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Summary. Segmentation of a mixed input into recognizable patterns is a task that is
common to many perceptual functions. It can be realized in neural models through
temporal segmentation: formation of staggered oscillations such that within each
period every nonlinear oscillator peaks once and is dominant for a short while. We
investigate such behavior in a symmetric dynamical system. The fully segmented mode
is one type of limit cycle that this system can exhibit. We discuss its symmetry classifi-
cation and its dynamical characterization. We observe that it can be sustained for only
a small number of segments and relate this fact to a limitation on the appearance of
narrow subharmonic oscillations in our system.
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1. Introduction

Segmentation can be defined as the task of decomposing a pattern into subpatterns.
In our paradigm the pattern is an input to a computational system whose elements
(or particular combinations of them) are the subpatterns. This is the case for neural
systems that perform cognitive computational tasks and use segmentation as a first
processing step. Using the visual analysis of a scene as a convenient example, we
note that a complicated picture is built out of elements that can be recognized sep-
arately. These elements are perceived simultaneously before the general meaning of
the scene is grasped. Another example is auditory signal separation in the presence
of several simultaneous inputs, known as the cocktail party effect (von der Malsburg
and Schneider, 1986). We are able to listen to several conversations in parallel, at
least to the extent of recognizing key words, by segmenting the information. A third
example, taken from a third sensory function, is odor recognition and separation,
which is being investigated in animals (Hopfield and Gelperin, 1989).

We will use a restricted definition of segmentation. It will mean the task of
parallet retrieval of individual patterns that appear together in an input. To model
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segmentation one may use a dynamical neural system that, in the presence of a given
mixed input, can activate its various elements in such a fashion that they are all active
within some common time window yet each one is dominant at different phases of
this period. This implies the use of oscillatory phenomena, which are quite common
in neural systems. For a general review of oscillations and their possible functions in
neuronal systems, we refer to Gray (1994). Our definition of segmentation imposes
restrictions on the possible waveforms that could model this task. Each oscillator
should be dominant during a small fraction of the period and remain low for the
rest of the period, while other oscillators take over sequentially. We should empha-
size that phase-shifted identical waveforms will, in general, not fit our definition of
segmentation.

The realization of temporal segmentation by oscillatory networks was demon-
strated by Wang, Buhmann, and von der Malsburg (1990), by Horn and Usher (1991),
and by von der Malsburg and Buhmann (1992). The way it works is that the activities
of different memory patterns (clusters of oscillators) that are turned on by the input
exhibit staggered oscillations, i.e., different memories have different phases. More-
over, due to the nonlinear character of the system, each memory is dominant for
some very small time within the period that is relevant to information processing.
This behavior satisfies a necessary condition for segmentation as defined above.

In Wang et al. (1990) the elements of the networks are oscillators by themselves,
composed of excitatory—inhibitory pairs of neurons. Horn and Usher (1991) have
worked with neurons that possess dynamic thresholds and exhibit adaptation: they
vary as a function of the activity of the neurons to which they are attached. As such,
they introduce time dependence that can turn a neural network from a dissipating
system that converges onto fixed points into one that moves from one center of
attraction to another (Horn and Usher, 1989, 1990).

Both models share a common problem: they have a limited segmentation power,
i.e., for only a small number of common inputs they can lead to staggered oscillations.
Assuming all inputs are constant and of similar magnitude, it has been shown (Wang
et al,, 1990; Horn and Usher, 1991) that for an input of more than approximately
five memories the system will collapse. There is no general understanding why this
happens, yet it is interesting to note that similar limits exist also in real neural systems.
Miller (1956) has demonstrated in psychophysical experiments his 7 + 2 rule, which
states that a limit of such small numbers exists for attention and short-term memory.

In this paper we study the phenomenon of segmentation in the context of a
symmetric dynamical system. Rather than dealing with Hebbian cell assemblies of
memories, we restrict ourselves to single oscillating neurons. Segmentation is obtained
through phase separation of the different nonlinear neural oscillators, all of which
are driven by the same constant input. Full segmentation is only one of the many
possible limit cycles that our system possesses. We characterize its behavior by the
symmetry group under which this solution is invariant. This characterization, as well
as the computer search that is facilitated by the ensuing regular structures, is enabled
through the choice of a permutation symmetric system. Another motivation for this
choice is that all general types of waveforms are obtained as solutions.

Having a symmetric theoretical system allows us to investigate in a systematic
manner some of the general questions we are interested in. These include the relative
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importance of segmentation, its variation with the size of the probed system, and the
dynamical reason for the limit on temporal segmentation. We believe that the lessons
that one can learn from this theoretical model bear relevance to the phenomena
observed in other models and systems, which may be more complicated and less
symmetric than the model that we study.

Our model is explained in the next section. The following section describes the
symmetry considerations and dwells on the n = 3 case. Here we compare our results
with recent literature on dynamics of coupled nonlinear oscillators. In the next section,
dedicated to'n > 4, we point out the interesting results that deviate from what
is expected in weakly coupled systems (as in Ashwin and Swift, 1992). Finally we
show that the limited » range for which full segmentation can be obtained may be
understood in our model as a limited range for narrow subharmonic oscillations
induced by the nonlinear equations that we employ.

2. Neural Networks as Dynamical Systems

Neural networks may be naturally expressed as systems of coupled first-order differ-
ential equations. Consider, for example, a system of » excitatory neuronsi = 1,...,n
interacting with one inhibitory neuron while receiving external inputs /;:

du;/dt = —u; + m; —am — br; + I, 2.1)

dr;/dt =m; — cr;, (22)
n

dvjdt = —gv—em+ f) m; (2.3)

u; denote postsynaptic currents of excitatory neurons, whose average firing rates, or
activities, are
m; =01+ e_ﬁ"")_l, (2.4)

whereas v and m are analogous quantities for an inhibitory neuron that induces
competition between all excitatory ones. The specification of excitatory and inhibitory
refers to the positive or negative signs with which the relevant activities couple into
equations (2.1) and (2.3). r; are dynamical thresholds that integrate over the activity of
the neuron in time. The threshold rises when the neuron is active (i.e., its firing rate is
high) for a long time, thus contributing to the negative terms in the time derivative of
the current «;. With a proper choice of parameters, the threshold quenches the activity
of the neuron and leads to oscillatory behavior. We can think of a pair (u;, r;) as the
basic nonlinear oscillatory unit of this model. q, ..., g and 8 are fixed parameters.
Let us choose /; = I as a common external input, in which case the system
becomes symmetric under the interchange of any two neurons i < j. This means
that all oscillators are identical. As explained in the Introduction, this choice is mo-
tivated by theoretical considerations: obtaining general types of solution and being
able to trace them systematically. In general, this dynamical system flows into a set of
dynamic attractors. We will work in a regime where no fixed points exist. For three
excitatory elements and constant input, we find then the following types of attractors:
(a) common oscillatory mode; (b) two of the elements oscillate in phase and a third



362 D. Horn and 1. Opher

out of phase (this solution has multiplicity 3 because we can choose two neurons out
of three); (c) staggered oscillations of all elements (this solution has multiplicity 2
because there are two possible arrangements of the three neurons in a circle). The
last type fits our understanding of temporal segmentation. Examples of all limit cycles
are shown in Figure 1, which displays different solutions of m;(t) obtained for some
fixed values of parameters in the system of equations, but different initial conditions
of the three excitatory neurons. All solutions shown in this work were obtained using
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Fig. 1. Limit cycles of the n = 3 system. Parameters were the following: a = 0.5, = 0.4,¢c =
02,g=0.1,e=1.1, f =0.5, and 8 = 9. The different m; are plotted versus time after tran-
sients have died away. The time scale is arbitrary but is chosen to be the same in all figures. Each
m; is represented by a different symbol. The limit cycles are (a) fully synchronous, a waveform
which we denote by [123] and that has S; symmetry (here I = 0.8). (b) partial synchronous
waveform {1,2,34] forming the basis of an $, symmetry ({ = 0.4); (c) full segmentation, [1,2,3]
(I =04).
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the fourth-order Runge—Kutta method for integrating a set of differential equations
with time steps of d¢ = 0.005. Smaller time steps led to the same results.

We find it useful to introduce a notation for the repeated structure in the limit
cycle. Let us start with case (b), where m; = m while m3 is different (and, incidentally
peaks later in the cycle, a fact which will not be revealed by our notation). The
notation we use is [142,3], where « and B refer.to the two different waveforms
of the same period. Case (c) will be denoted by [1,, 24, 3¢], where the commas
separate the overall period into substructures of equal temporal behavior. This can
also be represented by [1, 2, 3] because all waveforms are of the same shape. Finally,
case (a), which shows a limit cycle in which all m; are equal, will be denoted by [123],
neglecting the common index «, which becomes superfluous.

In order to estimate the basins of attraction of the various solutions, we have
chosen random initial conditions over the seven dimensional space of initial conditions
of the n = 3 problem and have measured the probability of flow into the different
limit cycles. Choosing the three u;(0) uniformly in the domain [-1, 1], the three
r;(0) in the domain [0,1], and v(0) in the domain [-1,1], for I = 0.4, we find
P(a) = 0, P(b) = 0.55, and P(c) = 0.45. This means that every one of the three
attractors of type (b) and two attractors of type (c) have approximately the same size
basin attraction.

It should be emphasized that the choice of parameters in the foregoing examples
is quite arbitrary. The phenomena exist within a wide window of parameters. For
example, dominance of modes (b) and (c) is obtained for 0.3 < I < 0.65 and 0.5 <
a < 0.7. We will continue and stick to the particular parameters specified in these
examples while varying » in the study of our model. » was defined as the number of
excitatory neurons in our model. If instead of choosing a common input I; = I for all
neurons, we present the input only to a subset, then all other excitatory neurons will
remain inactive. Hence, for all practical purposes, » may be regarded as the number
of excitatory neurons that are influenced by the common input.

3. Symmetry Considerations

The attractors described in the previous section can be specified by regarding their
invariance under symmetry operations. There are two types of symmetries that come
into play: the permutation symmetry group S, of the » nonlinear oscillators (excita-
tory neurons) and the finite translation operations Z,;, which map between g sections
of the basic cycle, i.e., translate 1 — ¢ + /g, where  is the period of the limit cycle.
Although the system of differential equations is invariant under S,, its solutions do
not have to obey the full symmetry. They exhibit invariance under isotropy groups,
which are subgroups of S, x T, where T is the group of continuous time translations.
In the examples shown in Figure 1, only the [123] configuration of case (a) is in-
variant under the permutation group S3. Case (b) is invariant under an S, subgroup
[generated by the permutation (12)]. Case (c) is invariant under a cyclic subgroup
of the permutations and translations X3 C C3 x Z3, where C3 denotes a cyclic sub-
group of S5 that is composed of the elements {I, (123), (132)}. X3 consists also of
three elements; hence it is isomorphic to C; and is generated by a permutation (123)
multiplied by the translation of /3. ‘
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‘

This group-theoretic analysis follows the methodology of Golubitsky et al. (1988)
and Ashwin and Swift (1992). An application to neuronal circuitry has been suggested
recently by Collins and Stewart (1993), who have shown how the symmetries of a small
neural network can be exploited to sort out biological operations (animal gaits in their
paper). This is quite natural if we assume that the network controls these operations,
with each network pattern corresponding to a particular behavioral pattern. Our
interest lies in a different direction. We would like to understand the limitations on
a particular mode—the segmentation mode—which, in the preceding example, obeys
the symmetry 3.

Before continuing to larger n, let us direct our attention to the symmetry reduc-
tion involved in the examples of n = 3 (three nonlinear oscillators). The situation is
summarized in Chart 1, where arrows represent reduction from a symmetry group to
its subgroup.

All symmetry groups that we encounter are subgroups of S3 x T, where T is
the continuous group of time translations. Clearly there is only one attractor (the
common fixed point) that can be invariant under the whole group. Al limit cycles
are invariant, by definition, under translation by 7. Some exhibit a substructure that
allows for symmetry operations that combine permutations and finite time translation
operations by t/q. The latter is realized by T, = exp(é 3‘17), which generates the cyclic
group Z, when operating on a periodic waveform m(t): T,m(t) = m(t + t/q). All
direct products of permutation symmetries with Z, are put in parentheses because
they cannot be realized as isotropy groups. To see why this is so, consider the unit
element of the group that is multiplied by Z,. This would introduce group elements
of shifts by /g, which cannot be invariance operations if the smallest period is .
One possible isotropy group is not realized in our numerical studies. This is 25,
which would be a symmetry group of a structure like [143g, 2,35], which we have not
obtained. That such an isotropy group is an allowed symmetry for a system of three
coupled oscillators, was proved and demonstrated by Golubitsky and Stewart (1986),
who considered systems with dihedral symmetry (D,), which for n = 3 is isomorphic
to Su. In addition, we should also mention the completely asymmetric situation of
[12243,], which is also not obtained. The realized symmetries within the parameter
space that we have studied are, as explained before, S3, $;, and ¥3, acting on the
cases (a) (b) and (c) displayed in Figure 1.

S xT
e { N
83 (83 x Z3) (83 x Z3)
{ i {
8 (52 x Z3) (C3 x Z3)
i 1
N s

Chart 1. Relation between symme-
try groups for n = 3.
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It is interesting to compare our analysis with that of Ashwin and Swift (1992).
They prove that for n weakly coupled symmetric oscillators the different solutions
correspond to all distinct ways of writing n = m(ky + k2 + - - - + k;), where I, m, and
k; are integers with ky > k2 > --- > &y > 1. The fully symmetric case (a) corresponds
in their notation to m = 1, k = 3. Case (b) corresponds tom =1,k; =2,k =1, and
case (c) corresponds to m = 3,k = 1. As can be seen, m corresponds to our number
of temporal divisions (number of commas +1), and the &; denote the degeneracies
of possible waveforms (our «, 8). There is only one other case that fulfills their
conditions, corresponding to the asymmetric state of m = 1, ky = kp = ks = 1. Their
symmetries do not include the case of ¥, which could operate on a structure like
[123p, 2438]. The reason is that they treat the weakly coupled case; hence they assume
that all components display the same periodicity. A structure that is invariant under
¥, involves different periodicities. This would not be the case for the example cited
here. Admittedly we do not obtain such a solution in our analysis of n = 3; however,
different periodicities show up for higher » values, as will be demonstrated below in
the subsequent text.

4. Higher n Values

Increasing the number of excitatory neurons from three to four more than doubles the
number of possible symmetry groups of the limit cycles. Sy, the permutation symmetry
of four objects, has 24 elements. Its reduction into subgroups that are relevant to our
problem is described in Chart 2.

The subgroups of S; include, in addition to lower permutation groups S, and
cyclic groups Cy,, dihedral groups D,,. The ones appearing in Chart 2 are D; = $ xS,
an example of which is {/, (12), (34), (12)(34)}, and D4, which can be composed of
{1, (12), (34), (12)(34), (14)(23), (13)(24), (1423), (1324)}. D, could be the symmetry
of a structure of the type [142,3p4g], which, however, is not realized in our nu-
merical evaluation. D4 leads to a possible symmetry group of our problem by outer
multiplications with elements of Z,. The result, which we cail A4, is such that the

SaxT
'd ‘. ~ ~
$exZ) ($axZ) (SexZy)
< 4 Ve { { {
D; S5 ($B5xZ2) (DaxZy) (S5x2Z3) (CaxZy)
{ { { 4 4
S ($2xZy) Ay (G5 x Z3) P
{ {
A s

Chart 2. Relation between symmetry groups for n = 4.
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Fig. 2. Three types of limit cycles of the » = 4 problem: (a) Fully synchronous, [1234]; (b)
partial segmentation, [12,34]; (c) full segmentation, [1,2,3,4]. Parameters are the same as in the
n = 3 problem shown in Figure 1 except for (a) I; = 0.8; (b) a = 0.55, and (c) a = 0.65,
I; =05.

four elements of D, which do not belong to its D, subgroup are multiplied by a
shift of 7/2. Clearly A4 is isomorphic to D4. An example of an oscillatory struc-
ture that is invariant under this group is [142,, 304+], which we obtain as a possible
limit cycle of this problem. This is shown in Figure 2 together with other possi-
ble solutions: The fully segmented structure [1, 2, 3, 4], which is invariant under
T4 = {1, (1234) x Ty, (13)(24) x T», (1432) x T43}, and the fully synchronous [1234].
Other solutions that we find, that are of the kind forbidden by Ashwin and Swift,
are shown in Figure 3. These include waveforms of the type [1a4g, 2448, 3445]. This
is quite evident in Figure 3a. It takes a second look to convince oneself that Figure 3b
fits the same description. In the second example the basic waveform has two peaks of
different heights for each component. The isotropy group of these structures is X3,
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Fig. 3. Two solutions of the n = 4 problem that can be
obtained only for strong interactions (@ > 0.54). Both fit
the description [1,44, 2,48, 3043].

generated by the cyclic permutation (123) and a time shift of t/3. These examples
differ from all previous ones by the different periods of their components and also
by the different sizes of amplitudes. The latter is a natural consequence of the fact
that no symmetry relation can exist between components that have different periodic
structures. The phenomenon of multiple periods is a result of strong coupling in the
system. In our case this comes about through the parameter a in equation (2.1). The
solutions shown in Figure 3 were obtained for a = 0.65; they disappear for a < 0.54.

Solutions of the type shown in Figure 3 become abundant for higher » values.
An example is presented in Figure 4 which displays a result obtained in the case
n = 6, which has three large waveforms and three small ones. Whereas the large
amplitudes possess an effective T3 symmetry, the three small ones are not related by
any obvious symmetry operation. In fact, their periods are much larger than those of
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Fig. 4. A quasiperiodic solution of the n = 6
problem that displays partial segmentation.
The three large amplitudes (symboled lines)
form a X; basis, whereas the low amplitudes
(solid lines) display very different periodici-
ties.

the large waveforms. It seems, therefore, advantageous to concentrate on the leading
waveforms only and regard them as a quasiperiodic feature of this solution.

We are particularly interested in the solutions that exhibit full segmentation.
All the examples that we studied are characterized by an overall period z, which is
roughly the same, independent of the number n of excitatory oscillators. In the fully
segmented solutions the individual m; peak for a time of 7/» and stay quite low for the
rest of the time. This mode of oscillation will be explained in the next section. There
is a limit on the number of elements that can exhibit full segmentation. The highest
n for which we find a fully segmented solution is » = 5. This is a numerical result
obtained by a search in a wide parameter range. For higher n values we encounter only
partial segmentation: either a quasiperiodic behavior in which some of the excitatory
neurons participate, as in Figure 4, or segmentation of clusters of excitatory neurons,
as in Figure 5, which corresponds to a waveform [12, 34, 56] for n = 6.

5. Segmentation as viewed by the Single Oscillator

In the system of equations that we study here, the interaction between all elements
is provided by the inhibitory unit (2.3). The individual excitatory neuron i, described
by (2.1) and (2.2), is influenced by all other units through the amplitude m of the in-
hibitory neuron in (2.1). The behavior of each m; in any given solution can therefore
also be viewed as the response of equations (2.1) and (2.2) to a driving term am(t).
All the waveforms that we encounter have an overall period that is roughly the same
as that of the free oscillator (a = 0). In a segmentation mode m(t) oscillates with a
period of z/n. This can be seen in Figure 6, where we show m;(¢) and m(z) for the
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i

Fig. 5. Partial segmentation in the n = 6 problem, through
the formation of clusters of pairs of patterns that vary syn-
chronously. This fits the description [12, 34, 56].

n = 5 segmentation. m; has a waveform of period r whose local peaks have widths
of 7/n, as already emphasized in the previous section. If we think of m as the driving
term, then the phenomenon observed here is that of subharmonic oscillation, which
is known to exist in nonlinear oscillating systems (Mandelstam and Papalexi, 1932;
Hayashi, 1964). ‘

Fig. 6. The variation of m(¢) (solid line) and
m(t) (the inhibitory amplitude; dotted line) in
the n = 5 fully segmented limit cycle. m;(¢t)
oscillates with a frequency that is 1/5 of the
frequency of the inhibitory neuron. This is ev-
idently a subharmonic behavior.
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A stable linear system follows the frequency of the driving term. Only nonlinear
systems exhibit different periodic solutions, including the subharmonic ones that are
of interest to us. We say that the response is subharmonic of order 1/» when the
system oscillates with frequency f/n as a response to a driving term of frequency f.
The nonlinear characteristics of the system determine the possible orders of the
subharmonic oscillations. In particular, a subharmonic solution of order 1/v is likely to
occur when one of the terms of the nonlinear function has the power v. Its realization
depends, however, on stability conditions that have to be met. Note that any such
solution has a v-fold degeneracy determined by the phase, which, in turn, strongly
depends on the initial conditions. Full segmentation is a 1/n-ordered subharmonic
solution where each oscillator makes a different phase choice. Note that in our case
the nonlinearity is that of a sigmoid function that, in principle, contains all powers.

A full segmentation solution of order » has to satisfy two conditions:

1. Each m; is a subharmonic of order 1/n with a different phase choice.
2. Each m; is active during approximately t/n every cycle and stays quite low during
the rest of the cycle.

In other words, full segmentation is a 1/n subharmonic response of each nonlin-
ear oscillator with a peak width of approximately t/n, which we call a narrow subhar-
monic. To test the subharmonic response of the system, we investigated the solutions
of (2.1) and (2.2) when the driving term am(¢) is replaced by a constant-+sinusoidal
amplitude with a tunable frequency. We were able to generate narrow subharmonic
solutions of order 1/2 to 1/5. From 1/6 onward the subharmonic solutions were no
longer narrow, i.e., the peak width of m;(¢) was much larger than z/n (where 1/n is
the order of the subharmonic solution). This explains why a full segmentation solution
is limited in our system to n < 5.

6. Summary

We have investigated the phenomenon of segmentation in a framework of a permu-
tation symmetric oscillatory neural system using a constant input.

We saw that full segmentation is only one of the possible limit cycles that can
be reached in this system. This is quite obvious from the analysis of n = 3 and 4
and from the other examples that we have described. The symmetry imposed on the
equations of motion (2.1) to (2.3) enabled us to compare the different modes of os-
cillation for a fixed number of oscillators (n), as well as to compare the same mode of
oscillation (e.g., full segmentation) for different » values. The full segmentation mode
is characterized by an invariance group that involves direct products of permutations
and time translations. It is an extreme example of symmetry breaking in our system
because no degeneracy is left in the resulting solution.

We view segmentation as an important mode of oscillation because of the special
role it may play in the analysis of mixed signals. Therefore, we look for an under-
standing of the limit on the number of segments. We find that it is related in our
system to a limitation on the order of a narrow subharmonic solution. When the
number of oscillators is larger than five, the mode of oscillation is, in general, partial
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segmentation, i.e., there exist either clusters of oscillators or leading and nonlead-
ing waveforms. In either one of these cases the number of separate phases does not
exceed five. The correspondence between full segmentation and subharmonics ex-
presses another precondition for segmentation—nonlinearity. Both phenomena are
indeed found only in nonlinear systems.

It is interesting to note that a similar limit on segmentation was reported by
Hadley and Beasley (1987) in their study of arrays of Josephson junctions. They
report that their system displays simple staggered oscillations only up to n = 3. For
higher n values they obtain only more complicated phase distributions.

Although we believe that the general conclusions about the existence of a limit
on staggered oscillations—the phenomenon we call segmentation—is valid, we should
emphasize that our detailed results are specific to our model. The structure of the
nonlinear oscillators is relevant to the specifics of the solutions, in general, and seg-
mentation, in particular. Realistic neural systems are not expected to be permutation
symmetric, and their inputs may well change with time. Nonetheless, the model shows
us the general types of structures that can occur. The symmetry analysis can serve
as a classification scheme. We have learned that some of the interesting structures
come from the strong coupling domain and are therefore missed by mathematical
analyses of weakly coupled oscillators. Segmentation is a very special case. In our
system we were able to show its relation to subharmonic oscillations, thus explaining
the intriguing limitation on the number of segmented sectors.
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