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Bosonization is applied to the SU(A’) Thirring models, and interesting relations be- 

tween various two-dimensional field theories arise. In particular, we show that the SU(2) 

model is equivalent to a version of the Sine-Gordon equation plus a free massless field. 

1. Introduction 

The kinematical constraints on field theories in two space-time dimensions lead 
to many unusual effects which have no analogue in higher dimensions. Perhaps the 
strangest of these is the equivalence between large classes of Bose and Fermi field 
theories. This correspondence, which has been dubbed bosonization, provides a 
transparent unified method for solving two dimensional Fermi theories [ l**, 2-41. 

In this paper we will apply bosonization to the non-abelian SU(N) Thirring mo- 
dels [5,6,7+]. Although we will not solve these models, we will find several 
amusing relations between them and other two-dimensional theories. Our most 
striking result is for the case N = 2: we show that the SU(2) Thirring model is equi- 
valent to the theory of a free massless scalar field and a Sine-Gordon field. The bare 

coupling constant of the Sine-Gordon theory is fixed at f12 = 87r, the value which 
makes the model exactly renormalizable. According to the results of Coleman [2], 
this implies a correspondence between the SU(2) model and another fermion model 
a free massless Fermi field and a massive abelian Thirring model. 

This work is divided into three parts. In sect. 2 we set up a precise operator 
scheme which implements the bosonization of free massless Fermi fields. Our for- 
mulas are very similar to those proposed by Dell’Antonio et al. [I] and by Mandel- 
stam [3]. In sect. 3 we apply our formalism to the SU(N) models in the interac- 
tion picture and give a heuristic derivation of the equivalent boson Lagrangians for 
these models. Sect. 4 is devoted to a proof of the equivalence for the SU(2) case 

* Supported in part by the Israel Commission on Basic Research. 

** We use the y-matrix conventions of Klaiber which imply Q T_ R = j, 1 2. 

+ This author has arrived at some of the results of the present paper, h particular the La- 

grangian (26). 
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based on the method and results of Coleman [2]. Finally we discuss the rather un- 
usual picture of renormalization that emerges from our results and point out areas 
in which further study is necessary. 

2. Bosonization of massless free fermion fields 

We are going to write an explicit expression for a massless free fermion field as 
a non-local function of a free massless pseudo-scalar field. As is well-known, the 
latter needs infrared regularization in two dimensions; we will supply this regulari- 
zation by working in a spatial box. We have found that we cannot write the fermion 
in terms of the boson field alone. We will have to introduce two discrete Fermi de- 

grees of freedom. This is in accord with the results of Schroer [l]. 
The left- and right-handed components of the massless pseudo-scalar field are de- 

fined in a box of length L with periodic boundary conditions in the following ex- 

plicit fashion: 

qL,R (x f t) = -& nco [a,eikn(xt') + h.c.] $&+, ; k, = Ihrn/L , 
n n = f integer . (1) 

This field cp does not have the zero momentum-mode. The latter is treated separate- 
ly in terms of the charge (4) and axial charge (4) operators and their conjugate mo- 
menta (p and F): 

$L,& * t) = $ 

[wl = E Fl = i , ka = k?a = [FJJl = lF,,p] = 0 . (2) 

The operators p and p” are assumed to be angle variables so that 4 and F have integer 
eigenvalues. We will designate henceforth the Hilbert space on which 4 and F operate 

by Hqq. This is distinct from the Fock space HB on which the field 9 operates. We 
will also use the pseudo-scalar field 

*==L +pR +$L +$R. (3) 

It obeys the massless Klein-Gordon equation and operates on the Hilbert space 

HB c+ HqiT. 
We now construct the massless spinor field 

1 
+L,R = 3 : e 

~2i&+q,~(xft) eT2iJ;;GLp(xft) 
XL,R . (4) 
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The normal ordering is used on the fields pLp. Here we introduced two additional 

fermionic degrees of freedom 

xa!=A,+& {A,, A;] = Qp, {A,, Ap > = 0, o, P = LR > (5) 

which operate on the Hilbert space Hx spanned by the operation of AZ and ALAi 
on the vacuum. Altogether $ is defined on HB 8 Hq~ 8 Hx. It is a straightforward 
exercise to show that J/ satisfies the Dirac equation and the correct Fermi anticom- 
mutation relations. We construct explicitly the Wightman functions of these $ 
fields: 

co]Ql(xl) ... +1(Xn)ti2(X,+1) ... $2(x,+, 

(-l)m(f24-1) fl 

)tiftil)... $~@n)G~Oln+l) ... IL;oi,+m)l”) 

1 i j<kc,n (L/n) sin [(n/L)& - Uk)] (L/n) sin [(r/L) (uj - uk)] 
= \ . 

(2ni)n+m i ,ir , {(L/n) sin [(m/L) (uj - uk)] - if} 

1 <iQlim WI sin[(dL)(ui - ul)l (L&r) sin [(G)Wi - Vdl 
XL‘- , 

fi {(L/7r) Sin[(?T/L)(Ui - Vl)] t if} 
i.l=l 

Uk=xk k, 
Otxl u, =y; -+y: > k= 1, . ..n. 

Uk-,, =$ -Xk, ’ v,_, =_$ -j$, k=ntl,...n+m. (6) 

In the limit L + m these expressions converge to the correct forms for a free mass- 
less spinor field in two dimensions (see, e.g. Klaiber, ref. [l]). 

By introducing fermion normal ordering via point splitting, one can prove that 
the fermion number current is given by 

jfi =fv&GyM$) = - ‘efiQ,@. 
6 (7) 

The appropriate current field algebra is now easily obtained. With some appropriate 

modifications, one can view eq. (4) as a construction of the fermion field in terms 
of the currents in this theory, as advocated by Dell-Antonio et al. [l]. 

Using the bosonization formulas one is able to easily solve a large class of fer- 

mion models by writing everything in the interaction picture. We have checked the 
validity of this procedure in the following soluble cases: 

(a) The Schwinger model in the Coulomb gauge [4]; 
(b) The derivative coupling model [8]; 
(c) The abelian SU(N) Thirring models [ 1,7]. 
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The solutions of these models obtained by bosonization are completely consistent 
with known solutions. 

In the following we will apply this method to field theoretical models that have 
not been solved yet. Throughout this paper we will use an interaction picture ap- 
proach which is based on the free field construction described in this section. Our ap- 

proach is therefore different from that of Mandelstam [3], although the formulas 

may look similar. 
Halpern [7] has also used an interaction picture formalism to discuss bosoniza- 

tion of the SU(N) models. He works with T products and enforces covariance via 
the Dirac-Schwinger commutation relations for the energy density. Instead, we will 

use T* products and Mathews’ theorem, a procedure which simplifies the deriva- 
tions. 

3. Bosonization of the SU(N) Thirring model in the interaction picture 

We begin the bosonization of the SU(N) Thirring model by defining the N two- 
component spinors: 

F2i&&&Cx~tI : f 
L,R ’ 

a= 1, . . ..N. (8) 

Here Bose normal ordering should be understood to act only on the H, part of 
the field @. The U(N) currents are defined by 

Jp = c pyp”Jla, J(i)fi = c pap ;Qi; ,jb , (9) 

where the ;X N matrices A(‘), i = 1 

a,b 

, .,., N form the regular representation of 

SU(N). Eq. (9) has to be understood as a point-split definition so that the currents 
are regular. In terms of the boson field they turn out to be 

N N 

Jo = 1 c a,w ) 
& a=1 

Jl=-Lc QP, 
fi a=1 

2i&(QT - $1 : + xf$ : e 
-24&D; - *b 1 

R :} 

N 

i= 1, . . ..Nz - 1; 

i= 1, . . ..N2 - 1 (10) 
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Notice that the diagonal currents are simple functions of the boson fields. It is a 
straightforward exercise to check that these expressions satisfy the non-abelian cur- 
rent algebra as given by Dashen and Frishman [5]. 

In order to perform the bosonization of the model it is necessary to use a point 
split definition of Bose normal ordering for arbitrary solutions of the Klein-Gordon 
equation. In ref. [9] it was shown that this is the way to get the right quantum 

expression for the energy-momentum tensor in the Sugawara form. The prescrip- 
tion is: 

Jo J+) -+ lim {i (J1 (xl Jzti) + J20) Jl(x)> - VE”. I (11) 
Y-x 

We now start from the Lagrangian 

and use the Gell-Mann-Low formula to express time ordered products of Heisenberg 
operators in terms of interaction-picture fields. 

We must use a T* product in eq. (13) because of the Schwinger terms in the current 
algebra. 

Using eqs. (10) and (11) we can rewrite (12) in boson language. The effective bo- 
son interaction Lagrangian is 

PI = ‘$ : a,@‘1 am’1 : +z 23 : auQ’aacl*‘a : 
a>2 

; gb x:x; x;x; : -- cos[2fi CF2 (P - CCb) @‘“I : (14) 

C is an orthogonal real N X N matrix that satisfies 

N 

,la=S for a = 1 ,...Sy; c cabccd =N&algcl ; c cabccb = &ac , 
bd b=l 

(15) 

and the a’ are related to the original fields Q, by 

@‘a = c Cab@b . (16) 
b 

We will now assume that eq. (13) can be implemented in the boson language by 
the use of Mathews’ theorem [lo], i.e. we use the standard recipe of regarding T* 
as a T product which commutes with time derivatives. The fermion Lagrangian, 
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on the other hand, contains no derivative interactions. Formal evaluation of a T 

product of Fermi interaction Lagrangians via Wick’s theorem leads to a covariant 

but divergent expression. When we define this expression by means of a covariant 
regularization and subtraction procedure we effectively convert it into a T* product. 
The crucial assumption of this section is that these two definitions coincide. This 

conjecture is actually justified in all of the soluble models mentioned above, and 
we will assume that it remains valid here. We are then led to a theory which can be 
represented by the Lagrangian 

n+gBN 
-Q=*r lu 

a Q'lacla'l t ~ 

N 

Let us perform a finite wave function renormalization on the fields a’: 

ea= 1 tg &a, J”v a = 2,...J. 

07) 

(18) 

The Lagrangian (17) then becomes 

N 

P= f gI aP6aaw - 3 f(~2~2) ,5;, x;~x;+$ cos[2fi 
gv -l/2 

( 1 
i t 2;; 

N 

x CF2 (cm - Ccb)e q : ; f(L2/\2) = (4E)““‘” +gv) ) , (19) 

where A2 is an ultra-violet cutoff. The cutoff-dependent factor in front of the co- 

sine comes from re-normal ordering the cosine in terms of the fields 0. 

One now sees immediately how to solve the problem for gv = 0. The ground 
state of the Heisenberg Hamiltonian is the Fock vacuum of the fields 8. We can get 
a Fermi field which has finite Green functions in this ground state by re-normal 
ordering our field (8) with respect to the 0’s. The finite wave function renormaliza- 

tion between a’ and 0 induces an infinite wave function renormalization of J/ and 
we pick up the correct anomalous dimension for the Fermi field. 

Nni/4dfl+NgB)G(a) . 
(20) 

The full gv # 0 Lagrangian (19) becomes particularly simple for the case of SU(2). 

2= :a,elauel t :afie2afie2 -s f(~2Q) x~$+~ : cos &i [ ( gv)-1'2e2] 1 +% 

(21) 
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Thus, the SU(2) Thirring model is equivalent to a massless free Bose field plus a 
Sine-Gordon field. The correspondence between couplings is (we use Coleman’s 

notation) [2] 

125 

(Y - +22f(L2*2), 
p2 L2 

p- (1+2)-i &+-. (22) 

Let us summarise this section. By using an interaction picture formalism based on 

eq. (8) we wrote the interaction Lagrangian in terms of the scalar fields. It separated 
automatically into two parts which can be simply expressed in terms of @la which 
are linear combinations of $Q. This field theory of bosons can be represented by the 
Lagrangian (17). Performing a finite wave function renormalization on $‘, one is 
led to a new Iagkangian which is equivalent (in the SU(2) case) to one free Bose 
field plus one Sine-Gordon field with a fixed relation between the two Sine-Gordon 
couplings (Y and p. This is a rather surprising result and the skeptical reader may be 

suspicious of our cavalier treatment of T” products. We therefore check the result 
using a different method in sect. 4. 

4. Proof of equivalence between the Bose and Fermi Lagrangians for the case of 

SW) 

In this section we will use Coleman’s results to prove the correspondences sugges- 
ted in sect. 3. We will therefore give up our box normalization in favour of Cole- 
man’s infrared regularization. We will also set g B = igv. This simplifies many for- 
mulas and implies no essential loss of generality because we already know that 
bosonization works for the Abelian part of the model. 

After applying a Fierz transformation, we can write the fermion Lagrangian as 

(23) 

Defining 

ufy2(x) a lim 
(x-y)2-o 

(x - y)2S i;y (x) #(Y) ; 
gv 4n+-gv 

6 = - ___ 
877 21rtgv’ (24) 

we get (following Coleman [2]) 
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X pfil o:(Y,) J_C..v,)lO) a (i)4(1+J+n+m) ii (t - %jP 
i>j 

(25) 

x fir (x, - Xp)2 $l acl Cx, - Ci)2 l@j (77i - Vj)2 ,fjp 01, - Yp)2 
a>p 

X fi fi (‘Vi -YP)~ i-I 

Kmn 

n I-I I-I (Ei - qk)2(b -Y,)2(xp - Vk)2 
i=l p=1 i=lk=l cu=l p=1 

1 
-1 

x (xp - YJ2 X [same expression with I + J; K + L; $ + r; Q + h; 

l/(1 + g\rl2d 
x n tfm;x 7-y] 

I 
ifItn=K+mandJtm=L+nandzerootherwise. 

We write the boson Lagrangian as [7] 

- g(x) Gm2Nm cos [y&r Cl21 , (26) 

The function g has compact support in space-time and is supposed to be taken to 
1 everywhere after the perturbation series is summed. ~2 is a regulator mass which 
allows us to make calculations with massless scalar fields in two dimensions. It 
should be taken to zero order by order in the perturbation theory. Note that the 
factors Xi which appear in eq. (21) are absent from eq. (26). The reason is that they 
do not play any role in the matrix elements of eq. (25) since they will always ap- 
pear squared and therefore lead to no observable factor in the boson sector of the 
theory. Therefore, although we will be able to show the equivalence using Cole- 
man’s method, we will not get the explicit representation of the spinor from which 
we started. 

Now, consider the following expression: 

I 

lim (OylT Ivl N,e 
,irJZ;;(e’+e%k) 

A?-0 k=l 

J 

X fl N,,e 
-i&G@’ -e* j(7.) 

j=l 

I blNrn ,irdZW - e*)(q 

X ii N,e 
or=1 

(27) 



T. Banks et al. / Thirring models 121 

The dependence on p2 is 

@2)f[(-L+K+.f-I+2m-2n)2+(L+K-I-J)2 J , 08) 

so a contribution is non-zero as p2 +OifJ+m=LtnandK+m=I+n.When 
these conditions are satisfied it is easy to see (using Coleman’s formulae again) that 
the result is proportional to eq. (25). 

So, we are led to deduce the correspondences 

These are exactly the consequences that one would anticipate on the basis of the 
discussion in sect. 3. Thus we have proven the equivalence conjectured in the pre- 
vious section, at least for a class of matrix elements. We have not checked the equi- 
valence of other matrix elements of the two theories but we are confident that 

they are, in fact, equal. 

5. Discussion 

Let us discuss the renormalization procedure for the Lagrangian (21) of section 
3 keeping the box length L fixed. We therefore ask what has to be done to the coup- 

ling constant gv and the field normalization in order to make all Green functions A 

independent as A +m. For A <m the terms in the Lagrangian (and all of their powers) 
are finite operators on Fock space (we always work in a finite volume). The coefficient 
of the cosine term blows up as A -+ M so we must obviously let gv + 0 to obtain anything 
finite in this limit. The crucial point now is that as we let gv + 0 the coefficient in- 

side the cosine goes to fi. This is the very edge of the positivity domain which 
Coleman [2] has obtained for the Sine-Gordon equation. Moreover, for our purpose 
it is important to note that /3 = 6 is exactly the value for which cos p$ becomes 
an operator of scale dimension 2. Thus, the cosine interaction, which for /32 < 87~ 
was superrenormalizable, becomes exactly renormalizable in this limit. It is easy to 
verify that new divergences appear in the Sine-Gordon perturbation series for this 
value of p2. 

The upshot of this is that if we take gv + 0 in such a way that 

Azm gt = finite , (39) 

then the higher powers of the resulting Hamiltonian will not be well defined. In 
more mathematical terms, the Hamiltonian will not converge to an essentially self- 
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adjoint operator on Fock space. We know that if we take gv to zero fast enough as 
A + 00, then we get a well-defined operator. For example, if we simply set gv = 0 
for some finite A, then we get back the abelian Thirring model. Since we have 
shown that the massive Thirring model is equivalent to the SU(2) model (which we 
know can be renormalized), it is now reasonable to conjecture that there is a way 
to choose the bare couplings 

&I-,0, p=& 1 +g ( ) -1’2, 
in the Sine-Gordon equation and obtain finite Green functions for the theory 
which are essentially different from the gv(A) z 0 case. 

In other words, the limit (27) leads to an equivalence between the SU(2) model 
and the Sine-Gordon model with parameters 

(31) 

For finite gt this theory is not yet,renormalized. However, our knowledge that the 
SIJ(2) model is renormalizable by coupling constant and Fermi wave function re- 
normalization [6]* leads us to expect that this Sine-Gordon field theory is also re- 
normalizable. We may expect that an additional finite renormalization of the boson 
field has to be carried out. This is because the anomalous dimension of the Fermi 
field in the non-abelian SU(2) model is not the same as that in the abelian model 

[5,11]. (The Bose renormalization must be finite because the curl of the Bose field 
is an SU(2) current which we know is not renormalized.) Thus, we expect that a 
finite version of the Sine-Gordon equation can be constructed even when p2 = 8n. 
For larger values of p Coleman has shown [2] that the model does not exist. 

The conjecture presented above is a bit disquieting when we think of it in terms 
of renormalization group trajectories. The standard way of computing renormaliza- 
tion constants by looking at the divergent parts of integrals leads us to believe that 
for f12 < 8n the trajectories for the Sine-Gordon equation are all /3 = constant, i.e. 
straight lines in the CY, /3 plane. We seem to have found a new trajectory which moves 
in to the point (a! = 0, f12 = 8n) like a square root. We believe that the apparent 
contradiction lies in the fact that the relation between the bare and renormalized /3 
is a completely finite one and is missed by the usual method of only taking infinite 
renormalizations into account. This point deserves further study. 

We would like to emphasize that our analysis does not reveal any hint of the 
second scale invariant solution of the SU(N) model found by Dashen and Frishman. 

* These authors discuss a slightly more general W(N) model than ours. One can use their results 

to show that the U(1) chiral symmetry may be consistently implemented. This implies that 
the only renormalizations needed in our model are the wave function and coupling constant 

repormalizations. 
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The existence of the gv = 4n/(N + 1) Dashen Frishman solution is a consequence of 
anomalies which make the SU(N) axial currents conserved for this value of the 

coupling. In previous applications of bosonization, fermion anomalies always ap- 
peared as canonical results in the boson language, and one might naively expect the 
same to happen for the SU(N) models. The difference, of course, is that in all pre- 
vious models the non-quadratic part of the equivalent boson Lagrangian was super- 
renormalizable, while for the SU(N) models it is renormalizable. Thus the boson 
interaction will have anomalies of its own and we will not see anomalies arise as can- 

onical results. 
Nonetheless, there is a way that we should see the Dashen-Frishman solution in 

our formalism. Since the diagonal SU(N) axial currents are conserved in the Dashen- 
Frishman model, our Bose fields (from which we get the axial currents by taking 
derivatives) should be free. The only way we can see to make this happen is to take 
the bare coupling constant gv to zero so fast that the interaction vanishes even in 
the infinite cutoff limit. In this case the Fermi fields (as defined by us) would also 

be free. The Dashen-Frishman Fermi fields for gv = 47r/(N + 1) can also be written 
in terms of free boson fields, but we see no limit in which our fields can be identi- 
fied with theirs. It may be that the Dashen-Frishman model can be obtained by 
other limiting procedures and not by a quasi-perturbative scheme such as our own. 

We thank Professors L. Susskind and Y. Aharonov for many stimulating discussions. 
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