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11.1 Introduction

Spiking neurons are highly non-linear oscillators. As such they display collective
behavior that may have important calculational manifestations. Synchronization be-
tween the firing of different neurons is the first topic to which we devote our attention.
This behavior can be brought about in our integrate-and-fire model through excita-
tory synaptic couplings without delays, or inhibitory couplings with delays. Once
the mechanism of synchronization is established, this phenomenon can be used for
defining data clustering. The clusters correspond to neurons that fire synchronously,
with different clusters firing at different times. This behavior can also be described
as temporal segmentation, separating data through phase lags between excitations
of different aggregates. This separation is characteristically limited to a small num-
ber of segments, a limitation that is inherent to the behavior of coupled non-linear

oscillators.



The importance of synchrony as signifying binding, i.e. the belonging of neural
events to one another and their joint formation of a consistent picture or concept, was
emphasized by von der Malsburg [von der Malsburg, 1981]. Experiments in the late
80’s [Kckhorn et al. , 1988, Gray et al. , 1989] showed the correlation of synchrony
in the visual cortex with binding in the input scene. Taking it one step further,
one may ask for the co-occurrence of several synchronized neuronal assemblies. This
could explain distributed attention [von der Malsburg and Schneider, 1986]. It was
studied in various neural models [Wang, Buhman and von der Malsburg, 1990, Horn
and Usher, 1991, Horn, Sagi and Usher, 1991] but has no experimental verification.

Employing quasi-local excitatory connections one can use these principles for im-
age analysis. After covering cluster formations we turn to the use of an image as
an external input to a two dimensional array of spiking neurons, and demonstrate
how we can perform edge detection as well as scene segmentation. Finally, we study
spatio-temporal coherent phenomena that homogeneous neural systems may develop
by themselves. We show how solitary waves of spiking activity arise on neuronal
surfaces, and characterize their structures.

In order to demonstrate the various concepts and phenomena we use our contin-
uous version [Horn and Opher, 1997a] of integrate-and-fire (IAF) neurons, that were
discussed in section 1.2.3.3. of chapter 1. We employ a coupled set of differential
equations of two variables, as described in the next subsection.

11.1.1 Two variable formulation of TAF neurons

The two variables that we use to describe an TAF neuron are v, a subthreshold
potential, and m which distinguishes between two different modes in the dynamics of
the single neuron, the active depolarization mode and the inactive refractory period.
They obey

V= —kv+a+emv+ml (11.1)

m=-—m+ 0(m —v) (11.2)

O(x) is the Heaviside step function. The neuron is influenced by an external input
I, which is quenched in the absolute refractory period, when m = (. Starting out
with m = 1, the total time derivative of v is positive, and v follows the dynamics of
a charging capacitor. Hence this represents the depolarization period of v. During
all this time, since v < m, m stays unchanged. The dynamics change when v reaches
the threshold (that is arbitrarily set to 1). Then m decreases rapidly to zero, causing
the time derivative of v to be negative, and v follows the dynamics of a discharging
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Figure 11.1: Dynamics of the single TAF neuron. The upper frame displays v, the
subthreshold membrane potential, as a function of time. The second frame shows
m, the variable that distinguishes between the depolarization state, m = 1, and
refractoriness, m = 0. In the third frame we plot v + 6 f, where f is our spike profile,
to give a schematic presentation of the total cell potential. Parameters for this figure

are: k=045, = —0.09, ¢ = 0.35, I = 0.29.

capacitor. Parameters are chosen so that the time constants of the charging and
discharging periods are different.

To complete this description of an TAF neuron we need a quantity that represents
the firing of the neuron. We introduce for this purpose

dm dm

f= 9(*W

- ) (11.3)

that vanishes at all times except when v arrives at the threshold and m changes
rapidly from 1 to (. This can serve therefore as a description of the action potential.
An example of the dynamics of v and m is shown in Fig. 11.1. In a third frame we
plot v+ af, with a = 6, representing the total soma potential. The value of a is of
no consequence in our work. It is used here for illustration purposes only.

This description can be readily extended to an array of pulse coupled neurons by
replacing Eq. 11.1 with

v; = —kv; + a4+ emuv; + m (T =+ 3w 1) (11.4)

where 2 = 1,---, N denotes the number of the neuron. Note that in this formulation
the interactions are instantaneous, and are quenched during the refractory period,



when m; = 0. Tt 1s straightforward to introduce neuritic time delays, e.g. by switching
fi=[fit) to f; = [;(t — A) on the right hand side of this equation. One should note
that the spike, represented here by f, has some width of its own, so a small effect of
temporal extension is embedded automatically in the definition of our model.

11.2 Synchronization of Pulse Coupled Oscilla-
tors

Synchrony of events is an intriguing physical phenomenon. The fact that most living
organisms depend upon it for their survival makes it even more interesting. Synchro-
nization plays an important role in many physiological activities including breathing,
motor control and information processing in the central nervous system. It can also
occur in biological environments that include many organisms such as groups of fire-
flies that flash in synchrony or groups of criquets chirping in unison [Strogatz and

Stewart, 1993].

Most biological systems that exhibit synchronization can be described as coupled
oscillators, where the fully synchronized state is only one of many possible dynamic
attractors. One can divide models of coupled oscillators into two kinds: phase coupled
[Golomb et al. , 1992, Grannan, Kleinfeld and Sompolinsky, 1993, Terman and Wang,
1995] and pulse coupled ones [Mirollo and Strogatz, 1990, Hopfield and Herz, 1995,
Johnson, 1994]. The latter reduces to the former in the limit in which every oscillator
couples to a large number of others [Abbott and van Vreeswijk, 1993, Kuramoto,
1990, Gerstner, Ritz and van Hemmen, 1993, Usher, Schuster and Niebur, 1993]. We
will devote our attention to pulse coupled systems, analyzing cases of both small and
large numbers of neurons.

In this chapter we address collective activity in neuronal populations with vari-
ous types of coupling. In this section, we concentrate on all-to-all couplings. This
will serve as the basis for understanding cases in which the synaptic couplings reflect
structure in data or the geometry of a manifold to which neurons are attached. A
thorough analysis of the large N limit of such systems is given in Chapter 10. TLet
us start with all-to-all excitatory couplings, a case studied by [Mirollo and Strogatz,
1990]. They considered a population of N identical pulse coupled oscillators, fully
connected by excitatory connections, without transmission delays and with no refrac-
tory period. The state of the single oscillator is described by a monotonic increasing
function of its phase, representing the integration that the membrane potential per-
forms over its inputs. Once an oscillator reaches its threshold it emits a spike and is
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automatically reset to zero. Under the simple assumption that the monotonic func-
tion is concave, the authors prove that for almost all initial conditions the neuronal
population will reach a stable synchronized state after a finite number of time steps,
for any value of N. In the case of inhibitory connections they show that for a system
of 2 neurons, the asynchronous solution is stable. Although they do not prove it for a
larger system, this result is supported by numerical simulations and by other models,
as will be shown below.

The situation is quite different when transmission delays are added to such a
model. Nischwitz and Glinder [Nischwitz and Glinder, 1995] report that, for a
wide range of parameters, transmission delays cause desynchronization. However, if
excitatory connections are replaced by inhibitory ones, transmission delays induce
synchronization. Following a numerical study, they conclude that delayed local inhi-
bition is the best scheme for spike synchronization. This conclusion agrees with [van
Vreeswijk and Abbott, 1994], who studied a system of two integrate and fire units
interacting through a dynamic synapse described by an o function. They showed
that while the synchronous state is not stable for an excitatory synapse, it is stable
when the synapse is inhibitory. In fact, the synchronous state is always stable when
the synapse is inhibitory, although its domain of attraction shrinks as the interaction
becomes faster. In the excitatory case, the stable synchronous state is reached only
when the interaction is instantaneous.

Whereas in our model synaptic response is instantaneous, and neuritic delays are
introduced at will, realistic models cope with both synaptic and neuritic temporal
structures, leading to various effects. As an example let us mention [Hansel, Mato
and Meunier, 1995], who study realistic neural models using both analytic calculations
(after reduction to a phase model) and numerical simulations. They differentiate
between two types of responses to excitatory post-synaptic potentials (EPSP). In the
first case, the EPSP advances the next firing of the excited neuron. In the second
case, it can either delay the spike or advance it, depending on the arrival time of the
EPSP relative to the refractory period. A synchronized state is not stable in the first
scenario', while it can be stable in the second one, provided the synaptic interactions
are fast enough.

The importance of the timing of a spike is further emphasized in the locking
theorem of [Gerstner, van Hemmen and Cowan, 1996] (see section 10.2.5.2 ). It states
the conditions for stability of the fully synchronous solution in a more complex case
(the spike response model introduced in section 1.2.3.1 of chapter 1) that incorporates
the form of the post-synaptic potential as well as axonal delays and refractoriness.

Tt may, however, be stable for instantaneons synapses.



Collective firing is shown to be stable if the firing occurs while the post-synaptic
potential is rising.

In the more simplistic models, including ours, the general conclusion is that both
instantaneous excitation and delayed inhibition can lead to synchrony. Instantaneous
excitation has the advantage that synchrony follows quickly once the interaction is
strong enough. In the case of delayed inhibition one has to find the correct window
of parameters and wait longer for synchrony to set in, but once it is obtained it
is very stable. Recent studies [Crook, Ermentrout and Bower, 1997, van Vreeswijk
and Hansel, 1997] have shown that synaptic adaptation has an interesting effect: it
leads to synchrony of spiking neural systems in the presence of excitatory synaptic
interactions with realistic temporal structures. Thus, once we allow for more elaborate
interactions, there exist many ways of inducing synchrony.

We illustrate in Fig. 11.2 the build-up of synchrony in our system of TAF neurons
[Horn and Opher, 1997a] for different types of interactions. For all-to-all excitatory
instantaneous couplings we display a system of neurons that starts out with random
initial conditions and turns, after four periods, into a synchronous system. When
the interactions are inhibitory, the system is periodic but asynchronous. Finally,
inhibition with fixed transmission delays leads to the build-up of synchrony through
merger of synchronous clusters.

In discrete temporal simulations, there exists a subtlety regarding the exact up-
dating scheme. One can either reset the TAF neuron to its rest state, no matter how
much current it received before firing, or to a higher value, if the input it received
before firing exceeded the amount it needed to reach threshold. When refractoriness
is present, as is the case in our model, the situation is similar to the first updating
scenario. It becomes the only possible one, since current that arrives during and
immediately after the spike cannot drive the neuron to fire.

Throughout this chapter we discuss systems of TAF neurons whose interactions
depend on some underlying geometrical structure. Once we allow for deviations from
all-to-all couplings, new interesting phenomena develop. Hopfield and Herz [Hopfield
and Herz, 1995] have investigated several types of models in which each neuron is
excitatorily connected to four nearest neighbors on a two dimensional grid. They
find that all models exhibit rapid convergence to cyclic solutions, although not all
solutions are globally synchronous. Their two models of leaky TAF neurons reach
either global synchrony or a state of phased locked oscillations, i.e. a number of
synchronized clusters of neurons, where the different clusters are phase shifted with
respect to each other. Fach cluster contains at least one triggering neuron and its
nearest neighbors. The authors show that the type of cyclic attractor depends on
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Figure 11.2: Firing of 150 TAF neurons with all-to-all interactions vs. time. Starting
from random initial conditions, the global behavior depends on the connections:

(a) Excitatory connections without delay lead quickly to almost perfect synchroniza-
tion. (b) In the presence of inhibitory connections without delay, the system converges

to non-synchronized periodic behavior. (c¢) Delayed inhibition inducing perfect syn-
chronization after a long time.

the updating scheme chosen for the model. They conclude that spatially connected
networks exhibit richer collective phenomena than globally connected networks. A
discussion of spatiotemporal patterns that evolve in spatially connected networks will
be presented in the last section. It is important to note that most of the systems
discussed in this chapter are composed of neurons with the same internal period.
Models of random intrinsic frequencies [Strogatz and Mirollo, 1988] that exhibit other
interesting dynamic behavior are beyond the scope of this chapter.



11.3 Clustering via Temporal Segmentation

Clustering is an important concept in data analysis [Duda and Hart, 1973]. When
data are presented in some given space one may follow any one of a set of parametric
approaches that exist in the literature. But if the space is very large, it is advantageous
to concentrate not on the location of the data points but on the distances between
them. In that case an analogy with a neural system may suggest itself, associating
the data points with neurons and the distances with synaptic interactions between
them. Such an approach was recently suggested in [Blatt, Wiseman and Domany,
1997], where the authors have applied methods of statistical mechanics to such a
system, using the analogy of ferromagnetic interactions among spins. This leads to
impressive results for a host of problems where, as a function of one parameter, the
temperature, one can follow a tree of bifurcations into different clusters.

In the present section we demonstrate how a system of TAF neurons can be used
to perform such a task, relying on the fact that coupled TAF neural systems can ex-
hibit staggered oscillations of neuronal cell assemblies. These assemblies are defined
through the synchrony of their neurons, and we use them to represent clusters. Typ-
ically we will be able to segregate data into sets of a few clusters in this fashion. The
limit on the possible number of clusters will be discussed in the next section.

Suppose we are given an N x N symmetric distance matrix, defined for N data
points. For the solution of the clustering problem we have in mind, in which clusters
are composed of groups of points, we define a set of symmetric synaptic connections
among N TAF neurons, that are negatively correlated with distance. Thus short
distances will imply strong excitatory interactions, and long distances may lead to
inhibition. The neurons are assumed to be under the influence of some common input,
so that, in the absence of interactions, they will behave like free non-linear spiking
oscillators.  When the interactions are turned on we obtain, in general, staggered
oscillations of groups of neurons. These groups will be associated with the required
clusters. To make sure that global synchronization will not be reached, competition
between the different clusters can be induced by global instantaneous inhibition that
is proportional to the total spiking activity. This turns Eq. 11.4 into

U, = kv + o 4+ emuv; + m (T4 S0 [ — 455 f5)- (11.5)

In the presence of such global inhibition, classification into clusters of roughly the
same size is favored by this method. In the example of Fig. 11.3 we see clustering
of 547 data points formed by slightly overlapping three gaussian distributions. We
have used here inhibitory connections with delays (that lead to synchronization, as
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Figure 11.3: Clustering of 547 data points with a spiking system. The data points
are shown in the upper frame. Fach point is associated with an oscillatory neuron
(same constant input). Initial conditions are all zero, and the interactions are defined
according to the relative distances between the points. To induce synchrony we use
delayed inhibition between all neuron pairs whose distance is below 6, with the delay
time being roughly a third of the neuron’s oscillation period. Competition is induced
by global instantaneous inhibition. The two bottom frames show the total activity of
the system, that starts out as a single synchronized state which later separates into
three different peaks. Fach peak corresponds to one of the clusters displayed in the
middle frames.

shown in section 11.2) with an additional instantaneous global inhibition. The system
converges onto a periodic solution of staggered oscillations. Fach peak in the total
activity (lower right frame) corresponds to one of the clusters, shown in the middle
frames. Approximately 90% of the data points are classified correctly.

Clustering problems are often ill defined. Usually there are many partitions of
the data that can qualify as clusters. Moreover, within a given method there may
exist many solutions to a given problem. This is also the case in our method when
the distance matrix is not as clearly structured as in the example given above. When
faced with such a situation one may impose a constraint based on the assumption of
simply connected topology of clusters, and require that the average distance within
a cluster be smaller than the average distance to points in different clusters. This
would of course fail for non-trivial topologies where the distance condition does not



hold. Examples of such problems were given in [Blatt, Wiseman and Domany, 1997].

Clustering becomes a complex problem when the number of data points is large.
An exhaustive search for solutions, e.g. seeking groups of points that obey the dis-
tance condition, becomes computationally time consuming. Therefore one looks for
heuristic methods to solve such problems. The advantages of our pulse-coupled sys-
tem is that it relies only on distances between the points, it can be applied to problems
of arbitrary size, and it does not require preprocessing that is problem specific . Its
disadvantages are that it naturally leads to a small number of clusters, e.g. 3 or 4,
independent of the size of the problem. and it is biased toward clusters of the same
average size.

11.4 Limits on Temporal Segmentation

Clustering was achieved in the previous section via temporal segmentation. The fact
that this method leads to a small number of clusters is characteristic of non-linear
oscillators that perform staggered oscillations (e.g. [Hansel, Mato and Meunier, 1995,
Golomb et al. ; 1992]). This is readily ohserved in associative memory systems that
are based on continuous oscillatory neurons [Wang, Buhman and von der Malshurg,
1990, Horn and Usher, 1991]. These models provide temporal segmentation into 3
to 6 components only. It is tempting to speculate that this feature could provide an
explanation [Horn and Usher, 1992] for the known limits on short term memory such

as Miller’s 7 + 2 rule [Miller, 1956].

To understand why one obtains the limit on segmentation we have studied a
dynamical system composed of n continuous excitatory neurons interacting with one
inhibitory neuron [Horn and Opher, 1996a]. Here each neuron, or oscillatory unit,
can be thought of as representing a cell assembly of spiking neurons.

dU; Jdt = —U; + M; —aM’” —b0; + I (11.6)
AU Jdt = —gU" — eM" + > M, (11.8)

U;,forv =1,--- n denote post-synaptic currents of excitatory neurons, whose average
firing rates are

M; = (1 4 e PUn~ (11.9)

while UT and M7 are analogous quantities for an inhibitory neuron that induces com-
petition between all excitatory ones. f; are dynamical thresholds that rise when their
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Figure 11.4: A schematic representation of a model of identical excitatory oscillators
coupled to an overall inhibitory unit.

corresponding neurons 7 fire. They quench the active neurons and lead to oscillatory
behavior. a,---,g and (3 are fixed parameters. To study segmentation we choose
I; = T as a common external input, in which case the system becomes fully symmet-
ric under the interchange of any two neurons 7 & 7. A schematic representation of
the model is displayed in Fig. 11.4.

For a wide range of parameters this system can be shown to converge into limit
cycles that include segmentation. However, full segmentation is obtained only up
to n = 5. Above that, only partial segmentation can be obtained. An example of
the latter is shown in Fig. 11.5. To understand why full segmentation cannot be
obtained in this model for n > 5 we note that the overall period of the repeating
pattern, 7, stays roughly the same, for all n. On the other hand a single oscillatory
beat cannot be too narrow. Technically the limit follows from an analysis of the
subharmonic oscillations of an excitatory unit in response to the input it receives
from the inhibitory unit, which oscillates at a higher frequency due to the influence of
all other oscillatory excitatory units. Narrow subharmonic oscillations are restricted
to n < 5, thus providing the reason for the limit on full segmentation. Moreover,
subharmonic oscillations of n = 3 are the most stable ones, which explains their
dominance in partial segmentation patterns such as the one shown in Fig. 11.5.

This limitation can be overcome if one allows appropriate noisy inputs [Horn and
Opher, 1996b]. We have worked with inputs of the type I, = 0.4 + 0.1&;, where &;

is a random variable between 0 and 1, that changes rapidly. For n = 3 this leads
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Figure 11.5: A quasiperiodic solution of the n = 8 problem that displays partial
segmentation. The eight M values of the different oscillators are shown. The three
large amplitudes form a segmented pattern, while the low amplitudes display very
different periodicities.

to a regular structure of full segmentation. The symmetry is obtained in spite of
the random component in the input. The interesting effect of noise in this system
is to select full segmentation as the only surviving limit cycle. Increasing n to 4
and more, we find that all symmetrical structures are broken. The general pattern
is one of approximate segmentation. For large n values (n > 5) simple noise does
not induce full segmentation. There exists either large overlap between different
oscillators (degenerate segmentation) or partial segmentation in a very disordered
fashion. In order to obtain full segmentation one has to make sure that the (random)
input affects no more than five oscillators at a time. We have therefore employed two
random components. One assigns to each oscillator a random input, and the other
selects the five oscillators that are allowed to have their input active at a given time.
The two independent random sequences are chosen to have rapid variations, i.e. time
scales less than 0.17. This type of input has a random Fourier decomposition. The
results are displayed in Fig. 11.6. Segmentation is quite evident. The order of the
dominant oscillators is random, yet, on the average, all oscillators are being excited.
Our conclusion from this study is that for appropriate noise patterns, of the type
described above, segmentation can be induced for any number of oscillators [Horn

and Opher, 1996b].

12



\ " 6/
V"‘ \ ),!A.\’“

VWAND

TIME

Figure 11.6: Staggered oscillation of the n = 8 problem is obtained for random inputs
with rapid variation, affecting a few oscillators at a time. Activities of all oscillators
are displayed as function of time.

11.5 Image Analysis

Analysis of a visual scene is one of the most difficult tasks performed by animal
brains. It involves, among other sub-tasks, image segmentation, feature extraction
and edge detection. ITmage analysis is also an important requirement of many artificial
intelligence systems used in various fields from navigation to medicine. Great effort
has been devoted towards inventing good algorithms for image analysis. However, an
algorithm that does not require preprocessing (i.e. one that is not image specific) is
hard to find. Therefore, as is the case in other AT implementations, it might prove
useful to imitate biology, which is the best known performer of these tasks. This
could be done via the temporal binding hypothesis suggested by von der Malsburg in
1981 [von der Malsburg, 1981, von der Malsburg and Schneider, 1986]. According to
this idea, activities of neurons that correspond to the same feature are synchronized
while representations of different features are temporally decorrelated. There exists
evidence that such a strategy may be employed by the brain [Fckhorn et al. | 1988,
Gray et al. | 1989].

Examples of the implementation of this idea in an oscillatory neural network
for segmentation and binding exist in the literature [Wang, Buhman and von der
Malsburg, 1990, Horn, Sagi and Usher, 1991, von der Malsburg and Buhman, 1992,
Johnson, 1994, Ritz et al. , 1994, Horn and Opher, 1996a, Wang and Terman, 1997].
All these models share some interesting features. One of these is the necessity of
competition between the different oscillators, usually in the form of global inhibition,
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allowing only a small number of oscillators to rise simultaneously. Another common
feature is the limited segmentation ability. In most models, only a small number of
objects can be segmented. This ties in with the limit on temporal segmentation that
we discussed before.

11.5.1 Image segmentation

The phenomenon of clustering, and the fact that we have a neural computational
mechanism to achieve it, can be employed to perform image segmentation. For this
purpose let us embed TAF neurons on a regular two dimensional surface with open
boundary conditions. Each neuron is being fed an input whose amplitude corresponds
to the grey scale of a pixel of a given image. The problem of segmentation is to define
clusters that represent different objects in the image. The simplest way of clustering
is to rely on similarity in the grey scale within some given radius. Hence it is natural
to define an input dependent interaction that leads to mutual excitations between
neurons that receive similar inputs, and to mutual inhibition between those that have
very different inputs. This can be achieved through the following choice:

1
= —10(d — d;; 11.1
i = P () © s — ) (11.10)
F(x) {9%(.7:2.7:9) " (11.11)
T) = .
171\/5(\/5—\/5) x>0

1
TH05(Fmar—Trmin) ?
the image. The specific choice of 2:(1;, I;) and of F'(x) is arbitrary [Wang and Terman,

where 6 = and 1,0 (min) are the maximal (minimal) pixel values of

1997] as long as F'is kept negative for large values of |I; — I;| and positive for similar
values of I; and ;. Our choice was inspired by the BCM model [Bienenstock, Cooper
and Munro, 1982]. We find that using such a form of interactions contributes to the
binding of neurons that belong to the same object, thus improving segmentation of
different objects. An example is shown in Fig. 11.7, where segmentation of 4 objects
is obtained.

This form of interaction is quite similar to the one used by Wang and Terman
[Wang and Terman, 1997], who work with phase-coupled nonlinear oscillators. They
name their model LEGION, implying local excitation and global inhibition. Since
a previous version of their model [Terman and Wang, 1995] leads to limited tem-
poral segmentation, they have devised an algorithm that allows them to do much
better. In their model they have introduced complex lateral interactions that may
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Figure 11.7: Segmentation of 4 non-spherical objects using input dependent connec-
tions restricted to a circle of radius 9 around each neuron. The peaks in total activity,
shown in the bottom frame, correspond to separate activation of each one of the four
objects that are displayed together in the upper right frame. Temporal segmentation
is achieved through global inhibition.

shunt the input to an oscillator. These interactions allow for the definition of leading
oscillators, that are the elements prone to lateral excitation, which play key roles in
forming clusters or segments. The algorithm builds on the general characteristics of
nonlinear oscillatory dynamics, but does not follow the same temporal development.
In particular, once a segment is activated it may be prevented from firing again until
all other segments are activated. As a result, they are able to achieve high degrees of
segmentation in images of natural scenes and of medical interest.

Johnson [Johnson, 1994] studied the use of pulse-coupled neural networks for im-
age analysis. His model is inspired by the linking field neural network of [Eckhorn
et al. , 1990]. Tt is much more complex than the networks that we use in this chapter.
He shows that the frequency histogram of the total activity of his system is stimulus
specific. With a certain parameter choice, this histogram can be insensitive to trans-
lation and scaling of an object. ITmplementation of the network as a hybrid optical
system yields temporal image segmentation as a result of weak linking between neu-
rons whose thresholds depend dynamically on their own outputs. A similar network
is used by [Lindblad et al. , 1997] to perform image analysis, where the interaction
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between two neurons is inversely proportional to their distance. Noise reduction is
done by changing the input to a neuron that is not synchronized with its neighbors.
The amount of change depends on the time lag between the firings of the neuron and
those of its neighbors. This method produces segmentation whose character changes
during the temporal development of the system. Moreover, it also leads to edge detec-
tion. The edges of a segment are activated in the iteration that follows the activation
of the segment, due to the linking between the perimeter neurons and their neighbors
that did not fire. Note that pulse-coupled networks are able to perform both segmen-
tation and edge detection, whereas, so far, only segmentation was implemented by
phase-coupled oscillators.

11.5.2 Edge detection

The problem of edge detection is complementary to that of segmentation. Whereas
segmentation implies finding areas that belong together, edge detection finds the
borderlines between such areas. Fdge detection is an important task of image analysis.
In various applications, such as in medicine, defining the boundaries of elements in a
picture is crucial.

To confront this problem we find it useful to start with synaptic couplings that are
not structured by the data. A good candidate is the difference-of-gaussians (DOG)
interaction

wi; = Cge %/ — Cre= T/, (11.12)

Here d;; is the distance between two points and we have four constants denoting the
strength and radii of excitation and inhibition. Since the interactions are symmetric,
it is only reasonable that the temporal evolvement of the spiking activity will reflect
asymmetries that exist in the input. We find, indeed, that when an image is used as
an input then, after the firing pattern settles into a periodic structure, edges can be
read off at minima of the total activity.

An example of such behavior can be seen in Fig. 11.8, where the edges of most
shaded areas in a SPECT (single photon emission computed tomography) brain
image? are detected, at time steps that correspond to minima of the total activity of
the system. In this analysis we have not employed global inhibition and, therefore,
we do not obtain temporal segmentation. At peaks of the total activity, many areas
of the image will be active. Nonetheless, using the delineation of boundaries that is
observed at minima, we obtain a highly segmented picture.

2 Tmage provided by T. Prohovnik, private communication
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Figure 11.8: Edge detection in a SPECT brain image. The edges of most shaded
areas appear at different local minima of the total activity. The behavior of the
activity in time is rather complicated, due to the complexity of the input image.
Therefore, different combinations of edges appear at time steps that correspond to
different minima of the total activity of the system.

11.6 Solitary Waves

Wilson and Cowan [Wilson and Cowan, 1973] have realized that if one builds aggre-
gates of neurons one may naturally obtain the formation of unattenuated traveling
waves as a result of a localized input. Studying two dimensional layers of inter-
acting neurons, [Frmentrout and Cowan, 1979] have observed formations of moving
stripes. They have pointed out that if their model is applied to V1, it can provide
an explanation of drug-induced visual hallucinations, relying on the retinocortical
map interpretation of V1. In a more recent work using spiking neurons, [Fohlmeister
et al. , 1995] have obtained, in addition to stripe formations, rotating spirals, ex-
panding concentric rings and collective bursts. Most of these coherent excitations,
whose structure is continuous in space and time, can be characterized as solitary
waves [Meron, 1992]. They move in space with some well defined speed, or expand
from, or rotate around, some focus. This holds until they meet some other wave-front
of similar character, in which case they annihilate one another.

In the present section we provide some examples of this behavior and explain
the topologic character of the resulting solitary waves. In our analysis we employ a
constant input for the whole surface of neurons. In the absence of any interactions
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Figure 11.9: Two solutions with propagating spiking fronts (the grey scale is propor-
tional to the strength of f;) on a 60 x 60 grid using the same interaction parameters.
(a) Periodic boundary conditions lead to parallel stripes. Frames (b) and (c) display
two snapshots of a solution corresponding to open boundary conditions. In (b) we see
two arcs propagating from opposite corners, merging in (¢) with fronts that started in
the other corners, to form a rectangle that eventually shrinks to the structure seen in
the center of (b). Interaction parameters are C, = 0.2, C; = 0.02, dg = 15, d; = 100,
restricted to an area of radius 20 around each neuron. Other parameters are the same

as in Fig. 11.1.

among the neurons, and starting from random initial conditions, this would lead to
random periodic behavior of the type of Fig. 11.2b. This changes once we introduce
an interaction such as in Eq. 11.12. For strong enough simultaneous excitations the
system develops a coherent character, i.e. neighboring neurons become synchronized,
thus leading to spatial order. The system turns then into a structured cyclic attractor.
The details of the structure depend in a critical manner on the interaction parameters.

In Fig. 11.9 we display results of propagating stripes, as well as formations of
merging lines. When viewed at different time frames one observes a homogeneous
motion of these structures. The two formations represent the same type of solution,
namely propagating fronts. They were obtained with the same set of interaction
parameters, but with different boundary and initial conditions. The parallel stripes
of Fig. 11.9a are the result of periodic boundaries and the merging lines of Fig.
11.9b and c are the result of open boundaries. The latter cause the activity to start
at boundary neurons, that receive less inhibition than others. The convergence onto
a specific solution depends on initial conditions of the complex nonlinear system. The
distinction between solutions belonging to periodic or open boundary conditions is
always quite evident.
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Rotating spirals and expanding rings are other types of solutions, that are well
known examples of solitary wave formations [Meron, 1992]. Both formations are often
encountered in 2-d arrays of IAF neurons [Jung and Mayer-Kress, 1995, Milton, Chu
and Cowan, 1993]. An example of colliding rings is displayed in Fig. 11.10. This
example is obtained by keeping only few nearby neighbors in the interaction. The
number of expanding rings is inversely related to the span of the interactions. We
note the spontaneous creation of two foci from which the expanding rings emerge.
Spikes exists only at the boundary between m = 0 and m = 1 areas. This property
reflects the fact that for each neuron a spike is followed by a refractory period. Tt is
responsible for the vanishing of two firing fronts that collide, because, after collision,
there remains only a single m = ( area, formed by the merger of the two former
m = ( areas.

Figure 11.10: Collision of two expanding rings formed on a 60x60 grid. The top
frames display m fields at two time steps, with m = 0 in white and m =1 in black.
The bottom frames exhibit the corresponding coherent firing patterns, that appear at
boundaries between areas of m = () and m = 1. In this simulation we use excitatory
interactions only, coupling each neuron to its 8 neighbors with an amplitude of (.3.

All these simulations are carried out on some finite lattice, containing typically
60 x 60 TAF neurons. Once the system adapts to its coherent behavior, the structure
of its underlying lattice becomes unimportant. In fact, it turns into a continuous
problem of interacting neural fields. There is a topologic rule that we can deduce
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Figure 11.11: Incoherent firing patterns for (a) high variability of synaptic connec-
tions, or (b) noisy input. In (a) we have multiplied 75% of all synapses by a random
gaussian component (mean=1., s.d=3.) that stays constant in time. In (b) we have
employed a noisy input that varies in space and time (mean=0.29, s.d.=0.25). In
both frames the firing patterns are no longer coherent. We can see the formation of
small clusters of spiking neurons. The typical length scale of these patches is of the
order of the span of excitatory interactions. This is a manifestation of the dominance
of interactions in determining the spatial behavior in the absence of continuity that
imposes the topologic constraint.

from this continuity. Once m(¥,1) is continuous, it has the same dimensionality D (2
in the cases discussed here) as the manifold to which the neurons are attached. Since
all firing formations occur at moving fronts of m(¥,1) = 1 patches, these solitary
waves have to be of dimensionality D — 1. This is well exemplified in Fig. 11.10. It
holds for all the coherent solutions that we obtain, arcs, spirals, stripes and expanding
rings.

We have obtained coherent solutions also when some forms of synaptic delays were
introduced. Coherence can be broken by strong noise in the input or by randomness
in the synaptic connections. What we would expect in this case is that the DOG
interactions specify the resulting behavior of the system. This is, indeed, the case,
as demonstrated in Fig. 11.11 which shows an irregular, but patchy, behavior. These
patches have a typical length scale that is of the order of the range of excitatory in-
teractions. We believe that this is the explanation for the moving patches of activity
reported by other authors [Hill and Villa, 1994, Usher et al. , 1994]. These are inco-

herent phenomena, emerging in models with randomly distributed radial connections.
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We learn therefore that our model embodies two competing factors. The DOG
interactions tend to produce patchy firing patterns, but the coherence, that is brought
about by the excitatory connections, leads to the formation of one dimensional solitary
waves on a two dimensional manifold. If, however, strong fluctuations exist, i.e. the
neurons can no longer be described by homogeneous physiological and geometrical
properties, the resulting patterns of firing activity are incoherent, and their spatial
extension reflects the range of the underlying interactions.

Are there situations where coherent firing activity exists in neuronal tissue? If the
explanation of hallucinatory phenomena [Ermentrout and Cowan, 1979] is correct,
then this is expected to be the case. Tt could be proved experimentally through
optical imaging of V1 under appropriate pharmacological conditions. Other abnormal
brain activities, such as epileptic seizures, could also fall into the category of coherent
firing patterns. Does coherence occur also under normal functioning conditions? The
interesting spatiotemporal evoked activity, reported by [Arieli ef al. , 1996] in areas
17 and 18 in cat, may be due to underlying neurons that fire incoherently. But the
thalamo-cortical spindle waves generated by the reticular thalamic nucleus [Golomb,
Wang and Rinzel, 1994, Contreras and Steriade, 1996] may well be an example of
coherent activity. Another example could be the synchronous bursts of activity that
propagate as wave fronts in retinal ganglion cells of neonatal mammals [Meister et al. |
1991, Wong, 1993]. It has been suggested that these waves play an important role in
the formation of ocular dominance layers in the LGN [Meister et al. , 1991].

11.7 The Importance of Noise

The effects of noise, displayed in Fig. 11.11, are deconstructive, in the sense that noise
causes desynchronization and, therefore, eliminates the coherent behavior. However,
desynchronization may also have useful aspects, as seen in section 11.4 and displayed
in Fig. 11.6, where noise helped us to overcome temporal segmentation constraints.
This observation goes back to [Horn, Sagi and Usher, 1991], where it was shown that
noise can serve the binding process by forming a nucleation source for synchronization
of one segment. As such it can serve also in image segmentation analysis [Wang and

Terman, 1997].

It is interesting that, under certain conditions, noise can also be employed to allow
for solitary wave formation, rather than destroy it. This is the case in a dissipative
regime in which the TAF neurons do not have a constant input that keeps them
oscillating, as already noted by [Jung and Mayer-Kress, 1995]. A one dimensional
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Figure 11.12: Space time description of coherent spiking activity on a one dimensional
neural manifold in a dissipative regime. The coherent propagation of excitation,
induced by random inputs, is similar to what is observed in the oscillatory regime,
except that it is not periodic and less frequent. Parameters are: w = 1.2 for 10
neighbors on each side. [ is normally distributed with mean and standard deviation
of 0.02. Tts values change at random time steps.

example [Horn and Opher, 1997b] of such a system is shown in Fig. 11.12. Once a
neuron fires, the spreading of activity depends on the situation of near-by neurons.
If they happen to be in a refractory period, or under the influence of small, or even
negative input, activation will not spread. However, once activation does spread, it
behaves in the same way as in the oscillatory regime. In this one dimensional example
we observe creation and annihilation of solitary waves. Note that this system can
no longer have the global periodic structure that is characteristic of the oscillatory
regime.

Note that in this example noise serves only as the source of energy for the system
to excite itself, and it is not strong enough to break the underlying homogeneous
structure. If we strengthen it considerably we will end up again with the type of

behavior displayed in Fig. 11.11.
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11.8 Conclusions

Using synchrony of spiking neurons, we have analyzed different cases of coherent firing
activity that lead to interesting spatiotemporal formations. These phenomena can be
employed for clustering of data consisting of a few tens of elements and ranging up
to ten thousand elements, as is the case for image segmentation.

Our analysis was carried out on a fairly simple system. It could, therefore, serve
as a general framework within which we attack a wide scope of problems, covering
clustering (section 11.3), image segmentation (section 11.5.1), edge detection (section
11.5.2) and formation of solitary waves (section 11.6). Emphasizing the generality
of the method, we inevitably lose on its ability to lead in the technical application
frontier over other specialized techniques.

One of the main features of temporal segmentation with non-linear oscillators is
the inherent limit that we discussed in section 11.4. This limit constrains our general
analysis of clustering, and limits our ability to perform image segmentation. In order
to have better designs for application purposes one has to find tricks to overcome
this limit, using methods that are no longer motivated by biological intuition. It
is satisfying to note that limited segmentation is characteristic of human ability to
process simultaneously different streams of data.

If we try to define the type of computational tasks that our system performs, the
appropriate classification would be feature extraction. Conventional neural compu-
tation techniques that are being used for such purposes are based on unsupervised
competitive learning. Such learning was not performed in our model, although in
principle it could be added to it. We have used throughout this chapter fixed synap-
tic weights. However competition was built into our system, often through explicit
inhibitory actions. The winner-take-all feature of the conventional techniques of un-
supervised learning, is replaced in our models by the dominance of a particular cluster
during a specific time frame. In other words, temporal segmentation is a way of break-
ing a given problem (or data set) into several clusters such that each one hecomes a
winner sometimes. By performing computation along the time axis, we are able to
carry out feature extraction without a training algorithm.
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Finally let us emphasize that the coherent behavior described in this chapter is
quite robust, as long as the underlying system of spiking neurons is homogeneous and
its interactions are suitable for mutual synchronization. The interesting spatiotem-
poral properties of such systems may play an important role in pattern analysis and
pattern formation in both biological and artificial neural systems.
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