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Abstract. Hebbian learning, the paradigm of memory formation, needs further mechanisms to
guarantee creation and maintenance of a viable memory system. One such proposed mechanism
is Hebbian unlearning, a process hypothesized to occur during sleep. It can remove spurious
states and eliminate global correlations in the memory system. However, the problem of spurious
states is unimportant in the biologically interesting case of memories that are sparsely coded
on excitatory neurons. Moreover, if some memories are anomalously strong and have to be
weakened to guarantee proper functioning of the network, we show that it is advantageous
to do that by neuronal regulation (NR) rather than synaptic unlearning. Neuronal regulation
can account for dynamical maintenance of memory systems that undergo continuous synaptic
turnover. This neuronal-based mechanism, regulating all excitatory synapses according to
neuronal average activity, has recently gained strong experimental support. NR achieves synaptic
maintenance over short time scales by preserving the average neuronal input field. On longer
time scales it acts to maintain memories by letting the stronger synapses grow to their upper
bounds. In ageing, these bounds are increased to allow stronger values of remaining synapses
to overcome the loss of synapses that have perished.

1. Introduction

In a recent Viewpoint article, van Hemmen [1] has reviewed problems caused by
Hebbian learning in some memory models, and the unlearning method that resolves them.
Unlearning, in this context, is the idea of applying Hebbian learning with a reversed sign
to undesired states, such as spurious mixed states in a Hopfield model [2]. This idea was
put forward in 1983 by Crick and Mitchison [3] and by Hopfield et al [4]. In his review
paper, van Hemmen discusses the motivation of this approach and describes the reasons
for its success. He puts unlearning in the larger context of eliminating undesirable global
correlations between memories and performs thorough simulations to substantiate the theory.
Nonetheless, the simulations cannot be extended to the biologically interesting case of low
coding. Moreover, the problem of spurious states is absent in models of sparse coding.
The one situation that may need a cure of an unlearning type is the case of pathologic
attractors [5, 6]. This concept refers to memories in an associative memory model that
possess anomalously large basins of attraction. An associative memory system that performs
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0954-898X/98/040577+10$19.50 (© 1998 IOP Publishing Ltd 577



578 D Horn et al

free recall from random stimuli, and then learns in a Hebbian fashion the memories it recalls,
can fall into a pathologic behaviour in which some basins of attraction grow too strongly and
overshadow all other memories. Obviously this should be avoided in functional memory
systems. We have presented [7] a novel solution to this problem, based on a neuronal
regulation (NR) mechanism that acts to maintain neuronal activity. This mechanism operates
in conjunction with random activation of the memory system, and is able to counterbalance
degradation of synaptic weights. At the same time, it normalizes basins of attraction of
memories, thus preventing the creation of pathologic attractors.

Activity-dependent neural regulatory processes have previously been observed
experimentally [8] and studied theoretically [9, 10]. The main new feature introduced
in our work is the view of NR as a common change in the synaptic efficacies of a neuron
that, depending on the neuron’s activity, keeps the relative weights of different synapses
unchanged. This key feature has recently received direct experimental support from the
work of Turrigiano et al [11], suggesting that neocortical pyramidal neurons regulate their
firing rates by scaling the strength of their synaptic connections up or down as a function of
activity. This is a slow process, affecting AMPA-type receptors that mediate excitatory
synaptic transmission. Just as in the model [7], it produces regulation in the desired
multiplicative postsynaptic fashion.

In section 2 we describe our model briefly. We show that there exists an analogy
between NR and unlearning, as both mechanisms weaken memories that are too strongly
retrieved. However, in contradistinction to unlearning, NR does not involve an anti-Hebbian
synaptic mechanism. Instead, it employs a neuronal mechanism, acting simultaneously on
all its dendritic synapses, ensuring homeostasis of memory systems. Section 3 is devoted to
long-term maintenance. When synapses are no longer kept at their original values, memories
can nonetheless be maintained intact. In section 4 we review pathologies that arise when
neuronal regulation fails (dementia) or when it acts under wrong conditions, as in a model of
schizophrenia. We contrast the achievements of NR with the results of synaptic unlearning
in section 5, and discuss the possible implementation of NR in sleep.

2. Neuronal regulation

2.1. Short-term maintenance

As a platform for the formulation and testing of our approach, we use the neural network
model of Tsodyks [12], taking it to represent a module of associative cortex in which a set
of memories is engraved. The model includes N excitatory neurons that encode M memory
patterns with sparse coding level p « 1. The effect of inhibitory neurons is represented
by global inhibition that is proportional to the overall activity of the excitatory neurons.
In accordance with the conventional Hebbian rule, the synaptic weight J;; projecting from
neuron j to neuron i, following the consecutive storage of M memory patterns n*, is
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The dynamics of retrieval is given by
Vi(t' + Aty = S (hi(t) - T) @

where V; is thie activity of the ith binary neuron, ¢’ denotes the fast time scale of network
updating in a single retrieval trial, and T is the threshold. S(x) is a stochastic sigmoid
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function, taking the value 1 with probability (1 +e™* )~1 and O otherwise, and

! |
hi(') = B — A’,’p S vy + 1 ®)
)

is the membrane potential. It includes the excitatory Hebbian coupling of all other excitatory
neurons, ' :
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an external input I;, and inhibition that is proportional to the total activity of the excitatory
neurons. ' _
In the model, the synaptic weight matrix undergoes two types of changes. One is
Jij = (1 — €;j)Jij, due to synaptic turnover, represented here by a deterioration factor ¢;;
that is synapse specific and is newly chosen at every deterioration cycle in a random fashion
(with mean € and variance o ). The second type of change is the NR effect, multiplying
each synaptic weight at every NR cycle by J;; — c¢;J;j. Note that this corrective action
is neuron specific, i.e. ¢; is determined by the postsynaptic neuron i, multiplying all the
synapses on the dendritic tree of neuron i by the same factor. ¢; itself is chosen to be
slightly larger (or smaller) than 1, according to whether the average input seen by neuron
i in the NR cycle is weaker (or stronger) than a specified baseline value. This is the same
type of regulation that has recently been suggested experimentally [11]. The definition of ¢

, ( H[ /7

where Hf = (h$(z = 0)) and « and 7 are rate constants. To measure the neuronal average
input, random excitations of the memory system are invoked, indicating to each neuron
the size of its overall synaptic degradation, on which it can base its appropriate corrective
measure ¢;.

The NR mechanism can counter-balance the average deterioration of the system, and
works nicely as long as the accumulated variance is small. We have run it [7] on a system
that undergoes consecutive cycles of Hebbian learning, synaptic degradation and neuronal
regulation. We found that it performs very well, maintaining both old and new memories,
and storing all of them with roughly the same strength, i.e. similar basins of attraction.

In our calculations we have to make a clear distinction between Hebbian learning and
neuronal regulation periods. In Nature we assume that the two correspond to different
modes of activity in the brain. While the Hebbian process modifies the single synapse the
NR mechanism modifies all synapses of the (postsynaptic) neuron concomitantly.

2.2. Experimental evidence

The recent results of [11] point out an experimental behaviour which is very much in the
spirit of the NR model outlined above. They show that on blocking the neural activity in a
cortical culture, the amplitude of miniature postsynaptic currents (mnEPSCs) increases. If, on
the other hand, inhibition is blocked, thus increasing the activity, the mEPSC amplitudes will
decrease until firing rates return to baseline values. Thus, the neuron is able to keep its firing
rate at a steady-state value irrespective of external input changes. This could work through
up or down regulation of excitatory AMPA-type receptors. Moreover, it is a multiplicative
effect, just as expected from the neuronal regulation factor of equation (5). This type of
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synaptic plasticity was observed over periods of up to 48 hours. We may thus conclude
that NR and Hebbian learning are two different synaptic modification mechanisms: NR is
a slow, neuron-specific process that directly modifies AMPA-mediated conductance, while
Hebbian learning (i.e. LTP/LTD) is carried out by fast, NMDA-dependent synapse-specific
processes.

Homeostatic mechanisms controlling synaptic efficacies were also recently reported by
Davis and Goodman [13]. Working on genetically manipulated muscle innervation in the
Drosophila they have observed a compensatory change in quantal size at the neuromuscular
junction that is anti-correlated with the increase or decrease of the innervation, as would be
expected from the action of NR processes. In addition there exists evidence [14] that, during
the formation of the neuromuscular junction, weak synapses are eliminated while stronger
ones are retained. This is in agreement with our ideas concerning long-term maintenance
that are discussed in section 3.

2.3. Normalization of basins of attraction

Homeostasis of neuronal baseline activity ensures that all memories have a similar basin
of attraction, as otherwise some neurons that belong to the stronger memories would be
more active than others. To demonstrate this property we display in figure 1 a case of 50
memories, a few of which start out with different basins of attraction because their coding
level p is less sparse than that of the rest.
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Figure 1. Regulation of the size of basins of attraction with mixed coding levels. In this
simulation of M = 50 memories in a system of N = 1000 neurons some of the memories have
different coding levels. This system undergoes synaptic degradation and NR cycles, without any
Hebbian learning, leading to homogenization of the basins of attraction. The different symbols
refer to the leading memories and to the null attractor. The latter is the only attractor in this
system other than the memories. It corresponds to the state of total quiescence. Its basin of
attraction grows and then diminishes as the process continues. After 200 simulation steps the
basins of attraction of the memories are much more homogeneous than at the start.
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We find this property to be particularly important since it explains how one may avoid
the creation of pathologic attractors. It allows one to train an associative memory model
using different memory strengths and durations during the Hebbian paradigm, and let the
NR phase regulate the result into a homogeneous and well balanced memory system.

3. Long-term maintenance

Synaptic maintenance by NR fails if the variance of synaptic deterioration becomes too
strong. Even if each deterioration step has small variance, the cumulative variance will
increase with time leading eventually to the demise of the system. Thus one may define
a critical time [7] that decreases rapidly with increasing o, beyond which the spread of
the synaptic weights that arises from the deterioration process becomes so wide that the
system loses its memories. There exists, however, a remedy to this problem: putting an
upper bound on synaptic weights. This is displayed in figure 2, where we test a system with
large variance of synaptic degradation, that causes fast deterioration in memory retrieval
performance unless synapses are appropriately bounded. We find [7] that, for appropriate
synaptic upper bounds, the network may successfully maintain its stored memories forever
even in the face of ongoing, continuous, synaptic turnover. The simple intuitive explanation
is that, by letting the process of degradation and maintenance continue for a long time, the
synapses undergo a random walk process with bounds. If the synaptic bound is sufficiently
low, the number of large synapses retained by the NR mechanism will be higher than the
minimal number of synapses required to maintain memory performance. By maintaining
the neurons’ average postsynaptic potentials, the NR mechanism preserves the number of
large synapses practically forever, even though the identity of these synapses may change
during the network’s lifetime.
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Figure 2. The effect of synaptic bounds. The small circles denote the performance of the
network without synaptic bounds. The + symbols denote the performance of the network with
an upper bound of 8/Np (i.e. 8 times the size of a synapse that stores one memory at ¢t = 0),
while the % symbols correspond to an upper bound of 3/Np. The other parameters of the
simulation are N = 500, M = 25, p = 0.075, € = 0.005, o = 0.2. For further details, see [7].
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The possibility that the network can achieve stability, i.e. that it continues to exhibit high
retrieval performance forever, is further enhanced when a ‘viability’ bound is incorporated.
In this case, synapses whose values decrease below some lower bound die and their values
are set to zero. This NR-induced selective synaptic death process helps preserve the
network’s performance because synapses with large initial values (i.e. synapses that encode
several memories) have greater chances to survive than synapses with small initial values.
The former are clearly more significant. This intuitive notion, supported by the work of
Sompolinsky [15] on clipped synapses, has recently been proven formally by Chechick et al
[16]. '

4. Neuronal regulation and its failure in the ageing and the ailing brain

The regular synaptic turnover processes take a turn for the worse in the ageing brain,
which has to cope with synaptic depletion, a considerable synaptic loss in various cortical
regions. NR in this case is manifested by an increase of synaptic sizes, which we interpret
as an increase in the upper bounds on synaptic values, reflecting a functional compensatory
increase of synaptic efficacy [17-19]. The combined outcome of these counteracting
synaptic degenerative and compensatory processes can be evaluated by measuring the total
synaptic area per unit volume (TSA). The latter correlates strongly with cognitive ability.
For patients with Alzheimer’s disease (AD) one finds that the TSA decreases as the disease
progresses [18, 20-22], pointing to the important role that pathological synaptic changes
play in the cognitive deteriorationr of AD patients. '

This raises the interesting possibility that disturbances of NR mechanisms may underlie
the clinical manifestations of Alzheimer’s disease [23], explaining the onset of dementia.
In the model of [23] a fraction d; of the input synapses to each neuron i are deleted,
and are compensated for by a factor ¢; which each neuron adjusts individually. This
is equivalent to performing the replacement J;; — c;w;;J;; where w;; is either O or
1, and 3, w;;/N = 1 —d;. The local compensatory factor ¢; is determined via
neuronal regulation, which keeps the membrane potential and neural activity at their
original, premorbid levels; that is, NR must now compensate for the accumulative deletion
of synapses. Our working hypothesis was that the NR-based synaptic compensatory
mechanisms that in normal ageing succeed in preserving a considerable level of cognitive
functioning are disrupted in AD. Numerical simulations have allowed us to study the
network’s performance at various NR (compensation) rates. The performance level is
better maintained if the compensation rate is high. As reviewed in [24], young and
very old AD patients suffer from rapid clinical deterioration, while the majority of AD
patients have a more gradual pattern of decline. These clinical patterns may arise because
very old patients have almost no compensation resources and young patients have very
potent synaptic compensation mechanisms. Interestingly, studies of reactive synaptogenesis
following experimental hippocampal deafferentation lesions in rodents show that the rate of
compensatory synaptogenesis decreases as a function of age [25, 26].

Our modelling studies have shown that even if the NR mechanisms are intact,
pathologies may arise if the system in which they operate changes in a way that the
mechanism was not designed to control. In [6] we studied a computational model of
Stevens’ theory of the pathogenesis of schizophrenia [27]. This theory hypothesizes that
the onset of schizophrenia is associated with reactive synaptic regeneration occurring in
frontal regions receiving degenerating temporal lobe projections. These synaptic changes
are modelled in the framework of a ‘frontal’ associative memory network whose internal
synapses are strengthened in response to weakened input synapses representing incoming
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temporal projections. Superimposed on these alterations, we incorporated an enhancement
of activity-dependent synaptic changes, to model the hypothesized effects of increased
dopaminergic activity observed in schizophrenia (see [6] for more details). As a result
of these alterations, the network begins to spontaneously retrieve memory patterns even
in the absence of any input retrieval cues, as demonstrated in figure 3. This figure traces
the distribution of the memory patterns to which the network has spontaneously converged
after the assumed pathological alterations are induced. The total frequency of convergence
to memory patterns increases as time evolves. The distribution of the memory patterns
spontaneously retrieved tends to concentrate on a single memory pattern as more trials occur.
Although the synaptic matrix was initially non-biased, small random correlations between
the network’s initial states and a few of the memory patterns are sufficient to overwhelmingly
and ‘pathologically’ enhance their retrieval. We therefore see that biased retrieval is formed,
and out of the many patterns stored in the network only very few are actually spontaneously
retrieved. This pathologic attractor formation of biased spontaneous retrieval can account for
the occurrence of schizophrenic delusions and hallucinations without any apparent external
trigger, and for their tendency to concentrate on a few central cognitive and perceptual
themes. The model presented in [6] also explains why schizophrenic positive symptoms
tend to wane as the disease progresses, why delayed therapeutical intervention leads to a
much slower response, and why delusions and hallucinations may persist for a long duration.

The demonstration of pathologic attractor formation in schizophrenia points to the
importance of preventing the latter in normal processing. This protective task is probably
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Figure 3. Distribution of spontaneous memory retrieval. The positive feedback that comes about
from regulatory compensation, Hebbian learning and random activation, leads to the emergence
of pathologic attractors. The x-axis enumerates the memories stored, and the y-axis denotes the
retrieval frequency of each memory. For details, see [6].
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carefully regulated, and depends on a rather delicate balance between neuronal regulation
and the level of activity-dependent synaptic changes (i.e. synaptic plasticity and learning). It
further emphasizes the importance of keeping neuronal regulation and learning segregated.
Random activation of memories combined with Hebbian learning will lead to a positive
feedback loop that ends up with pathologic attractors.

The possible involvement of NR in both AD and schizophrenia can explain the age
difference in the appearance of these disorders. Elderly people are more likely to suffer
from decreased compensatory resources and NR dysfunction, and hence AD is typically a
disease of the old. In contradistinction, in response to a pathologic disconnection between
various cortical regions, normal functioning NR can lead to the emergence of spontaneous
activation of cortical networks and to the subsequent formation of pathologic attractors. In
fact, ailing NR mechanisms will fail to cause spontaneous cortical activation, explaining why
schizophrenia (more specifically, its psychotic positive symptoms) is typically a disorder of
the young.

5. Discussion

The different facets of neuronal regulation extend over different time periods. The basic NR
mechanism of section 2 occurs both in the developing brain as well as in the mature brain
over daily periods. Development over periods of years fits into the description of long-term
maintenance of section 3, where the original synaptic efficacies are no longer maintained
and the stronger synapses survive. Finally, ageing brings with it the phenomenon of synaptic
deletion, which can be coped with provided the potential for NR is there and the system
has not yet reached its critical capacity. Otherwise dementia will follow, as described in
section 4. Neuronal regulation thus presents an attractive and quite unique opportunity to
address a broad range of normal and altered memory-related cognitive functioning within a
common, simple framework.

Neuronal regulation relies on activation of the memory system by random inputs, thus
testing all basins of attraction without requiring explicit knowledge of the memory patterns
themselves. As suggested in [3, 4], such random activation may be triggered by PGO waves
[28] during REM sleep. NR is therefore a possible realization of ‘dynamic stabilization’, a
term that describes the idea that during sleep there exist dynamic processes that maintain
synaptic efficacies [29]. Note that in our approach we have to segment between Hebbian
learning and neuronal regulation. The two processes, although being complementary, cannot
take place simultaneously. This segregation seems to fit nicely with the existence of different
stages of sleep that may thus subserve both memory consolidation and neuronal regulation.
These two functional modes of the brain may be regulated by the different neuromodulators
that are dominant in different stages of sleep [30]. The alternating phases of REM and
non-REM sleep may serve as a regular periodic mechanism implementing NR in a gradual,
corrective manner.

Both Hebbian unlearning and neuronal regulation have been proposed as complementary
mechanisms to Hebbian learning. They differ on some important points and are similar on
others. Let us begin by noting their distinctive features:

o Originally, Crick and Mitchison [3] and Hopfield et al [4] have suggested that unlearning
serves to eliminate spurious attractor states and thus increase the memories’ basins of
attraction. However, while spurious states are abundant in the Hopfield model, they
occupy only a small fraction of the retrieval scene of the more biologically realistic
low-coding memory networks (e.g. [7]).
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e Neuronal regulation is a vital mechanism for counteracting the formation of pathologic
attractors and for achieving long-term memory maintenance. While it is conceivable
that unlearning may also serve to efficiently counteract the formation of pathologic
attractors, it cannot cope with the problem of synaptic turnover and cannot act as a
memory maintenance mechanism.

e Computationally, there is an important advantage to using NR rather than anti-Hebbian
synaptic unlearning: the NR mechanism regulates itself, unlike unlearning that needs
an external agent to turn it off after a certain optimal number of unlearning cycles.

e Biologically, while there is a rising body of recent experimental evidence testifying that
NR takes place in both the peripheral and central nervous systems, the experimental
support for unlearning has been fairly scarce.

Both unlearning and neuronal regulation prevent the generation of pathologic attractors
and rely on random activation of memories. Unlearning has the advantage that it is able
to increase the memory capacity of the intact network, while NR mainly works to preserve
the existing capacity of a network undergoing synaptic turnover and degradation. Hence,
the possibility that both mechanisms may coexist should not be ruled out. As shown by
van Hemmen, by eliminating global correlations unlearning serves to store many patterns
with varying activities. As shown here, NR may serve the same goal by homogenizing
the basins of attraction of patterns with mixed coding levels (figure 1). It may well be,
however, that both unlearning and NR are insufficient for efficient storage of memories
with coding levels that differ by an order of magnitude. For this task, we have recently
shown [31] that a multi-modular network is clearly advantageous. Its architecture is based
on segregation between inter-modular synaptic couplings and intra-modular ones, with the
latter undergoing nonlinear dendritic processing.

Further experimental studies are needed to evaluate how the findings of Turrigiano
et al [11] of NR in the developmental stage carry on to adults. However, the instrumental
potential of NR in obtaining memory maintenance, coupled with morphometric evidence
showing that the average total synaptic area per unit volume is maintained throughout
normal ageing [32, 17], make it highly likely that NR plays an important functional role in
adulthood too.

In summary, we conclude that neuronal regulation is a natural and plausible candidate
for performing homeostasis of memory systems. Its common feature with unlearning is
that it reduces basins of attraction that are too large, a very important property for keeping
memory systems well balanced. It replaces synaptic unlearning by a neuronal-based process,
that complements Hebbian synaptic learning. Hebbian learning and neuronal regulation can
occur in a segmented and intertwined fashion, relying on different modes of activation of
the brain. They can go on without end, which is suitable for describing lifelong human
processes.
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