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Abstract

We model spatiotemporal patterns in Locust olfaction with the Dynamic Neural
Filter (DNF), a recurrent network that produces spatiotemporal patterns in reaction
to sets of constant inputs. We specify, within the model, inputs corresponding to
different odors and different concentrations of the same odor. Then we proceed to
analyze the resulting spatiotemporal patterns of the neurons of our model. Using
SVD we investigate three kinds of data: global spatiotemporal data consisting of
neuronal firing patterns over the period of odor presentation, spatial data, i.e. total
spike counts during this period, and local spatiotemporal data which are neuronal
spikes in single temporal bins.
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1 Introduction

The Dynamic Neural Filter (DNF) (3) is a recurrent binary neural network
that maps regions of input space into spatiotemporal sequences. It has been
motivated by locust olfaction research. Here we take up the task of using this
model as a prototype of spatiotemporal patterns, and put it to tests of the
kind employed by (5) for data obtained from the locust antennal lobes (ALs).
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Since this kind of system is known to exhibit a local field potential (LFP) with
temporal width of 50ms (6), we take this time window as the basic temporal
bin in our discrete system, obeying

ni(t+1) = H(hi(t + 1)) Zw”nj )+ R — 6;)

where n; are the neural activity values, w;; is the synaptic coupling matrix, R;
is an external input and #; is the threshold. H is the Heaviside step function
taking the values 0 for negative arguments and 1 for positive ones.

In the next section we define all other details of the model, after which we
turn to a series of numerical experiments and their analysis.

2 Model of Olfaction

We use a fully connected binary network, defined by an asymmetric weight-
matrix, with ¢r(w - w)/tr(w - wl') =~ 0, having both positive and negative
couplings taken from a normal distribution of width 4. In a previous work
(2) we discussed some features of the response sequences generated in large
networks e.g. N = 40, by changing R values. We found that close-by R values
generate divergent spatiotemporal sequences. We also found that the center
of R space is the region where the system leads to large cycles and chaotic-
like phenomena of total divergence occur. As we move out of the center of
this space, small changes in R may lead to divergence, but finite correlations
survive. These findings were consistent with the experimental results (1) in
the olfactory bulb of Zebrafish. Fix points and short cycles appear mostly at
the edges of the relevant R space, as defined in (3) and are not relevant to
the current olfaction model. Let us limit ourselves to the ‘active range’ of R
space where almost all sequences are long. This range can be defined by the
standard deviation of the distribution of A, over all neurons and all time steps,
in response to input at the center of R space. Numerical simulations lead to
an active range of 20 for N=100.

Turning to olfaction, we note that neural firing behavior similar to that of
Projection Neurons (PNs) of the ALs is seen at the lower end of the active
range. Hence this will be chosen as the R value specifying the non-odor back-
ground activity, with all § values set to 0. Furthermore, we note that (4) have
demonstrated a logarithmic relationship between the inputs (odors) at dif-
ferent concentrations and the receptors’ response. Inspired by these findings,
the DNF inputs (for neuron i and odor j) are expressed in terms of the loga-
rithms of concentration, denoted by L, and are mapped onto the lower end of



the active range of R in the following way:
Rij =m; + Sij X Lj X H(Lj — tij)

where m; is the starting point at the edge of the active range of R;, L; is
chosen from the set [1 2 3 4 5], and s;; are randomly chosen from the interval
[0.1-6]. t;; are the sensitivity thresholds, randomly chosen from the interval
[0-15]. Neurons with ¢;; above the highest concentrations will not be sensitive
to the odor at all. Noise is added to the input values to represent stochastic
fluctuations.

This model is supposed to represent the antennal lobe of locust. Although no
attempt was made to distinguish between excitatory and inhibitory cells, or to
follow other anatomical and physiological elements of the biological system, it
may serve as a rudimentary model of the spatiotemporal behavior observed in
this system. In particular, it allows us to investigate some interesting questions
following from the analysis of such systems, comparing results of our model
with those revealed in experiments (5).

3 Analysis of the spatiotemporal data

Similar to the work of (5) the data we analyzed were spatiotemporal patterns
of 100 neurons over a simulation time of 1 sec. Figure 1 depicts such patterns,
derived from a network of 100 neurons, all of which received a constant odor
during a simulation of 20 time steps. Each of the frames, representing five con-
centrations of the three different odors, will be referred to as a ‘spatiotemporal
pattern’. We proceed then to ask for clustering properties of such patterns for
different odors and different concentrations. We choose SVD as our tool for
dimensionality reduction. It is applied to the set of all data.

3.1 Global Spatiotemporal Analysis

For each odor and concentration we generate 15 data points, differing from
one another by noise. Thus we have 225 data points (15 points for each of
3 odors and 5 concentrations) each having a 2000 dimensional (100 neurons
and 20 time bins) spatiotemporal pattern. SVD is applied to this 225x2000
matrix, truncating it down to 3 dimensions (corresponding to the three leading
variance-eigenvalues). The 225 points may now be represented on these three
dimensions. An example is presented in figure 2. Clusters of both odor and
concentration exist. Thus we conclude that the global spatiotemporal patterns
include this information, and it can be easily retrieved via SVD.



Fig. 1: Spatiotemporal patterns of three different odors, five concentrations
each. Plots of an example trial are shown. (1 sec simulation in a network of
100 neurons. Noise with variance 0.01 was added to the inputs).
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Fig. 2: Clustering of odors and concentrations observed in a 3-dimensional
truncated SVD representation of the spatiotemporal patterns. Different shades
represent different odors, while shapes represent concentrations.

3.2 Local Spatiotemporal Analysis

Next we ask ourselves if this type of information exists already at the level of
single temporal bins, i.e. the columns of the spatiotemporal patterns discussed



above. To answer this question we apply SVD to a matrix of 4500x100, cor-
responding to 225x20 data-points (including the specific temporal bins) and
100 neural spatial patterns. The results, shown in Figure 3a reveal clustering
of odors. For any individual odor, one can also obtain clustering of concentra-
tions, when looking at each odor separately (not shown here).
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Fig. 3: 3-dimensional SVD reduction of local spatiotemporal data. 3 different
shades specify the three odors. Left: Constant noisy odor applied for 1 sec.
Right: Noisy non-odor input for 1 sec, followed by constant noisy odor for 1
sec, after which the odor decays for the next 3 secs. 15 trials were presented
in bins of 100msec, leading to 225*50 data points in 100 dimensions.

3.3 Spatial Analysis (Firing Rates)

Our third SVD experiment is to analyze the spike count data, i.e. we take the
225x2000 matrix of data described above, and sum all columns (temporal-
bins) together into 100 dimensional vectors, thus leading to a 225x100 data
matrix. The resulting clustering properties were similar in quality to those of
Figure 2. Hence we conclude that the responses to different odors and different
concentrations can be distinguished by total spike counts, i.e. the information
is also carried by a rate code.

All these simulations were carried out under the assumption that the system is
subjected to a constant odor throughout the numerical experiment. To check
ourselves with respect to the experimental results of (5) we proceed to define a
second set of numerical experiments, where a constant odor (with small noise)
was turned on after one second of background activity, applied for one second
and followed by three seconds of odor decay back to background activity.
The results are that the spatiotemporal patterns retain the power to cluster
different odors and concentrations, and so does the spike count analysis. In
the local spatiotemporal analysis, the clustering results improved significantly
for most time bins, as demonstrated in Figure 3b.



4 Discussion

We have obtained the desired odor and concentration clusters on all three
levels of data analysis. Of particular importance is the fact that odors and
concentrations clustered correctly for the local spatiotemporal analysis, which
seems to be the most relevant to the biological system (inputs of Kenyon cells).
In the recent experimental analysis of (5), the authors have demonstrated a
representation of odors as manifolds with concentration as trajectories de-
lineated by the temporal order of the local spatiotemporal data. We have
obtained clusters for the different concentrations, but have not found clear
trajectories within these clusters. We continue to investigate this point. We
note that the DNF, with its one time-step dynamics, lacks a second, longer
time-scale dynamics of the kind observed in the firing patterns of PNs of the
Locust. This second time-scale may be reponsible for some short-term mem-
ory that carries the odor information after it is being removed, leading also
to the temporal-ordered trajectories mentioned above. We believe that adding
suitable inertial characteristics to the DNF will allow our model to reproduce
concentration-trajectories in place of the concentration clusters in the local
spatiotemporal analysis.
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