caption. These values will be compared later
with model neurons.

Since these distributions exhibit large tails it seems only natural to try and
fit them by Lévy distributions, which would also be expected from central limit
theorem arguments (see below). In this paper we follow the parameterization
S(a, B,7,0d;0) (Nolan, 1998; Nolan, 2004) to describe Lévy distribution.

Every Lévy distribution is a stable distribution. A random variable X is
stable if X; + Xo +---+ X,, ~ C, X + D,,, meaning that the normalized
sum of independent and identically distributed (iid) random variables is also
distributed as X, with a scaling factor C,, = n'/®, and a shift D,. For the
data in Figure 2 we find that AISI distributions are well-fitted with a Lévy
distribution S(«, 0,7, 0; 0) up to 100msec, while ATEIs are well-fitted with Lévy
over another 3 decades. 0 < a < 2 is the index of stability, which determines
the long tail of the distribution, and « > 0 is a scale factor, which determines
the location of the bending point (see examples in Figure 3). Special cases of
the Lévy distributions are the Gaussian distribution (o = 2) and the Cauchy
distribution (o = 1). All @ < 2 have divergent variance.

There are several important properties of Lévy distributions worth pointing
out: 1. The generalized central limit theorem (Nolan, 2004) states that the
normalized sum of iid variables converges to a Lévy distribution. If the variance
is finite then o = 2, i.e., the convergence is to a Gaussian distribution. Other-

wise, a < 2. 2. If & < 1 the mean is infinite too. 3. For a < 2 the asymptotic
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Figure 2: Positive-half of the neurons’ AISI histograms, taken from the exper-
imental data. Solid lines represent the margins of variability. They are cal-
culated by averaging the histograms of all neurons and plotting this averaged
PDF =+ the standard deviation. Symbols represent data of 3 selected neurons,
also showing the diversity in the data. The KL-distance measures of these
neurons from the average PDF are 4.1193 - 1075, 3.1369 - 1075, 3.1355 - 10~°
ordered according to the order of the neuron values at Time=1 from top to

bottom.



behavior of the distribution is given by a power law f(| X |) oc| X |~0F),

In Figure 3 we present examples of different Lévy distributions plotted on
log-log scales of the type used in Figure 2. This should help developing the
understanding that 7 replaces the SD parameter, specifying when the bending
of the PDF occurs on the log-log plot. « determines the slope of the long
tail. Since there are no closed forms for these stable distributions (except for
particular cases), we use numerical simulations and display histograms instead
of analytic distribution functions.

The observed behavior of AISI and AIEI implies that their variances di-
verge, i.e. that there is no characteristic time scale in the system. Previous
models of IF neurons with dynamic synapses were unable to account for these
heavy-tailed distributions (Segev et al., 2001a). Our aim is to suggest mecha-

nisms that will generate distributions of the kind observed experimentally.

3 The Model

Our model is based on leaky integrate and fire (IF) neurons endowed with
frequency-dependent synapses (Markram & Tsodyks, 1996). An IF neuron
captures the most important aspects of neuronal behavior: the integration of
inputs during the sub-threshold period and the generation of a spike once the

threshold is reached. The IF neuron is described by

d
Tmem * d_z =—v+4+ Rnem - (Isyn + Iext) (4)

where v, Tnem and Ry,e, are the voltage, time constant and resistance of the
cell membrane, respectively. Once v reaches a threshold the neuron fires and
v is being reset t0 V.

Neural networks composed of IF neurons are able to generate bursting

activity (Tsodyks, Uziel & Markram, 1999) in a model based on frequency-
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Figure 3: Examples of the positive half of Gaussian and Lévy distributions
on logarithmic scale. First row: Gaussian distributions with SD=5 (left) and
SD=50 (right). Notice that increasing the variance shifts the bending point
to the right but does not affect the asymptotic behaviour of the distribution.
Second row: Lévy distributions with o = 1.5, v = 5 (left) and v = 50 (right).
Notice the slow convergence to zero of the tails. Third row: Lévy distributions
with « = 1.05, v = 5 (left) and v = 50 (right). Fourth row: Lévy distributions

with @ = 0.5, v = 5 (left) and v = 50 (right).
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dependent synapses. The phenomenological model of dynamic synapses was
shown to accurately predict the behavior and properties of various neocortical
connections (Markram et al., 1998; Tsodyks Pawelzik & Markram, 1998). The

strength of a synapse is described by a parameter A;;, representing the efficacy

K
of a synapse connecting a pre-synaptic neuron (j) to a post-synaptic neuron (i).

The dynamics of the synapse is described by the following system of differential

equations:
dx z
aznec—u-x-é(t—tsp) (5)
dy y
£=—Tina+u-x-5(t—tsp) (6)
dz _y z

dt Tina Trec

where z, y, z are state variables representing the fraction of ionic channels
in the synapse in the recover, active and inactive states, respectively, with
x4+ 1y + 2 =1. u represents the fraction of utilization of the recover state by
each pre-synaptic spike. Once a spike from a pre-synaptic neuron arrives at the
synaptic terminal at time ¢, a fraction u of the recover state is transferred to
the active state, which represents the fraction of open ionic channels through
which neurotransmitters can flow. The synaptic current from all pre-synaptic

neurons to the post-synaptic neuron is therefore:

. n
Loy = Aij - Ui (8)

j=1
After a short time 7;,, the ionic channels switch into the inactive state. From
the inactive state there is a slow process of recovery (Tpec >> Ting ) back to
the recover state, completing a cycle of synapse dynamics. The above descrip-
tion (with a constant variable u) captures well the dynamics of a depressing
synapse. The variable u describes the effective use of synaptic resources and

could be assigned to the probability of release of neurotransmitters. In facil-

itating synapses, each pre-synaptic spike increases the probability to excrete
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neurotransmitters to the synaptic cleft. In order to also capture the dynamics
of facilitating synapses, another equation was added to the model:

du U
dt B Tfac

YU (1—u)-6(t —ts) 9)

where the constant parameter U determines the increase in the value of u
each time a pre-synaptic spike arrives. The initial condition is that U = wu.
Note that when 74, approaches zero facilitation is not exhibited. When a pre-
synaptic spike arrives, u is updated first, and then all other parameters (z, y,
Tsodyks et al. (Tsodyks, Uziel & Markram, 1999) have demonstrated that
a network of IF' neurons with dynamic synapses of the type described above
generates synchronized bursts. Their network was composed of 400 excitatory
neurons and 100 inhibitory neurons with probability of 0.1 for connection be-
tween two neurons. Each post-synaptic excitatory neuron is connected to a
pre-synaptic neuron through a depressing synapse, while each post-synaptic
inhibitory neuron is connected through a facilitating synapse. The network is
partially balanced, i.e. on average 3-Agg = Ags, but A;jg = Arr. The network
was fed a fixed external input current I.,; which was generated by a random flat
distribution centered at firing threshold (with a range of 5% of the threshold).
The rate of SBEs obtained with this description is approximately 1Hz. After a
SBE occurs it fades away rapidly since the fast firing neurons with depressing
connections cause a sharp decline of recovering synapses. Between SBEs there
is a low-rate activity which enables the recovery of synapses, so I, builds up
and leads to a new burst. Choice of parameters is given in the Appendix.
Trying this approach on our system we find that it needs modifications. It
is difficult to find parameters that fit both the rate of SBEs and the low firing
rate of neurons in between SBEs. Moreover, the profile of the experimental

SBE, i.e. the activity of neurons within this event, rises sharply and decays
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exponentially, while the model as described so far leads to a narrow (20msec)
Gaussian profile. The modifications that we propose are discussed in the next

section.

4 Importance of Noise, Inhomogeneity and Dy-
namic Thresholds

Here we investigate three modifications of the model described above. We add
noise to the input current, we introduce inhomogeneity into the resistances,
and add dynamic thresholds which are also inhomogeneously distributed. The
simulations reported below were performed on a network of 27 excitatory and
3 inhibitory neurons with 25% connectivity. For simplicity we chose Vj;, and
Vies to be 1 and 0 respectively and 7,,e,, = 10msec. Since 7;,, determines the
decay of synaptic currents which dominate during the SBE, we increased 7;,,
to 10msec. This leads to wide bursts of order 100msec.

The biological system is grown on top of a biochemical substrate. Therefore,
the neurons in the dish are subjected to sustained changes in the concentration
of different substances which compose the external environment of the neurons.
For more details on the experimental methods see (Segev 2002; Segev et al.,
2001b). In addition, each neuron (in the large networks) receives thousands
of noisy synaptic inputs. We introduce external noisy current in our model
in order to account for all these effects, as well as other hidden biological
mechanisms, both on the neuronal and the synaptic levels. The external noise
is chosen to be Gaussian with expectation value of 4 = 0.86 and standard
deviation of 0 = 0.15. Each 10 time steps (of 0.1msec each) a different value of
the external current is used. This leads to both quiescence between successive

SBEs, and to sharp increase in neuronal activity once a SBE starts, as shown in
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Figure 4. Since p is below threshold, the neurons’ firing rate is very low. This
enables the synapses to recover quickly and almost completely before the next
SBE. At the point where the synapses are recovered, a single spike from one of
the neurons in the network generates a large Ly, in its targets, thus increasing
the probability to generate a SBE. When the SBE fades away the synapses
are in the inactive state, hence the only activity is the one driven by the noisy
external currents. The expectation value and variance of the noise control
the mean rate of SBEs, that can be adjusted to fit the experimental values.
However, the profile of the simulated SBE builds up too fast in comparison
with experiments. The AISI distribution possesses a heavy tail (power-law
behavior up to 100msec), but it does not fit a Lévy distribution. This is a
direct result of high activity during the SBE, since the probability for large
AISI during the SBE is too low.

To cure these problems we introduce inhomogeneity into the system. We
start with inhomogeneity in neuronal resistances, the R, parameters of Eq.
3. We select them randomly from a flat distribution over the interval [0.1, 0.4].
This modifies each neuronal I,,, and the correlations between the activity of
neurons during the SBE are weakened leading to a slower SBE build up. Since
Lyyn ~ Aj; this is actually a rescaling of synaptic strengths. The resulting
SBE matches perfectly the observed spatio-temporal structure (see Figure 5).
Moreover, this choice leads to a Lévy distribution in AIST up to 50msec, which
suggests that the system still lacks a mechanism that allows the probability
for large AISI to increase.

Next we introduce dynamic thresholds, in order to improve the Lévy distri-
butions of AISI and AIEI. Adaptation and regulation are well-known charac-
teristics of neuronal activity. It may be represented by dynamical thresholds,

allowing for fatigue to set in upon receiving strong stimulation over long pe-

14
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riods. For recent discussions of these effects see (Horn & Usher, 1989; Horn
& Opher, 1999; Ying & Wang, 2000; Brandman & Nelson, 2002). Here we
introduce dynamic thresholds that change as function of the neuronal firing

rate:

B B0 5t (10)
@ describes the change in threshold, 7; is a factor chosen from a flat distribution
over the interval [-0.05,+0.05], and 73, equals the SBE time width (100msec),
consistent with biological data. Note that our choices for 7; mean that there
are two kinds of neurons, with thresholds that increase or decrease during
an SBE. In other words, one kind of neurons displays fatigue while the other
displays facilitation. Using this description we obtain a good match (over five
decades) to the probability distribution functions of AISI and AIEI, and to
the experimental spatio-temporal structure of SBEs, as demonstrated in Fig.
5, 6.

The fit to AIEI is interesting. Note that with homogeneous synaptic
strengths, refractory periods, membrane time constant etc., the probability
to generate a SBE is determined by the time-varying external inputs and by
the specific connectivity of the network. This leads to a periodic-like SBE be-
havior as in Tsodyks et al. (Tsodyks, Uziel & Markram, 1999). By allowing
slight dynamical changes in these parameters, we are able to generate aperiodic
behavior with long periods of quiescence, resulting in a Lévy distribution. The
choice of parameters is given in the Appendix. Also Term and 7,5 are selected
from a flat distribution. This enables us to limit the dispersion of the selected

values of the resistances, but is not crucial to obtain the effects we discussed

above.
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Figure 5: Effect of dynamic thresholds and inhomogeneous resistances. Upper
frame: The SBE profile is similar to the experimental one (see Figure 1).
Middle frame: circles represent the averaged histogram of AISI histograms
of all the simulated neurons. An averaged value is obtained for each time
bin. The solid line is a computer generated Lévy histogram with a = 1.25,
v = 5. Fits to the data followed the maximum likelihood method of (Nolan,
2000). The temporal resolution of spikes is set at 1msec. Lower frame: circles
represent the histogram of the simulated AIEI time sequence. The solid line
is a computer generated Lévy histogram (« = 1.6, v = 25). The temporal

resolution of SBEs is 100msec.
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5 Testing the model

5.1 Sensitivity to choice of parameters

To gain further understanding of the model we test its sensitivity to differ-
ent parameters. The ratio of the number of excitatory to inhibitory neurons
affects the rate and the shape of SBEs. Increasing the number of inhibitory
neurons decreases the probability to generate SBEs. Moreover, strong inhibi-
tion decreases the activity of neurons during a SBE, resulting in a very dilute
event. On the other hand, in the absence of inhibition (i.e. in an excitatory
network) the network operates in an asynchronous mode, without generating
SBEs. However, decreasing synaptic strengths 10-fold, the network reduces its
total activity and SBEs appear. This effect was referred in (Tsodyks, Uziel
& Markram, 1999). Reducing synaptic strengths further, the SBEs are still
obtained but their profile becomes symmetric.

The synaptic strengths (or resistances) determine the shape of the distri-
butions. When A;; is reduced by the same factor for all synapses attached to
a post-synaptic neuron, the activity during a SBE is less dense (small I,,),
and the density of SBEs is reduced. This results in an increase of both 7 (the
bending point) and « (the long-tail decay) of the Lévy distribution of AISI.
The effect on the shape of the AIEI distribution is very weak. There is a limit
to our ability to control the shape of the distributions. Reducing the synaptic
strengths leads to low activity rate with symmetric SBEs and eventually to
disappearance of SBEs. Increasing synaptic strengths leads to high activity
rate, eventually obtaining merger of SBEs into a tonic firing mode.

The time constant of the dynamic thresholds 73, provides further flexibility
in adjusting AISI to experimental data. An example is shown in Figure 6

where we compare our model to a specific experiment, obtaining a good fit to
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a Lévy distribution almost up to 1000msec. In fact, the increase of 73, allowed
us to increase the domain over which the Lévy distribution is valid from 100

to 1000msec.

5.2 Self-consistency

Using experimental data we can test the model. We feed a simulated neuron
with spike sequences of the experimental neurons, via frequency-dependent
synapses, while removing the external input. We have data of 36 real neurons
and we label arbitrarily 32 of them as excitatory pre-synaptic neurons and
4 as inhibitory ones. We expect the simulated neuron to be synchronized
with the network activity, i.e. to spike mainly within SBEs. The question to
be tested is whether the distribution of its output spike train will match the
experimental one (average of all experimental neurons). The results indicate
that the model is consistent with the experimental activity: When a simulated
neuron receives a Lévy distributed stimulus it responds with a Lévy distributed
pattern of activity. The exact pattern is determined mainly by the choice of
synaptic strengths. There are only slight differences between the response of an
IF neuron with a fixed threshold and an IF neuron with a dynamic threshold
given our set of parameters.

In some experimental preparations we notice that there are few neurons that
have much higher firing rates than others. It would be interesting to find the
character of these neurons. In particular to understand if they are inhibitory
neurons, whose role is to regulate the activity of the network, or excitatory ones
reacting to the changing environment. An experimental method to answer this
question can be suggested on the basis of our model. The real neurons can
be stimulated electrically through the electrode they are attached to. One can

inject positive currents to one of the neurons, causing it to spike intensively.
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Figure 6: The effect of 7, on the model for AISI. Solid curve: The averaged
histogram of all the neurons of the experimental system (same data as in
Figure 2). Symbols: Averaged histograms calculated for the results of the
simulation. (4) curve 7y, = 100msec. (o) curve: 7y = 450msec o ~ 0.8, ¥ ~
20. Note that 13, affects mainly the slope of the histogram. The KL distance
measure between these two models and the averaged experimental histogram

are: DKL(+) = 9.5695 - 10_6, DKL(O) = 2.5147 - 10_7.
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The specific balance in our simulated network enables a higher firing rate for
inhibitory neurons than for excitatory neurons. This could be tested. Injecting
an excitatory neuron with positive currents, thus making it permanently active,
we find in our model that this is sufficient to induce permanent activity in any
inhibitory neuron connected to that excitatory neuron, but not in any other
excitatory neuron. This is demonstrated in Figure 7. It can be used as a basis
for mapping out inhibitory neurons in the experimental preparation. It also
suggests that the observed spiking neurons in the (unstimulated) preparation

are inhibitory neurons whose activity may regulate the system.

6 Discussion

From the results of section 4 we conclude that inhomogeneities in neural pa-
rameters lead to correct behavior of the neuronal activity: 1. Time-varying
external currents lead to the rising spatio-temporal profile of a SBE. 2. Inho-
mogeneity in the resistances leads to the detailed structure of a SBE. 3. The
accurate distributions of spikes is obtained using dynamic thresholds. 4. A
Lévy distribution of SBEs is also obtained due to inhomogeneity in the sys-
tem.

Dynamic thresholds are often used to account for neuronal adaptation
through their increase. In the model of section 4 we have employed two
types of neurons, having both increasing and decreasing dynamical thresh-
olds. This observation is consistent with known biological observations of a
large firing repertoire of neurons (Meunier & Segev, 2001). Moreover, a recent
study of inter-neurons (Markram, 2003) reported the existence of many types
of inhibitory neurons, each having its own characteristic electrical response to

stimulus.
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Figure 7: Response of the model to external stimulations. Upper frame: Pos-
itive external current is injected to an excitatory neuron (number 9). The
target inhibitory neurons numbers 2 and 21 respond with continuous spiking.
Target neuron number 8 is also inhibitory and shows extensive spiking outside
SBEs. All the rest are excitatory neurons that spike only within SBEs. Lower
frame: Positive external current is injected to an excitatory neuron (number 5)
that does not have any inhibitory neurons as targets. Hence no other neurons

exhibit continuous spiking behavior.
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It has been suggested a long time ago (Gerstein & Mandelbrot, 1964) that
if the membrane voltage has a random-walk behaviour, one can obtain many
heavy-tailed distributions. Dynamic thresholds of the kind we use impose
a random-walk-like behaviour on the membrane voltage, and were necessary
to obtain the distributions observed experimentally, so our results embrace
their suggestion. To reinforce this claim, we also examined non-linear one-
dimensional models of neurons, which describe more accurately the changes in
the membrane voltage. Using these models in the absence of dynamic thresh-
olds did not lead to better results. However, using a two-dimensional model
which endows its membrane with more complicated response by making partial
use of ionic channel dynamics can explain the neuronal distributions we see in
the experiments (Volman, Baruchi, Persi & Ben-Jacob, 2004).

The variance of the heavy-tailed distributions of AIST diverges. This may
imply that the system we study has the potential to operate on many different
time scales. This flexibility is important to allow different neuronal networks,
with different functional roles, to be responsive to different time scales de-
pending on the specific inputs they have to process. Therefore, in a case of
processing a given task (or stimulation) we would expect to observe changes in
the shape and variability of the discussed distributions. It will be interesting
to understand which features of the stimulation will be coded by the individual
neurons and which features (if any) will be coded on the whole network level.
This will be tested in the future.

An important open problem is to understand why networks of different
sizes behave similarly. We believe that this can be understood by invoking the
concept of neural regulation (Horn, Levy & Ruppin, 1998) or synaptic scaling
(Turrigiano et al., 1998; Abbott & Nelson, 2000). Preliminary studies show

this to be the case, but it requires further investigation.
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Appendix

Parameters of simulation in (Tsodyks, Uziel & Markram, 1999): 400 exci-
tatory neurons and 100 inhibitory neurons. Reset and threshold membrane
potentials: Vieser = 13.5 and Vipresnoia = 15. Resistances are 1. External cur-
rents were driven from a unit distribution centered at the threshold level with a
range of 5% of the threshold. Time constants of the neurons: 7,,.,, = 30msec,
refractory period of 2 and 3 msec for inhibitory and excitatory neurons, respec-
tively. Synaptic parameters were taken from Gaussian distributions. Standard
deviations are half of the following average values (with cutoffs of 2-average
and 0.2-average): A(ee) = 1.8, A(ei) = 5.4, A(ie) = A(ii) = 7.2. Average
values of utilization: U(ee) = U(ei) = 0.5, U(ie) = U(ii) = 0.04. Average time
constants: Tpec(ie) = Trec(il) = 100msec, T,¢.(ee) = Tyec(ei) = 800msec, 714 (ie)
= Tfqc(ii) = 1000msec. Fixed time constant of 7;,, = 3msec. It is reported
that the results of this simulation are robust under changes of up to 50% in
the average values.

Parameters of our model:

27 excitatory neurons and 3 inhibitory neurons. Reset and threshold membrane
potentials: V,eser = 0 and Vipresnoia = 1. Resistances to synaptic currents ~
U(0.1,0.4). Resistance to external currents remains 1. External currents ~
N(0.86,0.15). Time constants of the neurons: Tyem ~ U(9.5,10.5)msec, re-
fractory periods ~ U(2,3)msec for all neurons. Fixed time constant of 7;,, =

10msec. All other parameters are unchanged.
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