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Many Particle Phenomena*

D. HORN**

1. INTRODUCTION

THE pURPOSE of this paper is to discuss several interesting
problems in the field of many particle production that have
received a good deal of attention lately. Since this is not intended
to be a review paper, several theories as well as important ex-
perimental observations are not mentioned. For recent experi-
mental and theoretical summaries that also cover the topics that
we omit we refer the reader to: A. Wroblewski, Rapporteur’s
Talk at the Kiev Conference; L. Van Hove, Phys. Rep. 1, 347
(1971); and H. Grote, R. Hagedon and J. Ranft, Particle Spectra,
CERN, 1970.

At the price of limiting the scope of the paper we have tried
to discuss at length several controversial topics. We have empha-
sized a simple statement of the principles and consequences of
the theories and their comparison with experimental results.
Since this subject started gaining popularity only recently we
start from first principles—review of the important experimental
facts—and work our way up.

2. GENERAL PROPERTIES

A. Abundance of Pions
A striking fact is that most particles that are produced in the
high energy collisions are pions. Thus, e.g., at 25 BeV n~p te-

* Work supported in part by the U.S. National Bureau of Standards.
** Department of Physics and Astronomy, Tel Aviv University, Tel Aviv.
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MANY PARTICLE PHENOMENA 61

actions,’ only 169 of the produced channels include strange
particle production. Even these strange particles are usually
accompanied by pions. Thus the problem at hand is far
from being close to the SU(3) limit. This is so although the sums
of the various cross sections, namely the total cross sections,
do obey many symmetry relations. When we discuss many par-
ticle production we are treating mainly the production of many
pions together with one or two baryons as determined by the
incoming particles.

B. Poisson Type Distributions

A typical distribution? of the cross sections for the production
of non-strange particles in 16 BeV n~p reactions is plotted in
Fig. 1 vs the number of prongs observed. They fall on a curve
similar to a Poisson distribution. There are many papers on the
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Fig. 1. Cross sections for non-strange particle production in 16 BeV 7~ p
collisions (from Ref. 2) plotted vs the number of prongs. The curve has the
characteristic shape of a Poisson distribution. The cross (x) at n,, = 2 cor-
responds o the value of ¢ that includes the elastic cross section while the
circle designates only the inelastic cross section.




62 D. HORN

question of whether it is really a Poisson distribution, and if so
in which variable. In order to avoid this problem we call it a
““Poisson-type”’ distribution referring to the characteristic struc-
ture of a broad peak for low values of {(n.) and a steep fall
for higher values. One normally leaves out the elastic cross
section from these plots regarding it later as the shadow of all
inelastic channels. The elastic point is added in the figure for
comparison.

C. Low Transverse Momenta

The transverse momenta (p;) of the outgoing particles are usually
of the order of 300 MeV or so and do not change appreciably
with the change in incoming energy. The process can therefore
be described within a cylinder in momentum space. This is shown
in Figs. 2 and 3 which also emphasize the two characteristic
modes of production:

D. Leading Particles and Pionization

Note that in Fig. 2 the proton distribution is clearly concentrated
near the location of the incoming (target) proton. The =~ distri-
bution (there are two n~ produced) has a strong tail in the direction
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Fig. 2. Peyrou plot of 16 BeV n~p — n—prn—n°n+* taken from Ref. 2.
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of the incoming n~ . These two particles that follow the trend of
the incoming particles are referred to as ‘‘leading particles’.
In contrast one finds all other pions around the CM origin. This
phenomenon, namely the existence of a cloud of pions with low
CM longitudinal momenta (p,) is sometimes referred to as pioni-
zation. The same name is reserved by some authors for a different
use—describing a concentration of pions around the CM that
stays finite as one increases the incoming energy indefinitely.
One has therefore to be cautious when one uses this term in heated
discussion.

The description of the process in momentum space has one
deceiving aspect to it, namely, one may tend to think that this
separation between the leading proton and all the pions exists
in configuration space. This is not true since if a proton and a
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Fig. 3. Vectors of average momenta of various particles in different modes
observed in 16 BeV .~ p collisions (from Ref. 2).
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pion move with the same velocity the ratio between their two
momenta is m,/m, thus strongly favouring a separation in momen-
tum space. That says also that Fig. 2 does not preclude the exis-
tence of resonances in intermediate stages which then decay into
the proton and pions.

Figure 3 shows the average momentum of the outcoming
particles as a function of the multiplicity. One sees again the clear
cutoff in pr. We note also the decrease in the leading particle
effect as the multiplicity increases.

An exception to the rule of leading particles is given by pp
annihilation and we may justly ask ourselves whether the jp
reactions fall into the same class with the np and pp ones where
annihilation is absent. Figure 4 shows the relative importance
of the various types of channels in jp reactions. The total annihi-
lation cross section is falling with energy (as indicated on the
figure) presumably like some power of the incoming energy. We may
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Fig. 4. Sizes of cross sections observed in jp collisions. This plot is taken
from the lecture by W. A. CooPER in Symposium on Nucleon-Antinucleon
Interactions, Argonne, Ill., 1968, p. 108.
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expect that at higher energies the jpp reactions will resemble more
and more the pp ones. The proportion of the elastic vs the total
cross sections as well as strange particle production is similar to
that observed for other incoming particles when absorption
channels are absent.

E. Increase of the Average Multiplicity

The last point that we want to emphasize in this section is
the logarithmic increase of the average produced multiplicity
with the incoming energy. Recent cosmic-rays data’ at energies
that will be soon available also in NAL and 1SR are shown in
Fig. 5 and verify that the increase of <{n.> is logarithmic in this
energy range.
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Fig. 5. The average charged multiplicity in the pp cosmic rays experiment3
which shows a logarithmic increase with energy.

3. THE MULTIPERIPHERAL MODEL

The logarithmic increase of the multiplicity is one of the well-
known results of the multiperipheral model. This model, other-
wise known as the ABFST model,* was suggested in 1962 and
is a straightforward generalization of the peripheral approach
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to two particle production amplitudes. A scattering amplitude is
described by a diagram of the form of Fig. 6. The two question
marks refer to the two basic questions—what is exchanged and
what is produced. We know that eventually one observes pions,
nevertheless it may be that they come mainly in forms of p and
perhaps o mesons. We will return to this question of correlations
between the pions in the last section. Let us just note here that
a model of such meson production would be consistent with
pion exchanges. Indeed the original ABFST model dealt with
pion exchanges. It was of course soon generalized to include Regge
pole exchanges.® The trouble with the multi-Regge-exchange
model is that its application can be justified only for about 10%
of the data at conventional energies.® Although several success-
ful modifications have been suggested, such as the CLA model’
and multi-Veneziano formulae,® we have seen a return to the
old pion-exchange models in the last two years.’

Fig. 6. Multiperipheral diagram.

The arguments that we are going to bring here and the deri-
vation of the logarithmic increase of the multiplicity, are quite
general and independent of the exact details of the model. We
follow Fubini'® and note that if one changes all the coupling
constants by a continuous parameter then all n-particle cross
sections (g,) will change accordingly as

g, = +", or = 2o, X i, 0

c
i or 2
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We assume now that the total cross section has a leading power
behaviour, namely

or(2) = PR

and the choice A =1 leads to the expected asymptotic result
o = 1. It follows then that

, B4
> -—().a (Dins + 228 )
Two main assumptions went into this calculation: The first is
that there exists a simple basic mechanism by which all cross
sections change proportionally. This is characteristic of inde-
pendent production as well as quasi-independent mechanisms like
the multiperipheral model. This leads also to Poisson-like distri-
butions of the type discussed in the previous section. The second
assumption is that of the leading power behaviour. Within a
specific multiperipheral model one can of course calculate ex-
plicitly the various cross sections. Figure 7 shows the results of
such a calculation by Wyld'! who looked at nm — np mesons
via pion exchanges. He calculated the resulting Feynman dia-
grams using the physical masses of the p and = and varying the
pnn coupling constant until a constant asymptotic g was reached.
We note how quickly o reaches its constant value. The calculation
fixes the pnm coupling constant and the total cross section. Both
come out much too big. The discrepancy in the orders of magni-
tude prevails also in more sophisticated versions of this model.'?
Recently Abarbanel et al.!3 suggested an interpretation that
circumvents this difficulty. They looked at pseudo-scalar scatter-
ing that results in vector-meson production, both being part of
unitary symmetry multiplets. They looked for the leading singu-
larity in a Bethe Salpeter equation—the equivalent of summing
all diagrams of the type of Fig. 6. The only parameter left in
their problem was M, —the mass of the vector mesons, and they
derive the result

= alns+ b 4)

A=1

167 1

N MZ ©)

Oy =

where N is the dimensionality of the multiplet. By choosing
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Fig. 7. Results of a multiperipheral calculation by Wyld!! of the process
nm—np =npn =273, ... based on elementary pion exchange. The only
free parameter was the pnn coupling which was chosen so as to give an asymp-
totic constant total cross section.

N = 8 and M, = 900 MeV one gets g = 30mb. Although the
resulting or has a reasonable magnitude one has to remember
that the actual situation is very far from the SU(3) limit—as
already stressed in the previous section. One may therefore doubt
whether this can be regarded as a realistic derivation of the ob-
served magnitude of the total cross section.

The big advantage of the multiperipheral model, in any of its
many variations, is that it is the only simple generalization of the
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known techniques for two particle production. Although detailed
predictions may fail in experimental applications of the model,
it still may serve as a guide to our intuition when discussing the
complex phenomena of many particle production.

4. SIMPLE DYNAMICS AND KINEMATICS

One of the predictions of the multiperipheral model is that the
cross section for any specific channel will behave as

o = v (6)

where v is the incident energy in the laboratory. This is an asymp-
totic result where « is some average Regge intercept of the
various exchanges. A recent analysis of 64 reactions by Hansen,
Kittel and Morrison'4 shows that the energy behaviour of the
various cross sections is indeed specified by the exchanged quantum
numbers rather than, say, the multiplicity of particles observed.
Their analysis is summarized in Table 1.

Table 1
Energy Behaviour of Cross Sections
Reaction Exchange a
(n},;+;—> (m, K,_N):}V + piéﬁs Méson S$=0 i 0
K-p - A + pions Meson S=1 -3
K-p— Z+ K + pions Baryon S=0 -1

To derive their results the authors used a trick, namely, they
looked at o, defined by

n—2

94 % % Phase Space 7
rather than at the cross section ¢ . n is the multiplicity of the channel
discussed and A stands for ‘‘asymptotic’’ since asymptotically
the phase space term behaves like v"~2. The behaviour of ¢ and
g, for a particular channel is shown in Fig. 8. We see that the
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effect of the multiplicative factor in (7) is to raise the lower part
of ¢ and, miraculously enough, it leads to simple power behaviour
from low energies onward.
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Fig. 8. Characteristic variation of a cross section (o) with energy and the
quantity ¢ , defined in Eq. (7). Taken from Ref. 14.

The phase space term referred to above is given by the Lorentz
invariant expression

3
PS. = fﬂ iE”f‘(s”’( zj,)&( z Ei—W) = w"'“‘F,,S(%V) (8)
where we used the momenta and energies in CM and W = \/E
is the total CM energy. If onc assumes for simplicity that all particles
have the same mass u then one can prove the rhs equality. The
function F,(W/u) is regular in the limit 4 - 0 or W —» o and
therefore the asymptotic behaviour of PS is like W2~ % or y" 2,
Obviously ¢ does not behave like PS since it is decreasing with
energy. We know already from the general properties listed in
Section 2 that phase-space is far from being homogeneously filled.
Figures 2 and 3 demonstrate clearly the strong cutoff in the
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transverse momentum. If one introduces such a cutoff into the
PS formula it will lead to

K\*"2 (W W K
P.S. =Ky wtt (= Fl—, —, —

W KR ®
which has a leading W~2 behaviour provided F is a regular
function in W. To facilitate calculations one might try instead
of this more realistic PS formula an approximate expression in
which all particles have a fixed (and common) transverse momen-
tum

. dpLi _ 1 W
f= [ (2 n) o (3 aow ) - ar () 0o
where m2 = p? + py? Once again we see the decreasing W~?
behaviour. The function F,(x) behaves roughly like (Inx)"~?
and leads therefore to a structure!® shown in Fig. 9. We note

[ }

- S bodies m_= 0.4

T (1717717

2 £ 0 W (BeV)
Fig. 9. The variation of longitudinal phase space, Eq. (10), with total CM
energy W.
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that the shape is very similar to that of ¢ in Fig. 8. One may
therefore correlate the fall of the cross section with the dynamical
bounds on the available transversc momenta.

The emerging picture of the high energy processes confines
the physical phenomena to a cylinder in momentum space. One
may look at the processes from different frames of reference that
are related by longitudinal boosts along the axis of this cylinder.
In order to develop an understanding that is not tied down to
a particular frame of reference we have to define suitable invariant
variables. Such a variable is the rapidity!® - whose relation to
the conventional variables is given by

mp = Jm?+ p;? B = %L = tanhz
. E+
p. = mysinh:z ~7;—p1“ = e (L
N
E = mj cosh:

where my is referred to as the *‘transverse mass'” and all variables
are defined in CM. A longitudinal boost is equivalent to the linear
transformation = — - — =, and the Lorentz invariant differential
element of phase space is dp,/E = dz. The relation between the
various quantities defined in (11) is demonstrated in Fig. 10. The
points A, B, C denote characteristic values of longitudinal mo-
menta of pions (4, B) and a proton (C) that have the same rapidity
(and same velocity). We note the separation between them that
was mentioned in Section 2. Whereas the velocity (8,) can vary
only between —1 and 1, the rapidity has an indefinite range
(practically between + InW/m;). A recent review by Wilson!¢
describes a picture due to Feynman that views the many par-
ticle system as a gas with short-range forces between its con-
stituents (pions) confined in the cylinder of phase space available
for the process. Such a picture would predict a homogeneous
distribution in z. The same conclusion comes from an interpre-
tation of the two colliding particles as composite objects which,
therefore, have no preferred centre.!” Also the multiperipheral
model envisages'® a homogeneous distribution in z; The most
favoured configuration resulting from a diagram like Fig. 6 in
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Fig. 10. Diagramatic relation of the rapidity z to momentum variables.
The points 4 and B denote characteristic momentum values of pions which
have the same longitudinal velocity as a proton of p; = C. The 1/E curve
is the momentum distribut.on of phase space (homogeneous z distribution).

asymptotic energies is when all pr = 0 and the consecutively
emitted particles have corresponding decreasing values of rapidity
with a constant difference between neighbouring particles. An
even distribution in z corresponds to a momentum distribution
that looks like 1/E since dz = dp,/E. Such a curve is plotted
in Fig. 10. Viewed in the CM frame one will therefore see a peak
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around p, = 0 however thc same peaking will also be seen in
any other (close) frame of reference. This shows the importance
of plotting the distribution in rapidity in order to get an invariant
understanding of where the distribution peaks, if it peaks at all.
Are the expectations of the above-mentioned models born out
by present accelerator data? The answer is no, the centre of mass
point is still privileged after all. The details of the distributions
in momentum space are discussed in the next sections.

5. DISTRIBUTIONS IN MOMENTUM SPACE

Let us start this section by looking at experimental data.!8
Figure 11 shows the cross section for =~ production in 28.5 BeV
pp collisions. We see the cross sections for various numbers of
prongs and for various cuts in p; plotted vs p, in (CM) together
with fits by simple exponential functions. We note three important
features:

_4 PRONGS 6 PRONGS 8 PRONGS
I 0<pT <Q2 GeVlc ,b:-3.0 (GeVlc)" .1 b=35GeVic)™! I- b=44 (GeV/c)'I
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Fig. 11. m~ momentum distribution in 28.5 BeV pp collisions, from Ref. 18.
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1) The strong peaking around p; = O precludes a simple phase
space E~! behaviour.

2) The slope of the functions increases as the number of
prongs increases.

3) The slope decreases as py increases. This fact means also
that the average pr is smallest at p, = O and increases slightly
as p, increases.

The first point is the most relevant one to the question raised
at the end of the previous section. One may of course wonder
whether this strong peaking is not due to a collective phase-
space effect of all other particles in the process that distorts the
original E-! behaviour of the single particle distribution. To be
able to answer this question we have first to formulate it mathe-
matically. Let us start by defining a Lorentz-invariant distribution
in momentuim space

- d’c
pdp) = E N (12)

where i designates a particle of type i (e.g. =) and ¢ is a cross
section out of which p is extracted. If ¢ happens to be the total
cross section (o) one discusses the inclusive distribution p?. We
may of course restrict ourselves to certain partial cross sections
(e.g. pp— n~ + 3 prongs) or even a single channel o, (e.g.
pp — ppn~n*n®). The use of the Lorentz-invariant quantity (12)
enables us to eliminate the effect of the phase-space factor. Let
us concentrate for 2 moment on o,.
It can be described by

o o d3 d3p, LR n

o.czj‘ gc(pl'”pn’qu) ;1'”%'6(3) (Z p,)5(2E,——W)
1 n i=1 i=1

(13)

where p, --- p, are the momenta of the emitted particles, W the
total CM energy and g the CM momentum of the target. The
function g. corresponds to the square of the wave-function in
momentum space. An (exclusive) experiment that will give us all
possible information on this function is out of the question since
the number of (momentum) variables grows so quickly that it
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makes such a prospect unfeasible. We therefore look first at a
distribution of the kind
d’o.

“p) = E,-—F— =
rip) dp,d*pr,

- d*p, ¢l3p,,‘m LA S
n; gc(plpn*q’ W)—E_*E—'o Z p,)() E E}—W
2 ji=t i=t
(14)

o 2 n

&,

where we assumed that particle | was of type i. n; is the number
of particles of type i in g.. The distribution p;(p) reflects both
the structure of g_as well as the restrictions imposed by momentum
conservation. The latter ones will also affect p(p) (defined for
any partial cross section) as well as the inclusive p; (p). Our
intuitive feeling is that the higher the energy in question the less
important the phase-space restrictions become. Let us prove that
this is the case.

We limit ourselves first to the line p;, = 0. Let us now define

o (W) = (15)
~ - N n‘-. n d3 d3

T Jg(pl...pn,a,q. W) (_Z pj)a( ZEj—W) E”l _EE_
nax ji=1 j=1 1 n

where « is the set of quantum numbers required by a condition A
(like ‘4 prongs’’). We then look at '

ppL,0) =

d*c, | - "o
<ni> El EJ_A ] = Z n; ‘.g(pl"'pmaa q, W)(S(”( E Pj)
P rr, =0 n.ax . j=1
(16)
n \ d3p2 d3 Pai

pr, =0

Since we look for the eifect of energy momentum conservation let
us assume for a moment that the various g are constant. In other
words we test the assumption that the dependence on p, is just
given by longitudinal phase space. In this case Eq. (16) leads to

pipL,pr = 0) = f(\/W2 —2WE, + m?) = f(H)

a7
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where .# is the missing-mass of all other particles emitted in
addition to particle 1:

M= W2 —2WE, +m?~ W(l—vﬁy‘) (18)

Equation (18) shows that for high values of W, such that
E, < W, ppr, pr = 0) will be roughly a constant reflecting the
assumption of a constant g. This corresponds to the intuitive
understanding that for high values of available energies the
effects of the other particles do not interfere with the distribution
of the particle in question. In the data shown in Fig. 11 we discuss
values of Wthat are of order of 7 BeV and E of order of 1 or 2 BeV.
If we want a big modification we need a steep function f(.).
Before turning to the quantitative analysis let us just note the
general characteristic that a peak at p, = 0 means a tendency to
produce the highest possible .#.

Our specific problem, n~ distributions in pp reactions, has an
obvious right-left symmetry in p,. We will use it by taking into
account the sum of the two sides and thus considering only once
the range my < E < W/2. We take the first group of data with
0 < pr <0.2 from Fig. 11 and use an average m2 = 0.03 BeV2.
Multiplying the cross sections by E and plotting the result vs .#
we get Fig. 12. Can these results be a manifestation of Eq. (17)
only? No. The reason for the definite answer lies in the power of
Eq. (17) that describes not only the p, distribution for fixed W
but also the W behaviour for any p,. If that behaviour would
be given for the 4-prongs case by Fig. 12 one should expect a
strong increase in the 4-prongs cross section which is given by
the integral of Eq. (17). We show the behaviour of the various
cross sections in Fig. 13. Clearly no such growth is observed in
the 4-prongs events. Hence we conclude that g must be a strongly
varying function of its variables. Nevertheless we realize that the
trend of the curves of Fig. 12 to become more peaked as the
number of prongs increases can be correlated with the change in
the behaviour of the relevant cross sections in Fig. 13. This is a
partial explanation of the second observation made at the beginning
of this section. We conclude that the combination of two effects—
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the probability amplitude g and the phase-space restrictions is
intricately interwoven in the structure of the distributions p.

P A

T il

T

T

LAB
a-""gev)

é M (BeV)
Fig. 12. Test of Eq. (17) showing the plot of p;(p,) for the lowest pr.
bin of Fig. 11 vs. .#/. The equivalent 448 values are added for com-
parison with Fig. 13.

18
1

6. SCALING AND LIMITING FRAGMENTATION

Let us turn now to a discussion of the inclusive processes.
First we have to have a sample of data to play with. We use the
data of Smith, Sprafka and Anderson'® who studied pp interactions
at five different energies. Their results for the growth of the cross
sections with energy were shown in Fig. 13. They also give the in-
formation about the distributions in py (integrated over p;) and
in p, (integrated over py). They parametrize them as follows:

1 do 4 52 32 —aipr 1 do

e = — g, —allpL
o Opr 3\/7raL Pr ¢ op. ane (19)
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Fig. 13. Cross sections of pp collisions, from Ref. 19.

Their results for the various parameters are exhibited in Fig. 14.
Ideally we would like to have the inclusive distribution for various
pr values. Until this becomes available we follow Chou and Yang?°®
and look at the appropriately weighted sum of the 4, 6 and 8
prongs data using a constant p; = 0.2 BeV. The resulting curves
will be shown in the next figures and should be regarded as an
approximation to the general features of the inclusive distributions
in p, averaged over py.

Once again we consider the =~ distribution in pp collisions.
In Fig. 15 we show p = E(do/dp,) plotted vs the variable
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Fig. 15. The n~ distribution of pp reactions (constructed in the way which
is described in the text) is shown for two different W values corresponding to
lab energies of 12.9 and 28.4 BeV.

X

x = 2p™ /W. We note the expected peak at the CM point (p,=0)
and the fact that for the two different incoming energies these
two curves practically coincide. This verifies a suggestion by
Feynman?! that the inclusive distributions scalein x. This prop-
erty of scaling leads to an interesting result for the average
multiplicity that was noted and discussed by Bali et al.22As can
be seen from Eq. (16)

3
[ 42 = npa (20

where {n; ) is the average multiplicity of particles of type i. If p;/
scales in x then in p, it} has a range proportional to W. This
leads to a logarithmic increase of the integral with W. Since g,
is assumed to be constant the logarithmic increase of {n;> follows.
Bali et al.2? have given a factorized expression for p; (of the type
g(pr)f(x)) which can be regarded as a crude fit to the data and
leads to consistent results for the values of {(n;>.

An alternative way to look at the high energy processes was
suggested by Benecke et al.28 They suggested that these processes
look simple when viewed in the target or the projectile
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frame of reference. We will discuss in the following just the target
(LAB) frame but clearly things look similar in the projectile frame
of reference. When viewed in this way one regards the outcoming
particles as the results of the fragmentation of the two original
particles into well-defined ratios of hadronic matter under the
influence of the collision. The simplicity that we referred to lies
in the proposition that the distribution of the outgoing particles
reaches a limiting value that is independent of the original total
energy of the collision (W). To test this proposal we use the same
data that were used to obtain Fig. 15 and reproduce do/dp:*®
in the target frame. This is shown in Fig. 16. Note that because
we test the relation between two distributions in the same frame
of reference it does not matter whether we use do/dpi*® or
p = Et*®(do/dpi*®). We used the former in order to agree with
Chou and Yang?® who obtained this figure. We note that the two
curves, drawn for two different incoming energies, agree over a
wide range of momentum.

¢

S S S S St

SN PN §
R R - T A - -1

S S S W O Y N Y S S S U Y
L2 uw 156171818 2.p

Fig. 16. do/dp, of the same distribution as in Fig. 15 plotted vs.pf'w to

show the limiting fragmentation bchaviour. Because of the difference by a
factor of E there is quite a distortion of the shape compared to Fig. 15.
The CM peaks are sparious effects of the way we constructed the distributions
using the exponential in Eq. (19).
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Clearly if both Feynman’s scaling and the limiting fragmentation
ideas work they have to be consistent with one another. To show
that this is indeed the case we note that under longitudinal boosts
(see Eq. (11)) the ratios of expressions like E — p, (or E + p;)
for two different particles stay invariant. We look therefore at
E — p, for the particle tested and for the target (whose energy in
CM is W/2 and momentum in CM is —g ~ —W/2) and find

¢ EM _ piM _ ELAB _ p!iAB @1
i w M
7 74

where M is the mass of the target. Note that for pt™ that are
large in magnitude and negative (p" < —my), namely those
momenta that are in the direction of the target in the CM frame,
one finds

5 EM_ pM —2pSM
¢~ W ~ W = —X (22)

From (21) and (22) we learn that if & is the “‘true’’ scaling variable
then the distributions will be independent of W when viewed
in the LAB frame (Eq. (21)) and approximate scaling in x follows
(Eq. (22)). Alternatively if x is the ‘‘true’’ scaling variable then
the limiting fragmentation is an approximate (asymptotic) state-
ment. In practice we are not yet in the situation of deep inelastic
electron scattering where the search for the best scaling variable
motivated many papers recently, but we may expect similar ques-
tions to motivate better measurements and further research in
the hadronic high energy collisions.

The variable x can have both positive and negative values,
whereas ¢ can have positive values only. The particular problem
that we discussed, pp— n~ -+, is symmetric in x as shown in
Fig. 15. Comparing Figs. 15 and 16 we see that the regions of low
|pLCM| are better described by scaling in x. However in the region
where —x and ¢ are comparable the difference between the two
descriptions cannot be judged on the basis of our ‘“data’. The
region where the x description is better corresponds to very low
regions of ¢, namely to high pi*® values. To emphasize this
point we draw again the same data in Fig. 17, this time as a




Fig. 17. Same distribution of Fig. 15 plotted vs Z. See also caption of Fig. 16.

function of ¢. Chou and Yang?® noted that since the values ¢&;
of the various particles emitted in a process obey the relation

X & =0+t ~ 1 (23)
all particles ‘ projectile
that comes from energy-momentum conservation, the following
sum rule follows

1 7 4.d% 5
— re2 0 _ 24
z‘_; ar Pis E 1 (24)

o

where the sum is over all types i of particles emitted. This sum
rule emphasizes the region of high values of ¢ where limiting
fragmentation is applicable. 1t can be used to give some invariant
meaning to the measure of the relative importance of the various
hadronic fragments emitted in the collisions. The authors?°
called the contribution of each type of particle i to the sum rule
(24) its *‘fragmentation fraction'’. They estimated the following
fractions in pp collisions: The proton contributes 40 %, the neutron
129, all pions 40°, and all kaons 5°,. The relative importance
of the proton is of course because it appears as a leading particle
and therefore contributes characteristically to higher & values
than the pions which are after all concentrated around the CM.
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It should be noted that the inclusive distributions depend on
three variables—W, p, and py. In the present discussion we neg-
lected the p; dependence because of lack of data. We know
already from Fig. 11 that there exists some correlation between
the p; and p, distributions and it would be very interesting to
know whether there exists a scaling variable that takes it into
account. Clearly x is not the answer because it is independent of
pr, however ¢ could be a good candidate (this regards only the
shape of the distribution and not the overall magnitude that has
a sharp pr dependence). Hopefully we will soon have experimental
data that will enable us to investigate these questions.

7. REGGEISTIC APPROACH TO INCLUSIVE
DISTRIBUTIONS

An approach that discusses the inclusive data in the familiar
Regge language was recently introduced by Mueller.2* He pointed
out that the inclusive distribution p” can be regarded as a dis-
continuity in a six-point ‘‘forward scattering”> amplitude (shown
in Fig, 18) in an analogous fashion to the connection between the
total cross section and the discontinuity of a forward scattering
four-point function given by the optical theorem. For certain
regions of the kinematical variables one can then assume domi-
nance of Regge behaviour which leads to testable interesting pre-
dictions. We have first to introduce the kinematical variables.
We know them already as p,, p; (neglecting the p, direction
because of cylindrical symmetry) and W. However it may be
useful to recast them into new variables because of this new

a

q,

X =Di5c,(1

Fig. 18. Diagramatic representation of Mueller’s generalized optical theorem?*#
for inclusive distributions.
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approach. One possible set of variables is given by the energies

v, v, and v, defined as follows

q1°q> . P Pq:
Mo = (25)

v o=

where we chose the same mass M for the target (¢,) and projectile
(q,). The generalization to other cases is straightforward. For
further use we note the following connection between these
variables and E = p, in the CM frame:

'y ' 02
et T ’:%*Ti’;i“% (26)
Alternatively one may just use the known s, t, u variables
s = (q, +q2)% = 2M> +2Mv = W?
t = (g, —p? = M+ p*—=2My, 27

u = (g, —p? = M+ p*-2Mv,

Note however that all three are independent since their sum
includes a variable which we met before
s+t+u = M+t + M
‘ ‘ (28)
M= W2 —D2EW + pu?

The two kinematical regions discussed by Mueller?4 embed the
dynamics contained in parts a and b of Fig. 19. Figure 19a applies
to small v, values, namely the “*fragmentation’ region of the target
q, . This corresponds also to low ¢ and large s and u values. The
discontinuity of this amplitude is supposed to be dominated by
Pomeron exchange and onc finds2*

pT = Eﬂ’ o~ l\"z(o'f(ﬁl"m) f(-p*LAB) (29)

‘13,7 v x=1
which is the statement of limiting fragmentation. One may of
course expect corrections due to lower lying trajectories. The
leading corrections will behave like v~ ! x~ W='. Chan et al.?*
pointed out that one should expect this effect only in non-exotic
channels. Ellis et al.?® emphasized that the limiting fragmentation
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Fig. 19. Three particular Pomeron exchange diagrams contributing to the
inclusive distributions.

limit is quickly obtained only if both q, + g, and ¢, +q, +p
correspond to exotic combinations (thus pp - n~ + .-+ and
K*p — n~ + --- are regarded exotic whereas n*p — K~ + --- is
non-exotic). It will take still some time until one has accurate
enough data to investigate such effects.??

Figure 19b applies to an extreme pionization limit. One re-
quires large v, v; and v, which is equivalent to large s, t and u.
A double Regge exchange description leads then to a discontinuity
of the 6-point amplitude given by

A = vi'vi® f(mg) (30)
which, in the limit of two Pomeron exchange, results in

a(0) 2
pToc lA = —(—v—le‘f(’nT)———)%f(mT) €2

v v a=1

In the last step we used Eq. (26) neglecting E ~ my in the pioni-

zation limit. The result (31) implies complete independence on the
longitudinal momentum in accordance with the expectations of
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all theories quoted at the cnd of Section 5. At what energies (v)
can we expect this effect to show up? Equation (26) tells us that at
E = my one finds that v, = v, = m;[(v + M)/2M]"2. This means
that for reasonable v values (around 30 BeV) one finds v, and v,
of the order of 1 BeV.

Can we expect for such small v, and v, values a Pomeron
behaviour? Figure 19b resembles a product of two np scattering
amplitudes. They are known not to be yet at their Pomeron
limit at energies of 1 BeV. It may be that this explains why we do
not yet see a flat distribution in = at this point. Judging from
np scattering a factor of 4 in available v might do it. It should be
emphasized that the intuitive arguments that we used here are
subject to criticism since the behaviour of the two Pomeron
coupling is still an enigma. Moreover it is known from the usual
multi-Regge formalism that a similar coupling tested there is
presumably very weak.® The ISR and NAL data may tell us soon
whether diagrams b are present by comparing data from higher
and lower energies near x x 0.

Finally let us concentrate on Fig. 19c. It was recently suggested
by De Tar et al.?® and can apply to regions where both s and
s/ #* are very big. We note that

BAA Lot o N AR P (32)

hence this is applicable in the region where x ~ 1 and s is very
big. This diagram is a special case of diagram a. It includes usual
Pomeron exchange at x = |, which stands for the diffractive sum
over all the particles, and a particular Regge type coupling valid
for small t values. In the region where this diagram is applicable
it leads to
d?c 2
~didl = ( //1) Y B(1)

A look at Fig. 15 convinces us that the n data vanish quickly
as x grows. We may however hope that if we look instead at
pp — p + -~ then an appreciable signal near x =~ 1 is obtained
since the outgoing proton is a leading particle. This is indeed the
case. In the language of Eq. (33) we find that an outgoing pion

p(0)
(———“’/ ) (33)
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corresponds to baryon exchange and an outgoing proton to a
meson trajectory in agreement with the dominance of the latter.
Figure 20 is a recent compilation of pp — p + --- data by Edelstein,
Rittenberg and Rubinstein.?® The quantity plotted here differs
from Eq. (33) by a factor of .#. Its scaling in #%/s & 1—x is
evidence of the importance of P’ exchange with «(0) ~ } relative
to the Pomeron exchange of Eq. (33). This effect is connected to
the rather low .#2 values obtainable at present for x - 1 and
enables us to see dual effects in inclusive distributions.
The studies of particular limits of the six-point function that
describes the inclusive amplitude do not lead in a natural way
to the scaling property in x that seems to hold over large regions
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Fig. 20. Compilation of inclusive distributions of pp —p +

...from Ref. 29.
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at presently available energies, as we saw in the previous section.
Therefore it does not explain the functional forms of Figs. 15,
16 and 17. We may however hope that the recent general interest
in the subject will lead to a better understanding of the many
details of the various distributions. The six-point function can be
studied in the Veneziano model.*? ' Although it does not contain
Pomeron exchanges it leads to some interesting results, the most
striking being an asymptotic scaling in x and e~ *p? behaviour
of the transverse momentum distribution for low p, values. This
Gaussian distribution is not in perfect agreement with the experi-
mental data of Fig. 14. If approximated by a Gaussian at low p,
values one finds e”'°3 and even stronger slopes. Nevertheless
it is interesting to see that the harmonic behaviour of the Veneziano
amplitudes leads to a natural cutoft in the transverse momentum
of the emitted particles.?!

8. CORRELATIONS

Clearly the next topic to discuss after the single particle distri-
butions is the two particle correlation. Because of the embryonic
stage of our knowledge of this important question we devote to
it only this one and last section.

If one looks at reactions with low multiplicity then one can
distinguish particular exchanges?®* as well as particular resonances
that are produced. However the average multiplicity of particles
produced at conventional accelerator energies is of the order of 6.
In order to observe fair correlations in such reactions, one has
first to restrict the set of particles that is analyzed. Otherwise a
correlation between a pair of particles may be washed out by the
vast number of possible combinations. Thus one may ask about
correlations between a pion and a leading particle, or between
two neighbouring pions on the rapidity scale. Such correlations
are presumably constant or slowly varying with the total energy W.
Alternatively one may ask how does a correlation between two
pions change as the distance between them in rapidity changes.
This correlation function can be defined as
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Tij(ETiziiszj) — pi](p-;izoil—;Tij) _pi(i-TiZi) pj(Zsz ) (34)
T T T

where p;; is defined in an analogous fashion to p;. Wilson'¢
suggested that this correlation dies out exponentially as the dif-
ference in rapidity (z; — z;) increases. These questions can be
formulated for inclusive reactions and we may expect to see in
the near future experimental and theoretical progress along these
lines.

An independently interesting question is whether the overall
correlation

_ &p; dp;
o = [ ey (3%
is big or small. Can the Poisson-type distributions mentioned in
Section 2 indicate that the size of the overall correlation is small?
A test of the type of distribution to be used is given in Fig. 21
which consists of a compilation by Wang33 and several theoretical
curves. The curve W' is a Poisson distribution in n*z~ pairs
and presents therefore the case of strong correlation. The solid
curve corresponds to a Bessel distribution.* This results from
the product of two independent emissions (Poisson in n+ and n~
separately), subject to the condition of total zero charge, and
could lead to negligible correlations between 7+ and n~. Al-
though it looks compelling to assume that the overall correlation
is small it is difficult to give exact estimates of it on the basis of
available data which are consistent with different interpreta-
tions.

Can pions be emitted independently? There are three different
types of constraints that work against it:

1) Overall momentum conservation (phase space).

2) Conserved quantum numbers (charge, parity, charge con-
figuration).

3) Isospin conservation.
The first constraint cannot be avoided; however it is not crucial
since the pions’ distribution is anyway concentrated around the
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CM and dies out quickly toward the edges of phase space. The
points 2 and 3 can be simply avoided in a model that produces
pion pairs with vacuum quantum numbers (I =0 J¢ = 0*"),
Although this looks like the simplest way out it is not necessarily
Natures’ solution to the problem. An alternative like independent

50 %

Ferien'age of Events

Fig. 21. Theoretical distributions of cross sections for charged particle
emission are compared with Wang's compilation of inelastic productions
data?’. W’ and W' are different types of Poisson distributions from Ref. 33
and the solid curve is a Bessel distribution from Ref. 34.

and coherent emission of pions, which is the closest to a classical
radiation of a pion field, may still serve as a crude approxima-
tion.3% If the pions can be thought of in any approximation as
independently produced one should expect the n° spectrum to
be independent of the charged pions. A recent experiment3®
looked at such a question and the results are given in Fig. 22.
They are of course still inconclusive and can be consistent with
either a constant or a strong varying function based on strong
correlations.>’

The questions that we raised are only a small sample of all
possible puzzles in the high multiplicity reactions. We may expect



MANY PARTICLE PHENOMENA 93

that the coming years will see more efforts, in both experiment and
theory, directed towards solving these problems and understand-
ing the physics of many particle production.
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Fig. 22. The average number of 7° produced in 7~ p reactions at 25 BeV
vs the number of charged particles. Taken from Ref. 36.
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DISCUSSION

M. VIRASARO

I would like you to comment whether the distribution for in-
clusive reactions f(x,p;) factorizes in f(x)g(p;) experimentally.

D. HORN

It can be used as an approximation. However there exists a
correlation between the distribution in p; (or x) and the distri-
bution in transverse momentum. At p, = 0 (the CM point) one
finds a minimum in py. I would say that if you want to have
something that is true within 209/ then you can use that factori-
zation. If you want it to be better than that then you have to put
in a correlation between the two.

S. FUBINI

Let me use the privilege of being Chairman to also answer
your question. It was a multi-peripheral model which actually
first gave a result that factorized. If you improve on that, there
may be a lack of factorization, but it is the original multi-peri-
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pheral model which gave the logarithmically rising multiplicity,
the factorization and the scaling in dp/E and it was clear that all
are related because they come from the same model essentially.

D. HORN

Did you ask about theory or about experiment?

M. VIRASARO

I am asking about inclusive experiment.

D. HORN

In Fig. 11 we saw the correlations between p; and p, distribu-
tions that show the property that [ mentioned above. These
correlations are shown for 4, 6 and 7 prongs and hold therefore
also for the inclusive distributions.

L. SUSSKIND

With respect to Virasaro's question is it not true that the average
transverse momentum of a pion in an inclusive case is independent
of py for a wide range of p,?

D. HORN

At least not near the CM region.

D. MORRISON

I think that the answer that Horn gave to the previous two
questions applies experimentally also to inclusive reactions. That
is to say broadly speaking you can factorize the distribution, but
as soon as you start looking in detail there are effects due to
resonances, to phase space and things like that which spoil this
factorization. These are second order effects which make the py
distribution vary with p, .
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H. HARARI

You started by listing five prominent features of multiparticle
processes. I would like to add another crucial experimental fact
which should perhaps be considered in future theories. I refer
to the very low average subenergy for a neighbouring pair of
particles along a longitudinal momentum plot. The average
subenergy for a pair of pions is 550-600 MeV and it does not
increase with energy, if the multplicity increases logarithmically.
This fact is as striking as the cutoff in transverse momentum,
and is probably related to it. The low subenergy is, however,
orthogonal to the spirit of the multiperipheral model (although
duality may serve this last model in this case).

M. BANDER

In discussing the approach to limiting distributions from the
angular momentum point of view the question arises what is s,
in (s/so)% could s, ~ pi? Then all Regge poles would contri-
bute to this limit. This may occur in inelastic electron scattering
where s, ~ Q2.

D. HORN

My feeling is that when we look at something like a double
Pomeron exchange description of pionization we should measure
the v in BeV thus comparing half the diagram to the familiar
situation of pion nucleon scattering.

H. LIPKIN

Is there any reason for suppression of kaon production?

D. HORN

An SU(3) violating term like mmn/(my)? can always do it. |
think that it is not well understood because we do not have a good
description of the whole mechanism. The thermodynamic school
of thought expects of course a sharp decrease of production
cross sections for increasing masses




