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A variational calculation of the vacuum energy of a Hamiltonian lattice theory is formulated in terms of a finite
box Hamiltonian for a cluster of points. The box Hamiltonian contains surface terms which are proportional to
order parameters of the system. It is tested on the Ising model and applied to Z(V) spin models in 1 4+ 1 and 2 + 1
dimensions. Z(3) is found to have an exceptional phase-transition structure. The application of the method to local

gauge theories is discussed.

I. INTRODUCTION

We propose a variational method which is based
on periodic test functions for the vacuum of a
Hamiltonian lattice theory. The basic unit of this
test function is a cluster of lattice points (or
links) for which we define a box Hamiltonian.
Rather than vary explicitly the wave function, we
vary surface parameters which are introduced
into the box Hamiltonian. These parameters are
proportional to order parameters of the system
and therefore have direct physical meaning. From
the lattice point of view this method is similiar
to the Bethe-Peierls approximation in statistical
mechaniecs, but in spirit it is similiar to the Har-
tree approach to atomic physics problems. Since
it is based on a product wave function this method
cannot describe accurately the critical point where
large-scale fluctuations are important. It pro-
vides, however, a systematic improvement over
mean-field results and leads, in the ordered re-
gion, to a simple and accurate calculation of the
vacuum energy density.

In Sec. II we describe and test the method on the
Ising model in 1+1 dimensions. We discuss the
successes and shortcomings of this method, com-
paring the results with the known solution. In
particular, we observe how the method improves
with the increase in the size of the “box”. Using
the smallest box, i.e., a single lattice point, we
employ a mean-field approximation to all Z(N)
spin models in Sec. III. Z(3) shows a first-order
phase transition. This is a problem in 1+1 di-
mensions, and we show how the transition weakens
with increasing size of the box. We comment on
local gauge theories in Sec. III as well as in Sec.
IV. The latter is devoted to a discussion of sev-
eral aspects of the variational method. In the
Appendix we supply, for the sake of completeness,
some mathematical details which were stated with-
out proof in the main text.

II. ISING MODEL IN 1+ 1 DIMENSIONS

We investigate a variational approach to a
Hamiltonian lattice theory. In order to introduce
and test the method we will start with its appli-
cation to a soluble problem: the transverse-field
Ising model in D=1 space dimension.! Let us
define its Hamiltonian by

~H= Z ol(z')+gz:03(i)ors(i+1), 1)

where 0, and o; are Pauli matrices associated
with every point of a one-dimensional lattice of
length L —~ . This is a self-dual model which
has two phases and a critical point at g=1.% Its
exact energy density (per site) is given by*

1/ .
_E=;—f dk (1 +g”+2g cosk)'/?, 2)
.

Our method is based on dividing the lattice into
L /n boxes of size n and solving first the box
Hamiltonian

iy Y o) +g Y 0ol + 1)
=1 71
+x[05(1) +0,62)] . 3)

Let us denote the lowest eigenvalue of z, by -2,
and use L/n copies of its corresponding eigen-
vector to build a candidate for the vacuum of Eq.
(1). The correspondence i—j between the two
sets of points is given by i=j (mod ). The re-
sulting ground-state energy density E, can be
expressed as

a, g [for)\?
— = — S
nE, =2, —x ox 4 (ax) “)

for every n =2, This follows from Egs. (3) and
(1) by substracting from X, the expectation value
of %[ 05(1) + 0,()] and adding the missing inter-
action term between adjacent boxes. At this point
we vary the parameter x until a minimum is found,
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ax ' ax? >0. ®)

In the Appendix we prove that the solution of these
conditions is

L
=g 9%, ©)

Its physical meaning is that the best x of Eq. (3)
is given by g(o,) of the nearest neighbor in the
adjacent box. Substituting it back into Eq. (4) we
find
x 2

—nE"=7\"-—-;—. (7
The case n=1 is different because every point
has two neighbors which belong to different boxes.
Here

—hy =0, +x0,, 8)
and
O ()
—E =) -x +g(ax> . 9)

The variation procedure leads to

an
x,=2g —a-j", (10
x.2
~E =)\ - (11)

g

The case n=1 is just the mean-field approach
in which one represents the vacuum by the product
II,.,%|é). Starting with this proposition one
searches for the same state for every 7 which
will lead to a minimal E,. This is analogous to
the Hartree approach in atomic physics and leads
to 7, of Eq. (8) and E of Eq. (11). Our method is
a generalization of this mean-field approach lead-
ing to the lowest energy of a ground-state wave
function with periodicity =.

The case n=1 is, of course, the simplest as
well as the worst approximation. A, =(1+x2)}/2
and Eq. (10) have a nontrivial solution g =3(1 +x2)!/?2
only for g=>3%. g,=3 is the predicted critical point
in this approximation. Below this point the
minimal energy is given by x=0 and E, =~ 1,
i.e., o0, is diagonalized at every point. Above
g =% we find that 053 acquires a vacuum expec-
tation value

1/2
{03) is the order parameter of this problem, and
we see that it has the characteristic 3 power law
of the mean-field approximation.
The case n=2 has x=0 and - 2E = (4 +g?)*/2
below g,=0.585. Above this point a nontrivial
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solution is obtained with x # 0. The various cases
n=1,2,3 are shown in Fig. 1 where we compare
the values of E and (0,). The main qualitative
changes are that g, increases and E, decreases
with increasing n, thus exhibiting a monotonic
improvement of the approximation. The phase
transition is always continuous because it fol-

lows from Eqs. (5) and (7) that near x=€—~ 0
2

dE, | _4E,| ___ _y. (12)
dg x=€ dg x=0; ng

Although this method finds a continuous phase
transition it is slow in providing a satisfactory
detailed description of the physics near the cri-
tical point. For this purpose one should use it
as a starting point of a renormalizaticn-group
calculation. The remarkable power of this vari-
ational method is manifested in the region g >1
where (0;)# 0 in the exact solution. It is here |
where we observe a rapid convergence to the
exact value of E. This is shown in Fig. 2. Note
that whereas around g =0.6 the curve of E, is quite
far from E, they become very close above g=1.
To have a clearer comparison over a wide range
we plot the dual reflection of E,, i.e., gE,(g™),
in the range 0<g<1. This corresponds to the
vacuum energy density of the model?®

~H= Z T3 +1) +g ZTl(i) ’ - (3)
7 i
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FIG. 1. Results for the order parameter and vacuum
energy density for the D=1 Ising model. The variational
method was used with boxes of sizes n=1,2,3.
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FIG. 2. Comparison of Ej, the vacuum energy density for box of size n=3 with the exact result of the D=1 Ising
problem. The dashed curve is the dual reflection of E5 which also serves as an upper limit to the true E. The dotted
curve is a lower limit on E derivable from a box of size 3 using a (nonvariational) method described in Sec. IV.

where 7, ; are Pauli matrices defined on the links
of the lattice on which Eq. (1) was defined. The
energy densities of the Hamiltonians (1) and (13)
are equal by duality, but the variation approxi-
mation to Eq. (1) is useful where {(0;)#0, i.e.,
g>1, whereas the same approximation applied

to Eq. (13) works best when (7,)#0, i.e., g<1.
This way we obtain from E, an upper bound on
E(g) whose worst deviation from the exact result
(at g=1) is less than 1%.

IIl. Z(N) MODELS

A mean-field technique works usually better
if the dimension is increased. The same is true
for our variation method. Analyzing the Ising
model of Eq. (1) for D=2, i.e., a two-dimensional
square lattice, we find smaller energy differences
between the successive approximations. The
method we follow is quite the same but now the
approximation is characterised not merely by the
size of the cluster but also by its shape and the
way one tiles the two-dimensional lattice with it.
In Fig. 3 we present the results for the energy
densities E,, E,, and E, of the Ising problem cor-
responding to the three cases of a single-site
box, . two sites, and a square of four sites. Since
the three configurations fit successively into one
another it is easy to prove that their corresponding
ground-state energies have to obey E, > E, 2 E,
over the whole range of g. Thedifferences between
these values are much bigger when g is very

small indicating once again that the method is
best in the region where the order parameter is
large. In all cases the predicted g. is not very
far from the result g,~0.33 which is based on
several perturbative calculations.®

Let us turn now to an application of our vari-
ation method to a Z(N) theory. In D=2 space
dimensions the local gauge-invariant Z(N) theory
is dual to a Z(N) spin theory. Let us define the
local gauge-invariant Hamiltonian*

~H=g Z (P, +P)
H

4 Zp: @, Q!,Q,,9,,+H.c.) (14)

in terms of link operators P and @ which obey the
Z(N) algebra

PTP=QTQ=1, PN=QN=1, PTQP=eZi1r/NQ'

(15)

The second term of Eq. (14) is the sum of
products of @, over links which surround a
plaquette. Each such product may be regarded
as an operator of the dual lattice. Similarly,

P, may be defined in terms of operators S asso-
ciated with plaquettes which intersect at that
link:

QL sz Qps Qp4=R’m P1=Stt+ S;. . (18)
R and S obey the same algebra as P and @ and
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FIG. 3. Comparison of three different estimates of
the vacuum energy density of the D=2 Ising problem.
1, 2, and 4 refer to basic clusters (boxes) of the cor-
responding number of sites. 4 represents a square box.
The successive improvements of E show also an in-
crease of g, towards the correct value of 0.33.

the Hamiltonian dual to Eq. (14) may be written
as
—H=g 2 (5!S,+5!S,)+ 3 (R,+R}), (17)
{pa) b

which is a straightforward generalization of the
Ising model Eq. (1) for Z(N) spins.

Using a variational mean-field approach we are
led to the single-site Hartree Hamiltonian

~h,=x(S"+S)+iy(ST - S)+RT+R, (18)
where (for D=2)
x=4g Re(S), y=4gIm(S). (19)

Equation (19), which may be anticipated from the
variational approach, can be derived by analyzing
the energy density of the trial state which is com-
posed of the lowest eigenfunction of % in every
box:

2% A
—E1=>t—x—8—£——y-@—
[on e\ [ax o
o) (i) e

The conditions (see the Appendix)

a EY
x=2g =, y—%’g, (21)
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FIG. 4. The mean-field approximation for the Z(3)
problem which shows the character of a first-order
phase transition. The results are shown for D=2 space
dimensions. The exceptional structure of x(g) which
is responsible for the first-order character is discuss-
ed in the text. The two branches of E correspond to the
trivial (x=0) and nontrivial x(g) solutions.

which are the same as Eq. (19), guarantee a local
minimum of E. Using Eq. (21) we can rewrite
Eq. (20) as

x2+y2
4

Let us first fix #2=x2+92 and vary ¢ =arctan(y /x).
The minimum is then determined only by . In
fact there are N equivalent minima because the
similarity transformation R"AR transforms

@ —~@+21/N. This shows the N-fold degeneracy
of the vacuum. One such minimum lies at ¢ =0,
i.e., y=0, as one may prove to all orders of
perturbation theory in x™!. We are therefore left
with the task of finding the optimal x.

The case N=2 is the Ising model studied above.
Its mean-field solution leads to the connection
x%2=16g° - 1 starting at g,=0.25. The Z(4) theory
has the same behavior. However for N=3 one
encounters the surprise exhibited in Fig. 4: the
relation x =2g9)\/8x leads to a double-valued so-
lution over a small range of g and the branch which

_Elzh— : (22)
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describes a minimum crosses the trivial solution
(x=0 and E,=-2) at a finite x value with a non-
vanishing derivative. In other words, E; of

Z (3) exhibits a first-order phase transition. This
is unique to N=3, For N=5 we find that

2
%f—:o, g—x%w, atx=0 (23)
as for N=2 and 4. This guarantees that the new
minimum starts indeed at x=0 and Eq. (12) pre-
dicts then a continuous phase transition.

Since we are interested in the properties near
x =0 we may employ perturbation arguments in
x to derive Eq. (23), even though we discuss finite
g values. Using fourth-order perturbation theory
we find for N=5

x? x*(1 + cosd — 2 cos2d)

A=2+ 1-cosd ~ 4(1 -cos28)(1 - cosd)®’

(24)
where 6=27/N. Expanding g near x =0 we find
then

x

&= 2an/dx

1+cosb—2 cos2d
(1 = cosd)(1 — cos25)’

. 1-cosd +_3c_2_
4 8

which leads to

(25)

_ 1-cosd 72

8= Tg T aN?

and to Eq. (23). For N<5, X acquires other
terms. In particular, for N =3 there exists an
% term in A which leads to the exceptional be-
havior of Fig. 4.

The mean-field results are consistent with what
is known about the D =2 gauge theories. In parti-
cular, in the limit N~ Eq. (14) turns into the
U(1) gauge theory in 2 +1 dimensions®* with g6°
playing the role of e. Equation (25) leads then to
the expected result of a single phase in this limit.
The correspondence between the gauge and spin
models [Egs. (14) and (17)] holds only at D=2,
The above method can, however, be applied to the
global Z(N) theory, Eq. (17), in any space dimen-
sion D: k, remains unchanged but the x and y
parameters have to be redefined as

x +1y =2Dg(S), (26)

reflecting the effect of the neighbor sites. As a
result the energy density becomes

x2+y2

B Tone

@7
Since A is only a function of x and y, the mean-
field solution remains the same up to a rescaling
of the coupling g. Its implications are, however,

unacceptable at D=1 where it is known that Z(3)
possesses a second-order phase transition (at
g.=1) and the Z(N) model for N =5 has three
phases.® To see how such changes can reflect
themselves in our approach we study the Z(3)
model at D=1 with boxes of size n=2 and 3. The
box Hamiltonians are the generalizations of Eq.

(3):
n n-1
_h" = Z (Rj +R}) +gz (S} Sj+1 +S;+1 SI)
o =1

+x(S;+ST+5,+8D), v (28)

where we limited ourselves already to the case
v =0. Applying the variation procedure we find
for the nontrivial solution,

2 2 -
-nE, =\, - Xy s . (29)
where
X
x,= &, (30)

n

The calculation of A, involves the diagonalization
of a 4 X4 matrix for n=2 and a 10X 10 matrix
for n=3. The results are displayed in Fig. 5. It
is evident that g, indeed increases towards g=1
and the jump in the derivative of the energy den-
sity AdE,/dg decreases with n. Its values are
0.51, 0.17, and 0.12 for n=1,2, 3, respectively.
We again employ self-duality to obtain a better
estimate of E in the region g<1. This serves as
a reminder that the phase-transition point for
each E, is where the approximation is the worst.

-E
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FIG. 5. Consecutive improvements on the Z(3) vac-
uum energy density for D=1 show a decrease in the
discontinuity of dE/dg. 3 denotes the dual reflection
of Ea.
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Nonetheless, it is gratifying to see that AJE,/

dg decreases rapidly. It is interesting to note

that in the D=2 problem, AdE,/dg obtains the
values 1.09 and 0.94 for n=1 and 2, respectively.
Comparing with the rapid decrease found for D=1
this seems to imply that the mean-field result for
D =2 shows the correct qualitative features. Monte
Carlo calculations in 2 +1 dimensions have indeed
shown a first-order transition for the Z(3) model.®

IV. SUMMARY AND DISCUSSION

We have described a variation procedure whose
main advantage is its rapid convergence in the
ordered phase. This is because the order pa-
rameter played a key role in this procedure. If
one wants to apply such a method to a local gauge
theory one should first transform it into an equiv-
alent model which allows one to rely on local op-
erators which develop vacuum expectation values.
In D=2 space dimensions we have used duality to
transform the pure gauge theory into a spin theory
to which the method can be applied. For D=3
this is no longer possible. One can, however,
treat gauge theories with matter in this way. As
an example let us describe the situation for the
Z(2) gauge and matter theory. Its Hamiltonian
is given by’

—H=t Do)+ 300,040 ()
1 ?

D RACIES HLERALY (51)
i 1

where [0, 0,0, 0,](p) denotes the product of four

o, link operators around a plaquette and [7,0,7,](I)
is the product of a o, link operator and the two
vertex operators 7, associated with the end points
of the link. 7, and 7, are Pauli matrices as-
sociated with all vertices and representing the
matter field. The unitary gauge is given by

17,=1, 7,= [[ 0,0, (32)
151
where II,,, represents a product over all links
which intersect at the vertex 7. This leads to the
Hamiltonian

—H=t 30,00+ 5 Y0,040,0,p)
1 I

+ X o +x o0 (33)

i 13i 3

from which all gauge freedom was removed. Only
in the limit x - 0 it becomes again the pure Z(2)
gauge theory.

A mean-field approach to this problem was

presented in Ref. 8. It was very successful in
exhibiting the line of first-order transitions which
exist in this model.® This is a border line be- -
tween two regions where the operators o, ; obtain
different vacuum expectation values. From the
models discussed in Secs. II and III one may in-
deed expect that the variation method should be
successful in this case. The method does not
work well at a critical point because it is based
on a wave function which does not allow large-
scale fluctuations, However, at a first-order
transition point the large-scale fluctuations do
not play a crucial role and the system makes a
sudden transition from one kind of order to an-
other kind. Hence the variation method should
be more appropriate here than, for instance, a
renormalization-group approach.

It is of interest to compare the variational
approach with another method which provides
a lower (rather than upper) bound on E. This con-
sists of breaking the given H into box Hamil-
tonians in such a way that H becomes the direct
sum of these Hamiltonians. Thus, for example,
in the D=1 Ising problem, we can define

IR - IS S < UIPS
-H,= — !Z; o)+ —— g; 03()os(i +1).

(34)

If the first site of this finite chain is mapped onto
the site i of Eq. (1), then

H=Y_H@), (35)
i

where we assume periodic boundary conditions
before the length of the chain is taken to infinity.
E,, the lowest eigenvalue of H , is a lower bound
on E,

E>E,. (36)

The example of }—5‘3 is shown in Fig. 2. Es and E,
are comparable in qualtity where x =0, but once
the x # 0 solution of E, takes over it becomes a
much better estimate. Around g=1, E, is al-
ready an order of magnitude closer to E than

E,. The induced interaction terms and the varia-
tion procedure are responsible for this incredible
improvement in a finite-matrix approach to the
infinite-lattice problem. In fact the variation
procedure effectively introduces the infinity of
the lattice into the finite box Hamiltonian. Clearly,
no finite lattice problem can exhibit a real phase
transition. Therefore, none of the E, possess a
phase-transition singularity, whereas the E,
solutions of the variation procedure acquire this
singularity either at the origin of x (for a con-
tinous transition) or at a finite value of x for a
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first-order transition.

Finally, we should comment about the symmetry
of the problem and its spontaneous breaking.
Clearly, Eq. (1) possesses the global symmetry

0,~ 0y, O3~ —0,. @7

In the box Hamiltonians (3) this has to be augmented
by

X—=—x. (38)

This symmetry is finally manifested in the depen-
dence of E, on x* in the Ising problem. The Z(N)
problem has an analogous N-fold symmetry and
its E, has N equivalent minima in a circle of
fixed 7?=x%+y% In other words, the global sym-
metry of H reflects itself as an explicit symmetry
in the dependence of E, on the parameters which
were introduced in 4,

Svetitsky et al.’® have used a box Hamiltonian
with symmetry-breaking terms as a starting point
for a renormalization-group calculation. They
have restored the symmetry by keeping a sym-
metric set of wave functions in the iterative pro-
cedure of the renormalization group. Their work
triggered our investigation. Our aim was, how-
ever, different—to propose a systematic approach
which will be simple and transparent. The re-
sults prove that, indeed, using only a small clus-
ter of points one can observe, understand, and
estimate physical features of Hamiltonian lattice
theories.
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APPENDIX

The purpose of this appendix is to supply
proofs to some of the statements made in the
text. Let us start with the Ising model whose
box Hamiltonian was defined in Eq. (3) to be

n n-1

—h,= Y 0,(1) +g 2, 03()0 (i +1)
j=1

+x[05(1) +0,62)] . (A1)

This expression is invariant under the inter-
change (parity)

o(j) = ol —j). (A2)

Hence the eigenstates of ., will have a definite
parity. In both extreme ends of parameter space
(0 <g <), the ground state has positive parity.
Since this property is not changed by perturbation
theory, the ground state will always have positive
parity. As a result

<03(1)> =<03(”)> ’ (A3)

where the averaging is always done in the vacuum.
Denoting by A the highest eigenvalue of -%, and
using

:—;~=(03(1)+03(n)) " (A4)

which follows from Eq. (Al) we obtain

= (o1 (o) - (a5)
This property was used in establishing the physical
meaning of the parameter x.
Regarding x still as a free parameter we ob-
tained in Eq. (4) the expression for the energy
density

9 ) 2
E :x_x—;w"—(—*-) . @6)

The conditions for a local minimum of E, are

9E %n g oax
e ey o e =0 (&
wnﬁn_zﬂ - +_g_ﬂ‘
ax?  ox° 2 ox
3%\ g 9
+ ox? (—1+ 9 —x?)<0. (A8)

Since X is the highest eigenvalue of the Hermitian
matrix -#,, it obeys
RN

F >0. (49)

The equality is satisfied only in the extreme limit
g—o. Therefore, the solution of Eq. (A7) has to
obey

x= , (A10)

N|°n
2

which is Eq. (6) in the text. For condition (A8) to
be satisfied too, one has to simultaneously have

g
2 ax?

<1. (Aa11)

As g~ (where x —~g) one finds by perturbation
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expansion in g™! that 3g8%)/9x%*~ 0. Reducing g,
the inequality (A11) continues to be obeyed down
to a point where 8°E,/8x*=0. This is usually the
point where the trivial solution x =0 takes over.
If not, a first-order transition to the trivial so-
lution occurs before that point is reached, as in
the Z(3) case shown in Fig. 4.
Inserting Eq. (A10) into (A6) we obtain

xZ
nE,=\- - (A12)

The two functions of Eq. (A6) and Eq. (A12) are
equal only at the solution (A10). Nonetheless,

one can also use E, of Eq. (A12) as the function

to be minimized. Its first derivative leads directly
to Eq. (A10) and its second derivative is positive
if Eq. (A11) is satisfied. Hence the expression
(A6) and (A12) [or Eqs. (4) and (7) of the text] are
equivalent although they are different functions

of x and g.

Similar arguments hold for more complicated
cases. Thus in the mean-field calculation of Z(N)
we obtain from Eq. (20) the following necessary
conditions for a minimum:

8E a LN a E1oN
— = — =
e (Zg o x) o +(2g y) 0,

8y ~°) exdy
3E N\ 8%\ o 9%\
- '——‘L= —— — — =
3y (2g ox x) ox0y T (2g %y y) ay? =0

(A13)

Here A is the highest eigenvalue of the Hermitian
matrix -k, of Eq. (18) and, as such, obeys

827\>0 827t>0 82 82 82 2>0
ox2 ' By? -~ ox® oy® \exdy/ ~ °

(A14)

These inequalities (equality holds only in the
extreme limit of g) ensure that Eq. (A13) can be
solved only by

a a
2g 3;=x, Zg —537-=y N (A15)

which is the same as Eq. (21). The further con-
ditions for a stable minimum are best checked by
an explicit calculation which also shows if the
local minimum wins over the trivial solution,

x =y =0, which is valid in a range of small g.
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