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Abstract

The sixty papers selected for oral presentation in the Al session of the workshop were mostly application oriented, with
high energy physics taking central stage. The most popular methodology was that of neural networks. In this summary
talk I point out some general trends of the research work presented at the workshop, and concentrate on papers that
I found especially interesting. I add sections that deal with recent developments in neural computation techniques that
may be of relevance to applications in the future. The latter include PCA and ICA analyses, averaging over estimators
and models of spiking neurons. Touching on some general questions, I indicate the advantages of the neural computation

approach.
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1. Introduction: Summary of lectures

I will start this summary talk with a brief review of all
60 lectures in the AI session of the conference. I have
grouped them according to the fields to which they were
applied. I have devoted one line to each paper, trying to
summarize briefly its message or, at least, its relevant
keywords. The order in each table follows the original
enumeration of the abstracts which appears in the first
column.

Table 1 summarizes 37 lectures in the fields of High
Energy Physics, Nuclear Physics, Astrophysics and Cos-
mic Rays. They are all relevant in one way or another to
particle tracking and identification. Their vast majority
uses neural network techniques, which is also true of the
papers submitted in all other fields. A small fraction of
the papers is devoted to hardware. Table 2 summarizes
applications to geography and cartography. Most of
these papers discuss the mapping of nuclear radiation
distribution following the Chernobyl disaster. A variety
of other applications is displayed in Table 3. Finally, in
Table 4 we find theoretical developments, some of which
were applied to synthetic data.

* Corresponding author: Tel.: + 972 3 6429305; fax: + 9723
6407932; e-mail: horn@neuron.tau.ac.il.

In the following sections I will concentrate on some
topics covered in the various lectures. I will start with
hardware applications, and then turn to a discussion of
different paradigms proposed by various authors. Some
topics of data compression and scene analysis will be
covered too. Following these brief summaries of topics
that I found particularly interesting, I will devote three
sections to new methods in neural computation that
I expect to have an increasing influence on applications.
I will conclude with a section of questions and answers
on some central issues.

2. Hardware in HEP

One of the crucial tests of the acceptance of neural
networks (NN) by the HEP community is the willing-
ness of big collaborations to incorporate them in their
trigger systems. Two of the papers presented here
prove that this hurdle has been overcome. The L3
collaboration at the LEP collider at CERN has decided
to incorporate a relatively simple neural network
in its first level trigger next year [1], and the H1
HERA collaboration at DESY has started to implement
a neural network in its second-level trigger last August
[21.

The trigger system in HEP experiments filters a mino-
rity of interesting events (at a rate of few Hz) from a very
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HEP/NP/Astrophysics/Cosmic rays

003
012
014
016
022
023

024
027

033

034
046

056
057

060
066
070
074

075

NN fixed architecture, biologically motivated, for
muon identification

NN elastic net for track and vertex search

NN BP for gamma ray analysis

CA vs elastic net in analysis of double beta decay
NN BP for extra galactic gamma radiation

CA data filtering for track recognition of charmed
baryons

NN for particle identification in cosmic rays

NN and its feature inputs in 2nd level trigger ATLAS
hardware

NN discriminators in ATLAS tile calorimeter separ-
ate glue versus b

NN BP for e/pion separation in H1

NN Kohonen map for pp reactions to distinguish
m, ¥, background

NN FF for 1st level trigger hardware

NN tcompare growing neural gas, FF-BP or GA, and
other in LEP/aleph

NN Hardware 2nd level trigger using CNAPS for

neutrino oscillation

NN Hardware TOTEM chip for the cosmic rays
satellite PAMELA

NN BP with PCA inputs of invariant functions for
e/n identification

NN Hardware TOTEM chip develop PCI VME
boards

Mapping-deformable elastic hedgehogs for vertex
finding

090_1
104
105
107
108_1
1082
121
122
1252
126
136
139
144
151
1531
157
160

170
171

NN acceleration of training and functioning of pat-
tern recognition

NN compare SA, threshold accepting, Tabu with
Hopfield for tracks

search algorithm of branch & bound for track/vertex
package

NN ART adaptive solutions on CNAPS for data
mining in HEP

NN better than cuts in HEP/Astro

NN Bayesian formulation for cosmic rays

FL Hardware for particle identification

NN Hopfield and Elastic net for pattern recognition
in H1

Biological vision elements for real time vertex/track
id in HEP

NN Elastic arm track recognition

NN FF analysis of T decays in LEP

NN dynamic perceptron redefinition of gain function
GA threshold acceptance for tuning monte carlo
models in HEP .

CA NN track/vertex recognition in HEP using ccd
television

NN importance of high order correlations of inputs
for particle identification .
NN use for reconstructing faulty channels in shashlik
calorimeter

NN FF analysis of six different t decays at LEP
NN for tagging Z — bb events in LEP.

NN Hardware realization of 2nd level trigger in H1
using CNAPS

Abbreviations: NN, neural networks; FF, feed forward; BP, backpropagation; GA, genetic algorithm; CA, cellular automata; SA,
simulated annealing; FL, fuzzy logic.

Table 2 Table 3
Geography Other applications
NN interpolation of maps 071 GA magnetic measurements in rare earth compound
NN for Geographical information system 072 NN BP ultrasonic flaw classification (cracks porosity)
NN for spatial interpolation 082 NN BP sample selection. Application: spectroscopic
133 NN incremental algorithm, for BP with no bad ellipsometry. SA
minima 084 CA GA density classification applied to random
1342 NN FF 2D interpolation of residual kriging number generation
137 NN parameter elimination for cartography of lake 103 NN feedback is important in biological vision to
sediments resolve conflicts
164 SA NN GA are compared in geostatistical applica- 118 NN GA parametric learning: population of neuron
tions activities
129_145 GA partial evaluation, graph drawing, ellipsometric
measurement
1292 NN image recognition ARTMAP compare with
noisy input that can reach 10 MHz at the detector level. geometric invariant nets . »
These numbers are the ones of the H1 system [2] where 1296 GA NN D G abor trap Sfor.m, 1 1mage r.ecognmon
the hardwired logic of the first level trigger reduces the 1341 NN time series for radioactivity monitoring
140 data compression of satellite images. Hardware

input to 5kHz and the second level trigger puts the
throughput at 200 Hz. This means that the second level

implementation
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Table 4
General theory

025 CA for noise filtering in simulated data

035 NN for fractal function interpolation

106 NN Data mining for knowledge discovery

128  GA optimal solutions on graphs

132 NN FL forecasting time series. Syathetic examples

trigger has to act within 20 ps, a constraint that is met by
the system [2]. Its neural network is implemented on
a CNAPS VME-board. Its feed forward (FF) architec-
ture is 64-64-1, and it performs its calculation within 8 us.
The speed was of utmost importance in this application,
and this is what the NN solution could deliver.

In contradistinction to previous conferences, this time
only two NN chips appeared in implementations. The
most popular one seems to be CNAPS. The other is
TOTEM, a product that stems from Physics oriented
research. The new developments in this chip were dis-
cussed in one of the lectures [3]. A clever new trick is to
perform multiplications by a plog function, that closely
approximates the log function, yet can be implemented
by simple binary operations. This allows for much better
performance of the upgraded TOTEM+ + with the
high operating speed of 100 MHz. This processor is ad-
vertised as being able to handle a NN with 10 inputs and
hundreds of neurons at a rate of 10 MHz.

Continuing with the theme of hardware, let me men-
tion an interesting off-line application that comes from
the DELPHI collaboration at CERN [4]. The problem
tackled in this paper is one of dead channel recovery. The
case at hand was that one of the channels in their STIC
luminosity monitor stopped working. Since it could not
be replaced for a lengthy period, until the next break in
the operation of the accelerator, the information lost by
the channel had to be reconstructed by other means. It
turned out that a NN was the best solution. Using 48
channels surrounding the faulty one, and a FF archi-
tecture of 48-25-5-1, they have simulated an output
that reproduced well the missing one. This was tested
when the faulty channel was replaced, and served to
correct the data taken previously with the faulty channel
in place.

3. Different paradigms

Different NN paradigms, as well as other techniques,
were presented in this workshop. Clearly the most popu-
lar is the FF architecture of a NN, usually trained with
a backpropagation (BP) algorithm. An example is the
DELPHI paper [5], that described a 17-18-1 network
for the identification of t*t~ production by the Z°.
The 17 input variables contain 9 global variables, such as

acollinearity and total EM energy, and 4 variables de-
scribing each of the two hemispheres. This network has
a small advantage over conventional classification based
on cuts in these variables. The choice of variables is
a general problem, and I will touch upon it later when
I get to a discussion of PCA and ICA.

Other types of NN are feedback or recurrent ones, that
flow into fixed points representing encoded memories, or
networks based on competitive learning that serve for
clustering or feature mapping. An interesting example of
the latter is the application of an elastic NN for vertex
search [6], an important problem in particle and nuclear
physics. A well-known example of the elastic ring is its
application to the travelling salesman problem [7],
where it is attracted to the various points representing
cities, and it expands from some little structure until it
fills the plane and sticks to the cities, representing an
allowed path that forms the desired solution. Here, how-
ever, the ring implodes from some large structure to
a point representing the vertex. This comes about
through an attraction to the number of tracks, and the
final vertex represents the largest density of tracks that
the ring can encounter.

An elastic ring algorithm can be also used for track
identification. A Dubna collaboration [8] has presented
a cellular automation algorithm that serves as a first
processing stage for track finding. Here the idea is to
connect points (representing hits in the detector) with
nearest and next to nearest neighbors. Assigning unit
weights to all of them, one proceeds with weight updating
by taking account of the weights that occur within some
fixed angle to the left. Further applications of this step
produce chains with increasing weights from left to right.
At the end one identifies the highest weights occurring on
the right, and proceeds to the left to collect all links
belonging to a track. This was used in an application to
a nuclear physics experiment.

Finally, I wish to comment on a paper that I have
presented [9], whose special feature is a FF architecture
with fixed synaptic weights. Here the main idea was to
use orientation selective neurons, of the type known to
exist in the visual cortex, for the discovery of straight
tracks of cosmic muons in a segmented detector. This
leads to specific connectivity of neurons on the hidden
layers to the previous layer, implementing filters for
predefined orientations within local windows on the in-
put plane. Such a structure allows for easy hardware
implementation.

4. Miscellaneous topics
Neural networks are usually employed to capture the
general characteristics of the data sets on which they are

trained. Hence, we often try to avoid fitting all fine details
of a given set of data,i.e. overfitting, in order to aliow for
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good generalization. This turns out to be bothersome for
the geographers who tried to use neural networks to
interpolate a given set of data (a map) as accurately as
possible. They ended up using a NN for describing the
large scale features, and employing conventional geo-
statistical methods for the interpolation of the small scale
data [10]. The application that most geographical papers
focussed on was the spatial estimation of Chernobyl
radioactive fallout. It turns out that once the large scale
trends are taken into account by a NN structure, the
residues, i.e. the differences between the data and the NN
estimate, display short range correlations that allow in-
deed the employment of geostatistical methods.

A different paper [11] has also considered the
possibility of using a NN for the representation of a
specific function. Assuming that the function corresponds
to a. minimum of the network, the question exists
how this minimum can be retrieved by a BP method,
given the fact that it is a rare occurrence. The answer was
sample selection. The basic idea is not to apply BP
blindly to all errors, but select first the largest error,
correct it, and proceed in steps of eliminating the remain-
ing largest errors. This ensures zeroing in onto the de-
sired minimum,

A different topic that I wish to mention is that of data
compression. An interesting suggestion is to regard any
given data set, e.g. a picture, in the same way one investi-
gates a chaotic time series [12], since, after all, it can be
represented by a chaotic string of bits. The representation
of the latter as a series of many limit cycles, can be
implemented in a dynamically adjusted wavelet trans-
formation that serves as a basis for the new system.
It competes favorably with conventional commercial
algorithms.

Finally, let me point out another method of picture
analysis, this time not from the point of view of data
compression, but that of edge and texture detection. The
novel suggestion [13] is to feed the picture as input to
a two-dimensional pulse-coupled NN with short range
interactions. I will give a simplified example of such
a network below, in the section on spiking neurons. Their
network flows into a periodic pattern that, for different
points of time in each period, accentuates edges, or seg-
ments the picture into different components, or empha-
sizes different textures. Thus, it shifts the analysis into the
temporal domain.

5. Choice of variables: PCA and ICA

One of the problems often faced in neural network
applications is the choice of the right variables. Some-
times the number of candidate variables in huge, and one
wonders which should be the right choice of inputs into
a network that is supposed to perform some classification
or decision task. At this point one may invoke the idea of

PCA (principal component analysis) or the more general
one of ICA (independent component analysis).

PCA can be simply described in a problem with n vari-
ables x;, i = 1,...,n, on which a multivariate Gaussian
distribution is defined:

1

exp(—3x,C5'x;), (1)

(2m)"2,/det(C)

where, for simplicity, we have assumed that the average is
at the center x; = 0. C is the covariance matrix

Cij = {(x; — <xi>)(xj - <xj>)>- )]

As is well known, this problem can be diagonalized by
a similarity transformation:

WTCW = A = diag(dy, ..., ). )

P(xla"-rxr-) =

The various eigenvalues A; represent the variance ¢ of
the corresponding eigenvector y, = Z;W;;x;. Enumerat-
ing them in decreasing order, 1; > 4, > --- > 4,, we
obtain the set of eigenvectors y; which are the principal
components, ordered according to decreasing import-
ance. Quite often the eigenvalues decrease rapidly.
In that case, the first few principal components with
the high eigenvalues, are the most relevant variables.
They may often suffice for a good description of the
data.

The intuitive feeling that one has to give a more precise
definition to a variable whose variance is high, whereas
one can use the average value if the variance is very low,
can be cast into a statement about information content.
For a stochastic variable with probability distribution
P(x) one may interpret the quantity —logP(x) as the
amount of information \required to specify that the
variable X acquires the value x. Its average is the
entropy

H(X) = — Y P(x)log P(x). “)
For the Gaussian distribution this is equal to

H(X) = 3log[(2ne)"det(C)] = ;log [2re] + Z log(o;).

For any general probability distribution this equation
turns into an upper bound (see, e.g., the recent review
[14]). By going into the PCA representation y; = W;;x;,
we transformed H into a sum over independent variables,
due to the factorization P(y) = [],P(y:). In the principal
component approximation we retain the eigenvectors
with the highest information content.

The PCA is important in problems where we have
a large number of variables. Accomodating all these
variables in a neural network, requires large training time
and a large training set. By limiting ourselves to just a few
variables in the input, we can construct a moderate
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network that can hopefully lead to good generaliz-
ation. We wish however that this data compression pro-
cedure leaves us with, as much as possible, the same
information as in the original data. In terms of informa-
tion theory, this is defined as the maximization of mutual
information

Div -
P(x)P(y)

between the two sets of variables x and y. This quantity is
non-negative, and vanishes only when the two variables
are independent of one another. Its maximal value is
obtained for Y = X, when I(X,Y) = H(X). This condi-
tion is obeyed for the PCA. In general, however, we have
to consider a situation where the probability distribution
is non-Gaussian and, in particular, the relevant correla-
tions are higher than second order. Trying to solve the
maximization condition as best as possible defines the
independent component analysis (ICA).

The PCA solution, y; = W;x;, fits a simple linear
neural network structure. One can therefore use neural
network algorithms [15,16] to search for it. The imple-
mentation of the ICA involves much more than the
diagonalization of the covariance matrix. One has to
make sure that all higher correlation coefficients are
minimized [14], which is quite complicated in general.
This becomes easier if one limits oneself to a neural
network structure, with a nonlinear sigmoid transfer
function, and imposes on it the maximization of mutual
information. This approach was recently implemented in
studies of noisy networks [17,18] and in applications to
blind separation and blind deconvolution of time series
[19].

I started out with the question of which variables have
to be used in an analysis and ended up with a neural
network after all. This may lead to the question why not
start with a large NN to begin with, and let it do the work
of both finding the best variables and proceeding with
their analysis. The answer is that it is worthwhile to think
of the problem in stages in order to have better under-
standing and better control of the various stages of the
calculation.

I(X,Y) =Y.} P(x,y)log (6)

6. Averaging over predictors

Many of the papers in the conference ended up
showing results of some NN that was selected by their
algorithms. I wish to point out here that there exists
a simple way that will, in general, assure better
performance by simply averaging over an ensemble of
networks [20].

Each FF NN can be interpreted as the predictor f(x)
of some function y(x) which we do not know in a closed
form. The predictor is trained on some training set, and is

then tested on some test set with a measure du(x). Its
mean square error is

MSE = [ du(9(y09 /)" )

In general, x is a vector in some large space of variables,
and y may have stochastic variations, e.g. through noise.
In the latter case it suffices to replace it by its average
value, because we cannot expect the predictor to do
better than that. One can define [21] in a natural way
a division of this error into bias and variance compo-
nents. This involves considering an average MSE over
the set of all possible data as well as all possible architec-
tures and training parameters.

For the purpose of our discussion consider the simple
case in which the architecture of the NN is fixed. There
still exists the arbitrary choice of initial conditions of all
weights. A characteristic network will then have an error
of

(MSE)=B +V, ®)

where the averaging procedure is carried out over all
possible choice of initial conditions [22]. Its division into
bias and variance is defined as follows:

B= f ARG — S ©)

V= fdﬂ(xx(f(x) — {SEPP). (10)

Both terms are positive definite. The first is characteristic
of the architecture of the network, and the data on which
it was trained, but is independent of the particular choice
of initial conditions. The second describes the variance in
the error expected because of these initial conditions.
Consider now the simple possibility of using as a pre-
dictor not just any f but its average over initial condi-
tions < ). This way we are left with a reduced error,
presented by the bias term only. This is the major idea
behind averaging over predictors. You try to minimize
your dependence on factors that you can handle. Al-
though, by some statistical fluke, a single network can do
better than the average on a given set of data, you learn
from this analysis that, on the average, you are better off by
considering the predictor to be the average over networks.

7. Spiking neurons

Biological neurons are communicating with one an-
other through their action potentials, which are voltage
spikes generated by neurons when their membrane po-
tentials reach some threshold. Most artificial neural net-
works use variables that may be interpreted as spiking
rates of natural neurons. It is generally believed that the
spiking rate plays a major role in the neural code.

V. SUMMARY TALKS
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However, this may well be only part of the general
picture. There is some evidence that the exact timing of
the spike may carry some information, and the syn-
chrony between spikings of different- neurons may be
meaningful.

A simple representation of spiking neurons is given by
the integrate-and-fire model, in which the membrane
potential of the neuron obeys the equation

° 41, 1)

where V, is a resting potential and I represents the
incoming current. If, at some time ¢ = t,, V reaches its
threshold value 0, a spike is emitted, S —> S + s(t — t;),
and V is reset to V, within a short refractory period.
S represents the action potential, and s is a sharp func-
tion, that can be approximated by a é function. This can
be easily made into a network, by connecting the input of
neuron number i to the outputs of all other neurons:

L=I+ Y WS, 12)
J#i

One may of course introduce also time delays into the
system, as well as temporal structure into the synaptic
coupling. Neurons may be divided into excitatory and
inhibitory ones, and feed forward or feedback systems
can be constructed. Such networks are sometimes em-
ployed in applications, as already mentioned in Sec-
tion 4, but their mathematical properties are not yet as
well understood as standard artificial neural networks.

In a recent paper, Hopfield [23] has suggested that
a scheme based on the comparison of the spiking time of
neurons versus some internal periodic structure may
have an important computational advantage, allowing
the system to perform analog matching. This concept
refers to the recognition of patterns based on the ratio
between individual components rather than on their ab-
solute values, and plays an important role in the recogni-
tion of visual patterns as well as sound and odor. In his
scheme there is a subthreshold oscillatory potential ad-
ded to the external input I, As a result, the neuron will
fire periodically with some time lag ; with respect to the
underlying oscillation. For some range of strengths of the
inputs, 1; &~ log(If*). Thus, differences of time lags are
functions of ratios of input amplitudes, leading to the
proposed basis for analog matching.

The idea that the precise timing of the neuron’s spike is
of computational importance was adopted by Maass
[24], who investigates the computational power of net-
works of spiking neurons. In his model of feed forward
networks, the synaptic input W;;S; from neuron j to
neuron i is considered to be effectively constant from the
time that neuron j fired until the time neuron i fires. Thus
the earlier the firing of j the stronger its influence be-
comes, leading to a temporal representation of analog
amplitudes. His conclusion is that such networks can

perform any function that regular artificial networks can
do, and more. :

The schemes sketched above need some basic clocking
device to turn the timing of the neuron’s spike into
a computational variable. This may seem as a natural
candidate for future hardware applications, and it re-
mains to be seen how useful spiking networks will become.

8. Frequently asked questions

Instead of having a'conventional summary let me try
to answer some FAQs, using the internet lingo. These
questions are often raised in conversations, especially
when trying to convince your fellow researchers that
neural networks or genetic algorithms are methods one
wishes to employ.

- Why follow heuristic approaches such as neural net-
works or genetic algorithms at all? Can’t we do better
by just solving the problem, the way Physics has ad-
vanced in the last few centuries? After all, this amounts
to real understanding of the issues involved.

Clearly, nothing is better than the real solution. But
when complex questions arise, simple solutions are diffi-
cult to come by. Complexity is the key issue here. It may
arise from the large number of variables, or from com-
plicated dynamical relations, or just from the structure of
data as in very complex detector systems. Our tools allow
us to' attack such questions in the absence of any prior
understanding. In contradistinction to traditional stati-
stical methods, we have nonlinear functions at our dis-
posal. If some clue is known we can easily incorporate it
into our system and improve it. In fact, we better do it,
rather than expect the network to learn what we already
know. If and when an alternative, that incorporates physi-
cal or statistical understanding, is found, we should not
hesitate to use it. An example is the PCA, discussed
above in Section 5. '

— Given the heuristic technique that is inspired by bio-
logy, how can we be sure that it will lead to the best
results?

Well, this question is somewhat ill defined. It really
depends on what it is that one wishes to maximize (or
minimize) when one talks about an optimal solution.
This depends on available hardware and software. In
issues that are relevant to biological survival, such as
pattern recognition, the engineering of the biological
hardware, and the machinery for its analysis, fill us with
awe. For some of these issues it has been argued that
biological solutions do correspond to optimal solutions
from the point of view of information theory [25,26].

— How do we know that, with a given method, we will be

able to generate the global minimum of its energy (or

error) function?

We do not usually. However, a low local minimum
may suffice for all practical purposes. Sometimes a low



D. Horn | Nucl. Instr. and Meth. in Phys. Res. A 389 (1997) 381-387 387

minimum in a FF net may lead to bad generalization. We
have seen, in Section 6, that using an ensemble of net-
works guarantees reduction of the error.
— How trustworthy are neural networks?

Neural networks have very simple algorithms, and
that is their strength. The difficulty is to prove that the
algorithm adapts correctly to the problem. Confidence
measures of neural networks can be defined for randomly
generated data, measuring the capacity of an associative
neural network, or the generalizability of a feedforward
net. These can be used to estimate the capability of
a given net.

Since the algorithms are simple, their implementation
is straightforward and trustworthy. Compare that with
standard computer algorithms, when there is no uncer-
tainty in the validity of an algorithm but its implementa-
tion in a program may be so complex, as to allow only
a phenomenological proof of its usefulness: it works on
numerous examples. And if it fails, the bug has to be
traced down and corrected. I guess the same should hold
for any complex system that is applied to data collection
and analysis, the subject of most papers in this session of
our conference.

Acknowledgements

I thank Halina Abramowicz and Eytan Ruppin for
many helpful suggestions. This work was partly sup-
ported by the Israel Science Foundation.

References

[1] A. Vlachos, A first level trigger using specially developed
neural network hardware, Nucl. Instr. and Meth. A, these
proceedings.

[2] J. Fent et al., The realization of a second level neural
network trigger for the H1 expreiment at HERA, Nucl.
Instr. and Meth. A, these proceedings.

[3] P.Lee, A. Sartori, G. Tecchiolli, I. Lazzizzera and A. Zorat,
Advances in the design of the TOTEM neurochip, Nucl.
Instr. and Meth. A, these proceedings.

[4] M. Bonesini, P. Ferrari, S. Gumenyuk, M. Paganoni, L.
Petrovyck and F. Terranova, Application of neural nets to
Shashlik calorimetry, Nucl. Instr. and Meth. A, these pro-
ceedings.

[5] F. Grotti, F.R. Cavallo and F.L. Navarria, Use of neural
networks in the analysis of t— K? inclusive decays at
LEP, Nucl. Instr. and Meth. A, these proceedings.

[6] K. Ivan, Elastic Neural net for track and vertex search,
Nucl. Instr. and Meth. A, these proceedings.

[7] R. Durbin and D. Willshaw, Nature 326 (1987) 689.

[8] M.P. Bussa, V.V. Ivanov, 1.V. Kisel and G.B. Pontecorvo,
Application of cellular automata and neural networks
for track recognition in experiments DISTO and
STREAMER, Nucl. Instr. and Meth. A, these proceed-
ings.

[9] H. Abramowicz, D. Horn, U. Naftaly and C. Sahar-
Pikielny, Orientation selective neural network for cos-
mic muon identification, Nucl. Instr. and Meth. A, these
proceedings.

[10] M. Maignan, M. Kanevski, M.F. Maignan and V.
Demianov, How neural network 2-D interpolations can
improve spatial data analysis — Neural network resi-
dual kriging (NNRK), Nucl. Instr. and Meth. A, these
proceedings.

[11] L. Redei and H. Wallinga, A novel modification to back-
propagation sample selection strategy, Nucl. Instr. and
Meth. A, these proceedings.

[12] A.L. Perrone, Applications of chaos to lossless and lossy
satellite image compression, Nucl. Instr. and Meth. A,
these proceedings.

[13] T. Lindblad and C.S. Lindsey, Intelligent detector systems
modelled from the cat’s eye, Nucl. Instr. and Meth. A, these
proceedings.

[14] G. Deco and D. Obradovic, An Information theoretic
approach to neural computing (Springer, 1996).

[15] E. Oja, Int. J. Neur. Syst. 1 (1989) 61.

[16] T.D. Sanger, Neural Networks 2 (1989) 459.

[17] J.-P. Nadal and N. Parga, Network 5 (1994) 565.

[18] A. Campa, P. Del Giudice, N. Parga and J.-P. Nadal,
Maximization of mutual information in a linear noisy
network: a detailed study, preprint, 1995.

[19] AJ. Bell and T.J. Sejnowski, Neural Comput. 7 (1995)
1004.

[20] D.H. Wolpert, Neural Networks 5 (1992) 241.

[21] S. Geman, E. Bienenstock and R. Doursat, Neural Com-
put. 4 (1992) 1.

[22] U. Naftaly, N. Intrator and D. Horn, Optimal ensemble
averaging of neural networks, preprint, 1996.

{231 J.J. Hopfield, Pattern recognition computation using ac-
tion potential timing for stimulus representation, Nature
376 (1995) 33.

[24] W. Maass, Neural Comput. 8 (1996) 1; Neural Comput.
9 (1997) 279.

[25] R. Linsker, IEEE Computer 21 (1988) 105.

[26] H. Barlow, Neural Comput. 1 (1989) 295.

V. SUMMARY TALKS



