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We construct a hamiltonian lattice gauge theory which possesses local SU(2) gauge invariance and yet is defined on a 
Hilbert space of 5-dimensional real vectors for every link. This construction does not allow for generalization to arbitrary 
SU(N), but a small variation of it can be generalized to an SU(N) X U(1) local gauge invariant model. The latter is solvable 
in simple gauge sectors leading to trivial spectra. We display these by studying a U(1) local gauge invariant model with simi- 
Jar characteristics. 

Conventional SU(N) gauge theories are expressed 
in terms of variables which are continuous SU(N) 
group elements. In this letter we present an SU(9) 
gauge-invariant lattice model which uses finite numeri- 
cal matrices as the basic link variables. Previous com- 
parisons between theories of continuous and discrete 
variables were carried out for globally symmetric theo- 
ries: the XY model which has a global U(1) symmetry 
[l] and all O(N) models in 1 t 1 dimensions [2] . The 

discrete theory can be regarded as a truncated version 
of the continuous model and both exhibit the same 
phase structure [2]. We follow the spirit of the con- 
struction in ref. [2] in building the SU(2) gauge invar- 
iant model. This model cannot be generalized to ar- 
bitrary SU(N). A slight variation of its structure leads 
to an SU(2) X U(1) local gauge invariant model, which 
can be generalized to SU(N) X U(1). However, the ad- 
ditional U(1) symmetry leads to a trivial physical struc- 
ture as can be shown by the simple solution in the var- 
ious gauge sectors. 

Let us start by displaying the SU(2) gauge-invariant 
model. We construct a hamiltonian lattice gauge theory 
whose elements are 5 X 5 matrices associated with the 
links of a hypercubic lattice. These matrices operate on 
real five-dimensional link state vectors. The compo- 
nents 0 and 1 to 4 correspond to bases of (1, 1) and 
(2, 2) representations of SU(2) X SU(2). To introduce 
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the generators of these SU(2) let us define the follow- 
ing Hermitian matrices: 

@m )ap = -em@ 3 

@rn)op = i@,,46p,m - 6ti,m6p,4) * (1) 

We choose Latin indices to take the values 1, 2,3, 
whereas Greek indices run over 0 to 4. emcu4 is the nor- 

mal 3-dimensional cyclic tensor and vanishes if any in- 
dex takes the value 0 or 4. The vector operators Li and 

Ni obey the algebra 

[Li, Ljl = ifijkLk , [Lit Njl = ieijkl\rk , 

[Ni, Njl = ifijkLk 3 (2) 

from which it follows that 

Ji=a(Li+Ni), Ki=~(Li-Ni), (3) 

are the generators of the two independent SU(2) groups. 
It should be noted that by construction these genera- 
tors are hermitian and antisymmetric and as such are 
also generators of the orthogonal group SO(4). 

Let us introduce four step operators which connect 
the representation (1, 1) to all elements a = 1 to 4 of 

(2, 2): 

(%),YP = %,OQ,k + %Y,kQ,O 9 

(M4),Yp= %,0$3,4 + r&,4$,0 

Under Li and Ni they transform according to 

(4) 
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[Li, Mi] = ieiik Mk, [Li, MaI = 0 9 

[Ni, Mi] = i6i,jM4 , [.iVi, Ma] = -iMi . (5) 

In particular note that Mk is a yector and M4 a scalar 
under the generators Li. Let us now construct a new 
kind of object: 

V= Ma + iakMk , (6) 

in terms of Pauli matrices uk which are outside the 5 
dimensional space on which we defined all the opera- 
tors up to now. It follows from eqs. (5) and (6) that 

[Ji, V] = -aUjV) [Ki, I~ = ~ VUi . (7) 

The various matrix operators L, N and M are defin- 
ed separately for every link and commute if they be- 
long to different links. The u-matrices are common to 
ail links and are introduced in order to enable us to 
construct in a simple fashion a gauge-invariant interac- 
tion term. The latter is a Wilson loop of four link op- 
erators associated with one plaquette p in which we 
perform a trace over the u-matrices only: 

W(p) = tr, [V(l) V(2) V?(3) Vi (4)] . (8) 

‘Ihis remains a finite matrix operating on the S4 real 

vector space associated with the four links in question. 

Eq, (7) guarantees its gauge invariance. 
On our hypercubic lattice we define a set of axes. 

Links no. 1 and 4 in eq. (8) are chosen to lie along 
positive directions of the basis vectors at the vertex 
adjoining these two links. W(p) is then invariant under 
local SU(2) transformations associated with the vertex 

u and generated by 

GJ”> = f: Jj(Q + f_: Ki(O 3 

+ 

(9) 

where I+ (l_ ) are the positive (negative) links which 
meet at vertex u. Using eq. (7) it is easy to verify that 

[Gi(u) 3 W(p)1 = 0 9 (10) 
for any plaquette p and vertex u, thus guaranteeing 
gauge invariance. 

Finally we construct the hamiltonian of our model 
in the following way * ’ 

*l W is real in the W(2) case. The combination IV + Wt 
in eq. (1 I) will be important in the other cases to which we 
apply the same general form of H. 
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H=CJ2(Z)-XC {w(p)+ Wqp)}, (11) 
I P 

which is quite similar to the Kogut-Susskind hamilto- 

nian [3]. The similarity goes beyond the statement of 
local gauge invariance: also here J2 = K2 and the SU(2) 
rotations of J and those of K cover the same manifold 
of real state vectors. This property is very important: 
since the SU(2) gauge group of one end of a link is 
presented by J while that of the other end acts via K 

this means that both cover the same vector space on 
the link. The main difference between this and the con- 
ventional model is that V is not unitary. Nonetheless it 
does have the same gauge group, it exhibits confine- 
ment in the strong coupling limit (x = 0), and looks 
like a truacated version of the usual theory limited just 
to two representations of SU(2) X SU(2) on every link. 
Following the experience of ref. [2] one may expect 
this model to have the same physical features as the 
one based on continuous SU(2) group elements. 

Let us consider now a small variation of the above 
construction in which we replace M of eq. (4) by the 
asymmetric matrix 

(M&p = %Y,OQ,k ’ @44hp = %,0$3,4 * (12) 

I$. (5) will still hold and, therefore, the whole construe. 
tion of H still goes through. It is this variation of the 
model which allows the generalization to SU(N) : clas- 
sify link vectors as bases of the (1, 1) and (Is, N) repre- 
sentation of SU(N) X SU(N) and define 

(Fk)arp = -ifkarp p (13) 

@& = &fl + (21N)“2(&sp,N2 + 6,,,@6&k). 

Latin indices run now over 1 to N 2 - 1 while Greek 

indices take all values from 0 to N2. fjjk and diik are 
the conventional SU(N) symbols and vanish if any in- 
dex takes on the value 0 br N2. The sum and differ- 
ence 

Jk=;(&+&), Kk = ;(Fk -Dk), 

define two independent SU(N) algebras. 
Defining the step operators 

(“khxp = ‘,,06p,k 9 (“N2),fl= %,0$,N2 

we can construct 

V= (2/~l12M~2 + XiMi 

(14) 

, (15) 

(16) 
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in terms of external h-matrices which are common to 

all links and obey 

(17) 

It is then straightforward to check that 

[Jk, v] =-;x,r, [Kk, VI =;vxI,. (18) 

This is the property which guarantees that a hamilto- 
nian of the kind of eq. (11) will be locally gauge in- 
variant under the groups generated by eq. (9). 

In the absence of diik, i.e. for SU(2), it was possible 

to define the phases somewhat differently so that the 

whole algebra was realized by SO(4) on a purely real 
basis. This is no longer true for SU(N) which needs a 
complex basis. This is also why we needed the non- 
hermitian form for the M-matrices in eq. (15) - a 
hermitian form would have led to a purely real interac- 
tion matrix which is allowed only for SU(2). But this 
form of the interaction hides a higher symmetry: an 
additional local U(1) gauge symmetry. If we define 
diagonal matrices r which take on the values t 1 for the 
(1, 1) and -1 for the (RN) bases then the non-her- 
mitian M-matrices obey 

[T, Ml = 2M, 
eior ve-icy7 = ,2i(u v 

We can now define the local gauge generator 

(19) 

g(u) = 7 TM -F T(Z) 7 (20) 
+ 

under which W(p) and Hare invariant. Hence all the 
SU(N) models constructed with the M-matrices of eq. 
(15) are invariant under SU(N) X U(1) local gauge 
transformations. 

This additional U(1) gauge symmetry has far reach- 
ing consequences. It turns the ground-state calculation 
of every sector into a finite problem. To analyze it let 

us discuss the simpler case of a local U(1) gauge-invar- 
iant theory defined by Pauli matrices as follows 

H=F (1 - 73(l)} 

-x F (7+(1)7+(2)7_ (3)7__(4) + h.c.) , 

where ihe gauge generator is given by 

(21) 

(22) 

The gauge invariant sector is specified by ~~(1) = 1 for 

every link, it has energy E = 0 and no finite excitation. 
Other sectors have charges (i.e. g-values) which are in- 
teger multiples of + 2. The wave function for a charge 
-2 at point A and t 2 at point B is given by a string of 
r3 = -1 links, on otherwise r3 = t 1 background, which 

runs from A to B along the positive directions only. For 
any given distribution of a finite number of charges there 
is always only a finite number of such strings on which 
H can be represented as a finite matrix. This problem 
was recently solved for two charges on the corners of an 
arbitrary rectangle [4] . If A and B lie along a straight 
line on the lattice, separated by L links, then there is 
only one such wave function with energy 2L on which 
the interaction term of eq. (21) is inoperative as it was 
in the gauge-invariant sector. The tension is therefore 
2 independently of x. 

The generalization to the SU(N) X U(1) models is 
straightforward. The interaction term cannot act on 
either the x = 0 vacuum, which is given by the (1, 1) 
state on all links, or the straight string. Therefore the 
tension is constant. The trivial structure of the spec- 
trum is caused by the large symmetry of the model: 
each vertex is associated with a conservation law whose 
implication leads to strong restrictions on the wave 
functions in our finite Hilbert space. One needs symme- 
tric step matrices in order to obtain non-trivial dynamics. 
In the set of models which we considered this was pos- 
sible for SU(2) only. It is gratifying to realize that in 
this case one obtains a truncated version of the conven- 
tional model which possesses the continuous local gauge 
symmetry. 
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