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Models of neural networks which include dynamical thresholds can display motion in pattern space, the
space of all memories. We investigate this motion in a particular model which is based on a feedback
network of excitatory and inhibitory neurons. We find that small variations in the parameters of the model
can lead to big qualitative changes of its behavior. We display results of closed loops and chaotic motion
which turn from one to the other through intermittency. We show that the basin of attraction of a closed
orbit has a fractal shape, and find that the dimension of the chaotic motion is slightly bigger than 2. The
general character of the dynamics of this model is convergence to centers of attraction on short time scales

and divergence on long ones.

1. Introduction

Chaotic motion can be observed in neural net-
works with random and diluted asymmetric synaptic
connections."?? It is not expected to show up in
attractor neural networks since these are highly
stable systems which converge to fixed points. If,
however, one introduces time dependence in the
synaptic connections, the fixed points can be re-
placed by temporal sequences of patterns and chao-
tic motion may appear.* A recent study of analog
neural networks with time delay® has shown that
such systems display both periodic and chaotic
motion. By changing the delay parameter, chaos is
obtained via the route of period doubling.

We study a neural network with dynamical
thresholds. The thresholds vary as a function of the
activity of the neurons to which they are attached.
As such they introduce time dependence which can
turn a neural network from a dissipative system
which converges onto fixed points into one which
moves from one center of attraction to another.®
This motion is the subject of our study. We will
show the periodic and chaotic properties obtained
by changing one parameter of our system, and
demonstrate that the transition occurs through inter-
mittency. We limit ourselves to a particular model
which results in a set of differential equations for
the order parameters of this system, the activities of
the patterns. The model is briefly reviewed in the
next section.
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A system with p stored patterns (memories) is
described in this model by 2p + 1 differential equa-
tions in 2p + 1 variables. These include the p
activities which are the variables of interest. This
system has three different kinds of behavior, de-
pending on the values of the various parameters
defining it. If the threshold effect is weak, the
system will move into fixed points, like any other
attractor neural network. When the thresholds are
allowed to play an important role, one may obtain
either a periodic motion or a chaotic one. In the
latter case, the motion has a highest Lyapunov
exponent which is positive, whereas in the former
case the highest exponent is zero. Examples of this
behavior are shown in Sec. 3, where we concentrate
on the case of p = 3 memories. Although the num-
ber of patterns is small, the system is complicated
enough to have all the intricate features of the
general case. We shift from periodic to chaotic
behavior by changing slowly one of the parameters
and observe that this transition goes through inter-
mittency. This is further substantiated in the next
sections.

Section 4 is devoted to a particular case of p = 3,
one which exhibits two kinds of periodic motion.
We investigate the basins of attraction of these two
limit cycles, and find them to have fractal bound-
aries. In Sec. 5, we study how the Lyapunov expo-
nent is built up in the different regions of phase
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space. We find that, in the neighborhood of the
centers of attraction, it has clear negative contribu-
tions, whereas between them it gets very positive
contributions. Thus we may characterize the motion
as convergence to centers of attraction on short time
scales and divergence on long time scales.

2. The Model

The system of equations which we will study
comes from a model of excitatory and inhibitory
neurons with dynamical thresholds.” The memory
patterns are carried by the excitatory neurons only.
Furthermore, we make the simplifying assumption
that the patterns do not overlap with one another.
This model can be thought of as having disjoint
Hebbian cell assemblies of excitatory neurons which
affect one another only through their interaction
with a group of inhibitory neurons common to all of
them. This allows one to represent the dynamics of
a large number N of neurons in terms of a closed
set of p + 1 differential equations, where p is the
number of stored patterns.

Let us denote by m*(z) the fraction of the
cell-assembly number p which fires at time ¢, and
by m!(t), the fraction of active inhibitory neurons.
In a network with static thresholds, they obey the
p + 1 equations

d n
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and Fr is the sigmoid function

Fr(x) =1 + e */T)~1 (2.2)

depending on a temperature variable T which repre-
sents the noise in the system. 6% and 6’ are the
(constant) thresholds of all excitatory and inhibitory
neurons correspondingly. The four parameters A,
B, C and D are all positive and represent the
different couplings between the neurons. A (which
is normalized to 1 because of an overall arbitrary
scale) is the interaction of any excitatory cell assem-

bly with itself and B is the effect of the inhibitory
neurons on it. C is the effect of all excitatory
neurons on the inhibitory ones, while D is their
self-interaction. All stored patterns (or cell assemb-
lies) are given the same weights in this description,
and are therefore put on equal footing.

The differential equations (2.1) for the activities
of the patterns obviously use continuous time. This
is true even if the underlying neuron dynamics is
described by discrete time due to the infinitesimal
changes in the activities caused by the firing of any
single neuron. Thus the dynamics of the excitatory
neuron ¢ which belongs to the cell assembly u can
be described by the equation

VE@ + An) = fr(hF (@) — 67 (D)
hE = Am* — Bm! |

using the probabilistic rule

l —_—
frx) = { 0 with probability (1 + e**/T)!

VE(r) is a binary variable taking the value 1 if the
E-neuron at location ¢ fires at time ¢ and O other-
wise. Turning the thresholds of the excitatory
neurons into dynamical variables we use the follow-
ing relation,

65(t) = bR(1) + 6§

R:
Ri(t + A1) = # + VE@ + Ap),

where R; is a local response function which leads to
a variation of the threshold. Such a rule, for ¢ > 1
and appropriate values of g = bc/(c — 1); can ex-
hibit local fatigue effects. The reason is simple.
Imagine a situation in which, for a particular 1,
VE =1 for a long time period. In this case, the
corresponding threshold will grow until it reaches
0F =0 =98 +g. If 0™ < hE (the sum of
post-synaptic potentials) this particular neuron will
go on firing. However, in the case in which
0™ > hE, this cannot happen. As the threshold
increases, it will stop the neuron from firing. Look-
ing at the whole system of neurons we will observe a
destabilization of the center of attraction at which
the system finds itself. It will then move out of this



center and fall into the basin of attraction of a
different center.

To incorporate this effect in the differential equa-
tions for the pattern activities, we introduce the
variables

re= =3 R, 2.6)

which measure the average response activity of
pattern number x. N* in this equation is the
number of E-neurons which form the cell assembly
of pattern number x. We obtain then’ the set of
2p + 1 equations

dm* ; .
e —m* + Fr(Am* — Bm' — 6§ — br*)
ar* 1
= fa = N n
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dm’ 7 I
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Some of the general properties of these equations
of motion can be deduced from the form of the
function Fr.” We will concentrate here on the
numerical investigation of their periodic and chaotic
behavior.

3. Periodic Orbits, Chaotic Orbits
and Intermittency

Let us investigate a series of cases of p = 3 which
can be obtained by varying the inhibition parameter
B while keeping all other parameters in the model
fixed at the following values: T = 0.1, A =1,
C=1, D=16, 6§ =0, 65 =0.55, b=0.085,
¢ = 1.2. The cases B = 0.9 and B = 0.7 were dis-
played in Ref. 2. They are examples of periodic and
chaotic motion, respectively.

We represent our results in a two-dimensional
plot whose axes are x =m3 — (m' + m?)/2,
y= ﬁ(ml — m?)/2. The system has three centers
of attraction which lie near m' = 1 and form an
equilateral triangle in this coordinate frame. In
addition to these “pure” states there are also “‘mixed
states”, centers of attraction which correspond to
pairwise equal activities, e.g., large m! = m? and
small m>. They form another equilateral triangle
whose vertices lie on the diagonals of the first one.
The relative importance of the two sets of centers of
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attraction varies as a function of the parameters of
the model.”

Figure 1 displays a set of trajectories for values of
B starting with 0.6 and increasing by steps of 0.02
to 0.7. These figures show orbits which result from
random initial conditions. The curves are drawn
after some time is allowed for convergence into an
asymptotic orbit. Measuring on these curves the
highest Lyapunov exponent A (see Sec. 5) we obtain
the following results:

Table 1. Highest Lyapunov Exponent.

Figure la 1b Ic 1d le 1f
B 0.60 | 0.62 | 0.64 | 0.66 | 0.68 | 0.70
A(1073) 0.0 2 32 | -15] 1.2 24
Error(10~3) 0.5 1 5 0.5 0.6 4

Positive values should correspond to chaotic
curves and zero values to periodic ones. Comparing
Table 1 with the curves in Fig. 1, we see how this
principle works. All cases which look chaotic have a
Lyapunov exponent of order 1072. Such are
Figs. 1c and 1f. In addition, we find marginal cases
where, on the time scale we have been using, we
observe creeping behavior which is in clear contrast
with closed orbits of finite periodicity. These are the
curves of Fig. 1b and le, whose Lyapunov expo-
nents are positive but of order 1073, The curves
which have a definite periodic structure, la and 1d,
have a zero or a slightly negative exponent of order
1073,

The set of equations (2.7) is symmetric under the
interchange of any two patterns. In the p = 3 case
and the set of coordinates we use, this implies
invariance under the reflection y — —y and rotation
by 120°. Figure la is rotational invariant but slightly
asymmetric under reflection. Its orbit has a definite
chirality, and its motion is counterclockwise. There
exists another orbit which is obtained through re-
flection and whose motion is clockwise. Figure 1b is
invariant under reflection but not under rotation. It
has almost closed loops with definite chiralities
appearing in pairs. Clearly there exist other dyna-
mical attractors which can be obtained by rotations
of 120° for the same set of parameters. The chaotic
motion of Fig. lc seems to display all symmetries,
while in the closed curve of Fig. 1d all are broken.
Here again there is a definite chirality to the orbit,
and five more copies can be generated through
reflection and rotation.
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Fig. 1 Dynamical attractors plotted in the plane defined by x = m3 — (m' + m?)/2 and y = J3(m!' = m?)/2. All cases use the
parameters A =1, C=1, D =16, T = 0.1, 6% = 0, ¢ = 0.55. They vary in the inhibition parameter B: (a) 0.60 (b) 0.62 (c) 0.64
(d) 0.66 (&) 0.68 (f) 0.70. Other attractors can be obtained through the symmetry operations discussed in the text.



The fact that the symmetry is restored in the
chaotic case is no accident. It is quite easy to see
how it comes about through intermittency: genera-
tion of chaotic motion through jumps between
almost closed curves, in this case curves related by
these symmetries. This is displayed in Fig. 2 whose
value of the inhibition parameter is B = 0.616. This
value of B lies in between those of Figs. la and 1b;
yet the curve is not a closed one. The orbit starts in
‘what seems to be an almost periodic curve which
corresponds to a particular choice of symmetry
breaking. It deviates continuously until it moves out
of this quasi-periodic curve into another one which
corresponds to a different choice of symmetry
breaking. Eventually we obtain a symmetric struc-
ture which is built out of the three quasi-attractors.

It is conventional to study the approach to chaos
by using a Poincaré map.® In Fig. 3 we display such
a study of the case shown in Fig. 2. Plotted here are
the results of a Poincaré map obtained when the
orbit intersects the plane m*> = 0.5. For each pair of
consecutive points, we compare their values of
m! — m?, i.e., we plot y, vs. ¥,_1. We see that this
map has two regions which are very close to the
identity line, signifying the existence of two almost
closed curves which intersect this plane. Starting at
any of the extreme corners of this map, one flows
into the region y = 0 and out of the quasi-attractor
to be captured by the other quasi-attractor, and
begin the motion at the other extreme corner. The
points drawn on Fig. 3 correspond to one specific
run through the two dynamic centers of attraction
which cross the relevant plane. Repeating the pro-
cess, one obtains points which are close, yet not
identical, to the ones shown here. The new points
lie in the same neighborhood and display the same
trend. This is the trend which is typical of intermit-
tency.

4. Fractal Basin of Attraction

There is a precursor to intermittency which can
be observed in the case of periodic orbits. If there
exist several different orbits, e.g., symmetry reflec-
tions of one another, one can study their basins of
attraction. If the latter turn out to have fractal
boundaries, this system may be expected to turn
into intermittent motion after a small change in its
parameters.

In this section, we study such a case. We choose
the inhibition strength to be B = 0.9. This is a case
where there exist two periodic orbits, corresponding
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Fig. 2 A dynamical attractor which displays intermittency.
Here, B was chosen as 0.616. We first observe an almost periodic
curve drawn by a full line, which then moves into a rotated
image drawn by a dashed line. The latter moves into the third
image plotted by dots and so on.
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Fig. 3 A Poincaré map for the attractor displayed in Fig. 2.
This map is drawn in the plane m> = 1/2, comparing the
consecutive values of m' — m2. The motion starts at the upper
right corner, moves down to 0, then reappears in the lower left
corner moving up to 1. The next cycle follows through nearby
points which display the same trend. Although this represents
only partial information of the orbit, it is enough to conclude that
it has the character of intermittency.
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to cyclic and anti-cyclic motion between the three
centers of attraction. These orbits are shown in
Fig. 4.

Let us choose the initial conditions for the mo-
tion to lie in the plane

m' +m?+m= m=r=r=r=0.
For each point in this plane, we may ask whether it
flows into the cyclic or the anti-cyclic orbit. (There
exists a one-dimensional subset of initial conditions,
lying on the symmetry axes, which flow into neither
of the two orbits. They flow into straight lines of
the type m' = m’, and will be neglected here.) By
choosing a uniform grid of initial conditions, we
map out the basins of attraction of our two dynamic
attractors. The results are shown in Figs. 5 and 6.
We use the same x and y axes we employed before,
this time to display the three-fold symmetry in the
plane which we study. The black region corresponds
to the basin of attraction of one orbit and the gray
region to that of the other. Figure 6 is a blow-up of
the right corner of Fig. 5. We learn from it that, as
we go into finer scales, we uncover further bound-
aries between the two basins of attraction. They are
therefore intertwined in a characteristic fractal man-
ner, which is, as stated above, a precursor of the
intermittent behavior observed for nearby choices of
the parameters of this system.

Phase Space Characteristics

Lyapunov exponents, which have proven to be
the most useful dynamical diagnostic for chaotic
systems, are the average exponential rates of diverg-
ence (or convergence) of nearby orbits in phase
space. Therefore, Lyapunov exponents supply a
measure for the global properties of the attractor.
Evaluation of the Lyapunov exponents is done by
measurement of local stability along trajectories in
phase space. We calculate the leading Lyapunov
exponents using the algorithm developed by Shi-
manda and Nagashima.® Testing the stability of a
set of differential equations, one studies the linea-
rized set which follows for infinitesimal variations.
Starting with a deviation vector V we will find, after
time ¢, that its length becomes proportional to 2%
where A is the highest Lyapunov exponent. This
exponent is associated with the direction in tangent
space which is growing most rapidly. Using a
Gram-Schmidt procedure, one can obtain the lower
exponents t0o.” In numerical evaluations, one starts
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Fig. 4 The two mirror-image attractors which are obtained for
B = 0.9. Their corners lie near the centers of attraction which
correspond to the vertices of an equilateral triangle. The two
attractors have opposite chiralities corresponding to cyclic or
anti-cyclic motion.

Fig. 5 Basins of attraction of the two dynamical attractors of
Fig. 4 in the plane m' + m? + m3 = 1 are plotted in two shades
of gray. The border between the regions shows fractal behavior.



with one V' whose norm is unity, lets it develop in
time according (o the linearized equartions, and
renormalizes it back to unity at time intervals which
are not multiples of natural periods of the system.
This breaks up the orbit into sections { in which the
vectors develop until reaching values denored by V',
whose direction serves as the starting point for the
next section. The leading exponent will then be

> n |V o
A tln2 (-H
where ¢ is the total integration time, taken to be
very long in order to obtain the asymprotic value,
In Fig. 7, we demonstrate this process by draw-
ing the projections of the seven-dimensional vectors
V. on the x—=y plane at the ends of each section for
one run around the curve of Fig. la. Note the
strong reduction in the size of the vectors near the
centers of attraction, Clearly A gets different con-
tributions from different regions of phase space. To
analyze this variation, let us introduce a radius
r* = x* + v* and calculate separately contributions
to A which derive from sections which lie inside or
outside a circle ¢ = K. We define

EIIR. In |Vr|

5.2
tylIn2 2

A(R) =

where R, are the regions r > R and r << R, respec-
tively, and ¢. is the time spent in them. It follows
then that

By TR A
A= T

(5.3)

We have emploved this procedure on the periodic
case B = 0.9 (Fig. 4) and the chaotc case B = 0.7
(Fig. 1f), The results are shown in Fig. 8. Clearly
large positive contributions to A emerge from re-
gions of low r values. Negarive contributions come
from high r regions where the centers of attraction
are located. This agrees with the intuitive expecta-
tion that we see convergence near these centers and
in ‘the regions between them we have divergence.
Since most of the time is spent near the centers of
attraction, the small nepative values can win over
the large positive values. This is the case in the
periodic curve of B = 0.9. The opposite holds for
the chaotic curve of B = 0.7. The final A values are
seen at the edges, & = 0 and 1, of Fig. 8.
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Fig. 7 A set of vectors: V, for one cvcle around the orbit of
Fig. la, The vectors shown here are the two-dimensional projec-
tions of V. In order to obtun a clear demonstration of the trend
of this system, we have sarted each section ¢ with a vector of
unit porm lying in the same plane, pointing along the direction of
the projected ¥, i.c., slong the direction of the vector seen in
this figure.
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Fig. 8 The partial contributions to the Lyapunov exponent from
inside and outside a circle of radius R, as defined in Eq. (5.2),
show similar trends in the periodic motion of B = 0.9 (Fig. 4)
and the chaotic motion of B = 0.7 (Fig. If).

It is striking how similar the two different cases
look as a function of R and how delicate the balance
between convergence and divergence seems to be.
This explains how it is possible, by a small change
in the parameters of the problem, to switch from
periodic to chaotic behavior. It illustrates how inter-
mittency comes about: the regions of low r where A
gets large contributions are the source of possible
transitions from one quasi-periodic curve to another.
It takes only small changes in the parameters to
cause this effect.

Finally, we wish to comment on the dimensional-
ity of the chaotic motion. We have used, throughout
this paper, a two-dimensional representation of a
seven-dimensional problem (for p = 3). We will
show that the dimension of the chaotic motion is
close to two. We believe therefore that our repre-
sentation captures the important characteristics of
the motion of this system.

Chaotic motion is usually confined to some fractal
dimension in phase space. In general, the dimension
is the lower bound on the number of essential
variables needed to describe the motion over a
strange attractor. It may be defined in different
ways,'? using either metric properties or frequency
characteristics of the orbit.

In order to estimate the fractal dimension dy of
the set corresponding to B = 0.7, we used the
definition of Kaplan and Yorke,'® which relies on
the Lyapunov exponents of the orbit. Ordering
them in a descending order, starting from the
highest A; > 0 we have typically A, = 0 and can

define the order j such that it is the first for which

Jj+1

j
SA>0 D<o (5.4
i=1 i=1

Using this value j, Kaplan and Yorke defined the
fractal dimension as

o b (5.5)
|Ais1l )

d f = ] +
In the B = 0.7 case, we find that the value of the
third exponent is —0.22, leading to j =2 and
ds = 2.15 £+ 0.03 for this chaotic motion. Applying
the same procedure to the case of B = 0.64, we
obtain dy = 2.25 + 0.03. All other cases depicted in
Fig. 1 have dimensions close to 1. The two marginal
cases of B = 0.62 (1b) and B = 0.68 (le) lead to
ds= 1.03 = 0.01.

6. Discussion

The model which we have investigated in this
paper is defined by a set of differential equations for
activities of excitatory and inhibitory cell assemblies.
These equations can be justified within a specific
neural network with a built-in fatigue effect caused
by dynamical thresholds. The first numerical inves-
tigations of this model’ have already indicated the
existence of periodic and chaotic attractors. In this
paper, we have investigated their properties in de-
tail, and have shown that the transitions between
periodic and chaotic behavior occurs via intermit-
tency.

We have concentrated on a model with three
stored patterns. We have fixed all parameters but
for the inhibition strength B, which was tuned
carefully so as to reveal different kinds of orbits.
Examples were shown in Fig. 1. To put things in
perspective we display in Fig. 9 the Lyapunov expo-
nents measured by sweeping over the parameter B
with steps of 0.001. The choices of Fig. 1, whose
Lyapunov exponents were quoted in Table 1, are
indicated by circles on Fig. 9. We see that they
belong to a range of B which has very strong
variations in behavior. Moreover, the values of the
positive Lyapunov exponents which indicate chaotic
behavior are very small. To understand these small
differences between periodic and chaotic trajectories,
we have developed a method which measures semi-
local properties of the Lyapunov exponents. Eva-
luating the contributions to the leading Lyapunov



0.04 .

0.02 F .

e A —

-0.02 4

T

1 1 1 1

0.6 0.7 0.8 0.9

Fig. 9 Variation of the highest Lyapunov exponent A as a
function of the parameter B using a step size of 0.001. The six
cases displayed in Fig. 1 and evaluated in Table 1 are indicated
by small circles.

exponent from different regions in phase space, we
have seen that in both cases we obtain large negative
contributions in the neighborhood of the centers of
attraction, and large positive values in the regions
which are far away from these centers. A very
delicate balance between these two components de-
termines whether the resulting orbit is a periodic,
quasi-periodic or chaotic one. The first component
describes short-term convergence to centers of
attraction, while the second one represents the des-
tabilizing effects of the dynamical thresholds. In the
chaotic case, the latter wins, leading to long-term
divergence.

Intermittency can be understood in terms of this
delicate balance between attraction and repulsion.
Small changes in the parameters can easily spoil the
balance and turn a periodic structure into a pseudo-
periodic one, which almost closes on itself. The
trajectory can then easily move from the neighbor-
hood of one periodic curve to another, exhibiting
intermittency. An example was shown in Fig. 2.
Another indication of this tendency is given by the
fractal basins of attraction of the periodic attractors
shown in Fig. 5.

All these quantitative and qualitative arguments
help to establish the general nature of the dynamics
of our model. This model is not intended to de-
scribe any specific neural system, but it is supposed
to serve as an example of a neural system which is
able to move freely (i.e., unpredictably) within its
set of stored patterns. Chaos is the technical defini-
tion of this freedom: the long-term divergence of

Chaotic Behavior of a Neural Network 335

this system comes about through its crucial depend-
ence on initial conditions which are buried in the
microscopic details of the model. Judging only by
its measurable amplitudes (the activities of the
stored patterns) its behavior is unpredictable. We
believe that this property deserves attention. Future
neural models of thought processes will undoubtedly
make extensive use of chaotic features in order to
account for the apparent freedom of the brain.
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