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Abstract

We investigate the formation of a Hebbian cell assembly of spiking neurons, using a temporal synaptic learning curve that is based
on recent experimental findings. It includes potentiation for short time delays between pre- and post-synaptic neuronal spiking, and
depression for spiking events occurring in the reverse order. The coupling between the dynamics of synaptic learning and that of
neuronal activation leads to interesting results. One possible mode of activity is distributed synchrony, implying spontaneous division
of the Hebbian cell assembly into groups, or subassemblies, of cells that fire in a cyclic manner. The behavior of distributed
synchrony is investigated both by simulations and by analytic calculations of the resulting synaptic distributions. © 2001 Elsevier

Science Ltd. All rights reserved.

1. Introduction

Consider the process of formation of a Hebbian cell
assembly. Conventional wisdom would proceed along the
following line of reasoning: start out with a group of
neurons that are interconnected, using both excitatory and
inhibitory cells. Feed them with a common input that is
strong enough to produce action potentials, and let the exci-
tatory synapses grow until a consistent firing pattern can be
maintained even if the input is turned off. Using theoretical
models of neuronal and synaptic dynamics, we follow this
procedure and study the resulting firing modes. Although
the model equations may be an oversimplification of true
biological dynamics, the emerging firing patterns are intri-
guing and may connect to existing experimental observa-
tions.

Recent studies of firing patterns by Brunel (1999) have
shown in simulations, and in mean-field calculations, that
large scale sparsely connected neuronal networks can fire in
different modes. Whereas strong excitatory couplings lead
to full synchrony, weaker couplings will usually lead to
asynchronous firing of individual neurons that can exhibit
either oscillatory or non-oscillatory collective behavior. For
fully connected networks, there exists evidence of the possi-
bility of cluster formations, where the different neurons
within a cluster fire synchronously. This phenomenon was

* Corresponding author.

analyzed by Golomb, Hansel, Shraiman and Sompolinsky
(1992) in a network of phase-coupled oscillators, and was
studied in networks of pulse-coupled spiking neurons by
van Vreeswijk (1996) and by Hansel, Mato and Meunier
(1995).

In contrast to previous studies, the present investiga-
tion concentrates on the study of a network storing
patterns via Hebbian synapses. We mainly concentrate
on a single Hebbian cell-assembly, where full connectiv-
ity is assumed between all excitatory neurons. We
employ synaptic dynamics that are based on the recent
experimental observations of Markram, Liibke, Frotscher
and Sakmann (1997); Zhang, Tao, Holt, Harris and Poo
(1998). They have shown that potentiation or depression
of synapses connecting excitatory neurons occurs only if
both pre- and post-synaptic neurons fire within a critical
time window of approximately 20 ms. If the pre-synaptic
neurons fires first, potentiation will take place. Depres-
sion is the rule for the reverse order. The regulatory
effects of such a synaptic learning curve on the synapses
of a single neuron that is subjected to external inputs
were investigated by Song, Miller and Abbott (2000)
and by Kempter, Gerstner and van Hemmen (1999).
We investigate here the effect of such a rule within an
assembly of neurons that are all excited by the same
external input throughout a training period, and are
allowed to influence one another through their resulting
sustained activity. We find that this synaptic dynamics
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facilitates the formation of clusters of neurons, thus split-
ting the Hebbian cell-assembly into subassemblies and
producing the firing pattern that we call distributed
synchrony (DS).

In the next section we present the details of our
model. It is based on excitatory and inhibitory spiking
neurons. The synapses among excitatory neurons undergo
learning dynamics that follow an asymmetric temporal
rule of the kind observed by Markram et al. (1997);
Zhang et al. (1998). We study the resulting firing
patterns and synaptic weights in Sections 3 and 4. The
phenomenon of distributed synchrony is displayed and
discussed. To understand it better, we perform in
Sections 5 and 6 a theoretical analysis of the influence
of an ordered firing pattern on the development of the
synaptic couplings. This is derivable in a two-neuron
model, and is compared with the results of simulations
on a network of neurons. In Section 7 we proceed to
demonstrate that similar types of dynamics may appear
also in the presence of multiple memory states. A first
version of our model was presented in Horn, Levy,
Meilijson and Ruppin (2000).

2. The model

We study a network composed of Ny excitatory and N,
inhibitory integrate-and-fire neurons. Each neuron in the
network is described by its subthreshold membrane poten-
tial Vj(#) obeying

Vi) = — TL Vi(t) + RI(0), ey

n

where 7, is the neuronal membrane decay time constant. A
spike is generated when V() reaches the threshold 6, upon
which a refractory period of 7y sets in and the membrane
potential is reset to Ve Where 0 < Vi < 6. For simplicity
we set the level of the rest potential to 0. [; (¢) is the sum of
recurrent and external synaptic current inputs. The net
synaptic input charging the membrane of excitatory neuron
i at time 7 is:

N M
RI(t) =Y wy() > 8t = 1; — 745) = > TR D 8t — 1 — 7450 + 1",
j I k

m

2
summing over the different synapses of j=1, ..., Ng
excitatory neurons and of k=1, ..., N; inhibitory

neurons, with synaptic efficacies wy;(¢) and J,-kEI respec-
tively. The sum over I(m) represents a sum on different
spikes generated at times 7, (ff') by the respective
neurons j(k). Iy, the external current, is assumed to be
random and independent at each neuron and each time
step, drawn from a Poisson distribution.

Similarly, the synaptic input to the inhibitory neuron i

at time ¢ is

Ny

Ng
RI(t) =Y T 81— tj = 74p) = D g D 81 — ' — 1) + 1",
1 m

J k

3

where I' is the external current.

We assume full connectivity among the excitatory
neurons, but only partial connectivity for all other three
types of possible connections, with connection probabilities
denoted by C*, C" and C". In the following, we will report
simulation results in which the synaptic delays 74 were
assigned to each synapse, or pair of neurons, randomly
chosen from some finite set of values. Our analytic calcula-
tion will be done for one single value of the synaptic delay
parameter.

Synaptic efficacies between two excitatory neurons, wy,
are potentiated or depressed according to the temporal firing
patterns of the pre- and post-synaptic neurons. Other synap-
tic efficacies, namely those involving at least one inhibitory
neuron, JEI, J and JH, are assumed to be constant. Each
excitatory synapse obeys

1
Wi (t) = — = wi(t) + Fy(1), 4)

where we allowed for a synaptic decay constant 7,. We will
discuss situations where it is infinite, but consider also cases
when it is finite but larger than the membrane time constant
Tn. Wi() are constrained to vary in the range [0, Wia]. The
change in synaptic efficacy is defined by

Fy(t) = D [8(t — tHKp(t; — 1) + 8(t — t)Kp(t; — )], (5)
k,l

where Kp and Kp are the potentiation and depression
branches of a kernel function.

Following Markram et al. (1997); Zhang et al. (1998) we
distinguish between the situation where the post-synaptic
spike, at #f appears after or before the pre-synaptic spike,
at #/. This distinction is made by the use of asymmetric
kernel functions that capture the essence of the experimental
observations.

Fig. 1 displays the two kernel functions that are used for
analysis and simulations: a continuous function

K, (A) = —cAexp[—(aA + b)z] 6)
as plotted in Fig. 1(a), and a discontinuous function
Kp(A) = aexp[cA] if A< —e€
Ky(A) = {1 Kp(A) = —bexp[—cA] if A> € @)
0 otherwise

plotted in Fig. 1(b). For both kernels the constants a, b, ¢
change the span, asymmetry and strength of the kernels. In
the discontinuous kernel € sets the minimal phase shift that
the kernel is sensitive to. The shapes of the kernels were
determined so that their time windows match the typical
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Fig. 1. Two choices of the kernel function whose left part, Kp, leads to potentiation of the synapse, and whose right branch, Kp, causes synaptic depression.

inter-spike intervals of the excitatory neurons, characteris-
tically between 10 and 30 ms in the simulations that we will
report below. As a result, the span of the kernel is somewhat
smaller than the experimentally observed ones. In future,
more realistic neuronal dynamics, one should aim for both
larger time-span of the kernel and lower sustained firing
rates of excitatory neurons, thus getting closer to experi-
mental observations.

It should be noted that the synaptic dynamics of Eq.
(4) do not include short-term synaptic depression due to
high frequency of pre-synaptic neuronal firing, such as
in Markram and Tsodyks (1996); Abbott, Sen, Varela
and Nelson (1997). Neither do the neuronal dynamics
include neuronal regulation, a mechanism proposed by
Horn, Levy and Ruppin (1998) and termed synaptic
scaling by Turrigiano, Leslie, Desai, Rutherford and
Nelson (1998) who observed it experimentally. These
two types of effects (see the recent review by Abbott
& Nelson, 2000) should be added to the spike-timing
dependent synaptic plasticity (STDP) that is studied
here. In the present paper, we study the interplay of
STDP with simple integrate-and-fire neuronal dynamics.
We limit ourselves to only part of synaptic and neuro-
nal dynamics in order to be able to discern specific
trends and obtain new qualitative results. The latter
will then have to be studied in improved, more biolo-
gical, models.

3. Dynamical attractors in Hebbian assemblies

We start by studying the behavior of the network
described in the previous section using numerical simula-
tions. We look at the types of dynamical attractors the
excitatory network flows into, starting from random firing
induced by stochastic inputs. We find that in addition to
synchronous and asynchronous dynamical attractors, a
mode of distributed synchrony (DS) emerges. In this

state, the network breaks into n groups, or subassemblies,
of neurons, each of which fires synchronously.

Fig. 2(a) shows an example of asynchronous firing and
Fig. 2(b) shows a distributed synchrony mode which forms a
4-cycle. These modes of firing emerge spontaneously as an
outcome of the neuronal and synaptic dynamics. The synap-
tic efficacies w;; are taken to be initially random and small.
The firing dynamics induced by the external input change
the synaptic efficacies so that some concentrate near the
upper bound and some near zero. In Fig. 3 we show the
excitatory synaptic matrices that correspond to the patterns
of firing presented in Fig. 2.

The synaptic matrices shown in Fig. 3 are displayed in a
basis that corresponds to the order of firing of the neurons.
Thus, we obtain a clear block structure for the case of
distributed synchrony in Fig. 3(b). The off diagonal strong
couplings signify that each coherent group of neurons feeds
the activity of groups that follow it. This block form is
absent when the network fires asynchronously, as shown
in Fig. 3(a).

In all simulations we tested networks of Ng = 50 or 100
excitatory neurons and N; = 50 inhibitory neurons. J*' and
J" were chosen to be 0.5 and J'® was 0.5 for Nz = 50 and
0.25 for Ng = 100. C*', C'"* and C" were taken to be 0.5. 7,
was chosen to be 10 ms for the excitatory and inhibitory
neurons. The threshold parameter § was 20 mV, V. was
10 mV and the refractory period 7z was set to 2 ms. The
external inputs to the excitatory and inhibitory neurons were
Poisson generated with averages of (I¥) = A and (I') = A,.

Turning the excitatory external input currents off or
decreasing their magnitude after a while, led to sustained
firing activity in the range 80—150 Hz. The firing frequen-
cies depended on the dynamical state the system flows into.
For instance, the mean firing rate was kept approximately
130 Hz in a 3-cycle mode and 100 Hz in a 4-cycle for a
common synaptic delay of 2.5 ms. The synaptic decay
constant 7; was taken to be larger than 100 ms. W,,,, was
set to 1 when Ng = 50 and to 0.5 when Ng = 100.
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Fig. 2. Two firing patterns observed in a network of excitatory and inhibitory integrate-and-fire neurons. A raster plot of 25 out of Ng neurons is shown. (a)
Asynchronous firing mode in a network of Ng = 100. (b) 4-cycle distributed synchrony mode in a network of Ng = 50. These simulations used the continuous
kernel and common synaptic delay 74 = 2.5 ms. Each dot corresponds to the firing of a spike by one excitatory neuron. The simulation time step was 0.1 ms.

(a)

Fig. 3. The excitatory synaptic matrices, of sizes Ng X Ng that were created by the dynamics that led to the firing patterns shown in Fig. 2. (a) The synaptic
matrix when the excitatory neurons fire asynchronously. (b) The 4-cycle synaptic matrix. The gray scale shading represents the magnitude of the synapses:

with white representing the upper bound and black the lower bound.

4. Stability of a cycle

A stable DS cycle can be simply understood when a
single synaptic delay sets the basic step, or phase difference,
of the cycle. When several delay parameters exist, a situa-
tion that probably more accurately represents the a-function
character of synaptic transmission in cortical networks,
distributed synchrony may still be obtained. In this case,
however, the cycle may destabilize and regrouping may
occur by itself as time goes on, because different synaptic
connections that have different delays can interfere with one
another. Nonetheless, over time scales of tens of millise-
conds, grouping is stable. Fig. 4 shows such behavior.

5. The two-neurons synaptic matrix

The values of synaptic connections between excitatory

neurons are governed by the kernel function K (t]l- — ) and
by the temporal firing patterns of the two neurons. In this
section, the synaptic matrix of a two-neuron system is
analyzed in terms of these variables. We look at neurons i
and j and at the synaptic connections wy; and wj; between
them. The stationary joint density function f(w;;, w;;) of the
two synaptic connections is calculated. This function is the
probability of finding synaptic connections w; and wy
between the pair of neurons when the system is in its steady
state. The neurons are assumed to fire with frequency v(f)
keeping a phase shift 7m(f) between their firing times.
Although we allow for these two variables to be time depen-
dent, we will look for stationary solutions.

The dynamics are described in a two-dimensional vector
form, where Eq. (4) is rewritten as:

. 1
W) = — ?W(t) + F(). ®)
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Fig. 4. Raster plot of Nz = 100 neurons displaying unstable distributed synchrony. (a) Coherent groups of neurons are formed by synaptic dynamics with
discontinuous kernel function (a = 0.075, b= 0.05,c=1.2ms "', € = 0.5 ms and 7, = o). (b) This grouping structure changes gradually after 100 ms or so.
(c) The data of (b) are redisplayed in a new basis showing that regrouping of distributed synchrony took place. The synaptic delays were randomly chosen to be

either 1, 2, or 3 ms.

The boldface notation stands for the vectors

(o) 7= (50)
W@ = s F() = .
wji(1) F(®)
Eq. (8) describes the dynamic behavior of the synaptic
matrix between the two neurons. The dynamics can be
well approximated by a stochastic process in which the
system, excited by stochastic inputs, is in a stable state of
distributed synchrony. This approximation is valid under the
following two assumptions. First, the firing pattern of the
network is almost stable, that is, the frequency v is constant
in time and the phase shift 1(r) has small fluctuations.
Second, the synaptic changes are slow compared to the
neuronal firing rate. In this slow dynamics, the number of
contributions from Fy(#) during a synaptic integration time
interval of the type used in our simulations may be esti-
mated to be several tens, justifying the replacement of
these contributions by a stochastic Gaussian process as
follows.

Let us define the vector F of means of F(r) and the covar-
iance matrix C of F(7)

€))

MFE, OF. Ofp.OF.P
7 ij ij i L
F= , C= ,

MF; OF; OF; P OF;

(10)

where ur,, pr,, 0F, 0F, and p are the means, standard

deviations and the correlation coefficient of Fy(#) and
Fj;(t). The detailed derivation of F and C is given in Appen-
dix A. For this derivation, 1(¢) is assumed to have a station-
ary normal distribution with mean w, and standard
deviation o,

Under these assumptions, the stochastic process that
approximates the synaptic dynamics of Eq. (8) satisfies
the Fokker—Planck equation for the joint density AW, f)
(see Gardiner, 1985),

IW,1)

P —VJW,n),

(11
where the probability current J(W, ¢) is defined in terms of
the drift vector

MWﬁ:F—%Wm (12)

as

1 J
JW, 0 = AW, Df (W,0) = 5 > Cy Wl W a3
k

The synaptic connections are free to vary within the
range [0, Wy, therefore we impose on Eq. (11) reflect-
ing boundary conditions: n-J(W, ) =0, where n is a
unit vector normal to the boundary surface. The station-
ary solution f{W) for which the probability current
vanishes for all W within the range implies J(W)=0.
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Fig. 5. The stationary joint density function f{W) is calculated for the kernel described in Eq. (6), where a = 0.2 ms ', b = 0.1 and ¢ = 0.6. Other parameters
are: v=125Hz, 0, =5, 7,=250 ms, wpx = 1. The plotted density function is for: (a) u, = 0, (b) u, = 1 and (c) p, =2.

The solution is:
F(W) = N exp[W C'A(W) + W/ C™'F) (14)

where /" normalizes f{W). This probability density is a
function of three free parameters characterizing the station-
ary pattern of firing of neurons i and j: the frequency v the
mean pu, of the phase shift and its variance 0'72,. Fig. 5
displays three specific realizations of AW).

As evident from Fig. 5, the stationary distribution of the
synapses between neurons i and j is asymmetric when w, >
0. This characteristic is seen in the simulations shown in Fig.
3 and is a consequence of the asymmetric structure of the
kernel function.

6. Analysis of a cycle

As shown in the previous section, the phase shift between
the firing times of two neurons characterizes their synaptic
connections. These phase shifts are determined by the firing
pattern of the network. By evaluating all of them, the synap-
tic distribution function for a network of Ng neurons can be
constructed. Assessing all the phase shifts for an arbitrary
firing state may be difficult, but for the case of distributed
synchrony, when these phase shifts take several distinct
values, the derivation can be carried out.

The calculation of the density function of the Ng X Ng
synaptic matrix is made in two steps. First, the marginal
density function f;(w) for w = wy; is calculated. Then, the
specific phase shifts are determined and the full distribution
is constructed.

The marginal stationary distribution of wy; is calculated
under the same assumptions made in the previous section.
The one dimensional Fokker—Planck equation for the prob-
ability density function f}; of w;; is

i s (? 1 2“ (921“ ’
w = _%[(/‘LFU - ?W)fij(w,l)] + %%

s)

with reflecting boundary conditions imposed by the synaptic
bounds, 0 and wy,,x. The resulting stationary density func-
tion satisfying df;;(w, 1)/dt = 0 is

N 1 1

ij ij

where ./ normalizes f;(w). Note that for 7, = 00 we obtain
an exponential distribution which peaks at the upper bound
Wmax, OT at the lower bound 0, depending on the sign of MeF, -

Eq. (16) expresses the stationary distribution of the
synaptic efficacy between every pre-synaptic neuron j and
post-synaptic neuron i in terms of variables that depend (see
Appendix A) on the frequency v and the phase shift para-
meters w, and o,. As an example, the case of a 3-cycle is
solved for a network with a single synaptic delay 74. The
mean firing frequency is taken to be v = (37,)~ ' with very
little variations, assuming that the total synaptic current
feeding a neuron in the next group to fire is large enough
so that it will bring its membrane potential to the threshold
almost regardless of its previous value. Thus, the phase shift
between the firing time of each subassembly is 74 and the
period is n times this value. For n =3, u,, takes one of the
values — 74, 0, 74. 0, remains a free parameter reflecting the
random noise introduced by the input /* and by the coupled
inhibitory network. Fig. 6 presents the resulting structure of
the synaptic matrix.

This should be compared with Fig. 7 which displays
the results of a simulation of a system that converged to
a 3-cycle DS. In this simulation we start out with
7s=100ms for the first 200 ms using an input of
Ag = 30 which, after 200 ms, is reduced to 20, while T
is elevated to 100 s. A;=30 during the first 200 ms, and
is reduced to 20 after that. We found that this procedure
is useful to ensure fast convergence into a DS mode. As
can be seen, the results obtained from the analysis are
similar to those observed in the simulation. The main
differences are in the diagonal blocks, where the analytic
results have a flat distribution of synaptic weights due to
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Fig. 6. Results of the analysis for n=3, o, =0.1 ms and 7,=2.5 ms under the continuous kernel function with a =0.5 msfl, b=0.1, c=1 and
7, =100 ms. (a) The synaptic matrix. Each of the nine blocks symbolizes a group of connections between neurons that have a common phase shift u.,,. Values
of wj are generated by Eq. (16) and represented by the gray scale tone. (b) The distribution of synaptic values between excitatory neurons.

(a)

(b)

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

OI_.__-_*_..__-._—...__—.
0 0.1 0.2 0.3 0.4 0.5

w?
ij

Fig. 7. Simulation results for a network of Ng = 100 and N; = 50 integrate-and-fire neurons, when the network is in a stable n = 3 DS state. 7, = 10 ms for both
excitatory and inhibitory neurons. Other parameters are the same as in the previous figure. The average frequency of the neurons is approximately 130 Hz.
(a) Gray scale representation of the synaptic matrix. (b) Histogram of the synaptic weights among excitatory neurons.

wrp, =0 within such blocks, while the simulation results
exhibit structure that develops in the course of the dyna-
mical history of this matrix, including regrouping effects
in unstable DS.

As evident from Figs. 6 and 7, each group of neurons
feeds the next one with synaptic efficacies that are as high
as the upper synaptic bound, while low synaptic efficacies
connect neurons that belong to their own subassembly and
zero connections exist with neurons in subassemblies that
are activated prior to the group in question. This trait and the
observed frequency of 130 Hz confirms our assumption that
v=0Gry) .

7. Overlapping cell assemblies

So far, we have followed the procedure, stated at the
beginning of the Introduction, of formation of a Hebbian
cell-assembly. We noted that it can break into several subas-
semblies forming a cycle of DS. If such a cell-assembly
should represent some memory in an associative memory
model, we have to consider the problem of encoding of
multiple memories. As a first step toward answering this
question, we will show in this section that overlapping DS
synaptic matrices can be employed in a retrieval process.

Fig. 8(a) presents the raster plot of a subset of the
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Fig. 8. Memory retrieval of two overlapping cell-assemblies. (a) Raster plot of the retrieval process. A subset of 60 neurons is shown, 40 belonging to each
assembly, half of which belong to both. Each assembly fires in 3-cycle distributed synchrony. (b) The synaptic matrix, in a random order and in the order of
neuronal firing. Each assembly is composed of 100 neurons out of Ng = 200. The overlap between the assemblies is 20%. In the retrieval process, the excited
assembly was given an input of Ag = 30 for the first 150 ms and Ag = 20 afterwards, while the quiescent assembly receives Ag = 20, which may be considered

as background input. Other parameters were: Wy, = 0.5, Ny =50, and A=

excitatory neurons during a retrieval process with no active
synaptic learning. The underlying synaptic structure is
represented in Fig. 8(b). After approximately 200 ms of
activation a cell-assembly is retrieved in 3-cycle DS. At
300 ms, we increase inhibition to shut off the first memory
before activating the second one. The synaptic matrix is
shown in Fig. 8(b) in a random and an ordered basis. The
first memory is encoded by neurons 1-100 and the second
one by numbers 80—180. Note (in the left frame of Fig. 8(b))
that the synaptic connections shared by the two cell-assem-
blies encode the second memory. Nevertheless, the first cell-
assembly can still be retrieved in a distributed synchrony
mode. Higher overlaps between the two cell-assemblies
destroy retrieval of both memories.

It should be noted that this figure displays a retrieval
process in which no active synaptic learning took place.
In fact, if we allow synaptic learning to occur under the
same conditions listed above, the learning process will
destroy the segmented synaptic matrix structure and
merge the two cell-assemblies. Encoding of many memories
using activation by inputs requires well specified protocols
to ensure proper allocation of basins of attraction to all
memories. An example of how to perform such encoding
using the concept of neuronal regulation was demonstrated

20, but for the period 300 ms < t < 400 ms where A;= 30.

in Horn et al. (1998). The extension of this method to the
system of spiking neurons requires further study.

8. Discussion

The asymmetric temporal nature of synaptic learning
curves among excitatory neurons, as observed by Markram
et al. (1997); Zhang et al. (1998), naturally leads to asym-
metric and, to some extent antisymmetric, synaptic
matrices. This is manifested in our various simulations,
starting with Fig. 3, and in our analytic results. The main
point that we make in this article is that this asymmetry
helps to engrave and stabilize a cyclic firing pattern that
we call distributed synchrony.

The system that we have studied contains relatively
simple spiking neurons, with pulse-coupled interactions
whose temporal structure is specified by delay parameters
74. The synaptic efficacies themselves are assumed to be
simple numerical coefficients. All these are simplifications
introduced in order to single out the one aspect that we
wished to study, i.e. the effect of the synaptic learning
curve on the evolving firing pattern. It is to be expected
that introducing a-functions for synaptic efficacies, and
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adding activity dependent effects, both on the synaptic level
(Abbott et al., 1997; Markram & Tsodyks, 1996) and on the
neuronal level (Horn et al., 1998; Turrigiano et al., 1998),
will further complicate the temporal structure of the firing
patterns.

Our dynamical system led to sustained activity, that we
interpret as the neuronal correlate of memory retrieval, at
a rate of the order of 100 Hz. This should change once a
more biological neural model is employed, e.g. one that
incorporates after-hyperpolarization effects. One may then
expect to find sustained activity at lower frequencies.
Accordingly, one can then employ an STDP rule with
wider time windows than shown in Fig. 1, corresponding
to experimental observations. Once sustained activity is
brought down to the range of few tens of Hertz, one
may expect short-term synaptic depression (Abbott et
al., 1997; Markram & Tsodyks, 1996) to be of little
consequence.

A further simplification in our model is that only the
excitatory—excitatory synapses undergo active learning,
with all other synapses remaining constant. Our model
includes inhibitory neurons whose role is to provide compe-
tition between the excitatory neurons. It may well be that
inhibitory neurons undergo different types of STDP, of a
symmetric nature in time (see the recent review of Abbott
& Nelson, 2000). If this is the case, incorporating such
behavior in the model may leave our conclusions intact.

Our parameter space is quite large. In the absence of
closed analytic solutions we were not able to exhaustively
map it. DS solutions were found within windows of para-
meter space, often connected to regions of asynchronous
behavior. In many parameter regimes one could dynami-
cally flow into either DS or asynchrony, and sometimes
also into synchronous firing, with different probabilities.
In general, we have found that low values of 7 facilitate
the creation of a DS cycle. Applying low values of 7, in the
first stage of learning and high values later on is a strategy
that may reflect some transient factors involved at the begin-
ning of the process of encoding a new memory. This strat-
egy increases the probability of DS formation.

Clearly, the DS mechanism would work best if it is
activated in an ordered fashion, rather than letting it
emerge spontaneously from global noisy activation of a
large set of neurons. One could then envisage the forma-
tion of very large cycles, maybe of the type of synfire
chains (Abeles, 1982) that show recurrence of firing
patterns of groups of neurons with periods of hundreds
of milliseconds. The model by Herrman, Hertz &
Priigel-Bennet (1995), which realizes synfire chains by
combining sets of pre-existing patterns into a cycle, can
perhaps be tied with such a learning mechanism. Alterna-
tively, if one thinks of the long chains as being formed
spontaneously, no semantic meaning should be given to
the various elements of the cycle.

It is interesting to speculate whether the DS phenomenon
can have any important cognitive role. Bienenstock (1995)

has discussed the importance of synfire chains and analyzed
the possibility of dynamic binding between chains of equal
length. Another intriguing possibility is binding of cell-
assemblies that fire with the same overall period but possess
different numbers of cycles. In this case, different config-
urations of relative ordering of the subassemblies are possi-
ble, each leading to different Hebbian connections that will
foster their recurrence in future activations. One may thus
envisage a mechanism for encoding various combinations
of multiple memories, maybe in some hierarchical order
with stronger couplings within an assembly and weaker
couplings among different assemblies, thus building a rich
repertoire of composite memories.

Appendix A. Calculating F and C

The moments of Fy(f) are calculated assuming the
network fires in a stationary manner. In order to extract
the relevant moments let us start by rewriting Eq. (5) in a
slightly modified manner:

Fy(t)y="> 8t — tHK (1 — 1)), (A1)
k1l

where, for the sake of brevity, we united the two &-func-
tions, whose precise timing is immaterial to the analysis that
will be carried out below. Next, we note that the spike trains
fired by neurons i and j are defined as S;(f) = > 8(r — tf»‘)
and S;(1) = >, 8(t — tjl-). In a stationary situation they will
correspond to firing rates, or frequencies, v; and v;. For the
problem at hand we assume that these frequencies are the
same, v; =v; =V, and the two spike trains differ by a
random phase 1 whose distribution function will be denoted
by p(n). For simplicity, it will be assumed to be Gaussian
with average w, and standard deviation o,

Eq. (A1) can be rewritten (see Rieke, Warland, de Ruyter
van Steveninck & Bialet, 1997) as

Fyt) = Si1) JK*(S)S_,-(t — 5)ds. (A2)
where K*(s) = K(—s). Its time averaged value is given by
EIFy) = v* [ poK (ds (A3)
while

EIFy) = v* [ poK (-~ (Ad)

The last identity follows because if 1(¢) is the phase shift
between neurons i and j then the phase shift between the
spike trains of j and i is —n(?).

Regarding F;; as a random variable determined by the
distribution function p(x) we find the following second-
order moments:

E[F2] = * Jp(x)K*z(x)dx, (A5)
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and

g .

E[F;F;] = v* JP(X)K*(X)K*(—X)dX- (A6)

For a given density function p the means F, and KF, of Fy
and Fj, the standard deviations OF, and OF,, the covariance
Cov[Fj;, Fj;] and the correlation p can be calculated from the
expressions derived above.
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