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Abstract

In vitro neuronal networks are known to exhibit synchronized bursting events (SBE),
during which most of the neurons in the system spike within a time window of ap-
proximately 100msec. Such phenomena can be obtained in model networks based
on Markram-Tsodyks synaptic dynamics. We point out that in order to account
correctly for the detailed behavior of SBEs several modifications have to be imple-
mented in such models. Random input currents have to be introduced to account
for the rising profile of SBEs. Introducing inhomogeneity in the distribution of neu-
ronal thresholds and resistances we find that we are able to describe the profile of
activity within the SBE and the heavy-tailed distribution of ISI and TEI. Thus we
can account for the interesting appearance of Levy distributions in the data.
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1 Introduction

Synchronized activity of groups of neurons has been a subject of various the-
oretical and experimental studies. Recently, Segev et al. (1; 2; 3) performed
long-term measurements of spontaneous activity of in vitro neuronal networks
demonstrating a new form of synchronized activity. The experimental system
is a 60 multi-electrode two-dimensional (2D) array on which the biological sys-
tem is grown. Different morphological structures and sizes of networks were
explored. The raster plot of a typical network reveals the appearance of Syn-
chronized Bursting Events (SBEs), as in Fig. 1.
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Fig. 1: Typical activity of the experimental network. upper frame: The raster
plot reveals SBEs. lower frame: Detailed structure of an SBE.

The SBE involves rapid spiking of almost all the neurons in the network. It
starts sharply and decays during a 100msec period. The SBEs are separated
by long quiescence periods (1-10sec) during which there is almost no activity
except for few sporadic spikes. The mean rate of SBEs is 0.2Hz (up to factor
of 2). The distribution of the neurons and network activity were explored by
(2; 3). The inter-spike interval (ISI) and inter-event interval (IEI) distribution
reveal heavy tails. To study the latter, the distribution of the ISI and IEI
increments (AISI and AIEI), were investigated. They have zero mean and
are symmetric. The AISI distribution was well-fitted with Levy distribution
up to 100msec, while the AIEI was well-fitted over another 3 decades. These
observations imply that there is no characteristic time scale in the system.

Neural networks composed of integrate and fire (IF) neurons are able to gen-
erate bursting activity, as shown by Tsodyks et al. (6) in a model based on
frequency-dependent synapses (4; 5). Using numerical simulations, we inves-
tigate what parameters of this model affect the dynamics of in vitro neural
networks, and how they should be modified to account for the detailed spa-
tiotemporal structures and neuronal activity observed experimentally.



2 The Model

Our model is based on Integrate and Fire (IF) neurons with frequency depen-
dent dynamic synapses (6). The IF neuron is described by

d
Tmem * d_qt) =—v+ Rpem - (Isyn + Iext) (1)

where v, Tpem and Ry, are the voltage, time constant and resistance of the
cell membrane, respectively. Once v reaches a threshold the neuron fires and
v is reset 10 Upes.

These point-like neurons are endowed with dynamic synapses that are re-
sponsible for the appearance of activity bursts. The strength of a synapse is
described(4) by a parameter A;;, representing the efficacy of a synapse con-
necting a pre-synaptic neuron (j) to a post-synaptic neuron (i). Biologically,
the efficacy depends on the total number of ionic channels in the synaptic
terminal, the capacity to produce neurotransmitter vesicles and more. The
dynamics of the synapse is described by the following system of differential
equations:
dx z dy Y dz Y z

— = —u-z-o(t—t - = +u-z-0(t—t — =
dt Trec ( sp) dt Tina ( sp) dt Tina Trec

(2)

where z, y, z are state variables representing the fraction of ionic channels in
the synapse in the recover, active and inactive states, respectively, so z + y +
z = 1. u represents the fraction of utilization of the recover state by each pre-
synaptic spike. Once a spike from a pre-synaptic neuron arrives at the synaptic
terminal at time %,,, a fraction u of the recover state is transferred to the active
state, which presents the fraction of open ionic channels through which the
neurotransmitters can flow. The synaptic current from all pre-synaptic neurons
to the post-synaptic neuron is therefore: ijn = X751 Aij - yi; After a short
time 7;,, the ionic channels transfer to the inactive state. From the inactive
state there is a slow process of recovery 7,.. >> T, back to the recover
state, completing a cycle of the synapse dynamics. The above description (with
a constant variable u) captures well the dynamics of a depressing synapse.
The variable u describes the effective use of synaptic resources and could be
assigned to the probability of release of neurotransmitters or the concentration
of Ca?" ions in the synaptic terminal. In facilitating synapses each pre-synaptic
spike increases the probability to excrete neurotransmitters to the synaptic
cleft. In order to also capture the dynamics of facilitating synapses, another

equation was added to the model:

du . U
dt N Tfac

YU (1—u)-6(t —ts) (3)



where the constant parameter U determines the increase in the value of u each
time pre-synaptic spike arrives. The initial condition is that U = u. Note that
when 75, approaches zero facilitation is not exhibited. When a pre-synaptic
spike arrives, u is updated first, and then all other parameters (z, y, z).

Tsodyks et al. (6) have demonstrated that a network of IF neurons with dy-
namic synapses of the type described above generates synchronized bursts.
Their network was composed of 400 excitatory neurons and 100 inhibitory
neurons with probability of 0.1 for connection between two neurons. The net-
work was fed a fixed external input current I.,; which was generated by a ran-
dom flat distribution centered at firing threshold (with a range of 5% of the
threshold). The rate of SBEs obtained with this description is approximately
1Hz. After an SBE occurs it fades away rapidly since the fast firing neurons
with depressing connections cause a sharp decline of recovering synapses. Be-
tween SBEs there is a low-rate activity driven mainly by I.,;. After recovery
of synapses I, builds up and leads to a new burst.

Trying this approach for our system we find that it needs modifications. It is
difficult to find parameters that will fit both the rate of SBEs and the low firing
rate of neurons in between SBEs. Moreover, the profile of the experimental
SBE, i.e. the activity of neurons within this event, rises sharply and decays
exponentially, while the model as described so far leads to a Gaussian profile.
The modifications that we propose are discussed in the next section.

3 Importance of Noise, Inhomogeneity and Dynamic Thresholds

We investigate three modifications of the model described above. One relates
to the input current and the two others to removal of homogeneity in the
structure of the network. The simulations reported below were performed on
a network of 27 excitatory and 3 inhibitory neurons with 25% connectivity.
For simplicity we chose Vy, and V.., to be 1 and 0 respectively. Since 7;,,
determines the decay of synaptic currents which dominate during the SBE,
we increase T;,, to 10msec, which leads to wide bursts (of order 100msec).

We introduce Gaussian external noise with expectation value of y = 0.86mv
and standard deviation of o = 0.15mv. Each 10 time steps (of 0.1msec each)
a different value of external current is used. This leads to both quiescence
between successive SBEs, and to a sharp increase in neuronal activity once
an SBE happens. Since p is below threshold, the neurons’ firing rate is very
low, which enables the synapses to recover quickly and almost completely. At
the point where the synapses are recovered, a single spike from one of the
neurons in the network generates a large I, to its targets, thus increasing
the probability of an SBE. When the SBE fades away the synapses are in the



inactive state, hence the only activity is the one driven by the noisy external
currents. The expectation value and variance of the noise control the mean
rate of SBEs, that can be adjusted to fit the experimental values. However
the profile of the SBE is still problematic, it builds up too fast. Moreover, the
SBE sequence is nearly periodic.

To cure these problems we introduce two sources of inhomogeneity into the
system, in the values of resistances and of neuronal thresholds. Resistances
are randomly selected from a flat distribution. This allows to modify each
neuronal I,,,, so the SBE builds up slower. Adaptation and regulation are
well-known characteristics of neuronal activity. These effects can be modeled
by dynamic thresholds, which change as function of the neuronal firing rate.
We implemented this effect by the following equation.

dd; 6 —6i(t=0)

i - +5; - (6(t = tsp)) (4)

where S; is some stationary random function with flat distribution over the
interval [-0.06,4-0.04], and 7, equals the SBE time width (100msec). Note
that the threshold can be higher or lower than its initial value during the
SBE, after which it recovers back to the initial value. This mechanism allows
some neurons to increase or decrease their activity when they spike, which
results in a good match (over six decades) to the probability distribution
function of AISI and AIEI, and in perfect match to the experimental SBE
spatio-temporal structure, as demonstrated in Fig. 2.

4 Summary

We have accounted for experimentally observed features of SBEs using, as the
underlying model, the one by (6), based on IF neurons and dynamic synapses.
We had, however, to introduce several modifications. They included noisy
inputs, inhomogeneities in the parameters of the neurons (resistances and
thresholds) and activity dependent dynamics of the thresholds. The inhomo-
geneities allowed us to capture the correct profile of the SBE. The dynamic
thresholds gave us the possibility to account for Levy distributions of AISI
and AIEL
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Fig. 2: Effect of dynamic threshold and inhomogeneous resistances. Up-
per frame: The SBE profile is the same as the experimental one. Lower
frames: Simulated neurons fit the Levy distribution both in AISI(left) and

ATEI(right).
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