Machine Learning and Neural Computation:
Methods for Data Analysis



Topics to be discussed:

Pattern classification

Learning from the brain

Neural networks

Back propagation

Support Vector Machine (SVM)
Support Vector Clustering (SVC)
Other clustering methods

Singular Value Decomposition (SVD)
Quantum Clustering (QC)

Dynamic Quantum Clustering (DQC)
Applications



attern
Classification




Machine Perception

* Build a machine that can recognize patterns:

— Speech recognition
— Fingerprint identification
— OCR (Optical Character Recognition)

— DNA sequence identification



An Example

e “Sorting incoming Fish on a conveyor
according to species using optical sensing”

Sea bass
Species
Salmon



* Problem Analysis

— Set up a camera and take some sample images to extract
features

* Length

* Lightness

e Width

* Number and shape of fins

e Position of the mouth, etc...

* This is the set of all suggested features to explore for use in our
classifier!



* Preprocessing

— Use a segmentation operation to isolate fishes from
one another and from the background

* Information from a single fish is sent to a feature
extractor whose purpose is to reduce the data by
measuring certain features

 The features are passed to a classifier



Preprocessing
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e Classification

— Select the length of the fish as a possible feature
for discrimination
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The length is a poor feature alone!

Select the lightness as a possible feature.

Pattern Classification, Chapter

1 11
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* Threshold decision boundary and cost relationship

— Move our decision boundary toward smaller values of
lightness in order to minimize the cost (reduce the
number of sea bass that are classified salmon!)

N

Task of decision theory



* Adopt the lightness and add the width of the
fish

Fish ! > xT =[x, X,]

Lightness Width
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* We might add other features that are not correlated
with the ones we already have. A precaution should
be taken not to reduce the performance by adding
such “noisy features”

* |deally, the best decision boundary should be the
one which provides an optimal performance such as
in the following figure:
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* However, our satisfaction is premature
because the central aim of designing a
classifier is to correctly classify novel input

4

Issue of generalization!
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Neural computation — learning from the brain

sensarimotor area

pre-fr'-:-ntala -
area

Broca's area

[in left hernisphere)
s wizual
ternporal lobe

auditary S aquditory association
[including Wernicke's
area, in left herisphere)



e Biological neural activity
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STYNAPSES (to other neuronz)

DENDRITES (of other neurons) SYNAPZSES (from other neurons)

B Each neuron has a bodly, an axon, and many dendrites
[0 Can be in one of the two states: firing and rest.

[0 Neuron fires if the total incoming stimulus exceeds the
threshold

B Synapse: thin gap between axon of one neuron and dendrite of
another.

[0 Signal exchange
[0 Synaptic strength/efficiency



Mc-Cullock and Pitts neurons

A single node like that (a Perceptron) can be used to
represent linearly separable data



Introduction

ANN oo Bio NN ________
* Nodes ClCell body

— input ® signal from other neurons

— output B firing frequency

— hode function B firing mechanism
 Connections [1Synapses

— connection strength B synaptic strength

CIHighly parallel, simple local computation (at neuron level)
achieves global results as emerging property of the
interaction (at network level)

ClPattern directed (meaning of individual nodes only in the
context of a pattern)

CIFault-tolerant/graceful degrading
ClLearning/adaptation plays important role.




ANN Neuron Models : the Perceptron

Each node has one or more
inputs from other nodes, and
one output to other nodes

Input/output values can be
— Binary {0, 1}

— Bipolar {-1, 1}

— Continuous

All inputs to one node come in
at the same time and remain
activated until the output is
produced

Weights associated with links

f (net) is the node function
net=>"" WX is most popular

fluyze; + ... + wpzy,)

Weighted input summation



Node Function

e Sigmoid function
— S-shaped

— Continuous and everywhere
differentiable

— Rotationally symmetric about some
point (net = ¢)

— Asymptotically approach saturation

points
lim f(net) =a lim f(net)=2~5
net——oc net—oc
— Examples:
1
f(net) = z +

1 + exp(—z - net + y)

f(net) = tanh(x - net — y) + =,

L et

Sigmoid function

When y=0and z =0:
a=0,b=1c=0.

Wheny=0andz=-0.5
a=-05Db=05c=0.

Larger x gives steeper curve




Network Architecture

 Feedforward Networks

— A connection is allowed from a node in layer /only to nodes in
layer 7+ 1.

— Most widely used architecture.

Conceptually, nodes
at higher levels
successively
abstract features

from preceding

LAYER 0 LAYER 1 LAYER 2 LAYER 3 Ia ers
{Input Laver) A A (Output Laver) y

-""-\.\.I_I- r-‘-'".
Sl

Hidden Lavers



MLP with sigmoid transfer-functions
MLP=multi-layer perceptron=feed-forward network




and produces output



21

\ Given pattern g, hidden unit j receives a net input

Wy = D wikky
k

and produces output
Vi = g(hf) = Q(Z wJ'kfi‘) :
k
Output unit 7 thus receives
W =Y WiV = ZWijg(Z wjkfllc‘)
J j k
and produces for the final output

of = g(h) = 9(2 W.'jVj") = g(ZW;jg(ijkE,’:)).
J i k
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Our usual error measure or cost function

Efw] = 5 3! - O (65)
ui

now becomes
E[w] = % 2, [C;" -9 (Zj: Wiig (; wingl ) )] A (6.6)

This is clearly a continuous differentiable function of every weight, so we can use
a gradient descent algorithm to learn appropriate weights. In one sense this is all
there is to back-propagation, but there is great practical importance in the form of
the resulting update rules.

For the hidden-to-output connections the gradient descent rule gives

= _p9F _ B _ OMg (KA VP
AW;; = 'IOW.-; = "Z“:[(i Ofld' (k' )V}
= n) &V (6.7)
G
where we have defined
6 = ¢'(h)¢! - Of]. (6.8)

The result is of course identical to that obtained earlier (equations (5.50) and (5.51))
for a single layer perceptron, with the output Vj" of the hidden units now playing
the role of the perceptron input. ’

For the input-to-hidden connections Aw;; we must differentiate with.respect
to the wj.'s, which are more deeply embedded in (6.6). Using the chain rule, we
obtain '

OF 8E 8v}!
i = e f)e— e iR BN
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with T
& =,'(h;)z:m,5:'. B (6.10)
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Neural network: 2(x,y)->12->8->1(grey-scale)

First hidden layer - the resulting receptive fields'’

neuron #1 neuron #2 neuron #3 neuron #4

neuron #6 . heuron #7 neuron #8

neuron #9 neuron #10 neuron #11 neuron #12




The second hidden layer

neuron #1 neuron #2 neuron #3 neuron #4

neuron #5 neuron #6 neuron #7 neuron #8







Support Vector Machine (SVM)
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Find maximal-margin plane. Express it in terms of the support vectors.

Data points are vectors x with labels y=1 or -1


http://upload.wikimedia.org/wikipedia/commons/2/20/Svm_separating_hyperplanes.png

Formulation as an Optimization Problem

Hyvperplane with maximum margin: minimize
[[wl]
(recall: margin ~ 1/||w||) subject to
yi-[{iw,x;)+d>1 fori=1...m
(i.e. the training data are separated correctly).

L. Schdliloogd, NIFPS. 3 Desxantae 200



Lagrange Function (e.g.. [6])

Introduce Lagrange multipliers «; = 0 and a Lagrangian
1 _ ee)
L(w, b, ) = EIIWII2 — D> oy - [{w.xg) +b] —1).
=1

L has to minimized w.r.t. the primal variables w and & and
maximized with respect to the dual variables oy

e if a constraint is violated, then v - ({(w.x;) +b6) — 1 < 0 —

- ¢y will grow to increase L — how far?

- w, b want to decrease L; i.e. they have to change such that
the constraint is satisfied. If the problem is separable, this
ensures that oy << oc.

e similarly: if y; - ({w,x;)y + b) — 1 > 0, then «; = 0: otherwise,
L could be increased by decreasing «; (KK1 conditions)

B Seldilkegd, NIPS. 3 Deseanl=e 200



Derivation of the Dual Problem

At the extremmum, we have

o, 1%,
%L(W* E):, -Cl:::l =0, %L(W, E):. -D::)l( T 0,
l.e. ’
e
D oy =0
=1
and
Tt
W= ayix;.
=1
Substitute both into L to get the dual problem . |
“8/

7
e Scldillgagd, MNIPS, ¥ Desxanlee 2000



Dual Problem

Dual: maximize

Tt 1 1t
Wia) =D ai—3 D onoyiy;{xi,x;)
i=1 i,7=1

T
a; >0, t=1,...,m, and ZCEiy-i = 0.
t=1
Both the final decision function and the function to be maxdmized
are expressed in dot products —— can use a kernel to compute

L. Seldllogd. WIFS. 3 Deswmnleer 2000



Nonseparable Problems [4. 15]

If g - ({w,x;) + b) > 1 cannot be satisfied, then a; — oc.
Modify the constraint to
yi- ((woxg) +0) = 1 =&

with
& =0
(“soft margin™) and add
s
-2 %
=1

in the objective function.
same dual, with additional constraints «; < C.

B Sellibogd, NIPS, 3 Deswanlee 20000



Expanding SVM onto Hilbert space

The Kernel Trick: Feature Spaces

Preprooess the data with
A =+ H
xr — Plx),

where H is a dot product spaos, and learn the mapping from 4z
to .

& usually, dim( A7) << dimiH)
« Churse of Dimensionality™ 7
* crucial issuer capaceEy, not dimensionadidy



Example: All Degree 2 Monomials
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Toy Example with Gaussian Kernel

ke, a') = exp (= ||l — 27| }

EL Sirlumiegd. MG O DEpenler 38



Fimme 1. GawsiEn RBF SVMs of suffwsmily small widih can oassily an arbitrardy Enge monbsr of
trainimg, poanits oorpacihy and tins have mfindte VO dmension



The SVM Architecture

Simi=sgn(| X | +5) classification Sixi=sgnl L3 kixx,)+b)

welghts

comparison: &xx), eg o= -,;.-,;Iju"

b xx J=exp(—||x—x,[|* / ¢)

support vectors
K| e Xy

klx,x,)=tanhi K x-x J+H]

1 nput vector x




e
Flexibility of SVMs...

W S U pport-wector. netfmallo. htmil

This is a hyperplane!
(in some space)




Support Vector Clustering

Given points x in data space, define images in
Hilbert space.

Require all images to be enclosed by a minimal
sphere in Hilbert space.

Reflection of this sphere in data space defines
cluster boundaries.

Two parameters: width of Gaussian kernel and
fraction of outliers

Ben-Hur, Horn, Siegelmann & Vapnik. JMLR 2 (2001) 125-127



An enclosing sphere 1s defined by:
|@(x;) — alf? < R?
@ - map into feature space

a: center of the sphere.

e Goal: minimize B2 over all choices of a using the

Largragian:
L=R -3 (B - |@(x;) - al[")5,
¥
B3; Lagrange multiplier

Derivatives with respectto K and a



The KKT complementarity conditions:
(R* —||®(x;) — al|*)8; =0
°f5; #0 = R?—||®(x;)—a|>=0

Points with G # () are on the surface of the sphere

(support vectors).

e Wolfe dual form:
W = z @{Ij}gﬂj s Zﬁiﬁj@[xi) - ®(x;)
J L F)

with the constraints »  G; =1

® The SV trick: represent the dot products by a kernel
function K{x;,%x;)

Lagrangian now becomes:
W= K(x;,x;)8; — > _ BB K(xi,%;).
L] i,J

e No need to know the specific form of &



R ={R(x;) | x; is a support vector }

The enclosing contour: {x | R(x) = R}

The shape of contour governed by the kernel parameter:

Ki{x;,x;) = e-al=xlf

® As g increases the contour becomes a tighter fit; for

certain values of g observe splitting.

® Need to identify the different components.

e Complexity: O( N2D)



Variation of q allows for clustering solutions on various scales

0.5

q=1, ’
20, s
24, it o5
48 |




Clustering

Introduction to clustering
Dimensional reduction by SVD
Quantum Clustering

Dynamical Quantum Clustering



A few concepts from machine learning

Classification — supervised learning

Data are labeled vectors in feature space

Clustering — unsupervised learning

Conventionally based on distances between data
* Exclusive vs. Overlapping Clustering
* Hierarchical vs. Global Clustering

* Formal vs. Heuristic Clustering

Example:

K-Means: exclusive, global, heuristic



Tiles data: o = whole tiles, * = cracked tiles, x = centres
2 L L L L

log(intensity) 557 Hz
w

_8 L L L L
8 -6 -4 -2 0 2

log(intensity) 475 Hz

Two classes of data described by (0) and (*). The objective is to
reproduce the two classes by K=2 clustering.



Tiles data: o = whole tiles, * = cracked tiles, x = centres
2 L L L L

log(intensity) 557 Hz
do
I

-8 -6 -4 2 0 2
log(intensity) 475 Hz

co

1. Place two cluster centres (x) at random.
2. Assign each data point (* and 0) to the nearest cluster centre (x)



Tiles data: o = whole tiles, * = cracked tiles, x = centres
2 L L L L

(LN o [N
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N
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log(intensity) 557 Hz
5w
I

&
T

_8 r r r r

-8 -6 -4 -2 0
log(intensity) 475 Hz

1. Compute the new centre of each class
2. Move the crosses (x)



log(intensity) 557 Hz

Tiles data: o = whole tiles, * = cracked tiles, x = centres

2 L L L L

o
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&
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_8 L L L L
8 -6 -4 -2 0

log(intensity) 475 Hz

Iteration 2



Tiles data: o = whole tiles, * = cracked tiles, x = centres
2 L L L L

= o
] ]
7k

1
N
I

log(intensity) 557 Hz
5w
I

&
T

_8 L L L L
8 -6 -4 -2 0

log(intensity) 475 Hz

Iteration 3



Tiles data: o = whole tiles, * = cracked tiles, x = centres
2 L L L L

log(intensity) 557 Hz
w
I

-8 -6 -4 -2 0 2
log(intensity) 475 Hz

]
oo

Iteration 4 (then stop, because no visible change)
Each data point belongs to the cluster defined by the nearest centre



Big data

Existing big data are millions of data
points and thousands of features

The need for very large dimensional
reduction and/or feature selection



gs’

SVD - Singular Value Decomposition
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../../../Documents and Settings/roy/Local Settings/Temporary Internet Files/Content.IE5/012R0LAB/SVD-I[1].ppt#1. 10-603/15-826A: Multimedia Databases and Data Mining

Preprocessing: Singular Value Decomposition

SVD involves expanding an mxn matrix X of rank A=min(m,n)
into a sum of Aunitary matrices of rank 1, in the following way:

. T
X =2 0oV,
This can be rewritten in the matrix representation
X =Uz=V"'

where Y is a (non-square) diagonal matrix, and U,V are
orthogonal matrices. Ordering the non-zero elements of X in
descending order, we can get an approximation of lower rank
r of the matrix X by choosing =70 for j>r leading to

Y =Uux'V’



Singular Value Decomposition continued

This is the best approximation of rank r to X i.e. it leads to the
minimal sum of square deviations

S — ZIZEJI(X T _Yij)2



Processing: SVD dimensional reduction
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SVD — reduction to 1 dimension
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SVD — reduction to 10 dimensions (10
features)

40
60
80
100
120
140
160

180

200

50 100 150 200 250 300



SVD — reduction to 100 dimensions
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Applications of SVD

* Dimensionality reduction, compression
* Noise reduction
e Pattern search, clustering

Example: microarray of expression data, “DNA chips”



Relation between SVD and PCA

X -—UsvT
leads to
XX —pusryr

and
XTx = vsiv?

SVD uses the same unitary transformations as PCA
performed on the rows or columns of X (using the columns or
rows as feature spaces).

The singular values of SVD are the square roots of the
eigenvalues of PCA.



The Quantum Clustering trick:
The potential transform

Represent data points by Gaussians.
Scale-space approach: turn data-points into Gaussians and
study the sum of Gaussians, representing distribution of data

1 = b
P(F) = T e 2t WEE

For this probability amplitude we define the potential transform V

2 2

o R o
—7V2q_f)+V(X)§0= 0 V(X) = —(Pvzfp

A single Gaussian transforms into a harmonic potential



Comparing sums of Gaussians (centered at 0, A, 2A) and
their potentials

3 i
Green is
o the sum of o
/_ /\ Gaussians / /\ /\

I T T T T T T T T T T T T T T T T T 1 I T T T T T T T T T T T T T T T 1
-10 -3 0 3 10 -10 -3 0 3 10

Red is the
al potential

It
It



The potential can be thought of as an unbiased way of contrast
enhancing the Parzen function to better reveal structure in the
data

I T T T T T T T T T T T T T T T 1
-10 -3 0 5 10




The Crabs Example (from Ripley's textbook)

4 classes, 50 samples each, d=5

PC2

A topographic map of the probability distribution for the crab data set
with 6=1/72. There exists only one maximum although there are 4 classes.



The potential transform

exhibits four minima identified with cluster centers

PC2

A topographic map of the potential for the crab data set with 6=1/2 .

Quantum Clustering: Horn and Gottlieb, Phys. Rev. Lett. 88 (2002) 018702



The Crabs Example - Contd.
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A three dimensional plot of the potential for the crab data set with 6=1/43

Use gradient descent to let points “fall” into potential minima.



The Iris Example

3 classes, each containing 50 samples, d=4

PC2
o
w

-2

) 1 1 1 1 1 1 1
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
PC1

A topographic map of the potential for the iris data set with 6=0.25
using principal components 1 and 2. The three minima are denoted by
crossed circles. The contours are set at values V=cE for c=0.2,...,1.



The Iris Example - Gradient Descent Dynamics

original data iteration no.2
2 - 2
Tt 11} O
ol @!
o N g =
o _1 o
2L -1
-3 N . ) \ . , ,
0.5 1 1.5 0.6 0.8 1 1.2 1.4
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1 1 .
@ ©
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-1 1
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PC1 PCi1



Dynamic Quantum Clustering

Replace the gradient-descent algorithm by a solution of the
time-dependent Schrodinger equation, starting with each of the
original Gaussians

Al (T, 1) v* o T
—1 - = ——+V (T) 1'11.5'{:3-‘ t)
ot ( 2m | ) |

and tracing the convergence of its center-of-mass

(x(t)) = / A7 (7,) TU (7, 1)

M. Weinstein and D. Horn, 2009. Dynamic quantum clustering: a method for
visual exploration of structures in data. Phys. Rev. E 80, 066117.



Dynamic Quantum Clustering

The differential equation can be solved algebraically by expanding
the Hamiltonian within the n Gaussian states defined at the n
data-points. Thus, for any dimension, the problem can be
reduced to an nXn set of matrix elements.

e - (vl
m
Ny=(vi|¥)

%= (v )

Then exponentiate the finite matrix and compute the time
evolution of the expectation values



Sloan Digital Sky Survey: 335K galaxies

Coordinates are angles 6 ¢ and
z=red shift. Take a thin slice in z
in order to compare data with
potential.
o=20.1

Upside Down
Potential Plot:

the points were
slightly raised
above the potential
for better visibility




Demonstrating DQC flow

Sloan Digital Sky Data




EXAMPLE :NANO-CHEMISTRY

UNBIASED ANALYSIS OF X-RAY ABSORPTION
DATA

Data collected at the Stanford Synchrotron Radiation
Light source (SSRL), using the TXM-XANES microscope,
a new device that enables an efficient study of
hierarchically complex materials

Analyzing Big Data with Dynamic Quantum Clustering
M. Weinstein, F. Meirer, A. Hume, Ph. Sciau, G. Shaked, R. Hofstetter, E. Persi, A.
Mehta, D. Horn  http://arxiv.org/abs/1310.2700



http://arxiv.org/abs/

Very complex problem: Interface of materials

e Sample data: Roman pottery

— Red and Black colors are
due to different iron
oxides

e Similar problems:
— Lithium-ion batteries
— Catalyst breakdown




What Will We Learn?

This is a big, noisy dataset

669,000 x-ray absorption spectra at 146 energies (the energies =
features)

Full of experimental artifacts
Goal

To group spectra into similar shapes, because the shape correlates
with the iron oxide present in the sample

There is a needle in this haystack!
Requirement
To do this without assumptions (i.e. in an unsupervised manner)



X-ray Absorption
Near Edge
Structure

(XANES) for

each pixel:

30nm resolution 1

TX M ‘Xa ne Sollect one high resolution

h®

Normalized Grayscale Intensity

>

absorption image at each
energy

Trace the absorption value
for each pixel to get single
pixel XANES

Energy



absorption

Applying SVD reduction from 146 to 5 dimensions reduces much of
the noise in the X-ray absorption spectrum

T T
TI00 T30

x-ray energies in eV

collection of raw data

absorption

7150
x-ray energices in ¢V

Red - a typical curve
Black-after noise reduction



669,000 points |rt?|d|m feature spacenprojected onto a unit sphere

stering Process:
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Clustering Process:

Data collapses
into clumps
and strands

-0.9




Clustering Process:

Data collapses -
into clumps
and strands




Clustering Process:

Some
strands
collapse to
points,
others
remain




Clustering Process:

Some
strands
collapse to
points,
others
remain




Clustering Process:

Separation

continues B
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Separation
continues

-0.2
-0.4

-0.6

Clustering Process:

0.6
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0.2

0
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Clustering Process results in Structures and Point
Clusters

Identify each
connected
string as a
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Coloring of the structures and clusters
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Clustering Process

Separation
continues

leading to non-
trivial structures__

as well as simple -
clusters .




Further analysis of this data involved

- Returning to original data and averaging all instances which belonged to
distinct points and branches of the DQC convergence plot

- Comparing with known spectra of iron compounds

- Reanalysis of the blue component of the data, involving renewed DQC flow

This has led to

- Understanding of the two major components of the data

- Discovery of minute fractions of pure iron and magnetite in the
blue component of the data
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Conclusions from the XANES analysis

The data-set is very large, noisy, and low-contrast . Nonetheless DQC can find small
regions of interest because it is sensitive to small variations in the density of data-
points.

We have demonstrated the unexpected result that large, complex sets of data
often contain non-trivial topological structures in their SVD space.

Chemical results: The presence of a small metallic Fe cluster surrounded by a more
oxidized (magnetite-like) phase was a surprise, and would have been impossible to
extract without an unbiased and unsupervised search method like DQC.



Summary

Classification:

Linear separability — Perceptron learning.

Otherwise — MLP (ANN) using back-propagation algorithm.

The importance of low generalization errors.

SVM - alternative to ANN. Kernel methods.

Clustering:

Simplest method — k-means.

Analysis of large data sets requires preprocessing, e.g. by SVD (PCA).
Clustering using QM concepts: QC and DQC.

Resources of papers and programs.

http://horn.tau.ac.il for papers and some software tools, such
as

http://horn.tau.ac.il/compact.html

the compact software provides matlab tools for clustering,
including SVD, SVC and QC



http://horn.tau.ac.il/
http://horn.tau.ac.il/compact.html

