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Zatsepin show a spectral index 3.0+ 0.08 for
high-energy electrons at the energy range 3.5
BeV<E<T70 BeV. Bleeker et al. reported a spec-
tral index 2.6+ 0.2 for 2 BeV< 30 BeV. Ngy

and Ng2 calculated in this paper agree with these
new data within the uncertainties of measure-
ment.) On the other hand, in a recent article
Verma?? pointed out that the east-west asym-
metry observed by Daniel and Stephens may

be due to re-entrant albedo electrons instead

of positron excess. If this is the case, and if
further experiment indicates that the positron
fraction in the >10-BeV energy region is less
than 10% (the value at 1- to 5-BeV energy range),
then the third model that sources of primary
electrons are concentrated in the disk would

be compatible with the observed spectrum.

It is hoped that a direct measurement on the
positron-to-negatron ratio, as well as further
observations in the even higher energy range,
will clarify the situation and determine the or-
igin of cosmic-ray electrons.
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PREDICTION OF REGGE PARAMETERS OF p POLES FROM LOW-ENERGY 7N DATA*

R. Dolen, D. Horn,T and C. Schmid
California Institute of Technology, Pasadena, California
(Received 23 June 1967)

Using finite-energy sum rules we predict important features of the Regge structure of
p poles from low-energy nN data. The combined effect of N* resonances in generating
(via the sum rules) properties of the exchanged p poles is discussed, thus starting a new

type of bootstrap calculation.

We use finite-energy sum rules!? (FESR)
to calculate the Regge parameters (as functions
of ¢) of the high-energy 7N charge exchange
(CEX) amplitudes from the low-energy 7N da-
ta (phase shifts). Thus we carry out a new type
of bootstrap: Given the low-energy 7N data
(the N* states), we calculate the exchanged
p trajectories (masses) and coupling constants.
We show how several interesting features of
the N* states “cause” (via FESR, i.e., via an-
alyticity) corresponding features of the exchanged
Regge poles.

Using the low-energy data and the FESR,
we predict the following high-energy features
of the A’ and B~ amplitudes of 7N CEX3:
(1) The spin-flip amplitude vB‘™ is larger than
the nonflip amplitude A’¢™ by an order of mag-
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nitude at £=0. This explains the near-forward
peak in 7N CEX. (2) B~ has a zero near ¢
~~0.5 BeV2. This explains the observed dip
in 7N CEX. (3) A’ has a zero near ¢~ =0.1
BeV2. (4) In an effective one-pole model, we
predict the p mass and a trajectory ages Which
is 0.1 to 0.2 lower than the one measured at
high energies. (5) Using high-energy fits as
an additional input, we find some evidence for
a second p trajectory, 0.4 lower than the p.
This may be the manifestation of a cut. (6) There
is strong evidence for an (approximately) fixed
pole in B¢ at j=0.

The results (1) to (3) are “caused” (via FESR)
by the following features (1/) to (3’) of the N*
states: All prominent resonances (1’) enter
with the same sign in B, but with alternat-
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ing signs in A’¢™ at £=0, (2’) have their first
zero? “simultaneously” in the narrow interval
-0.6<t<~0.4 BeVZ in B‘™, and (3’) have their
first zero at =0.2<¢<~-0.1 BeV?in A’™. For
negative ¢, we find large cancellations between
the Born term and the lowest resonances in
A’ This can be useful for determining cou-
pling constants of these resonances, thus check-
ing symmetry predictions.

Finite-energy sum rules are consistency
conditions imposed by analyticity. If a func-
tion F can be expanded at high energies (v=N )
as a sum of Regge poles B[t1—e~t"%|[I'(a +1)
xsinna]"lva, then the following expansions
(FESR) are equally valid®:

N e
/ V ImFdy = AN . (1)
0 (@+n+1)T(a+1)

It is crucial to note that the relative impor-
tance of successive terms in the finite-ener-
gy sum rules (including higher moments) is
the same as in the usual Regge expansion, i.e.,
if a secondary pole or a cut is unimportant
in a high-energy fit above N, then this singu-
larity is unimportant to exactly the same ex-
tent in the low-energy sum rules! (for the var-
ious moments). Note also that it is irrelevant
in the FESR whether a singularity is above or
below a certain point, say a=-1.

The sum rule S, was applied by several au-
thors?! to the 7N nonflip CEX amplitude at
t=0, where o;; ‘™ can be used for ImA’ ‘.
One finds that not only S, but also S; and S,
are satisfied (within experimental error) with
one p pole.®

The various sum rules can be used either
together with the high-energy data to provide
a better over-all determination of the Regge
parameters, or by themselves to predict the
Regge parameters from low-energy data alone.
The latter use is a new kind of bootstrap pro-
gram. Thus, assuming a one-pole fit, one
can predict its trajectory by using the property

Sn:Sm=(oz +m+1):i(a+n+1). 2)

Once «(t) is determined, one can go on and
determine B(f) from the various S;. One works
separately with the odd- and the even-moment
sum rules, since one of these families contains
the wrong-signature nonsense poles that do
not affect the observable amplitude.

The crucial point, which allows us to predict

the pole in the crossed channel (e.g., the p
pole in the 7N CEX), is the fact that ImF (the
absorptive part in the direct channel) stays
regular at the position of this pole, ImF~v%.
The partial wave expansion of ImF therefore
converges (in the approximation that the p pole
dominates the 27 continuum).

The position of the pole is reached when o =1.
This algebraic condition [Eq. (2)] is much easi-
er to use than the conventional N/D condition
that the solution D of the integral equation van-
ishes.”

Our new type of bootstrap works particular-
ly well for amplitudes like B‘™ or A’‘?, where
all prominent resonances (A,N ,, N, ) enter
with the same sign and add up consrructively
in the FESR. On the other hand, the use of
the FESR in the reverse direction® (e.g., pre-
dicting the relative strength of N and N,,¢*)
is particularly suitable for A’¢™ and B‘?, where
the resonances enter with alternating signs
and tend to cancel in the FESR. These cancel-
lations become particularly large for negative
t (see below).

‘The fact that the prominent resonances add
up in the FESR for B!~ gives an example of
the double counting committed in the interfer-
ence model that regards the Regge term as
a background on which one has to superimpose
resonances.’ There are two complete repre-
sentations of the amplitude: One is the partial-
wave series which can be dominated by direct-
channel resonances or might have a large non-
resonating background, and the other is the
Regge asymptotic series consisting of pole
terms s plus a background integral in the j
plane. The combined FESR tell us that the sum
of Regge terms s gives a fit to the smoothed-
out experimental curve, and only the remain-
ing wiggles are contributed by the background
integral in the j plane. The smoothed-out res-
onance contribution is already included by the
Regge-pole terms.°

The interference model has led Gatto'! and
Dass and Michael'? to sum rules which, if ap-
plied to B‘™, would produce a violent contra-
diction by equating a sum of positive resonance
residues to 0. Another example is the dip in
7N CEX which can be explained as the vanish-
ing of B¢ when a, =0.!® Recently, Hoff'* sug-
gested that it is rather due to the behavior of
the resonances in the s channel in this region.
In our opinion, both descriptions are adequate
and equivalent.
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In applying the FESR off the forward direc-
tion we have used the phase shifts of Bareyre
et 2:1_1.15 to construct the imaginary parts of the
amplitudes plotted in Fig. 1. The error bars
indicate the variation obtained using phase shifts
of different groups.'®'7

In Fig. 1(b) we plot ImvB(~ for various val-
ues of {. The nucleon Born term gets very
large and negative for negative £, and the con-
tinuum also decreases rapidly; therefore, when
evaluating the integral of this function, we find
a 0 between ¢£=-0.4 and -0.5 BeV? (see Fig. 2).
From the dominance of the Born term and the
smallness of the continuum, we conclude that
such a 0 has to occur also if the cutoff N is
chosen around 3 or 4 BeV. Thus we predict
from low-energy data that the high-energy am-
plitude has a 0 as expected from the p Regge-
pole interpretation

o

(¢34 (3)

(-) a_
ImvB —-d+v —B—F(a+1)'

In Fig. 1(a) we plot A’ at several ¢ values.
In the integral S, we find large cancellations,

but the net result (Fig. 2) is negative for ¢ < -0.2.

For ¢t =0, there are serious cut-off problems,
but at #=0 we use 0y and establish that A’
changes sign between {=0 and ¢=-0.2.

An interesting feature occurs for -0.4>¢>-1
BeV?% Very large cancellations take place be-
tween the Born term and the A(1238), while
the higher resonances are suppressed. The
reason is that at these values of £, the N and
A are outside the physical region (their z4 « -1)
while the higher resonances are inside it (note
that we are not yet in the region of the double
spectral function and the partial-wave series
converges). The large values of z¢ enhance
the lowest terms via the Legendre polynomials.
The moral of this story is that if one wants
to saturate analogous sum rules by low reso-
nances, than one has to choose appropriate
t values by taking into account the kinematics
of the problem. Note in particular that =0
is not the right choice here. This may be im-
portant for deriving estimates of coupling con-
stants and discussing the validity of higher
symmetries.

For a comparison (Fig. 2) of our predictions
with high-energy experiments, we assume a
one-pole model and take'® o(#) =0.57 +0.96¢
as an input from high-energy experiments in
order to predict the residue functions c(f) and
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FIG. 1. The imaginary parts of A’*~’ and vB'™ as
determined from Bareyre’s phase shifts. Error bars
show the variation between different phase-shifts
groups.

d(t) defined in Fig. 2. Note that the high-en-
ergy differential cross sections only measure
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FIG. 2. Comparison of the Regge residue functions from (I) high-energy fits!%1? and (II) the FESR, under the

one-pole assumption (ap =0.57+0.96t).

the sum of the squares cZ+d? of the residue
functions. The ambiguity in choosing ¢ and

d separately has been discussed by Hohler,
Baacke, and Eisenbeiss,!® and is shown in Fig.

2 (curves 2 and 4). Experiment gives bounds

on c? and d?, shown as curve 1. The FESR

allow us to resolve these ambiguities: Figure

2 shows qualitatively that the choice 2 is pre-
ferred over 4,'° i.e., ¢ changes sign near ¢=-0.1
or -0.2 BeVZ.

Quantitatively® Fig. 2 shows that the one-
pole approximation using the conventional val-
ues of « is outside the bound 1 established by
high-energy experiments. This discrepancy

(by a factor of about 2) can be fitted either by
introducing a second p pole or by taking one
“effective p pole,” whose ags4(¢) has to be 0.3
lower in order to give the correct predictions
at 10 BeV. Choosing N small enables us to
see the effect of additional singularities although
it introduces big errors in the sum rules.'%:%
The higher N gets, the better the one-pole fit
will be.

S; shows in general a very similar behavior
to S, for B™. Its zero occurs at £=-0.52.
Because of the change in the weight function,
this zero is no longer due to the cancellation
between the Born term and the rest of the res-
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onances, but stems from the fact that the first
zeros of the different P;’(z) of the higher res-
onances occur simultaneously in the narrow
interval —0.6 <¢<—-0.4 BeV2. B is mainly de-
termined by P;’(z). We find therefore that the
N* resonances occur with just the right quan-
tum numbers and at the right intervals to van-
ish at the point where the Regge pole passes
through 0. In the B amplitude, we find in the
intermediate energy region that the prominent
resonances (1520-2190) have a forward peak
of the same width and roughly the same height
as the Regge amplitude.

A similar behavior is found for the first ze-
ros of the P;(z) that occur for the various res-
onances almost simultaneously at —0.2<¢<-0.1
BeV?. This is the reason that S, of A’‘~ has
a 0 at about the same place S, has one.

We now consider B‘™ and use S, and S, to-
gether to determine aeff(t) from Eq. (2). We
get an intercept ags(0) =0.4+ 0.2 and we pre-
dict agpp(np?) =1.0£0.3. For a=0 we consid-
er the zeros of S; and S, directly and find agpp
=0at £=-0.5£0.1 BeV2. We get a surprising-
ly good agreement with high-energy determi-
nation,'®'° but we note that for —0.6 <# <0 the
effective trajectory seems to be lower by 0.2.

Let us now use S, and S, of B~ together with
the high-energy fit of Arbab and Chiu®® to de-
termine the location of a possible second p
trajectory, which is an explanation of the dis-
crepancy found in Fig. 2.%° It turns out that
such a trajectory would lie approximately 0.4
below a(2).

An amazing result comes from evaluating
S, for B{™. We find it to violate dramatical-
ly the one-pole fit (by a factor of 5 to 9 for
0>¢>-0.8). There must therefore be an ad-
ditional pole that affects very strongly this
even moment of B and is weak in the other
moments. We use S; and S, together with the
p-pole parameters of Arbab and Chiu!® to deter-
mine the location of this pole. We find its po-
sition to vary from 0.12 to —-0.15 as { varies
from O to —0.8 BeVZ2. In other words, it is
very near « =0 and has an unusually flat slope.
The effect is consistent with the existence of
a fixed pole at o =0 which cannot affect the
physical amplitude because it is at a wrong-
signature nonsense point.* The absence of such
poles would lead to a Schwarz-type sum rule.?
However, Mandelstam and Wang?? have recent-
ly shown that fixed poles arise because of ef-
fects of the third double spectral function.
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Note that the pole found in our treatment is
an additive one and will not change the conclu-
sions about the dip of the B{ amplitude.

A more detailed presentation of our analysis
and results will be published elsewhere.
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NEW APPROACH TO ALGEBRA OF CURRENTS AND APPLICATION TO K - 27 DECAY *
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Ambiguities arising in some applications of current algebra are overcome by employ-
ing the algebra of currents to calculate the subtraction constant in a once-subtracted dis-
persion relation. The new approach is applied to K— 27 decay and yields corrections to
the usual current-algebra method of about 10%. The branching ratio (K te gt end) /(& 10

+

— 77 +77) is also computed and agrees well with experiment,

It has been demonstrated by several authors!
that the Al =3 rule governing nonleptonic decays
of kaons follows naturally from the algebra
of currents, even though the original “current-
current” Hamiltonian may contain an intrinsic
Al=% part. However, one should note that the
application of the soft-pion technique to K - 27
decay implies setting mg =m; because of en-
ergy-momentum conservation. Hence, the Al
=3 rule for K - 27 decay is only valid in the
approximation of neglecting the K-m mass dif-
ference. Thus one may inquire whether a large
AI=% contribution will result if terms of or-
der [m (K)-m (7)) are not neglected. On the oth-
er hand, we should like the admixture of AI
=3 to be sufficient to explain the mode K+
—7t+7° In this connection, we recall that
Nambu and Hara,? using the soft-pion method,
derived the relation

ME*r=1t+10)  mir)-m2@®) 1

TMELS~-TreTm) - @

R a2 &)  370°

which is too small (the experimental value is
R =~1/22). The theoretical prediction would
be much improved if one could justify the re-
placement of m (K) by m(7) in Eq. (1).

In this note, we take a closer look at the class
of decays wherein taking the soft-pion limit
imposes an unreasonable constraint on the four-

momentum of the decaying particle. To this
end, we propose a new way of utilizing the al-
gebra of currents in combination with a once-
subtracted dispersion relation. In this new
approach we do not take the limit 2~ 0 (& is
the pion four-momentum) but instead let 22—~ 0
(2~ 0 implies #*— 0 but not the converse). With
this modification of the soft-pion technique,
one is able to evaluate the corrections to the
K,°— 27 calculation of Suzuki and Sugawara’
and, moreover, one finds that Eq. (1) is re-
placed by

ME* -7t +1°)

IRl = MEL=-7nt+n—)

i im"‘(w* )
- 2m2 ()

We proceed to explain the method; let us
set

ME(p)—~ . %)+ TrB(k’))

i 1
=V Gp o TaB(kz,k'z,pZ). (3)

Note that due to energy-momentum conserva-
tion p=k+k’; Tqp is a function of the variables
p?, k%, and k’2. Hereafter, we always take the
mass value p? =m?(K), and hence we shall no
longer mention the possible dependence on p2.
Our procedure depends upon taking the succes-
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