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Topics to be discussed: 
 
Pattern classification 
Learning from the brain 
Neural networks 
Back propagation 
Support Vector Machine (SVM) 
Support Vector Clustering (SVC) 
Other clustering methods 
Singular Value Decomposition (SVD) 
Quantum Clustering (QC) 
Dynamic Quantum Clustering (DQC) 
Applications 
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Machine Perception 

• Build a machine that can recognize patterns: 

 

– Speech recognition 
 

– Fingerprint identification 
 

– OCR (Optical Character Recognition) 
 

– DNA sequence identification  



Pattern Classification, Chapter 
1 

5 

An Example 

• “Sorting incoming Fish on a conveyor 
according to species using optical sensing” 

 

     Sea bass 

  Species 

     Salmon 
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• Problem Analysis 

 
– Set up a camera and take some sample images to extract 

features 

 
• Length 

• Lightness 

• Width 

• Number and shape of fins 

• Position of the mouth, etc… 

 

• This is the set of all suggested features to explore for use in our 
classifier! 
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•  Preprocessing 

 
– Use a segmentation operation to isolate fishes from 

one another and from the background 

 

• Information from a single fish is sent to a feature 
extractor whose purpose is to reduce the data by 
measuring certain features 

 

• The features are passed to a classifier  
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• Classification 

 

– Select the length of the fish as a possible feature 
for discrimination 
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The length is a poor feature alone! 

 

Select the lightness as a possible feature. 



Pattern Classification, Chapter 
1 

12 



Pattern Classification, Chapter 
1 

13 

• Threshold decision boundary and cost relationship  

 

– Move our decision boundary toward smaller values of 
lightness in order to minimize the cost (reduce the 
number of sea bass that are classified salmon!) 
 
 

 

 

Task of decision theory 
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• Adopt the lightness and add the width of the 
fish 

 

Fish          xT = [x1, x2] 

Lightness Width 
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The data is not linearly separable 
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• We might add other features that are not correlated 
with the ones we already have. A precaution should 
be taken not to reduce the performance by adding 
such “noisy features” 

 

• Ideally, the best decision boundary should be the 
one which provides an optimal performance such as 
in the following figure: 
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• However, our satisfaction is premature 
because the central aim of designing a 
classifier is to correctly classify novel input   
 
            

 

 

Issue of generalization! 
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Neural computation – learning from the brain 



• Biological neural activity 

 Each neuron has a body, an axon, and many dendrites 

 Can be in one of the two states: firing and rest. 

 Neuron fires if the total incoming stimulus exceeds the 
threshold 

 Synapse: thin gap between axon of one neuron and dendrite of 
another.  

 Signal exchange 

 Synaptic strength/efficiency 



Mc-Cullock and Pitts neurons 

A single node like that (a Perceptron) can be used to 
represent linearly separable data 



Introduction  

ANN     --------------------------------------------- 
• Nodes 

– input 
– output 
– node function 

• Connections 
– connection strength 

Bio NN     ------------------------------------------------ 
Cell body 

 signal from other neurons 
 firing frequency 
 firing mechanism 

Synapses  
 synaptic strength 

Highly parallel, simple local computation (at neuron level) 
achieves global results as emerging property of the 
interaction (at network level) 

Pattern directed (meaning of individual nodes only in the 
context of a pattern) 

Fault-tolerant/graceful degrading 

Learning/adaptation plays important role. 



ANN Neuron Models : the Perceptron 

General neuron model 

Weighted input summation 

• Each node has one or more 
inputs from other nodes, and 
one output to other nodes 

• Input/output values can be 

– Binary {0, 1} 

– Bipolar {-1, 1} 

– Continuous 

• All inputs to one node come in 
at the same time and remain 
activated until the output is 
produced 

• Weights associated with links 

•   
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Node Function  

• Sigmoid function 

– S-shaped 

– Continuous and everywhere 
differentiable 

– Rotationally symmetric about some 
point (net = c) 

– Asymptotically approach saturation 
points 

 

– Examples: 

 

  

Sigmoid function 

When  y = 0 and z = 0: 

   a = 0, b = 1, c = 0. 

When y = 0 and z = -0.5 

   a = -0.5, b = 0.5, c = 0. 
 

Larger x gives steeper curve 



• Feedforward Networks 

– A connection is allowed from a node in layer i only to nodes in 
layer i + 1. 

– Most widely used architecture. 

Conceptually, nodes 

at higher levels 

successively 

abstract features 

from preceding 

layers 

Network Architecture  



MLP with sigmoid transfer-functions 
MLP=multi-layer perceptron=feed-forward network 















Neural network: 2(x,y)->12->8->1(grey-scale) 
 

First hidden layer – the resulting ‘receptive fields’ 



The second hidden layer 





Support Vector Machine (SVM) 

Find maximal-margin plane. Express it in terms of the support vectors.  

Data points are vectors x with labels y=1 or -1 

http://upload.wikimedia.org/wikipedia/commons/2/20/Svm_separating_hyperplanes.png












Expanding SVM onto Hilbert space 















Support Vector Clustering 

Given points x in data space, define images in 
Hilbert space. 

Require all images to be enclosed by a minimal 
sphere in Hilbert space. 

Reflection of this sphere in data space defines 
cluster boundaries. 

Two parameters: width of Gaussian kernel and 
fraction of outliers 

Ben-Hur, Horn, Siegelmann & Vapnik. JMLR 2 (2001) 125-127 









Variation of q allows for clustering solutions on various scales 

q=1, 

20, 

24, 

48 



Clustering 

Introduction to clustering 

Dimensional reduction by SVD 

Quantum Clustering 

Dynamical Quantum Clustering 



A few concepts from machine learning 

Classification – supervised learning 
Data are labeled vectors in feature space 

Clustering – unsupervised learning 
Conventionally based on distances between data 

• Exclusive vs. Overlapping Clustering 

• Hierarchical vs. Global Clustering 

• Formal vs. Heuristic Clustering 

  

 

Example: 

K-Means:  exclusive, global, heuristic 

 

 



Two classes of data described by (o) and (*). The objective is to 

reproduce the two classes by K=2 clustering.  
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1. Place two cluster centres (x) at random. 

2. Assign each data point (* and o) to the nearest cluster centre (x) 
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1. Compute the new centre of each class 

2. Move the crosses (x) 



Iteration 2 
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Iteration 3 
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Iteration 4 (then stop, because no visible change) 

Each data point belongs to the cluster defined by the nearest centre 
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Big data 

Existing big data are millions of data 
points and thousands of features 

 

The need for very large dimensional 
reduction and/or feature selection 

 



SVD – Singular Value Decomposition 

../../../Documents and Settings/roy/Local Settings/Temporary Internet Files/Content.IE5/012R0LAB/SVD-I[1].ppt#1. 10-603/15-826A: Multimedia Databases and Data Mining


        Preprocessing: Singular Value Decomposition 
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This can be rewritten in the matrix representation 

where ∑is a (non-square) diagonal matrix, and U,V are 
orthogonal matrices. Ordering the non-zero elements of ∑ in 
descending order, we can get an approximation of lower rank 
r of the matrix X  by choosing      =0 for j>r leading to 

SVD involves expanding an mxn matrix X of rank k=min(m,n) 
into a sum of k unitary matrices of rank 1, in the following way: 
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Singular Value Decomposition continued 
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This is the best approximation of rank r to X, i.e. it leads to the 
minimal sum of square deviations 



Processing: SVD dimensional reduction 



SVD – reduction to 1 dimension 



SVD – reduction to 10 dimensions (10 
features) 



SVD – reduction to 100 dimensions 



Applications of SVD 

• Dimensionality reduction, compression 

• Noise reduction 

• Pattern search, clustering 

Example: microarray of expression data, “DNA chips” 



Relation between SVD and PCA 

SVD uses the same unitary transformations as PCA 
performed on the  rows or columns of X (using the columns or 
rows as feature spaces). 

The singular values of SVD are the square roots of the 
eigenvalues of PCA. 



The Quantum Clustering trick: 
The potential transform 

Represent data points by Gaussians. 
Scale-space approach: turn data-points into Gaussians and 
study the sum of Gaussians, representing distribution of data  

For this probability amplitude we define the potential transform V 

A single Gaussian transforms into a harmonic potential 



Comparing sums of Gaussians (centered at 0, A, 2A) and 
their potentials 

Green is 
the sum of 
Gaussians 
 
 
 
 
Red is the 
potential 
 
 



The potential can be thought of as an unbiased way of contrast 
enhancing the Parzen function to better reveal structure in the 
data 



The Crabs Example (from Ripley’s textbook) 
4 classes, 50 samples each, d=5 

 A topographic map of the probability distribution for the crab data set 
with =1/2. There exists only one maximum although there are 4 classes. 



The potential transform 
exhibits four minima identified with cluster centers 

A topographic map of the potential for the crab data set with =1/2  .  

Quantum Clustering: Horn and Gottlieb, Phys. Rev. Lett. 88 (2002) 018702 

 



The Crabs Example - Contd. 

A three dimensional plot of the potential for the crab data set with =1/3  

Use gradient descent to let points “fall” into potential minima. 



The Iris Example 
3 classes, each containing 50 samples, d=4 

 A topographic map of the potential for the iris data set with =0.25 
using principal components 1 and 2. The three minima are denoted by 
crossed circles. The contours are set at values V=cE for c=0.2,…,1. 



The Iris Example - Gradient Descent Dynamics 



Dynamic Quantum Clustering 

Replace the gradient-descent algorithm by a solution of the 
time-dependent Schrödinger equation, starting with each of the 
original Gaussians 

and tracing the convergence of its center-of-mass 

M. Weinstein and D. Horn, 2009. Dynamic quantum clustering: a method for 
visual exploration of structures in data. Phys. Rev. E 80, 066117. 



Dynamic Quantum Clustering 

The differential equation can be solved algebraically by expanding 
the Hamiltonian within the n Gaussian states defined at the n 
data-points. Thus, for any dimension, the problem can be 
reduced to an nXn set of matrix elements.  

 
 
 
 
 
 
Then exponentiate the finite matrix and compute the time 

evolution of the expectation values 
 

 



Sloan Digital Sky Survey: 335K galaxies 

Coordinates are angles θ φ and 
z=red shift. Take a thin slice in z 
in order to compare data with 
potential. 

σ = 0.1 

 
Upside Down 
Potential Plot:  
the points were 
slightly raised 
above the potential 
for better visibility  
 



Sloan Digital Sky Data: Demonstrating DQC flow 



EXAMPLE :NANO-CHEMISTRY 
 

UNBIASED ANALYSIS OF X-RAY ABSORPTION 
DATA 

Analyzing Big Data with Dynamic Quantum Clustering 
 M. Weinstein, F. Meirer, A. Hume, Ph. Sciau, G. Shaked, R. Hofstetter, E. Persi, A. 
Mehta, D. Horn     http://arxiv.org/abs/1310.2700 

Data collected at the Stanford Synchrotron Radiation 
Light source (SSRL), using the TXM-XANES microscope, 
a new device that enables an efficient study of 
hierarchically complex materials 

http://arxiv.org/abs/


Very complex problem: Interface of materials 

• Sample data: Roman pottery  

– Red and Black colors are 
due to different iron 
oxides 

• Similar problems:  

– Lithium-ion batteries 

– Catalyst breakdown 



What Will We Learn? 

This is a big, noisy dataset 

669,000 x-ray absorption spectra at 146 energies (the energies = 
features) 

Full of experimental artifacts 

Goal 

To group spectra into similar shapes, because the shape correlates 
with the iron oxide present in the sample 

There is a needle in this haystack! 

Requirement 

To do this without assumptions (i.e. in an unsupervised manner) 

 



TXM-Xanes 
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• Collect one high resolution 
absorption image at each 
energy 

• Trace the absorption value 
for each pixel to get single 
pixel XANES 

X-ray Absorption 
Near Edge 
Structure 
(XANES) for 
each pixel:  
30nm resolution 
 



Applying SVD reduction from 146 to 5 dimensions reduces much of 
the noise in the X-ray absorption spectrum 

collection of raw data 
Red – a typical curve 
Black-after noise reduction 



Clustering Process: 
669,000 points in 5 dim feature space, projected onto a unit sphere 



Clustering Process: 

Data collapses 
into clumps 
and strands 



Clustering Process: 

Data collapses 
into clumps 
and strands 



Clustering Process: 

Some 
strands 
collapse to 
points, 
others 
remain 



Clustering Process: 

Some 
strands 
collapse to 
points, 
others 
remain 



Clustering Process: 

Separation 
continues 



Clustering Process: 

Separation 
continues 



Clustering Process results in Structures and Point 
Clusters 

Identify each 
connected 
string as a 
different 
structure.  
Color each 
structure 
differently. 



Coloring of the structures and clusters 



Clustering process redrawn with colors 

The needle 
in the  
haystack 



Clustering Process 

Data collapses 
into clumps 
and strands.  
The blue data 
swiftly 
separates 



Clustering Process 

Data collapses 
into clumps 
and strands 



Clustering Process 

Some 
strands 
collapse to 
points, 
others 
remain 



Clustering Process 

Some 
strands 
collapse to 
points, 
others 
remain 



Clustering Process 

Separation 
continues 
leading to non-
trivial structures 
as well as simple 
clusters 



Further analysis of this data involved 
- Returning to original data and averaging all instances which belonged to 

distinct points and branches of the DQC convergence plot 
- Comparing with known spectra of iron compounds 
- Reanalysis of the blue component of the data, involving renewed DQC flow 

This has led to 
- Understanding of the two major components of the data 
- Discovery of minute fractions of pure iron and magnetite in the 

blue component of the data 



Locations of the different types of 
compounds on the relic fragment 

The real needle 
in the haystack: 
60 points out of 
669,000 



Conclusions from the XANES analysis 

• The data-set is very large, noisy, and low-contrast . Nonetheless DQC can find small 
regions of interest because it is sensitive to small variations in the density of data-
points.  

• We have demonstrated the unexpected result that large, complex sets of data 
often contain non-trivial topological structures in their SVD space.  

• Chemical results: The presence of a small metallic Fe cluster surrounded by a more 
oxidized (magnetite-like) phase was a surprise, and would have been impossible to 
extract without an unbiased and unsupervised search method like DQC.  



Summary 

Classification: 
Linear separability – Perceptron learning. 
Otherwise – MLP (ANN) using back-propagation algorithm. 
The importance of low generalization errors. 
SVM – alternative to ANN. Kernel methods. 
Clustering: 
Simplest method – k-means. 
Analysis of large data sets requires preprocessing, e.g. by SVD (PCA). 
Clustering using QM concepts: QC and DQC. 

Resources of papers and programs. 
http://horn.tau.ac.il for papers and some software tools, such 
as 
http://horn.tau.ac.il/compact.html 
the compact software provides matlab tools for clustering, 
including SVD, SVC and QC 
 
 

http://horn.tau.ac.il/
http://horn.tau.ac.il/compact.html

