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Abstract
Many types of sequential symbolic data possess structure that is (i) hierarchical, and

(ii) context-sensitive. Natural-language text or transcribed speech are prime exam-

ples of such data: a corpus of language consists of sentences, defined over a finite

lexicon of symbols such as words. Linguists traditionally analyze the sentences into

recursively structured phrasal constituents [80]; at the same time, a distributional

analysis of partially aligned sentential contexts [44] reveals in the lexicon clusters

that are said to correspond to various syntactic categories (such as nouns or verbs).

Such structure, however, is not limited to the natural languages: recurring motifs

are found, on a level of description that is common to all life on earth, in the base

sequences of DNA that constitute the genome. In this thesis, I address the problem of

extracting patterns from natural sequential data and inferring the underlying rules

that govern their production. This is relevant to both linguistics and bioinformatics,

two fields that investigate sequential symbolic data that are hierarchical and context

sensitive. Given a corpus of strings (such as text, transcribed speech, nucleotide

base pairs, amino acid sequence data, musical notation, etc.), the unsupervised al-

gorithm developed as a part of this project recursively distills from it hierarchically

structured patterns. The ADIOS (Automatic DIstillation of Structure) algorithm relies

on a statistical method for pattern extraction and on structured generalization, two

processes that have been implicated in language acquisition. It has been evaluated

in the main scheme of grammar induction using artificial context-free grammars

with thousands of rules, In on natural languages as diverse as English and Chi-

nese, on coding regions in DNA sequences, and on protein data correlating sequence

with function. This is the first time an unsupervised algorithm is shown capable

of learning complex syntax, generating grammatical novel sentences, scoring well in

standard language proficiency tests, and proving useful in other fields that call for

structure discovery from raw data, such as bioinformatics.
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1.1 Motivation

The study of language aims to characterize and explain the way humans acquire,

produce and understand language, based on the main assumption that rules (gram-

mar) are used to structure all three of these processes. For decades researchers have

been trying to devise formal and rigorous detailed grammars which would capture

the observed regularities of language. All such efforts consistently fall short of their

goal, presumably because grammars tend to mutate, depending on how grammati-

cality is defined and on the purpose to which language is put; as Edward Sapir put

it, “All grammars leak” [1].

Despite that, we cannot disregard the fundamental observation that the patterns

of language that govern the production of those expressions that are indisputably

well-formed are essentially rule-like. While the existence of syntactic rules seems

necessary to explain linguistic productivity, it is less clear what form should such

rules take and how they are to be acquired. Two distinct approaches to this ba-

sic issue exist. The rationalist approach claims that extensive innate knowledge of

grammar is essential to explain the acquisition of language from positive-only data

[19, 82]. The empiricist approach, in comparison, claims that general cognitive mech-

anisms such as pattern recognition and generalization can solve the language acqui-

sition problem.1

The rationalist approach became dominant in linguistics when Noam Chomsky

introduced the concept of innate language faculty which was based on the Argument

from the Poverty of the Stimulus (APS). That is, the data available to the infant child

is so impoverished and degenerate that no general, domain independent learning

algorithm could possibly learn a plausible grammar without assistance. In this work I

explore the question of how far a generalized learning mechanisms can reach without

1 Another major difference between the rationalist and empiricist approaches has to do with the level
of description: while rationalists see the language itself, such as text, as only indirect evidence about the
human language faculty (“competence”), empiricists are interested in describing and accounting for the
actual language data (“performance”).
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any prior knowledge.

Computational models of language acquisition or “grammar induction” are usu-

ally divided into two categories, depending on whether they subscribe to some vari-

ant of the classical generative theory of syntax, or operate within the framework of

“general-purpose” statistical or distributional learning. The present work is rooted in

the belief that polarization between statistical and classical (generative, rule-based)

approaches to syntax hampers the integration of the stronger aspects of each method

into a common powerful framework. On the one hand, the statistical approach is

geared to take advantage of the considerable progress made to date in the areas of

distributed representation, probabilistic learning, and “connectionist” modeling, yet

generic connectionist architectures are ill-suited to the abstraction and processing of

symbolic information. On the other hand, classical rule-based systems excel in just

those tasks, yet are brittle and difficult to train.

In view of these considerations, this project set out to develop an approach to

the acquisition of distributional information from raw input (e.g., transcribed speech

corpora) that also supports the distillation of structural regularities comparable to

those captured by Context Sensitive Grammars out of the accrued statistical knowl-

edge. In thinking about such regularities, I adopt Langacker’s vision: “As conceived

in the present framework, the grammar of a language is simply an inventory of lin-

guistic units” ([65], p.63). To detect potentially useful units, the algorithm that I

shall describe identifies and processes sentences that are partially redundant in that

they share the same word sequences. The detection of paradigmatic variation within

a slot in a set of otherwise identical aligned sequences (syntagms) is the basis for

the classical distributional theory of language [44], as well as for some modern NLP

methods [98]. Likewise, the pattern — the syntagm and the equivalence class of

complementary-distribution symbols that may appear in its open slot — is the main

representational building block of my system, ADIOS (for Automatic DIstillation Of
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Structure) [93, 94, 90].

My goal is to help bridge statistical and formal approaches to language [78] by

placing the work on the unsupervised learning of structure in the context of current

research in grammar acquisition in computational linguistics, and at the same time

to link it to certain formal theories of grammar. Consequently, the following sections

outline the main computational principles behind the ADIOS model, compare these to

select approaches from computational and formal linguistics, report its performance

across different tasks and describes its wide range of applications.

1.2 Outline of the thesis

In chapter 2 I introduce the thesis background as well as the aspects which inspired

me during the design and the development of ADIOS. Chapter 3 describes in detail

the MEX and ADIOS algorithms based on [91]. Chapter 4 presents the main results

in several domains, such as artificial language natural language, genomics and pro-

teomics. This chapter is based on the following publications: [93, 94, 90, 91, 92].

In Chapter 5, I survey the main related computational and linguistic approaches to

grammar induction, where I compare the ADIOS approach to each one of the listed

techniques. I then present the main psycholinguistic findings that have been impli-

cated in language acquisition. Finally, I discuss the implications, the prospects, and

the challenges of the ADIOS algorithm.
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Children acquire language spontaneously and rapidly, attaining within just a few

years an impressive mastery over an infinitely productive means of conceptual think-

ing and communication. The brain mechanisms behind this uniquely human cogni-

tive faculty are surprisingly poorly understood. Although the generative program in

linguistics made significant inroads into exposing the structure of the language fac-

ulty, a computationally viable, behaviorally plausible, and neurally explicit theory of

language acquisition and processing continues to be elusive. On the computational

level, the principles that make possible the acquisition of rich language from impov-

erished stimuli, and the connections between language and the rest of cognition, are

the subject of a continued controversy. On the behavioral level, the wealth of data

from psychological studies of linguistic performance in acquisition and in various

production and comprehension tasks waits to be integrated with the computational

theories. On the level of neural mechanisms, little is known about the brain basis

of language beyond its general topography, gleaned through the study of abnormal

cases, and, more recently, through functional imaging. The language faculty thus

remains a daunting enigma for cognitive scientists, and a formidable challenge for

engineers who would imitate it. Although understanding how language works re-

quires progress on all levels, the prospects for it depend most critically on innovation

in theoretical/computational thinking.

2.1 The primacy of distributional information

Until recently, distributional information1 present in a corpus could not be easily

distilled and visualized, due to technical limitations. For that reason, most studies

involving large corpora used to limit their consideration to simple statistics such as

word frequencies, drawing just criticism from the opponents of distributional the-

1 Distributional information quantifies the degree to which words tend to occur near each other in
speech. One kind of such information is co-occurrence statistics, which captures the probability of target
words to appear together within a small window (typically between 2 and 10 words wide).
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ories. The situation is rather different in NLP, or natural language processing (a

branch of computer science) and in psycholinguistics. In the former field, the in-

tegration of advanced statistical inference (including Bayesian methods), computa-

tional learning theory, efficient algorithms, and cheap hardware led to important

conceptual progress, as well as to practical achievements [72]. In psycholinguistics,

a rapidly growing body of data attesting to the heavy reliance of language users on

distributional information suggests that corpus-based NLP may be in fact constitute

a good starting point for modeling the representation and processing of linguistic

information by the human language faculty. Distributional information has been ex-

perimentally implicated in comprehension, production, and acquisition of language

by human subjects; some of the variables tallied are frequency of past tense versus

past participle uses of a verb, frequency of transitive versus intransitive uses of a

verb, frequency with which a verb and its complement are non-adjacent, and quite a

few others; cf. [69], p.190.

Much more importantly, discussions of the role of distributional knowledge have

begun to address issues dealing with higher order statistics than mere frequencies

(although such concepts are still rarely mentioned explicitly in this literature). One

example of such a statistic arises in connection with the concept of prefabs — se-

quences, continuous or discontinuous, of words that appear to be prefabricated,

that is, stored and retrieved as a whole, rather than being subject to syntactic pro-

cessing [102, 101]. Members of a two-word prefab, for example, are distinguished by

a higher than expected conditional probability on each other — a second-order distri-

butional quantity that can be related both to Bayesian inference and to the Minimum

Description Length principle, as illustrated (in the context of vision) by [31]. A recent

study involving two corpora found that about 55% of words in both spoken and writ-

ten English are parts of prefabs [29]. It is no wonder, therefore, that mastery of a

language depends on getting right the prefabs (“motherhood and apple pie” but not
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“cherry pie”) and the idioms (“take it to the bank,” which is not the same as “carry it

to the bank”). For this, the possession of distributional information is crucial.

2.2 The process of abstraction

Considerations of representational parsimony dictate that the explanation for the

pattern of acceptable sentences in a language be as concise as possible. A reduced

representation of linguistic knowledge need not, however, take the form of a meta-

language such as a prescriptive rule-set or grammar [45]. Instead, syntax may con-

stitute an abstraction, emerging from a corpus of language [50], yet coexisting within

the same representational mechanism that embodies the data. The process of ab-

straction can be guided by principles such as complementarity of distributions: to-

kens that function similarly in some sense (phonological, morphological, syntactic or

semantic) but represent systematic rather than free variation will form complemen-

tary distributions or classes (e.g., [43, 53]).

When syntax is seen as an abstraction from distributional data, one may expect

both the amount and the nature of syntactic knowledge to differ across individu-

als. The differences could stem, among other factors, from variation in exposure to

linguistic material, as well as from varying efficiency with which subjects process

the material they encounter (that in addition to the generally accepted characteriza-

tion of language as a dynamic, constantly evolving system [22, 45]). An immediate

consequence of this stance on syntax is the prediction of individual differences in

the classical task of grammaticality judgment, which is being corroborated by an

increasing number of published studies [40, 89]. Individual differences are also pre-

dicted by this conceptual framework for the behaviorally much more relevant task:

sentence comprehension. Here too, the prediction is borne out by experiments; for

example, recent studies [17, 18] found that comprehension scores for sentences of

varying controlled complexity differed between three groups of subjects: uneducated
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native speakers of English, native speakers with graduate education, and non-native

graduate speakers; surprisingly, the latter group yielded the highest scores (the sub-

jects’ performance also varied with syntactic complexity, semantic plausibility, and

the difficulty of the scoring question). Crucially, these individual differences in syn-

tactic aptitude were obtained under self-paced unlimited-time exposure to the written

sentences, a provision that minimizes the effects of so-called extra-linguistic, “per-

formance” factors.

In thinking about emergent regularities [50], or syntactic-semantic constructions

[32], I adopt Langacker’s vision:

“. . . particular statements (specific forms) coexist with general statements

(rules accounting for those forms) in a speaker’s representation of lin-

guistic convention, which incorporates a huge inventory of specific forms

learned as units (conventional expressions). Out of this sea of particu-

larity speakers extract whatever generalizations they can. Most of these

are of limited scope, and some forms cannot be assimilated to any gen-

eral patterns at all. Fully general rules are not the expected case in this

perspective, but rather a special, limiting case along a continuum that

also embraces totally idiosyncratic forms and patterns of all intermediate

degrees of generality.” [65], p.43.

Langacker’s conception of grammar as an inventory of linguistic units, which is struc-

tured in the sense that some units function as components of others, is well-suited

to serve as a basis for a psychologically motivated theory of language learning, due

to its clear parallels with the notion of unitization that arises in cognitive psychology

[34]. Recent developments in probability and information theory and in computa-

tional learning have rendered distributional [45, 46] methods of linguistic unitization

both more tractable and more readily relatable to grammar-based formalisms [78].

A representative example of such a development is the construction-based ap-
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proaches to syntax [23, 33], which posit a lexicon populated by units of various

sizes, as envisaged by [65]. Constructions may be specified completely, as in the

case of simple morphemes or idioms such as take it to the bank, or partially, as in

the expression whats X doing Y?, where X and Y are slots that admit fillers of partic-

ular types [58]. Constructions offer an intriguing alternative to traditional rule-based

syntax by hinting at the extent to which the complexity of language can stem from a

rich repertoire of stored, more or less entrenched [42] representations that address

both syntactic and semantic issues, and encompass, in addition to general rules,

totally idiosyncratic forms and patterns of all intermediate degrees of generality ([65],

p.46). Because constructions are by their very nature language-specific, the question

of acquisition in Construction Grammar is especially poignant.

2.3 Machine learning

In the wide field of Machine Learning, a key distinction can be made between su-

pervised and unsupervised learning techniques. In unsupervised learning, the goal

is to find a pattern from the data alone, without being told ahead of time (e.g., by

a teacher) what such a pattern may be. In supervised learning, in comparison, the

learner is trained on data/output pairs provided by the teacher. Existing grammar

acquisition methods (as any other learning algorithms) can be supervised or unsu-

pervised. One form of supervision is the use of negative data (that is, examples

labeled as ungrammatical by a teacher).

Very few unsupervised grammar induction methods work with positive examples

of raw, untagged data (see Section 5.1.1 for a survey). Reduction of redundancy

is a general (and arguably the only conceivable) approach to unsupervised learning

[6, 7] . Written natural language (or transcribed speech) is trivially redundant to

the extent it relies on a fixed lexicon. This property of language makes possible

the unsupervised recovery of words from a text corpus with all the spaces omitted,
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through a straightforward minimization of per-letter entropy [83].

Pushing entropy minimization to the limit would lead to an absurd situation in

which the agglomeration of words into successively longer ”primitive” sequences ren-

ders the resulting representation useless for dealing with novel texts (that is, inca-

pable of generalization; cf. [100], p.188). I observe, however, that a word-based rep-

resentation is still redundant to the extent that different sentences share the same

word sequences. Such sequences need not be contiguous; indeed, the detection of

paradigmatic variation within a slot in a set of otherwise identical aligned sequences

(syntagms) is the basis for the classical distributional theory of language [44], as well

as for some modern NLP methods [98]. The pattern — the syntagm and the equiva-

lence class of complementary-distribution symbols2 that may appear in its open slot

— is the main representational building block of my system, ADIOS (for Automatic

DIstillation Of Structure) [93]. My thesis aims to transform the idea of the emergence

of distributional syntactic knowledge into a concrete computational model which is

based on the following three principles.

2.4 The principles behind the ADIOS algorithm

The representational power of ADIOS and its capacity for unsupervised learning rest

on three principles: (1) probabilistic inference of pattern significance, (2) context-

sensitive generalization, and (3) recursive construction of complex patterns. Each of

these is described briefly below.

2.4.1 Probabilistic inference of pattern significance.

ADIOS represents a corpus of sentences as an initially highly redundant directed

graph, The algorithm, described in detail in section 3.2, identifies significant pat-

terns that balance high compression (small size of the pattern “lexicon”) against good

2 The symbols may be letters or morphemes.



Chapter 2. Introduction May 22, 2006 25

generalization (the ability to generate new grammatical sentences by splicing together

various fragments each of which belongs to a different pattern).

2.4.2 Context sensitivity of patterns.

A pattern is an abstraction of a bundle of sentences that are identical up to variation

in one place, where one of several symbols — the members of the equivalence class

associated with the pattern — may appear (Figure 3.7). Because this variation is only

allowed in the context specified by the pattern, the generalization afforded by a set

of patterns is inherently safer than in approaches that posit globally valid categories

(“parts of speech”) and rules (“grammar”). The reliance of ADIOS on many context-

sensitive patterns rather than on traditional rules may be compared to the central

idea of Construction Grammar, mentioned above.

2.4.3 Hierarchical structure of patterns.

The ADIOS graph is rewired every time a new pattern is detected, so that a bun-

dle of strings subsumed by it is represented by a single new vertex. Following the

rewiring, which is context-specific, potentially far-apart symbols that used to straddle

the newly abstracted pattern become close neighbors. Patterns thus become hierar-

chically structured in that their elements may be either terminals (i.e., fully specified

strings) or other patterns. Moreover, patterns may refer to themselves, which opens

the door for true recursion (Figure 3.7).



3. METHOD
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In the past four years, I have been working on developing a novel computational

approach to language acquisition and representation, which bridges the gap between

statistical (corpus-based) and classical (generative, rule-based) methods, integrating

the stronger aspects of each into a common powerful framework. The emerging ap-

proach takes advantage of the statistical, distributional information present in raw

input (such as transcribed speech corpora), at the same time supporting also the

distillation of structural rule-like regularities out of the accrued knowledge.

The key component of my approach is a novel unsupervised algorithm that dis-

covers hierarchical, context-sensitive structure in language data, on the basis of the

minimal assumption that the corpus at hand contains partially overlapping sen-

tences at multiple levels of abstraction. Intuitively, a sequence of words that is

common to several sentences can be abstracted into a higher-order component, or

pattern; the sentences can then be rewritten using this new component, and the

search for overlapping sequences repeated. Furthermore, if a bundle of aligned word

sequences differ in but one place, the words that occupy that slot are equivalent

(belong to the same class) in that they are interchangeable in the given context.

These two insights, which have a long history in structural linguistics, require a

proper algorithmic formulation if they are to serve as a basis for language acquisi-

tion and representation. In my algorithm, the decision concerning the significance

of the candidate structures — patterns and equivalence classes — is given a solid

computational basis (I use a novel context-sensitive probabilistic criterion (the Mo-

tif Extraction criterion) defined in terms of local flow quantities in a graph whose

vertices are the lexicon entries and where the paths correspond, initially, to corpus

sentences). New patterns and equivalence classes can incorporate those added pre-

viously, leading to the emergence of recursively structured units that also support

generalization, by opening paths that do not exist in the original corpus.
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In the following section I describe the MEX criterion which is used as a distillation

tool for extracting the most significant patterns in the data (see section 3.1). I then

continue by describing the main mechanism that governs the generation of candi-

dates (patterns and equivalence classes) to be considered by the MEX criterion. To

help the reader understand the algorithm, I have included throughout the section

boxes with the relevant pseudo-code along with some simple examples that illustrate

the operation of the algorithm.

3.1 The MEX algorithm

Consider a corpus of m sentences (sequences) of variable length, each expressed in

terms of a lexicon of finite size N . The sentences in the corpus correspond to m dif-

ferent paths in a pseudograph (a non-simple graph in which both loops and multiple

edges are permitted) whose vertices are the unique lexicon entries, augmented by

two special symbols, begin and end. Each of the N nodes has a number of incoming

paths that is equal to the number of outgoing paths. Figure 3.1 illustrates the type

of structure that we seek, namely, the bundling of paths, signifying a relatively high

probability associated with a sub-structure that can be identified as a pattern. To

extract it from the data, two probability functions are defined over the graph for any

given search path S(e1 → e2 → ... → ek) = (e1; ek).1 The first one, PR(ei; ej), is the

right-moving ratio of fan-through flux of paths at ej to fan-in flux of paths at ej−1,

starting at ei and moving along the sub-path ei → ei+1 → ei+2... → ej−1:

PR(ei; ej) = p(ej |eiei+1ei+2...ej−1) =
l(ei; ej)

l(ei; ej−1)
(3.1)

where l(ei; ej) is the number of occurrences of sub-paths (ei; ej) in the graph. Pro-

ceeding in the opposite direction, from the right end of the path to the left, we define

1 In general the notation (ei; ej), j > i corresponds to a rightward sub-path of S, starting with ei and
ending with ej . A leftward sub-path of S, starting with ej and ending with ei is denoted by (ej ; ei), i < j.
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Fig. 3.1: Comparison between a structured graph, of the type expected to appear in my prob-
lem (left), and one of random connectivity (right).

the left-going probability function PL:

PL(ej ; ei) = p(ei|ei+1ei+2...ej−1ej) =
l(ej ; ei)

l(ej ; ei+1)
(3.2)

and note that

PR(ei; ei) = PL(ei; ei) =
l(ei)∑N

x=0 l(ex)
(3.3)

where N is the total number of vertices in the graph. Clearly, both functions vary

between 0 and 1 and are specific to the path in question. The MEX algorithm is

defined in terms of these functions and their ratios. In Figure 3.2, PR first increases

because some other paths join the search path to form a coherent bundle, then

decreases at e4, because many paths leave it at e4. To quantify this decline of PR,

which is interpreted as an indication of the end of the candidate pattern, I define a

decrease ratio, DR(ei; ej), whose value at ej is DR(ei; ej) = PR(ei; ej)/PR(ei; ej−1), and

require that it be smaller than a preset cutoff parameter η < 1 (in the present example,
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DR(e1, e5) = PR(e1, e5)/PR(e1, e4) < 1
3 ).

In a similar manner, the value of PL increases leftward; the point e2 at which it

first shows a decrease DL(ej ; ei) = PL(ej ; ei)/PL(ej+1; ei) < η can be interpreted as the

starting point of the candidate pattern. Large values of DL and DR signal a divergence

of the paths that constitute the bundle, thus making a pattern-candidate. Since the

relevant probabilities (PR(ei; ej) and PL(ej ; ei)) are determined by finite and possibly

small numbers of paths (l(ei; ej) out of l(ei; ej−1)), we face the problem of small-sample

statistics. It is useful therefore to supplement conditions such as DR(ei; ej) < η by a

significance test based on binomial probabilities:

B(ei; ej) =
l(ei;ej)∑

x=0

Binom(l(ei; ej−1), x, ηPR(ei; ej−1)) < α;α � 1, (3.4)

The algorithm calculates both PL and PR from all the possible starting points (such as

e1 and e4 in the example of Figure 3.2), traversing each path leftward and rightward,

correspondingly. This defines a matrix of the form

Mij(S) =


PR(ei; ej) if i > j

PL(ej ; ei) if i < j

P (ei) if i = j

(3.5)

One can write M(S) in its explicit form, namely, as an instantiation of a variable-order

Markov model up to order k, which is the length of the search-path:

M .=



p(e1) p(e1|e2) p(e1|e2e3) . . . p(e1|e2e3 . . . ek)

p(e2|e1) p(e2) p(e2|e3) . . . p(e2|e3e4 . . . ek)

p(e3|e1e2) p(e3|e2) p(e3) . . . p(e3|e4e5 . . . ek)
...

...
...

...

p(ek|e1e2 . . . ek−1) p(ek|e2e3 . . . ek−1) p(ek|e3e4 . . . ek−1) . . . p(ek)


Given the matrix M(S), the algorithm identifies all the significant DR(ea; eb) and
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Fig. 3.2: The definition of a bundle that serves as a candidate pattern, whose beginning and
end are signalled by the maxima of PL and PR. It becomes a candidate because of the
large drops in these probabilities after the maxima, signifying the divergence of paths
at these points.
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Fig. 3.3: An instance of a 7 × 7 M matrix based on the black search path in Figure 3.2. The
blue and red arrows represent all the significant segments DR(ea; eb) and DL(ed; ec)
(α < 0.01), respectively. The values of the matrix elements appear in the upper right
corners of the cells. The most significant pair of segments (B(ea; eb), B(ed; ec)) for
which a < d < b < c is marked the leading pattern (in this example the leading pattern
is e2 → e3 → e4).
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Fig. 3.4: Two instances of the M matrix computed from two different corpora: the SwissProt
database sequence of amino acids (left), and the text of Alice in the Wonderland con-
sidered as a sequence of letters (right). Significant changes in the PL and PR values
have been colored on a yellow/red scale and a cobalt/blue scale (increase and de-
crease, respectively); green is the neutral color. The protein O17433 is the search
path used to construct the matrix on the left; the first paragraph of Alice is the search
path used to create the matrix on the right. For visualization purposes, only the first
300 elements of the matrices are shown.
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DL(ed; ec) (1 ≤ a, b, c, d ≤ k) and their coinciding pairs (DR(ea; eb), DL(ec; ed)), requiring

that a < d < b < c. The pair with the most significant scores (on both sides, B(ea; eb)

and B(ed; ec)) is declared as the leading pattern (ed+1; eb−1). The leading pattern is

returned as the outcome for the search path in question.

3.2 The ADIOS algorithm

As mentioned in section 3.1, each corpus sentence defines a separate path over

the graph, starting at begin and ending at end, and is indexed by the order of its

appearance in the corpus. Each one of these paths serves as a Search Path initially

coinciding with one of the original corpus sentences.

The ADIOS algorithm consists of three modules, which operate serially on the

pseudograph. Sentence loading (1-Initialization) is followed by an iterative search

for significant patterns (2-Pattern Distillation), which are added to the lexicon as

new units. The generalization mechanism (3-Generalization) generates more and

more candidate patterns to be considered by the Pattern Distillation module. The

structure of the initial graph is illustrated in Figure 3.5.

Algorithm 1 An overview of the ADIOS algorithm

1: Initialization (load all sentences)
2: repeat
3: for all m = 1 : N do {N is the number of paths in the graph}
4: Pattern Distillation(m) (Identifies new significant patterns in search-path

m using the MEX criterion)
5: Generalization(m) (Generate new pattern candidates for search-path (m))
6: end for
7: until no further significant patterns are found

After the algorithm has loaded all the paths onto the pseudograph, it starts con-

sidering candidate patterns by traversing, in each iteration, a different search path

(initially coinciding with one of the original corpus sentences), seeking sub-paths

that are shared by a significant number of partially aligned [44, 98] paths (see Algo-
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Fig. 3.5: The search path #1 (begin → i →→ run → to → my → house → end) is rendered as
a solid black line connecting the special begin and end vertices. Three other paths
(#2,#3,#4) join it along the vertices run,to, thus forming a bundle that may constitute
a significant pattern subject to the MEX criterion described in Section 3.1.

Algorithm 2 Initialization

1: for all sentences m = 1 : N do {N is the number of sentences in the corpus}
2: load sentence m as path onto a pseudograph whose vertices e1 . . . el(m) are

the unique words of the corpus starting at begin and ending at end symbols
indexed by the order of their appearance in the corpus. l(m) indicates the
number of vertices in path m.

3: end for

rithm 3.2). The significant patterns (P) are selected according to a context-sensitive

probabilistic criterion defined in terms of local flow quantities in the graph, stated in

section 3.1 (known as the MEX criterion).

Generalizing the search path: the algorithm looks for an optional equivalence class

(E) of units that are interchangeable in the given context (i.e., are in complementary

distribution [44]). At the end of each iteration, the most significant pattern is added
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Algorithm 3 Pattern Distillation

1: for all m = 1 : N do {N is the number of paths in the graph}
2: for i = 1 : l(m) l(m) is the number vertices in path n do
3: for j = i + 1 : l(m) do
4: find the leading significant pattern perform MEX on the search seg-

ments (i,j), starting PR at ei and PL at ej; choose out of all segments the
leading significant pattern P for the search path.

5: rewire graph
CREATE a new vertex corresponding to P.

6: Mode A (context free): replace the string of vertices comprising P with
the new vertex P on all paths on which it occurs. [Figure 3.6C].

7: Mode B (context sensitive): replace the string of vertices comprising
P with the new vertex P only on those paths on which P is significant
according to the MEX criterion.

8: end for
9: end for

10: end for

to the lexicon as a new unit, the sub-paths it subsumes are merged into a new vertex,

and the graph is rewired accordingly. Two rewiring modes are available: a context

free Mode A, which replace the string of vertices comprising P with the new vertex P

on all paths on which it occurs, and a context-sensitive Mode B, which replaces the

string of vertices comprising P with the new vertex P only on those paths on which P is

significant according to the MEX criterion. This highly context-sensitive approach to

pattern abstraction, is unique to our model, allows ADIOS to achieve a high degree of

representational parsimony without sacrificing its generalization power, although it

requires enormous computational resources (see section 4.1.1.2). The entire process

is governed by three parameters: α and η, which control pattern significance, and

L, which sets the width of the context window where equivalence classes are sought

(see Algorithm 3).

So that the MEX criterion can be applied to a generalized search path, we express

it in terms of equivalence classes. Consider a situation in which a search-path con-

tains an open slot where multiple alternative sub-paths coexist within a fixed context

defined by the main path. As an example, consider a window of size L = 3, composed



Chapter 3. Method May 22, 2006 37

of e2, e3 and e4, with a slot at e3. The generalized search path in this case consists

of all the paths that share the context e2, e4 and branch into all possible vertices at

location e3. We thus define P (e3|e2; e4) =
∑

β P (e3β
|e2; e4), where each P (e3β

|e2; e4) is

calculated by considering a different path going through the corresponding e3β
. Like-

wise, we proceed to define P (e5|e2e3e4) =
∑

β P (e5|e2; e3β
; e4) and so on. In the example

of Figure 3.6D, the generalized path is defined over a window of length 4 with one slot

at the 3rd location; the context at the other locations is fixed. In Figure 3.6F there

are two slots, in locations 2 and 3.

Algorithm 4 Generalization

1: For a given search path m ; m ∈ 1 : N
2: for i = 1, · · · l(m)− L− 1 do
3: slide a context window of size L along the search path from its beginning vertex

to its end l(m);
4: examine the generalized search paths:
5: for j = i + 1, · · · , i + L− 2 do
6: define a slot at location j;
7: define the generalized path consisting of all paths that have identical prefix

(at locations i to j − 1) and identical suffix (at locations j + 1 to i + L− 1);
8: perform MEX on the generalized path;
9: end for

10: end for
11: CHOOSE the leading P for all searches performed on each generalized path;
12: for the leading P define an equivalence class E consisting of all the vertices that

appeared in the relevant slot at location j of the generalized path;
13: rewire graph CREATE a new vertex corresponding to P [Figure 3.6E] and replace

the string of vertices it subsumes with the new vertex P on all paths where it
occurs. We list here, and in the next rewiring step, only mode A; in mode B
the replacement should occur only on the paths for which the new P is declared
significant by MEX.

During the pass over the corpus, the list of equivalence sets is updated continu-

ously; new significant patterns are found using the current equivalence classes (Fig-

ure 3.6(F)). For each set of candidate paths, the algorithm tries to fit one or more

equivalence classes from the pool it maintains. Because a constituent can appear

in several classes, the algorithm must check different combinations of equivalence
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classes. The winner combination is always the largest class for which most of the

members are found among the candidate paths in the set (the ratio η between the

number of members that have been found among the paths and the total number of

members in the equivalence class is compared to a fixed threshold as one of the con-

figuration acceptance criteria). When not all the members appear in the existing set,

the algorithm creates a new equivalence class containing only those members that

did appear. Thus, as the algorithm processes more and more text, it “bootstraps”

itself and enriches the graph structure with new SPs and their accompanying equiv-

alence sets. The recursive nature of this process enables the algorithm to form more

and more complex patterns, in a hierarchical manner. The search for patterns and

equivalence classes and their incorporation into the graph are repeated until no new

significant patterns are found. I estimate the computational complexity of the ADIOS

algorithm to increase linearly with the size of the corpus (see section 4.3).

The final lexicon includes those of the original symbols not incorporated into larger

units, and root patterns distilled by the algorithm (that is, the patterns that reside

on the final graph, at the top level of the hierarchy). Due to the hierarchical process

of pattern creation, each pattern is structured as a tree, whose leaves (terminals) are

the original members of the lexicon and whose intermediate nodes are other patterns

and equivalence classes (Figure 3.7). Note that the hierarchical construction and

the resulting tree structure exclude cyclic recursion (loops) of patterns, although

recursion may be introduced through pattern matching in a post-processing stage.

The final graph includes as many paths as all the original sentences, but it can

also generate many new ones. To generate a sentence from a chosen path in the

graph, all its root patterns are traversed. Each recursively encountered pattern is

treated as a derivation or parse tree [49]: it is read from top (root) to bottom (ter-

minals) and from left to right, while accruing the terminals (words from the original

lexicon) and selecting one member from each encountered equivalence class (Fig-
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Algorithm 5 Generalization boosted

1: For a given search path m ; m ∈ 1 : N
2: for i = 1, · · · l(m)− L− 1 do
3: slide a context window of size L along the search path from its beginning vertex

to its end l(m);
4: for j = 1, · · · ,K − L− 1 do
5: construct generalized search path
6: for all do {all slots at locations j, j = i + 1, · · · , i + L− 2}
7: consider all possible paths through these slots that start at vertex i and

end at vertex l(m)− L− 1
8: compare the set of all encountered vertices to the list of existing equiva-

lence classes, selecting the one E(j) that has the largest overlap with this
set, provided it is larger than a minimum overlap ω (set to 0.65 in all my
experiments);

9: reduce generalized search path
10: for k, k = i + 1, · · · , i + L− 2 and all j, j = i + 1, · · · , i + L− 2 such that j 6= k

do
11: consider the paths going through all the vertices in k that belong to E(j)

(if no E(j) is assigned to a particular j, choose the vertex that appears
on the original search-path at location j); for all j [Figure 3.6F];

12: perform MEX on this reduced generalized path;
13: extract the leading P; if the overlap of E(j) < 1 define a new equivalence

class E′(j) containing only those members that did appear in the set;
14: rewire graph

CREATE a new vertex corresponding to P [Figure 3.6G], and replace the
string of vertices subsumed by P with the new vertex P on all paths on
which it occurs;

15: end for
16: end for
17: end for
18: end for
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ure 3.7C). Because the equivalence relations only hold in the contexts specified by

their parent patterns, the ADIOS representation is inherently safer than grammars

that posit globally valid categories (such as “parts of speech” in a natural language).

At the same time, because each rewiring of the graph brings closer far-apart units

that used to straddle the newly abstracted pattern, the resulting representation can

capture long-range structural dependencies among units.

Because patterns can be represented in the form of rewriting rules, which are

context-free when Mode A is used (Figure 3.7D) and context-sensitive when Mode B

is used (Figure 3.7G), the end product of an ADIOS run constitutes a grammar. As

infinite recursion is not implemented in the current version of the algorithm, the rep-

resentations learned by ADIOS are comparable in expressive power to finite Context

Sensitive Grammars. This means that any grammar consisting of context sensitive

rules can be loaded into an ADIOS instance (that is, translated into an ADIOS repre-

sentation), provided that a limit is placed on the number of times each rule is invoked

recursively. In learning, the results described in the following section show that this

algorithm can acquire, from raw corpora, good operational approximations to those

grammars that generate data rich with partially alignable sentences, including un-

constrained natural-language data. Complex grammars in which inherent ambiguity

[49] is exacerbated by the presence of multiple loops are dealt with effectively by

acquiring more patterns.
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Fig. 3.6: (A), the search path #1 (begin → e1 → . . . → e5 → end) is rendered as a solid black line
connecting the special begin and end vertices. Four other paths (#4,#5,#6,#7) join it
along the vertices e2,e3,e4, thus forming a bundle that may constitute a significant
pattern subject to the MEX criterion described in Section 3.2. Values of PR and PL,
originating at e1 and e4, respectively, are displayed for the example shown here. (B),
a significant pattern (P = e2 → e3 → e4) has been identified. (C), a new vertex is
added to the graph, replacing the elements subsumed by P . Paths that belong to
sequences not subsumed by it, such as #3 here, are left untouched. (D), the path
is generalized: the algorithm picks among the set of path segments encountered in a
window of size L = 4 those that differ in a single slot and are embedded in a common
context (the relevant vertices are marked by open circles). The vertices in this slot
form an equivalence class E. (E), the original search path is augmented by treating
E as a single unit, resulting in the first generalization step (cf. Algorithm 3.2). (F),
the just-detected E(i + 2) is used to find an additional equivalence class; it is specific
to the current common context, thus enhancing the safety of generalization. (G),
stacking two equivalence classes leads to further generalization (see section 3.2 for
details).
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Fig. 3.7: Progressive abstraction of patterns constructs a forest of trees rooted in vertices of
the graph (training data generated by a context-free grammar, TA1). (A), Pattern
P49, consisting of the terminal the and equivalence class E50 = {bird, cat, cow, dog,
horse, rabbit}, is distilled. (B), Further application of the algorithm yields equiva-
lence classes (underlined) such as E64, which contain some verbs. (C), Pattern P116
can generate 896 novel sentences, eight of which appear in the training corpus (the
generalization factor, 8/896, appears in parentheses). A novel sentence, such as
that George is eager to read disturbs Joe, can be read off the leaf level of the tree
(numbered arrows indicate traversal order during generation). Pattern P116 is a root
pattern, that is, a unit situated on a final path. (D), The set of context-free produc-
tions (rewriting rules) that is equivalent to the tree of pattern P116. (E), The initial
path through a sentence to which ADIOS was applied in the context-sensitive mode B.
(F), The same path after three root patterns (P55, P72 and P178) have been distilled.
Note how the two similar but not identical root patterns, P55 and P72, capture the
difference between the equivalence classes E56 and E66 (indeed, Beth, for example,
is equivalent to Jim in the context of P72, but not of P55). In this manner, ADIOS

enforces long-range agreement between E56 and the phrase doesn’t she (embedded
in P178), and avoids over-generalization. (G), The two context-sensitive rules in this
example are [begin P55 ⇒ begin E56 thinks that] and [P72 P178 ⇒ E66 thinks that
P178].
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In this chapter I discuss the performance of ADIOS in different domains. Sec-

tion 4.1 presents the results in the linguistic domain, where the algorithm has been

successfully tested both on artificial-grammar output (section 4.1.1) and on natural-

language corpora such as ATIS [47], CHILDES [71], and the Bible [84] (section 4.1.2).

In section 4.2 I describe the results from bioinformatics, where the algorithm has

been shown to to extract from protein sequences syntactic structures that are highly

correlated with the functional properties of these proteins (section 4.2.1), to distin-

guish between coding and non-coding regions of DNA (section 4.2.2.1) and to extract

regulatory motifs in their promoters (section 4.2.2.2). I conclude with an estimate of

the computational complexity of ADIOS.

4.1 Language

4.1.1 Artificial Language

4.1.1.1 Computational Grammar Induction

It is reasonable to require that the success of a learning algorithm be measured by

the closeness — ideally, identity — of the learned and target grammars, G and G0,

respectively. Unfortunately, even for Context Free Grammars (CFGs), equivalence

is undecidable [49]. Moreover, for natural languages G0 is inaccessible. I thus opt

for testing the implementation for generativity1 as follows. In the artificial-grammar

experiments, which start with a target grammar, a teacher instance of the model is

1 Testing a learned grammar G for strong generativity, one comparing structural descriptions (parse
trees) it assigns to novel strings to those produced by the target grammar G0. A weak generativity crite-
rion requires merely that G accept novel G0-grammatical strings as such, and reject the ungrammatical
ones. Unsupervised grammar induction algorithms that work from raw data are in principle difficult to
test. Any “gold standard” that can be used to test strong generativity, such as the Penn Treebank, invari-
ably reflects its designers’ preconceptions about language, which are often controversial among linguists
themselves. Thus, even the most conservative treebank-based evaluation metrics such as crossing brack-
ets may present a skewed picture of the system’s performance. We A human learner who exhibits perfect
weak generativity — that is, who accepts and produces all and only those sentences respectively produced
and accepted by the teacher — is, for all practical purposes, perfectly successful, which is why we opt for
the so-called weak generativity. I note in this connection that hand-constructed grammars such as ATIS
and the treebanks used in testing for strong generativity are liable to produce poor output when used in
the generative mode.
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first pre-loaded with this grammar (using the one-to-one translation of CFG rules into

ADIOS patterns), then used to generate the training corpus Ctraining. After training,

the learner generates a test corpus Clearner and the teacher generates a target corpus

Ctarget, the latter containing only novel sentences that do not appear in Ctraining. The

two corpora, Clearner and Ctarget, are then used to calculate precision (the proportion

of Clearner accepted by the teacher) and recall (the proportion of Ctarget accepted by

the learner). A sentence is accepted if it precisely fits one of the paths in the ADIOS

graph (that is, it can be generated by the path). In the natural language experiments,

where no target grammar is available, the given corpus is split into two portions, one

for training (Ctraining) and one for testing (Ctarget), and the same evaluation method is

applied, except that precision must in this case be evaluated by an external referee

(e.g., by a human subject). This evaluation method is unique (i) because it defines

precision and recall more conservatively than is standard in the literature [61], and

(ii) because it involves testing both the capability of the learner to accept all the

grammatical sentences and its capability to generate only sentences that the teacher

would deem grammatical.

I have conducted a series of experiments designed to evaluate the performance of

ADIOS in grammar induction (Figure 4.1).

4.1.1.2 Learning a simple CFG

In the first study, I replicated one of the experiments of [3] (“A 2000 Sentences Sam-

ple”, p.8). The aim of the original experiment was to reconstruct a specific context-

free grammar (29 terminals and 7 rules) from a corpus of 2000 sentences using the

EMILE 4.1 algorithm. The results of applying the ADIOS algorithm to a 2000-sentence

corpus randomly generated from the given context-free grammar are shown in Ta-

ble 4.1. The algorithm (used in its default Mode A, η = 0.6, α = 0.01, recursion depth

set to 15) yielded 28 patterns and 9 equivalence classes, and achieved 100% preci-
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Fig. 4.1: (A), The performance of an ADIOS model trained on extremely small corpora gener-
ated by TA1. Optimal combinations of recall and precision (single learner, 30 trials,
η = 0.6, α = 0.01, L = 5, maximum recursion depth for the teacher here and below
set to 10) are shown for four different conditions: (i) the default learning mode A
(context free mode, see Box 2); with a 800-sentence training corpus (not shown),
both precision and recall reach 90%; (ii) mode B (context-sensitive mode) (iii) a “se-
mantically supervised” mode in which the equivalence classes of the target grammar
are made available to the learner ahead of time; cf. evidence on the contribution of
extra-linguistic knowledge to language acquisition [74]; (iv) bootstrap mode, starting
from a letter level and training on corpora in which all spaces between words are
omitted. To maintain a comparable level of performance, the bootstrap mode re-
quires larger corpora (size, shown in parentheses: 200-10, 000 sentences). (B), Using
the ATIS Context-Free Grammar (4592 rules) [47] as the teacher of multiple ADIOS

learners. Precision is defined by the mean over learners, while for recall acceptance
by one learner suffices. Several corpus sizes, context window widths L and numbers
of learners are compared. (C), Output generated by an instance of ADIOS that had
been trained on the natural language ATIS-N corpus was judged to be as acceptable
to human subjects as sentences from ATIS-N. Acceptability data (mean ± standard
deviation) are from eight subjects. (D), A dendrogram illustrating the relationships
among six different natural languages using pattern spectra. We define a pattern
spectrum as the histogram of pattern types, whose bins are labeled by sequences
such as (T,P) or (E,E,T), E standing for equivalence class, T for tree-terminal (original
unit) and P for significant pattern. This plot was generated by applying hierarchical
clustering to a table of Euclidean distances among histograms of patterns learned
by ADIOS from online multilingual Bible texts [84], each consisting of approximately
31, 100 verses (single learner per language).
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sion and 99% recall. In comparison, the EMILE algorithm, as reported in [3], induced

3000-4000 rules (the recall/precision performance of the EMILE algorithm was not

stated). Table 4.1 shows a comparison between the induced grammar and its target

grammar. The upper part of the table contains the extracted equivalence classes and

their target counterparts, demonstrating the ability of ADIOS to identify most of the

target classes (except one, E43). The lower part of the table shows that ADIOS distills

a set of rules that is larger than the original one (but equivalent to it).

Next, I applied ADIOS to a small CFG and showed that it performs well even when

only 200 sentences are used for training, as demonstrated in Figure 4.1A. Tables 4.1

to 4.6 show the performance of an ADIOS model trained on extremely small corpora

(200 sentences) generated by the TA1 artificial grammar (listed in Table 4.6). The

tables present the recall-precision values (with their standard deviations across 30

different trails) in four different running modes: Table 4.2, Mode A (context free);

Table 4.3, mode B (context-sensitive mode); Table 4.4, “semantically supervised”

mode, in which the equivalence classes of the target grammar are made available to

the learner ahead of time (training in Mode A); Table 4.5, bootstrap mode, which

starts from a letter-level training corpus in which all spaces between words are omit-

ted (training in Mode A). In the first three experiments, the context-window length

was varied while the other parameters were kept fixed (η = 0.6, α = 0.01, corpus

size 200). In the bootstrap mode, the algorithm must first segment the sequence of

letters into words (applying only the MEX procedure without extracting equivalence

classes), and only then use the identified words to extract the grammar. This two-

stage process requires a larger corpus to attain a comparable level of performance (up

to 10, 000 sentences in this example). Thus, in the last experiment L was kept fixed

at 3, ω was lowered to 0.4, and the corpus size ranged from 200 to 10, 000 sentences.

Performance was assessed by the F1 measure, defined as 2·recall·precision/(recall

+ precision). The best recall/precision combinations appear in bold and are plot-
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ted in Figure 4.1A. It can be seen that both context free mode and context sensitive

mode reach similar F1 levels; however, while the context free mode yields better re-

call (83% versus 68%) the context sensitive mode gets higher level of precision (98%

versus 80%). When semantic information is available to the learner ahead of time, it

gives rise to a significant improvement in the learning performance (F1=0.89 versus

0.81), which parallels the documented importance of embodiment cues in language

acquisition by children.

4.1.1.3 Learning a complex CFG

Because the ADIOS algorithm is greedy (the best available pattern in each iteration is

immediately and irreversibly rewired), the syntax it acquires depends on the order of

sentences in the training set. This is expected to affect the learning of a complex CFG,

especially if it contains many loops. To assess this dependence and to mitigate it, I

train multiple learners on different order-permuted versions of the corpus generated

by the teacher. As Figure 4.1B illustrates, for the parameter values explored (L =

{3, 4, 5, 6}; 30 or 150 learners; corpus size between 10,000 and 120,000 sentences),

the optimal precision-recall trade-off for learning the ATIS CFG (4592 rules) [47] is

obtained with a 150-learner cohort and L between 5 and 6.

Table 4.7 illustrates the recall and precision performance for learning the 4592-

rule ATIS Context Free Grammar [47], using different parameter values (L = {3, 4,

5, 6}; 30 or 150 learners; corpus size between 10,000 and 120,000 sentences). Fig-

ure 4.2 presents a schematic illustration of the coverage of the target language by

multiple learners, for various settings of L.
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target grammar inferred grammar
[NPa] ⇒ John | Mary | the man | the child E35 ⇒ child | man

P34 ⇒ the E35
E37 ⇒ John | Mary | P34

[P] ⇒ with | near | in | from E54 ⇒ with | near | in | from
[Vi] ⇒ appears | is | seems | looks E39 ⇒ appears | is | seems | looks
[Vs] ⇒ thinks | hopes | tells | says E51 ⇒ thinks | hopes | tells | says
[Vt] ⇒ knows | likes | misses | sees E46 ⇒ knows | likes | misses | sees
[ADV] ⇒ large | small | ugly | beautiful E49 ⇒ large | small | ugly | beautiful
[NPp] ⇒ the car | the city | the house | the shop E43 ⇒ house | shop
[S] ⇒ [NP] [Vi] [ADV] | [NPa] [VPa] | [NPa] [Vs] that [S] E69 ⇒ P47 | P59 | P62 | P66 | P67
[NP] ⇒ [NPa] | [NPp] P40 ⇒ the city
[VPa] ⇒ [Vt] [NP] | [Vt] [NP] [P] [NPp] P41 ⇒ the car

P36 ⇒ John likes E37
P42 ⇒ the E43 E39
P44 ⇒ the house
P45 ⇒ E37 E46
P47 ⇒ P45 E37
P48 ⇒ E37 E39 E49
P50 ⇒ E37 E51 that
P52 ⇒ P47 in the shop
P53 ⇒ E54 P44
P55 ⇒ P47 near P40
P56 ⇒ E54 P41
P57 ⇒ E54 P40
P58 ⇒ P50 P50 P45 the shop
P59 ⇒ P45 the shop
P60 ⇒ P41 E39 E49
P61 ⇒ P42 E49
P62 ⇒ P45 P40
P63 ⇒ P50 P50 P48
P64 ⇒ E54 the shop
P65 ⇒ P50 P62 P64
P66 ⇒ P45 P44
P67 ⇒ P45 P41
P68 ⇒ E69 P53
P70 ⇒ P38 E49
P71 ⇒ E69 P57

Tab. 4.1: A comparison between the target grammar of Adriaans and Vervoort (left) and the
grammar induced by a single ADIOS instance (right). Root patterns appear in bold.
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Tab. 4.2: TA1 experiment, Mode A (Context-Free)
corpus size L recall precision F1

200 9 0.3 ± 0.2 0.9 ± 0.1 0.45
200 8 0.4 ± 0.2 0.93 ± 0.09 0.59
200 7 0.6 ± 0.1 0.9 ± 0.1 0.71
200 6 0.7 ± 0.1 0.9 ± 0.2 0.78
200 5 0.78 ± 0.08 0.8 ± 0.2 0.80
200 4 0.83 ± 0.06 0.8 ± 0.2 0.81
200 3 0.84 ± 0.06 0.6 ± 0.2 0.71

Tab. 4.3: TA1 experiment, Mode B (Context-Sensitive)
corpus size L recall precision F1

200 9 0.5 ± 0.2 0.8 ± 0.1 0.65
200 8 0.6 ± 0.1 0.78 ± 0.09 0.66
200 7 0.61 ± 0.07 0.9 ± 0.2 0.72
200 6 0.6 ± 0.1 0.8 ± 0.2 0.68
200 5 0.61 ± 0.09 0.8 ± 0.1 0.69
200 4 0.69 ± 0.05 0.9 ± 0.1 0.79
200 3 0.68 ± 0.06 0.98 ± 0.04 0.80

Tab. 4.4: TA1 experiment, Mode A, “semantically supervised”
corpus size L recall precision F1

200 8 0.86 ± 0.06 0.7 ± 0.2 0.80
200 7 0.89 ± 0.04 0.8 ± 0.2 0.84
200 6 0.90 ± 0.04 0.8 ± 0.2 0.85
200 5 0.90 ± 0.03 0.8 ± 0.2 0.83
200 4 0.92 ± 0.03 0.8 ± 0.2 0.83
200 3 0.92 ± 0.03 0.9 ± 0.2 0.89

Tab. 4.5: TA1 experiment, Mode A, “no spaces”
corpus size L recall precision F1

200 3 0.01 ± 0.01 0.91 ± 0.09 0.01
500 3 0.07 ± 0.04 0.89 ± 0.08 0.12
1000 3 0.13 ± 0.06 0.8 ± 0.1 0.23
2500 3 0.30 ± 0.07 0.79 ± 0.09 0.43
5000 3 0.39 ± 0.08 0.85 ± 0.1 0.53
10000 3 0.5 ± 0.1 0.86 ± 0.09 0.65
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Tab. 4.6: The TA1 grammar, consisting of 50 terminals and 28 rules
σ ⇒ s1 | s2 | s3 | s4
s1 ⇒ prec np2 vp ptag
s2 ⇒ frec np2 vp ftag
s3 ⇒ frec iv6 iv55
s4 ⇒ that np2 iv5 iv6 iv4 np2
np ⇒ art noun | propn
np2 ⇒ the noun | propn
propn ⇒ p vp2 | p
pp ⇒ p and p vp6 | p p and p vp6
vp ⇒ iv and com
vp2 ⇒ who tv np
com ⇒ np iv2
rec ⇒ p vp5 that rec | p vp5 that
frec ⇒ pf vp5 that rec
ftag ⇒ , doesn’t she ?
prec ⇒ pp that rec
ptag ⇒ , don’t they ?
iv5 ⇒ is iv5-ex
iv55 ⇒ is iv55-ex
iv6 ⇒ to iv6-ex
art ⇒ the | a
noun ⇒ cat | dog | horse | cow | rabbit | bird
p ⇒ Joe | Beth | Jim | Cindy | Pam | George
pf ⇒ Beth | Cindy | Pam
vp5 ⇒ believes | thinks
vp6 ⇒ believe | think
iv ⇒ meows | barks
iv2 ⇒ laughs | jumps | flies
iv5-ex ⇒ easy | tough | eager
iv55-ex ⇒ easy | tough
iv6-ex ⇒ please | read
iv4 ⇒ annoys | worries | disturbs | bothers
tv ⇒ scolds | loves | adores | worships
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Tab. 4.7: ATIS-CFG recall and precision
corpus size No. of learners L η recall precision F1

10000 30 3 0.6 0.380 0.623 0.472
10000 30 4 0.6 0.308 0.657 0.420
10000 30 5 0.6 0.180 0.920 0.301
40000 30 3 0.6 0.643 0.568 0.603
40000 30 4 0.6 0.660 0.596 0.627
40000 30 5 0.6 0.456 0.780 0.576
120000 30 3 0.6 0.910 0.538 0.676
120000 30 4 0.6 0.750 0.580 0.654
120000 30 5 0.6 0.747 0.640 0.689
120000 30 6 0.6 0.465 0.818 0.593
120000 150 3 0.6 1.000 0.538 0.700
120000 150 4 0.6 1.000 0.580 0.734
120000 150 5 0.6 1.000 0.640 0.780
120000 150 6 0.6 0.600 0.820 0.693
120000 150 7 0.6 0.230 0.970 0.372
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4.1.2 Natural Language

4.1.2.1 Generativity of the learned natural language grammar

To test the ability of ADIOS to generate acceptable novel sentences after learning from

a natural language corpus, I trained it on 12, 700 sentences from ATIS-2 (a natural

language corpus of size 13, 043 [47]) and tested its recall level on the 343 remaining

sentences. The small size of the training corpus results in a relatively low recall of

40% (under the strict definition that requires an exact match). Figure 4.1C compares

the acceptability of ADIOS-generated sentences with original sentences from the ATIS-

2 corpus. Notably, the output generated by ADIOS is on the average as acceptable

to human subjects as the original corpus sentences. The human-judged precision

(≈ 70%, as shown in the plot) is remarkable; for comparison, the ATIS-CFG grammar,

hand-constructed to fit the ATIS-2 corpus (with recall of 45% on same data) produces

over 99% ungrammatical sentences when used in a generative fashion.

Because the target grammar of a natural language is inaccessible, precision must

be evaluated by human subjects (referees), while recall can be evaluated by the same

method described in the section Language: computational grammar induction. In the

present experiment, the ADIOS algorithm was trained on the ATIS-2 natural language

corpus. This corpus contains 13, 043 sentences of natural speech, in the Air Travel

Information System (ATIS) domain. The ADIOS algorithm was trained on 12, 700 sen-

tences (Ctraining); the remaining 343 sentences were used to evaluate recall (Ctarget).

Two groups of learners (30, 150) were trained (η = 0.6, α = 0.01, L = 5) on different,

order-permuted, versions of the corpus (several representative acquired patterns ap-

pear in Figure 4.3 along with their generalization factors). After training, each learner

generated 100 sentences, which were then placed together into a single corpus (the

Clearners test-corpus). Precision of the ADIOS representation (mean ± std dev) was es-

timated by having eight human subjects judge the acceptability of 20 sentences taken

from Clearners and of 20 sentences taken from the original ATIS-2 corpus (Ctraining).



Chapter 4. Results May 22, 2006 54

The subjects had no indication which sentence belonged to which corpus; the sen-

tences appeared in a random order and each subject judged a different set of sen-

tences. Altogether, 320 sentences were evaluated. The original ATIS-2 corpus was

scored at 70 ± 20% precision while the ADIOS-generated sentences attained 67 ± 7%

precision. Recall was calculated using the Ctarget corpus. Sets of 30 and 150 learn-

ers achieved 32% and 40.5% recall respectively. Interestingly, this result (30% recall

and 70% precision), which was obtained from a natural language corpus of 10,000

sentences, is predicted by the theoretical curve that appears in Figure 4.1B, which

was derived by training ADIOS on 10,000 artificial sentences.

4.1.2.2 Select syntactic examples

The present work is data- rather than theory-driven in that I refrain from making

a priori assumptions about the kind of “grammar” that the algorithm is expected to

produce (cf. the quote from Langacker [65] in section 1.1). Clearly, however, the

recursively structured, parameterized patterns learned by ADIOS, and their use in

processing and generating novel sentences, do resemble certain features of some ex-

tensively studied syntactic formalisms. A few select syntactic examples are illustrated

in Figures 4.4 4.5 4.6 4.7.
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Fig. 4.3: Four simple patterns extracted from the ATIS natural language corpus. Some of
the sentences that can be described/generated by patterns #1690, #1731, #1855
and #1531 are: I would like to book the first class; I plan to make a round trip; what
kind of food would be served ; how many flights does continental have . None of
these sentences appear in the training data, illustrating the ability of ADIOS to gener-
alize. The numbers in parentheses denote the generalization factors of the patterns
and their components (e.g., pattern #1690 generates 90% new strings, while pattern
#1731 generates 66% new strings).
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Fig. 4.4: a: because ADIOS does not rewire all the occurrences of a specific pattern, but only
those that share the same context, its power may be comparable to that of Context
Sensitive Grammars. In this example, equivalence class #75 is not extended to sub-
sume the subject position, because that position appears in a different context (im-
mediately to the right of the symbol begin). Thus, long-range agreement is enforced
and over-generalization prevented. b: the context-sensitive rules corresponding to
pattern #210.
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Fig. 4.5: Left: trained on sentences exemplifying “tough movement”, ADIOS forms patterns that
allow it to represent the correct phrases (is easy to read, is easy to please, is eager to
read, is eager to please, to read is easy and to please is easy), but not the incorrect
ones (*to read is eager or *to please is eager).

4.1.2.3 Meta analysis of languages other than English

Languages other than English: Applying ADIOS to the Parallel Bible [84] an online

multilingual Bible texts each consisting of approximately 31, 100 verses (single learner
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Fig. 4.6: a pattern (presented in a tree form), capturing a long range dependency. This and
other examples here were distilled from a 400-sentence corpus generated by TA1.
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Fig. 4.7: the ADIOS pattern representation facilitates the detection of recursive structure, ex-
emplified here by the correspondence between equivalence classes #52 and #54.

per language). I compared six different languages through a meta-analysis of their

respective ADIOS grammars.

To visualize these typological relationships, I considered the pattern spectrum

representation, defined as follows. I first listed all the significant patterns extracted

from the data during the application of the ADIOS algorithm. Each of these consists

of elements that belong to one of three classes: patterns (P), equivalence classes

(E), and original words or terminals (T) of the tree representation. I next computed

the proportions of patterns that are described in terms of these three classes as TT,
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TE, TP, and so on, as shown in Figure 4.8. Thus, each language is represented by

a single vector whose elements are the relative frequencies of the pattern classes

in that language. All the vector elements sum to one. Comparing the spectra of

the six languages, I derived a dendrogram representation of the relative syntactic

proximity between them, which is shown in Figure 4.1D. This plot was generated by

applying a hierarchical clustering (Matlab procedure LINKAGE, default parameters)

to a table of Euclidean distances among histograms of patterns learned by ADIOS It

corresponds well to the expected pattern of typological relationships suggested by

classical linguistic analysis [38].
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Fig. 4.8: A comparison of pattern spectra obtained from six languages (Chinese, English, Dan-
ish, French, Spanish and Swedish). The extraction of patterns was based on the same
corpus, the Bible (66 books containing 33K sentences), in its six versions, available
online at http://www.umiacs.umd.edu/ resnik/parallel/bible.html. It can be seen
that natural languages have a relatively large percentage of patterns that fall into TT
and TTT categories (known as collocations).
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L1 L2
P1 ⇒ pel −X− rud P1 ⇒ pel −X− jic
P2 ⇒ vot−X− jic P1 ⇒ vot−X− tood
P3 ⇒ dak −X− tood P1 ⇒ dak −X− rud

X(2)={wadim, kicey}
X(6)={wadim, kicey, puser, fengle, coomo, loga}
X(12)={wadim, kicey, puser, fengle, coomo, loga, gople, taspu, hiftam ,benez, vamey, skiger}
X(24)={wadim, kicey, puser, fengle, coomo, loga, gople, taspu, hiftam ,benez, vamey, skiger,
benez, gensim, feenam, laeljeen,chila, roosa, plizet, balip, malsig, suleb, nilbo,wiffle}

Tab. 4.8: Definition of the L1 and L2 languages.

4.1.2.4 Psycholinguistics

4.1.2.4.1 Learning “nonadjacent dependencies” Gómez [35] showed that the ability

of subjects to learn an artificial language L1 of the form {aXd, bXe, cXf}, as measured

by their ability to distinguish it implicitly from L2={aXe, bXf, cXd}, depends on the

amount of variation introduced at X (symbols a through f here stand for 3-letter

nonsense words, whereas X denotes a slot in which a subset of 2-24 other non-

sense words may appear). Within the ADIOS framework, these non-adjacent depen-

dencies translate into patterns with embedded equivalence classes. I replicated the

Gómez study by training ADIOS on 432 strings from L1 (30 learners, |X| = 2, 6, 12, 24,

η = 0.6, α = 0.01). Training with the context window parameter L set to 3 resulted

in performance levels (rejection rate of patterns outside of the learned language) that

increased monotonically with |X|, in correspondence with the human behavior. In-

terestingly, when trained with L = 4, adios reaches perfect performance in this task.

The two languages used in [35], L1 and L2, are defined in Table 4.8. Pel, vot, dak,

tood are all nonsense words that form three-element sequences, in whose middle

slot, denoted by X, a subset of between 2 and 24 other nonsense words may appear.

In the ADIOS terms, X thus stands for an equivalence class with 2-24 elements. The

Gómez study was reproduced by training ADIOS on 432 strings from L1, using 30

learners and various sizes of X. Performance was evaluated in the same manner as
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in the Gómez study. The test set consisted of 12 strings: 6 from L1 (which should be

accepted) and 6 from L2 (which should be rejected). The results are as follows: when

L is set to 3 (η = 0.6, α = 0.01), and |X| is set to 2, 6, 12, 24 elements, ADIOS accepts all

the sentences of L1 while rejecting 14± 27%, 50± 17%, 86± 14%, 82± 17% sentences of

L2, respectively. Performance level increases monotonically with |X|, in accordance

with human data. Training with L = 4 yielded 100% acceptance rate for L1 and 100%

rejection rate for L2, irrespectively of |X|, indicating a perfect ability of the algorithm

to capture the non-adjacent dependency rule with the proper choice of parameters.

4.1.2.4.2 Grammaticality Judgments A single instance of ADIOS was trained on

the CHILDES [71] corpus, using sentences spoken by parents to three year old chil-

dren. It was then subjected to five grammaticality judgment tests. One of these,

the Göteborg multiple-choice ESL (English as Second Language) test, consists of 100

sentences, each containing an open slot; for each sentence, the subject selects one

word from a list of three choices, so as to complete the sentence grammatically. In

this test, ADIOS scored at 60%, which is the average score for 9th grade ESL students.

I have assessed the ability of the ADIOS model to deal with novel inputs2 by in-

troducing an input module (described below). After training on transcribed speech

directed at children (a corpus of 300,000 sentences with 1.3 million words, taken

from the CHILDES collection [71]), the input module was subjected to grammatical-

ity judgment tests, in the form of multiple choice questions. The algorithm3 identified

3400 patterns and 3200 equivalence classes. The input module was used to process

novel sentences by forming their distributed representations in terms of activities of

existing patterns (a similar approach had been proposed for novel object and scene

representation in vision [27]). These values, which supported grammaticality judg-

ment, were computed by propagating activation from bottom (the terminals) to top

2 Including sentences with novel vocabulary items that are not fully represented by the trained system.
3 An earlier version of ADIOS [93], which did not use the full conditional probability matrix of eq. 3.1.
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(the patterns). The initial activities aj of the terminals ej were calculated given a

stimulus s1, . . . , sk as follows:

aj = max
l=1..k

{
P (sl, ej) log

P (sl, ej)
P (sl)P (ej)

}
(4.1)

where P (sl, ej) is the joint probability of sl and ej appearing in the same equiva-

lence class, and P (sl) and P (ej) are the probabilities of sl and ej appearing in any

equivalence class. For an equivalence class, the value propagated upward was the

strongest non-zero activation of its members; for a pattern, it was the average weight

of the children nodes, on the condition that all the children were activated by ad-

jacent inputs. Activity propagation continued until it reached the top nodes of the

pattern lattice. When this algorithm encounters a novel word, all the members of

the terminal equivalence class contribute a value of ε = 0.01, which is then propa-

gated upward as before. This enables the model to make an educated guess as to

the meaning of the unfamiliar word, by considering the patterns that become active.

Figure 4.9 shows the activation of a pattern (#185) by a sentence that contains a

word in a novel context (new), as well as other words never before encountered in

any context (Linda, Paul).

I assessed this approach by subjecting a single instance of ADIOS to five different

grammaticality judgment tests reported in the literature [68, 67, 4, 75]; see Fig-

ure 4.10 (left). The results of one such test, used in English as Second Language

(ESL) classes, are described below. This test has been administered in Göteborg

(Sweden) to more than 10, 000 upper secondary levels students (that is, children who

typically had 9 years of school, but only 6-7 years of English). The test consists of

100 three-choice questions (Table 4.9), with 65% being the average score for the pop-

ulation mentioned. For each of the three choices in a given question, my algorithm

provided a grammaticality score. The choice with the highest score was declared the
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words and various members of the equivalence classes, is propagated upwards by
taking the average at each junction.
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winner; if two choices received the same top score, the answer was “don’t know”.

The algorithm’s performance is plotted in Figure 4.10 (right) against the size of the

CHILDES training set. Over the course of training, the proportion of questions that

received a definite answer grew (red bars), while the proportion of correct answers

remained around 60% (blue curve); compare this to the 45% precision with 20% recall

achieved by a straightforward bi-gram benchmark.4

sentence choice 1 choice 2 choice 3
The pilot look worried. isn’t doesn’t don’t
She asked me at once. come to come coming
The tickets have been paid for, so you not worry. may dare need
We’ve gone slightly course. of off from

Tab. 4.9: Sample questions from a multiple-choice test used in ESL instruction in Göteborg,
Sweden. A score < 50% in this 100-question test (available online) is considered
pre-intermediate, 50− 70% intermediate, and a score > 70% advanced.

benchmark #item correct answered correct answered
ADIOS bi-gram

Linebarger, Schwartz
and Saffran, 1983

Lawrence, Giles and
Fong, 2000

Allen and Seidenberg,
1999

Martin and Miller, 2002
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Fig. 4.10: Left: the results of several grammaticality tests reported in the literature. Right:
a summary of the performance of ADIOS in the Göteborg ESL test, plotted against
the number of sentences (paths) scanned during training (red bars: recall; blue
rectangles: precision).

4 Chance performance in this test is 33%. We note that the corpus used here was too small to train an
n-gram model for n > 2; thus, my algorithm effectively overcomes the problem of sparse data by putting
the available data to a better use.



Chapter 4. Results May 22, 2006 64

4.1.2.5 Segmentation

To demonstrate the ability of MEX to find patterns in texts, I applied it to an artifi-

cial problem of text segmentation. I started by transforming the text of Alice in the

Wonderland [13] as follows: each paragraph of the book was represented as a long

string of letters, omitting spaces among words and any other punctuation symbols,

and downcasing capital letters. The challenge was to retrieve the correct words. The

text has 809 paragraphs. They were all loaded onto the graph spanned by 26 vertices

corresponding to the 26 letters of the alphabet. MEX was then applied to the graph,

searching it along 809 search paths.

I started out by setting η = 0.8 and α = 0.001 and running MEX iteratively until it

ceased discovering any further motifs. The last set of motifs acquired for each path I

call ‘root-motifs’ because they include within their tree structures all the previously

extracted patterns. I then analyzed the results as shown in Table4.10. I compared

the text of the first paragraph (the input to the process) to the outcome of the iterative

application of MEX at the level of α = 0.001.5 The results of this analysis can be fed

back to MEX with higher α values, leading to even better performance.

Let us define an error measure for estimating the significance of such results. Re-

ferring to the display of Figure 4.10, note that a space stands for an edge connecting

two vertices on the search-path. In Table 4.10A, the vertices are the 26 letters, thus

we see a single space between every two letters. Once motifs are observed and turned

into vertices, as seen in the following Table 4.10B, the number of spaces (edges vis-

ited on the search-path) decreases. Some of them are proper spaces among words,

while the others are ‘wrong’, i.e., spaces that do not actually occur between proper

words, as is the case when single letters, or fractions of words, fail to be fused into

5 Applying the same procedure to a text of 1 million random digits of π we find no motifs at this level of
α.



Chapter 4. Results May 22, 2006 65

words. Thus, I define the error

ES =
number of wrong spaces in final text

number of letters in original text
(4.2)

where the denominator is equal to the number of spaces in the initial text (as in

Figure 4.10A).

Table 4.10B shows that there are still quite a few word fractions that were not

fused into correct words. This can be remedied by reapplying MEX to the α = 0.001

result using a higher value of α. By iterating this procedure, the results can be

improved. Measuring ES, I found the values 0.10 ± 0.02 for α = 0.01, decreasing to

0.08± 0.03 for α = 0.1 and 0.07± 0.03 for α = 0.5. In other words, the algorithm is able

to fuse well over 90% of the spaces in the input. The large values of α may sound

alarming; however, they make sense, as will be explained below.

Why does MEX work? MEX is designed to find patterns such that different paths

converge onto them (at the beginning of the pattern) and diverge from them (at the

end). The DR and DL criteria seek in both cases a divergence, once moving to the

right and once to the left. Clearly, the motifs themselves are over-represented within

the given local context where they are found. However, over-representation is not the

criterion for their extraction. To illustrate this point, I present the statistics of the

first words in the text of Alice in Figure 4.11. Clearly ‘alice’ is over-represented, but

so is also ‘alicew’ and ‘alicewas’ and ‘was’ etc. It is the divergence occurring at the end

of ‘alice’ that does the job of separating it from ‘w’ or from ‘was’. Thus, after ‘alice’,

the 397 paths that contain this word separate into M=24 directions, corresponding

to almost all the letters of the alphabet, with 48 paths continuing to ‘w’.

This brings to mind a different formulation for the significance of the end (and,

by analogy, the beginning) of a pattern. Consider the following two contrasting hy-

potheses: random continuation [H ′
1: DR(ei; ej) = 1/M ], where M is the degree of
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(A)
a l i c e w a s b e g i n n i n g t o g e t v e r y t i r e d o f s
i t t i n g b y h e r s i s t e r o n t h e b a n k a n d o f h a v
i n g n o t h i n g t o d o o n c e o r t w i c e s h e h a d p e e
p e d i n t o t h e b o o k h e r s i s t e r w a s r e a d i n g b
u t i t h a d n o p i c t u r e s o r c o n v e r s a t i o n s i n
i t a n d w h a t i s t h e u s e o f a b o o k t h o u g h t a l i
c e w i t h o u t p i c t u r e s o r c o n v e r s a t i o n

(B)
alice was begin n ing toget very t i re do f sitting b y hersister
onthe b an k and of ha v ing no thing to do on c eortw i ce shehad
p ee p ed in tothe b ook hersister was reading but it hadno p i c
t u re s or conversation s in it and what is the us e of a b ook t
hought alice with out p i c t u re s or conversation

(C)
alice was beginning toget very tiredof sitting b y hersister onthe
b an k and of ha v ing no thing to do on c eortw i ce shehad p ee
p ed in tothe b ook hersister was reading but it hadno picture s or
conversation s in it and what is the us e of a b ook thought alice
with out picture s or conversation

(D)
alice was beginning toget very tiredof sitting b y hersister onthe
bank and of ha v ing nothing to do on c eortw i ce shehad p ee p ed
in tothe b ook hersister was reading but it hadno picture s or conv
ersation s in it and what is the us e of a b ook thoughtalice with
out picture s or conversation

(E)
alicewas beginning toget very tiredof sitting by hersister onthe ba
nk and of having nothing to do onceortwice shehad peep ed intothe b
ook hersister was reading but it hadno picture s or conversation s
in it and what is theuseof ab ook thoughtalice without picture s or
conversation

Tab. 4.10: The first paragraph of Alice in Wonderland. (A) representation of letters only. (B)
Results of applying MEX to the search-path representing this paragraph, with α =
0.001. Motifs are being grouped together. (C) Recursive application with α = 0.01 to
the same path. Further recursive applications shown here are (D) α = 0.1 and (E)
α = 0.5.



Chapter 4. Results May 22, 2006 67

L a l i c e w a s
a 8770
l 1046 4704
i 468 912 7486
c 397 401 637 2382
e 397 397 488 703 13545
w 48 48 51 66 579 2671
a 21 21 21 23 192 624 8770
s 17 17 17 19 142 377 964 6492
b 2 2 2 2 5 10 14 63
e 2 2 2 2 4 6 9 24
g 2 2 2 2 4 5 5 10

PR a l i c e w a s
a 0.08
l 0.12 0.043
i 0.45 0.19 0.069
c 0.85 0.44 0.085 0.022
e 1 0.99 0.77 0.3 0.12
w 0.12 0.12 0.1 0.094 0.043 0.024
a 0.44 0.44 0.41 0.35 0.33 0.23 0.08
s 0.81 0.81 0.81 0.83 0.74 0.6 0.11 0.059
b 0.12 0.12 0.12 0.11 0.035 0.027 0.015 0.0097
e 1 1 1 1 0.8 0.6 0.64 0.38
g 1 1 1 1 1 0.83 0.56 0.42

M a l i c e w a s
a 26
l 20 26
i 9 23 25
c 1 24 23 15
e 24 21 23 27 27
w 5 11 18 16 24 25
a 3 11 8 10 24 24 26
s 10 8 7 12 23 22 26 25
b 1 1 1 1 2 5 5 18
e 1 1 1 1 1 2 5 13
g 1 1 1 1 1 1 2 7

Fig. 4.11: Values of L (number of paths), PR (right moving probabilities) and M (number of
possible divergence directions) for paths starting with the letters specified on top
along directions specified on the left. This example is taken from the first few words
in the text of Alice in the Wonderland. Note the natural boundaries occurring at the
end of the highlighted motif ‘alice’.
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divergence observed at ej−1, and coherent continuation [H0: DR(ei; ej) ≥ η].6 The

decision whether to accept H ′
1 instead of H0 is made if the value of the probability

distribution for H ′
1 is larger than that of H0. The significance parameter α is thus de-

termined in each case as the left-handed tail of the probability distribution defining

H0. The statistics of Figure 4.11 fits very well the H ′
1 hypothesis of random continu-

ation, with significance that is much lower than the α = 0.001 limit set at the starting

stage of MEX. Iterated application of MEX changes the picture. After each iteration,

the newly found patterns, or motifs, are added as vertices to the graph. But, at the

same time, the connectivity of the graph becomes sparse, i.e., the number of options

for divergence decreases. In this case, the comparison of H ′
1 with H0 calls for in-

creasing values of α. Computationally, it is expensive to compare H0 with H ′
1 for each

endpoint or beginning of a candidate pattern. I prefer therefore to use the simpler

approach of setting an overall α value, and proceed by increasing it gradually.

4.1.2.6 Entropy reduction

Using the extracted motifs, together with their appearance probability in the text,

one can ask for the results of the Shannon game: guessing the next letter after being

given a string of letters in some text. The relevant uncertainty is represented by the

entropy rate of the problem. For a given set of motifs, or words, the entropy rate per

letter is Hw/s̄, where Hw is the entropy calculated for the known words, and s̄ is the

average word length.

The Alice exercise has been studied by Redlich [83] using an algorithm based on

reducing entropy rate per letter. He was able to reduce it from 4.16 bits for the initial

state (Figure 4.10), to 2.35 bits. The MEX algorithm also causes entropy reduction. It

surpasses Redlich’s results if, after reaching the α = 0.5 level of MEX, it is allowed to

make another step, in which no significance constraints are imposed (that is, every

6 Yet another possible criterion is to distinguish randomness from order by evaluating the entropy of all
possible next steps. The decreases and increases of entropy are analogous to those of M in Figure 4.11.
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drop in DR or DL is accepted). This reduces the entropy per letter down to the level

of 2.2 bits. All these values are still higher than 2.17 bits, the answer one gets if one

considers the original words of the Alice text as the appropriate elements. Running

MEX with η = 1, one gets an even better entropy reduction, reaching a final value of

1.96 bits, i.e., surpassing the compression possible by using the actual words.

An additional exercise I carried out was to run MEX on a scrambled version of

Alice. The text has been scrambled at the level of words, and then turned into a

continuous string of letters, as in the previous experiment. The scrambled text is

guaranteed to have an entropy per letter of 2.17 bits, whereas the unscrambled text

has a lower entropy, whose correct value is unknown (it is affected, e.g., by colloca-

tions). In this case, I found MEX to lead to a decrease in entropy from 2.81 for η = 0.8

and α = 0.001 through 2.64 for α = 0.1, down to to 2.43 bits at the final stage. This

leads to two observations: first, MEX application reduces entropy but does not reach

the lowest value possible, and, second, the collocations in the unscrambled text are

responsible for the further reduction by 0.23 bits (from 2.43 to 2.2).

4.1.2.7 Data Compression

After allowing MEX to iterate, one ends up with a graph that represents the original

text in terms of root-patterns that are, in turn, describable as trees of patterns, whose

leaves are the letters of the text. One may ask whether this MEX-graph version of the

text is a compressed representation of the initial data. The answer is affirmative. I

measured the compression ratio by evaluating the decrease in the physical computer

memory required to represent the data. In the Alice exercise I reached, for η = 0.8

stopping at α = 0.5, a compression ratio of 0.378. This is slightly better than the

compression ratio 0.382 obtained by the ZIP algorithm [64] applied to the original

Alice text. The compression ratio of 0.378 was the optimal result I have obtained with

MEX. Continuing with η = 0.8 beyond α = 0.5 leads to an increase in the compression
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ratio. Running with η = 1 leads to slightly higher results (best compression ratio

0.385).

It should be emphasized that the MEX algorithm has not been optimized for com-

pression, or for entropy reduction. Yet it has achieved impressive results on these

two fronts, just because it has succeeded in picking out important structures in the

text.
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4.1.2.8 Language modeling

A good language model, capable of reliably predicting the next word from its pre-

decessors, would be a key component in many natural language processing applica-

tions, such as speech recognition, optical character recognition, machine translation,

spelling correction, etc. The two main approaches to language modeling are statis-

tical and grammar-based. Statistical methods aim to determine the likelihood of a

word sequence by making inference from word order data that are available in the

form of a training corpus. The main disadvantages of the purely statistical approach

are the extremely large quantity of data needed to train realistically complex models

(i.e., n-grams for n ≥ 3), and the low rate of return in terms of performance improve-

ment on the investment in model complexity. As Goodman [37, p.48] summarized

the situation in a 2001 review, “Practical word error rate reductions are hopeless.”

In contrast to the statistical approach, pure grammar-based methods attempt to

capture the structure of word sequences using a set of syntactic rules — typically,

a hand-coded Context Free Grammar. Here, the problems stem from the extreme

difficulty of creating grammars that have both good precision (i.e., produce accept-

able sentences), and good recall (i.e., accept sentences known to be grammatical).

Quoting again from [37, p.42], “. . . in practice, a grammar broad coverage enough

to parse almost all grammatical sentences is broad coverage enough to parse many

ungrammatical sentences as well, reducing the information it provides.” In addition,

grammars are brittle: people often deviate from the rules of syntax, especially in

spoken language.

Combining statistical and structural techniques may be a promising way out of

this predicament. In particular, research into the use of Stochastic Context-Free

Grammars [56] is leading to a renewed progress in language modeling. Statistical and

syntactic cues can be combined “on the fly” by having the model estimate the n-gram

statistics simultaneously with the probabilities of possible left-to-right parse trees of
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the input sentence (e.g., [16] demonstrated an 11% performance improvement relative

to a baseline trigram model, while [14] achieved an even larger 24% improvement).

In the present study, I evaluated the grammars acquired by a previously reported

algorithm (ADIOS, [90, 91]), by first constructing probabilistic language models based

on those grammars, then measuring the perplexity7 and the coverage of the models.

Language models are evaluated on the basis of their ability to predict the next

word in a sequence, using sentences taken from a previously unseen text. Models

that result in a high average word probability — that is, low perplexity — are con-

sidered superior. As mentioned above, standard statistical language models, such as

those based on estimated n-gram probabilities, are problematic, for two reasons: (1)

probability estimates for rare or unseen events are unreliable, and (2) low-n models

fail to capture long-range dependencies between words. The experiments described

below show that the grammar learned by ADIOS can be used to construct a sim-

ple, yet effective Structured Statistical Language Model [37, 15]. Because the patterns

learned by ADIOS generalize well, and because they capture long range dependencies,

the resulting SSLM achieves an improvement in perplexity on the ATIS corpora over

state-of-the-art models, despite requiring much less training data.

Consider an l-word sentence W = w1 . . . wl, and the parse trees induced over it

by the learned grammar; note that a parse tree may be complete (T1,l, spanning the

entire sentence), or partial (Ti,j ; 1 ≤ i < j ≤ l). My goal is to assign the probability

p(wk+1|T1,k) to wk+1 which is the next word in the prefix (w1, . . . , wk) and the probabil-

ities p(wk+1|Tk−n,k) to each one of the partial derivations Tk−n,k, where 1 ≤ n < k, 1 ≤

k ≤ l. p(wk+1|Tk,k−n) is determined by first matching the given structure Tk,k−n to the

current input (w1, . . . , wk) and then identifying the BRANCHING LEVEL, all the possible

words that can populate the next word slot wk+1. The probabilities are estimated ac-

7 Perplexity measures the degree of uncertainly about the next word, averaged over a set of sentence
prefixes used to test the model [37]. The lower the perplexity, the better the model. We define the test set

perplexity in the usual way [60], as perp = 2
− 1

n

∑
w∈S

log2 p(w)
, where n is the number of words in the test

set S.
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Algorithm 6 The parser.

1: for all learners z = 1 : Z do {Z is the number of learners}
2: for all sentences s = 1 : N in the test corpus do {N is the number of sen-

tences}
3: for all k-prefixes, k = 2 : L− 1 do {L is the number of words in sentence s}
4: IDENTIFY the m paths in the graph of learner z that span entirely or par-

tially the k-prefix of the sentence;
5: for a = 1 : m do
6: IDENTIFY the matched parts Tk−1,k−n(a) of the path that span the input;

{the number n of matching words defines the level of history depen-
dence}

7: LOCATE next l(n) possible words in position k, wd
k,n(a), d = 1 : l(n), given

Tk−1,k−n(a);
8: ESTIMATE their probabilities p; {based on the branching factor}
9: end for

10: for n = 2 : k do
11: for d = 1 : l(n) do
12: ESTIMATE pn(wd

k) from equation 4.3;
13: end for
14: ESTIMATE P (wd

k) from equation 4.4; {the predicted word probabilities for
position k}

15: end for
16: end for
17: end for
18: AVERAGE among learners and NORMALIZE;
19: end for
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Fig. 4.12: An illustration of the parser’s search for matches between patterns (context free
structures) and the input sentence (“what type of meal will be. . . ”), in constructing
a Structured Statistical Language Model from the ADIOS grammar. Once a match
is established, the parser identifies the possible next words and estimates their
probabilities from the same corpus used by the ADIOS algorithm in learning the
grammar. The number n of matching words defines the variable level of dependence
of the predicted word on its history. In this simplified example there are two pattern
#1855 and #1345 which match the input with n = 6 and n = 2.

cordingly. In Figure 4.12, left, for example, the branching level at w7 (the next location

in the sequence of terminals) is 2, and thus p(available|P18551,6) = p(served|P18551,6)1/2.

Because there may be several trees of the same length, I label them as Tk−1,k−n(a) for
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a = 1, . . . ,m. We calculate these probabilities iteratively. At each step, a simple de-

terministic parser analyzes all the relevant root patterns (including those that span

only parts of the prefix), seeking matching parts (see Figure 4.12). The number n

of matching words defines the variable level of history dependence of the predicted

word (in standard n-gram language models n is fixed). We estimate the probability

p(wk+1|wk−n . . . wk) of a word given its sentence prefix as:

pn(wk+1)
.= p(wk+1|wk−n . . . wk) =

∑
a=1:m

p(wk+1|Tk,k−n(a))p(Tk, k − n)(a)) (4.3)

where p(Tk,k−n) is the probability of finding the pattern tree Tk,k−n in the corpus, and

m is the number of structures that span (k, k − n). For each word in the test set,

the parser provides the values of the n-gram probability functions pn(wk). The final

probability is estimated by linear smoothing:

P (wk|wk−n . . . wk−1) = c1p1(wk) + c2p2(wk) + . . . + ck−1pk−1(wk) (4.4)

where
∑

i ci = 1; I set ci = i/
∑

j=1:k−1 j.

Because the ADIOS algorithm is greedy (the best available pattern in each iteration

is irreversibly committed to), the syntax it acquires depends on the order of sentences

in the training set. This is expected to affect the learning of a complex CFG, especially

if it contains many loops. To mitigate this dependence, I train multiple learners on

different order-permuted versions of the corpus [91]. When multiple learners are

used, I average the probabilities they feed into the language model for every predicted

word at every location, then normalize.

The experiments described next involved the Air Travel Information System (ATIS)

data [47]. I used the ATIS2 and ATIS3 corpora, with lexicons of 1212 and 1596 words,
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respectively.8 The multiple-learner ADIOS algorithm was first applied to the ATIS

training corpus, extracting the syntactic patterns. We then weighted the elements of

each learner’s grammar probabilistically, using the sentences of the training set, by

applying the parser to successive prefixes of each of the sentences in that set. The

results were used to assign probabilities to the relevant pattern elements (terminals

and equivalence class members). The final probability is the average of the weighted

probability and the predicted probability.9

Coverage. As the inference process proceeds, the learned grammar is expected

to cover more and more of the test set. This, however, may also lead to over-

generalization. The trade-off that arises in this issue has been examined by [90, 91];

here I focus on the coverage — the proportion of accepted test sentences — attained

by my model (a sentence is accepted if it can be generated by the acquired grammar).

As Figure 4.13, right, shows, the coverage of ADIOS as applied to ATIS2 and ATIS3

grows with the number of learners, asymptoting around 50% and 30%

respectively (the coverage can reach 70% for a modified model as explained in the

figure legend; such a modified model was not used in the perplexity study reported

below). Although these results may seem modest, it is important to note that they

have been obtained by training the model solely on the ATIS corpora themselves.

Perplexity. The first experiment involved the ATIS2 training corpus, which con-

sists of 13, 044 utterances (130, 773 tokens). We used all but 400 of the utterances for

training, and the rest for testing. The second experiment involved the ATIS3 corpus,

which contains 7, 362 utterances (83, 867 tokens), and the test set that accompanies

it, which contains 981 utterances (12, 029 tokens).

The best perplexity scores achieved by my model is 11.5 for ATIS2, and 13.5 for

8 The ATIS corpora were used because of the availability of perplexity benchmark data and the possibility
of training ADIOS on the very same texts for which perplexity is then computed. The larger WSJ corpus,
whose lexicon is also much larger, is typically simplified before it can be used effectively for language
modeling [85].

9 A more complicated and time-consuming, but probably better, way of producing a Probabilistic Context
Free Grammar (PCFG) out of the ADIOS rules would have been to use the Inside-Outside Algorithm [66].
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Fig. 4.13: the coverage of the acquired grammar as a function of the number of learners on
the ATIS2 and ATIS3 corpora. The perplexity results on these corpora, reported in
Table 4.11 below, were obtained with 30 learners each; the coverage of the cor-
responding grammars is shown by the middle and bottom curves. The top curve,
intended as a demonstration of a technique that can be used to improve coverage,
was obtained with a modified version of the ADIOS algorithm, which differs from the
one described in [90, 91] in two respects. First, to facilitate learning, I provided the
system ahead of time with 11 equivalence classes of nouns, such as the names of
cities and days of the week. Second, if two candidate patterns received the same
significance score in the inference stage, the algorithm chose the more productive
one. With these two modifications, the system reaches 70% coverage of the ATIS2
set after training on only 12, 000 sentences.

ATIS3. These figures compare favorably to those of other published results, sum-

marized in Table 4.11. It is especially interesting to compare also the model size for

each case: whereas the state of the art LM systems use thousands of parameters,

my SSLM has only as many as required by the (usually small) size of the acquired

grammar, which, moreover, can be learned from very small corpora.

In his review, Goodman [37, p.44] hypothesizes that much of the benefit of using

a structured language model (SLM) stems from the same source as that of statistical
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ATIS2

method # of parameters perplexity ref.
ADIOS SSLM under 5000 11.5
Trigram Kneser-Ney backoff smooth. 1.E+05 14 [63]
Probabilistic finite automata (PFA)
Inference (ALERGIA)
combined with a trigram model 1.E+05 20 [59]
Probabilistic finite automata (PFA)
Inference (ALERGIA) 1.E+05 42 [59]

ATIS3

method # of parameters perplexity ref.
ADIOS SSLM under 5000 13.5
SSLM-trained on Wall Street Journal
combined with a trigram model 1.E+05 15.8 [15]
SSLM based on the NLPwin parser
combined with a trigram model 1.E+05 15.9 [15]
SSLM-trained on the ATIS corpus
combined with a trigram model 1.E+05 15.9 [15]
trigram 4.E+04 16.9 [15]
SSLM based on the NLPwin parser 1.E+05 17.2 [15]
SSLM-trained on the
Wall Street Journal 1.E+05 17.7 [15]
SSLM-trained on the ATIS corpus 1.E+05 17.8 [15]

Tab. 4.11: The perplexity of the ADIOS SSLM, compared with some results from the literature
[59, 63, 15]. Note that my SSLM uses for training only the data provided for that
purpose in the ATIS corpora themselves. Although my model requires that only the
three parameters of the ADIOS algorithm be specified in advance, I have stated the
approximate overall number of patterns of all learners as the counterpart to the
number of parameters in the other methods.

techniques, such as skipping, clustering, or larger n-grams. In relation to the latter,

he points out that significant improvements can be obtained by moving from tri-

grams to five-grams. Interestingly, the model I describe achieves an average level of

context dependence of about 5.

In the standard approaches, the inference of n-gram models for n > 3 is severely

hampered by the extremely large number of parameters they require. My struc-

tural stochastic language model (SSLM) avoids this problem by capitalizing on an

efficient learning algorithm, ADIOS, capable of acquiring a compact representation (a

grammar) from small amounts of data. The ADIOS algorithm is capable of inferring

context-free patterns (rules), accompanied by equivalence classes (in the language
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modeling terminology, clusters), from raw, untagged corpora. It is perhaps not sur-

prising that subsequent use of these structures results in a good language model:

Goodman [37, p.23] notes that automatically learned clusters outperform speech

tags (when there is enough data), and that modeling each sentence type (what I call

root pattern) separately improves performance.

The present approach achieves the equivalent of a relatively long-range n-gram

dependence (n ≈ 3.8 to n ≈ 5.0) with a model that can be trained on very little data.

In the present work, I used about 12, 000 training sentences in the ATIS2 experiment.

In the ATIS3 experiment, only about 7, 000 training sentences were used (which was

probably not quite enough, judging from the relatively low performance of our my in

this experiment).

I conclude that the ADIOS SSLM achieves performance comparable to or exceeding

that of other recent models that use syntactic information, such as [76, 15, 85, 60],

without relying on a hand-parsed corpus. This makes my approach applicable in

principle to any body of language data, in any language. In addition, this perfor-

mance is achieved without any optimization efforts on my part. We attribute this

to the relatively high quality of the grammar inferred by ADIOS, which attains better

coverage than other comparable efforts, such as that of [76]. Further improvements

should be possible if the acquired grammar is weighted using the Inside-Outside al-

gorithm, yielding a better PCFG (in the present version, all the pattern weights are

equal). Better smoothing should also lead to improved performance.
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4.2 Bioinformatics

4.2.1 Proteomics

4.2.1.1 Classification of enzymes

This study evaluated the ability of root patterns found by ADIOS to support func-

tional classification of proteins (enzymes). The function of an enzyme is specified by

an Enzyme Commission (EC) name. The name corresponds to an EC number, which

is of the form: n1:n2:n3:n4. In this experiment, we concentrated on the oxidore-

ductases family (EC 1.x.x.x). Protein sequences and their EC number annotations

were extracted from the SwissProt database Release 40.0; sequences with double

annotations were removed. First, ADIOS was loaded with all the 6751 proteins of

the oxidoreductases family. Each path in the initial graph thus corresponded to a

sequence of amino acids (20 symbols).

The training stage consisted of the two-stage action described in section 4.1.2.5.

In the first stage (η = 0.9, α = 0.01), the algorithm identified 10, 200 motifs (words).

In the second stage (η = 1.0, α = 0.01) after removing those letters that were not

associated with one of the identified motifs, it extracted additional 938 patterns.

Classification was tested on level 2 (EC 1.x, 16 classes) and on level 3 (EC 1.x.x, 54

classes). Proteins were represented as vectors of ADIOS root patterns. A linear SVM

classifier (SVM-Light package, available online at http://svmlight.joachims.org/) was

trained on each class separately, taking the proteins of the class as positive exam-

ples, and the rest as negative examples. 75% of the examples were used for training

and the remainder for testing. Performance was measured as Q = (TP + TN)/(TP +

TN + FP + FN), where TP, TN, FP and FN are, respectively, the number of true posi-

tive, true negative, false positive, and false negative outcomes. Table 4.12 presents

the performance of the ADIOS algorithm on level 2 alongside the performance of the

SVM-PRot system [11]; Table 4.13 presents the performance on level 3. The ADIOS
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performance matched the performance of the SVM-PRot system, even though the lat-

ter uses a representation composed of features such as hydrophobicity, normalized

Van der Waals volume, polarity, polarizability, charge, surface tension, secondary

structure and solvent accessibility, while I use solely the structure found by my algo-

rithm in the amino acid sequence data (see Figure4.14). The average recall/precision

on level 2 was 71 ± 13% and 90 ± 9%, respectively, while recall/precision on level 3

was 70 ± 26% and 93 ± 23%, indicating that the ADIOS representation can accurately

discriminate the enzyme’s low-level functionality.
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Fig. 4.14: (A), Functional protein classification (16 Enzyme Classes (EC), level 2). This plot
compares the Q-performance of a linear SVM based on ADIOS root-patterns with
that of the SVM-Prot package; for definitions of the task, see [11]. Note that we
match the performance of SVM-PRot using solely the structure found by ADIOS in
protein sequences. (B,C), Syntax found by ADIOS can be used to distinguish be-
tween coding and non-coding regions of the genome. The correctness of the codon
representation of a DNA sequence depends on knowing the starting point of the
gene’s Open Reading Frame (ORF). Here we compare three corpora generated from
the same sequence data read in the original ORF (ORF0) or shifted ones (ORF1 and
ORF2). The 64 codons (nucleotide triplets) served as the original units of the graph.
In each case we compare the total description length of the final ADIOS graph with
that of the original graph, i.e., the compression achieved by ADIOS. The corpora
consisted of the first exons of 4, 777 C. Elegans embryonic genes (B), and of the first
500 bases of the same genes, including introns (C). The difference between the com-
pression ratios achieved for the different ORFs in the two figures demonstrates that
the ADIOS procedure allows us to distinguish the correct reading frame when it is
functionally significant.
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Tab. 4.12: The performance of the ADIOS algorithm versus the SVM-Prot system on level 2.
Class TP FN FP TN ADIOS Q recall precision SVM-Prot Q
1.1 333 89 64 1201 0.91 0.79 0.84 0.92
1.2 110 49 26 1502 0.96 0.69 0.81 0.99
1.3 62 36 14 968 0.95 0.63 0.82 0.98
1.4 33 23 9 556 0.95 0.59 0.79 0.99
1.5 20 19 8 384 0.94 0.51 0.71 0.97
1.6 198 23 25 1441 0.97 0.90 0.89 0.99
1.7 23 13 2 365 0.96 0.64 0.92 0.99
1.8 51 21 3 717 0.97 0.71 0.94 0.99
1.9 117 21 4 1376 0.98 0.85 0.97 0.96
1.10 16 13 0 292 0.96 0.55 1.00 0.96
1.11 61 16 3 772 0.98 0.79 0.95 0.98
1.13 16 15 2 315 0.95 0.52 0.89 0.95
1.14 106 41 13 1462 0.97 0.72 0.89 0.95
1.15 54 4 0 582 0.99 0.93 1.00 0.99
1.17 22 6 0 285 0.98 0.79 1.00 0.97
1.18 32 10 1 424 0.98 0.76 0.97 0.98

4.2.2 Genomics

4.2.2.1 Coding DNA Regions

The ADIOS algorithm also provides a useful tool for identifying Open Reading Frames

(ORF) and coding regions in DNA sequences, based on comparing the description

length of the representation before and after learning. The description length of the

ADIOS representation consists of two parts: the graph (vertices and paths) and the

identified patterns. The compression ratio of the description length can be quanti-

fied by evaluating the decrease in the physical memory it occupies (in bits). I have

calculated the compression at several points along the curves of the ATIS-CFG re-

call/precision graph (Figure 4.1). Figure refrp-compression shows the correlation

between the recall/precision levels (ordinate) and the compression rate (abscissa). It

can be seen that ADIOS recall level strongly depends on (increases with) the compres-

sion level, but the precision level only weakly depends on the latter. The compression

ratio characteristic is particularly useful when comparing the performance of ADIOS

on different data for which the target “grammars” are not available. The ORF problem
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Tab. 4.13: The performance of the ADIOS algorithm on level 3.
class TP FN FP TN Q Recall Precision
1.1.1 331 67 48 1241 0.93 0.83 0.87
1.1.3 4 4 0 80 0.95 0.50 1.00
1.1.99 6 8 0 147 0.95 0.43 1.00
1.10.2 8 8 1 166 0.95 0.50 0.89
1.10.3 6 3 0 95 0.97 0.67 1.00
1.10.99 3 0 0 30 1.00 1.00 1.00
1.11.1 62 15 4 771 0.98 0.81 0.94
1.12.99 6 0 0 65 1.00 1.00 1.00
1.13.11 15 12 0 277 0.96 0.56 1.00
1.13.12 0 3 0 30 0.91 0.00 0.00
1.14.11 8 3 0 117 0.98 0.73 1.00
1.14.12 4 1 0 55 0.98 0.80 1.00
1.14.13 14 11 1 251 0.96 0.56 0.93
1.14.14 48 9 0 572 0.99 0.84 1.00
1.14.15 8 1 0 95 0.99 0.89 1.00
1.14.16 6 0 0 67 1.00 1.00 1.00
1.14.18 1 2 0 35 0.95 0.33 1.00
1.14.19 6 0 0 65 1.00 1.00 1.00
1.14.99 15 3 0 180 0.98 0.83 1.00
1.15.1 53 5 2 580 0.99 0.91 0.96
1.16.1 2 3 0 52 0.95 0.40 1.00
1.17.4 21 7 1 281 0.97 0.75 0.95
1.18.1 7 4 0 117 0.97 0.64 1.00
1.18.6 25 5 0 307 0.99 0.83 1.00
1.2.1 95 29 4 1236 0.98 0.77 0.96
1.2.3 3 0 0 32 1.00 1.00 1.00
1.2.4 10 6 0 165 0.97 0.63 1.00
1.2.7 2 6 0 82 0.93 0.25 1.00
1.2.99 2 5 0 72 0.94 0.29 1.00
1.21.3 3 0 0 32 1.00 1.00 1.00
1.3.1 29 8 1 369 0.98 0.78 0.97
1.3.3 23 11 0 347 0.97 0.68 1.00
1.3.5 4 0 0 45 1.00 1.00 1.00
1.3.7 0 3 0 37 0.93 0.00 0.00
1.3.99 13 5 1 181 0.97 0.72 0.93
1.4.1 15 5 0 207 0.98 0.75 1.00
1.4.3 10 12 0 222 0.95 0.45 1.00
1.4.4 2 1 0 35 0.97 0.67 1.00
1.4.99 6 1 0 77 0.99 0.86 1.00
1.5.1 18 12 1 299 0.96 0.60 0.95
1.5.3 0 3 0 37 0.93 0.00 0.00
1.5.99 2 1 0 37 0.98 0.67 1.00
1.6.1 4 1 0 52 0.98 0.80 1.00
1.6.2 5 0 0 50 1.00 1.00 1.00
1.6.5 162 5 8 1512 0.99 0.97 0.95
1.6.99 24 19 8 429 0.94 0.56 0.75



Chapter 4. Results May 22, 2006 84

Tab. 4.14: (continued): The performance of the ADIOS algorithm on level 3.
class TP FN FP TN Q Recall Precision
1.7.1 10 4 0 145 0.97 0.71 1.00
1.7.2 5 0 0 55 1.00 1.00 1.00
1.7.3 3 2 0 50 0.96 0.60 1.00
1.7.99 5 5 0 107 0.96 0.50 1.00
1.8.1 30 4 0 345 0.99 0.88 1.00
1.8.4 30 4 0 342 0.99 0.88 1.00
1.9.3 110 28 6 1374 0.98 0.80 0.95
1.97.1 3 0 0 32 1.00 1.00 1.00

Tab. 4.15: Some of the specific ADIOS patterns appear in specific Enzyme Classes.
Enzyme Class Pattern
1.1.1 WSG {VNVAGV, RT}
1.1.1 GKVIKCKAA VL
1.1.1 ALVTG {AGK, ST, AAQ, AS, SR, SK, TS, NK} GIG
1.1.1 ANQNGAIWKLDLG LDA
1.1.1 AAY {GEV, SSVL, STV, SSV} {MN,AQA}
1.1.1 LTNKNV IFVAGLGGIGLDTS
1.2.1 IF IDG EH GTTGLQI
1.2.1 VSV IDNLVKGA GQAIQN
1.4.3 TG {FQ,GI} YGL
1.6.5 TD {RVL, LKSLI} AY
1.6.5 IAL {TSL, ME, PT} HT
1.8.1 FT {EL, VLPM, HL} YP
1.8.4 EVR {SAHG,SNA,KNA,RAA,SKL,RFA,KYD} DS
1.8.4 {NR,TT} QG
1.11.1 VKFHWKPTCGVK {SM, CL}
1.11.1 {QE,QP} WWPAD
1.11.1 {AI,AP} KFPDFIHTQKR
1.11.1 FDHER IPERVVHARG
1.11.1 GIPASYR HM GFGSHT
1.11.1 VS LDKARRLLWPIKQKYG
1.15.1 FW {VVN,LVN,MP} WD
1.18.6 {IPL,CIG} VHGGQGC MFV
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is a typical example of such an analysis.

Following its iterative application, ADIOS compresses the initial graph to a final

graph plus a forest of distilled root-patterns. Although the latter can generate a

much larger corpus than the original one, the description length of the ADIOS rep-

resentation is diminished. The recall level of ADIOS increases with compression.

Applying ADIOS to the coding region of the C. Elegans genome (Figure 4.14B), one

may conclude that the syntax of ORF0 (the correct open reading frame) is to be pre-

ferred. Moreover, it becomes possible to distinguish between coding and non-coding

regions (Figure 4.14B vs. 4.14C), because for the latter different ORFs lead to similar

compression levels.
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Fig. 4.15: Correlation between the recall/precision levels (ordinate, blue and red respectively),
versus compression rate (abscissa), obtained for the ATIS-CFG problem
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4.2.2.2 Non-coding DNA Regions

Regulation of gene expression is mediated mainly through specific interactions of

transcription factor (TF) proteins with DNA promoter elements. TF binding sites

are short (6-20 bases) and imprecise. Binding sites typically comprise a minority of

the nucleotides within a promoter region. They are embedded within sequence that

is assumed to be non-functional with respect to transcription. Identifying genuine

binding sites is a challenging task as the physical extent of a promoter is rarely well

defined, and within this ill-defined region we are seeking sparsely distributed, short

and imprecise sequence motifs.

The advances in genome research, including whole genome sequencing and mRNA

expression monitoring has allowed the development of computational methods for

binding site prediction. Among the most popular and powerful methods for regulatory

motif detection is Gibbs sampling. In this method, motifs that are overrepresented

in the data may be found. However, because regulatory motifs are very short, and,

in contrast, the regulatory portion of the genome is very long (e.g., 6,000,000 base-

pairs in yeast, and much longer in mammals), and because the size of gene regulatory

networks is relatively small (typically tens of genes), most regulatory motifs are not

expected to be overrepresented on a genome-wide scale. The task of motif identifi-

cation is thus often first tackled by grouping together relatively small sets of genes

(tens or hundreds) that are likely to be co-regulated, followed by motif searching only

within such groups (Tavazoie et al. 1999, Brazma et al. 1998, Wolsberg et al. 1999).

While such efforts were proved to be successful, they are not always applicable (e.g.

due to insufficient means to group co-regulated genes) and identification of poten-

tially co-regulated genes is largely inaccurate. Thus, there is a clear need to develop

motif detection algorithms that will operate directly on the entire genome level with

no a priori knowledge about the identity of co-regulated genes. Because such mo-

tifs cannot be overrepresented at a genome-wide scale, a different property, and a
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suitable probabilistic formalism, should be sought.

While position-specific weight matrices (Stormo 2000) usually ignore dependen-

cies between nucleotide positions in regulatory motifs, such dependencies are known

to occur (Bulyk et al. 2002, Benos et al. 2002). Statistical models that account for

such dependencies include hidden Markov models, and Bayesian networks (Durbin

et al. 1998). Yet even sophisticated models of this kind have relatively low values of

sensitivity and specifity when required to represent the known binding sites (Barash

et al. 2003).

A statistical model that would identify improbable consecutive chains of interde-

pendencies between adjacent nucleotide positions is expected to identify motifs as

statistically significant on a genome-wide scale even without significant over repre-

sentation. In that sense, the MEX algorithm seems to be appropriate for the job. MEX

has been run on the entire set of yeast promoters and identified thousands of highly

scoring motifs. Then in a collaboration with the research group of Dr. Yitzhak Pilpel

from the Weizmann Institute of Science, the expression coherence method (Pilpel

et al. 2001, Sudarsanam et al. 2002, Lapidot and Pilpel 2003) was used in order to

check which of the identified motifs exerts a statistically significant effect on the

expression profiles of the genes down-stream from them. The expression analysis

showed an enormous enrichment of highly-scoring motifs among the set of predic-

tions of the MEX algorithm. It also identified potential biological conditions in which

they act.

4.2.2.2.1 Results I In the yeast problem, the MEX algorithm was applied to 4800

promoters. Each promoter sequence, of length up to 1000bp, is considered as a

data-path on the graph. After all information is loaded onto the graph, I used all

4800 sequences as trial-paths in order to extract the motifs. Obviously the latter are

determined by probabilistic arguments driven by sequence data. Some of these mo-

tifs, in particular those of very high occurrence (in the thousands) may be completely
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α #s−motifs #sites #accounted #included
0.2 5842 433 284 462
0.3 8823 433 341 672
0.4 12587 433 366 962
0.5 17844 433 405 1303

Tab. 4.16: Comparison with AlignACE results

unrelated to regulatory functions. Other may indeed fit cis regulatory binding sites.

cis regulatory motifs are often represented in a PSSM notation, or through some

other underlying probability model which assigns a large class of binding sites to one

specific transcription factor. The interesting question is how many of my sequence

motifs (to be referred to henceforth as s-motifs) are indeed binding sites.

4.2.2.2.2 Regulatory Motifs - Comparison with Known Data As a first test of the

relevance of the MEX s-motifs, they can be compared to the results of the AlignACE

website of the Church lab, http://atlas.med.harvard.edu/cgi-bin/compareace−motifs.pl,

using their data of 26 known cis regulatory motifs. The number of binding sites per

motif range from 12 to 119 sites (an average of 29 sites per motif). There are alto-

gether 433 different binding sites. In Table 4.16 I list the number of known binding

sites that are describable by my s-motifs. This number depends on the choice of the

parameter α. As seen here, for α = 0.5, one can account for 405 out of 433 i.e. 94%

of the binding sites. The fourth column specifies the number of binding sites that

were accounted for in my list of s-motifs. The fifth column specifies how many of my

s-motifs are included within the available list of 433 binding sites.

It is interesting to note that the numbers in the fourth and fifth column of this

table grow proportionally to the number of observed sequence-motifs. The latter

grows of course with α. This implies that there is no good reason to limit oneself

to small α values. Another interesting observation is that the number of s-motifs

per observed regulatory motif grows with α from 462/26 = 18 to 1303/26 = 50. If one
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considers these numbers as indicative of the truth, it is possible to estimate the total

number of cis regulatory motifs in the yeast, by dividing the second column by these

ratios. The results are quite stable for all α, varying from 329 to 356.

To check this method further, the same 26 cis regulatory motifs and their 756

different sites were used (there are 433 different ones among them, as mentioned

above). The algorithm then identified all the s-motifs present in each site, and thus

may regard the site as a vector in a (high-dimensional) s-motif space. Now we are in a

position to perform cross-validation tests on each one of the classes of binding sites,

i.e., each one of the 26 cis regulatory motifs. This has been done by using 80% of

the instances as labeled prototypes and evaluating the model on the remaining 20%

of the instances. Classification was performed by using an Euclidean K=1 nearest-

neighbor algorithm. The results are specificity=1 for all α values, and sensitivity

growing from 0.62 at α = 0.2 to 0.77 at α = 0.5. These classification results are very

satisfactory, in comparison with similar analysis by other methods (see section 3.2

of Barash et al. 2003). They are even more impressive given the simple underlying

procedure.

4.2.2.2.3 MEX and Multiple Alignment To explain better the MEX method for mo-

tif extraction, I describe one example in Figure 4.16. Shown here are 12 different

subsequences taken from promoters of 12 different genes. All have in common one

motif, AAAACGCGAA, identified by the MEX algorithm. This figure is presented as an

alignment matrix. It came about by first identifying AAAACGCGAA as a motif, following

the procedure outlined above and sketched in Figure 4.16. This motif is a variation

on MCB (AAACGCGTAA), the main S. cerevisiae cell cycle control regulator, governing

the transition from G1 to S phase (Tavazoie et al. 1999). Since the data-path identity

is being kept on the graph constructed by all paths, it is a simple exercise to regen-

erate all subsequences that have a certain motif in common. Note that the relative

occurrence of this motif is not high, it occurs in 12 out of all 4800 promoters. Yet its
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YOL149W ATATGTCGAAAACGCGAAAAAACGCGAAAAAACGCGAAAAAACGCGAAGCAAGAAAGAA
YPL241C TGTCATACAAAAAAACGCGAAAAACGCGAAAAACGCGAAAAACGCGAAGAATCTGAAAT
YPL179W TTCGAGGTAAAACGCGAAAAAACGCGAAAAAACGCGAAAAAACGCGAAGTTCGTAGAGA
YBL061C_YBL060W AGCAAGTCAAAACGCGAAAAAACGCGAAAAAACGCGAAAAAACGCGAAGTGAAACGTGG
YBR073W TAAAAAATAAAACGCGAAAAAACGCGAAAAAACGCGAAAAAACGCGAAGAGCTAAAAAA
YBR088C GACGCACCAAAACGCGAAAAAACGCGAAAAAACGCGAAAAAACGCGAAACGCGTAACTT
YLL022C_YLL021W AATTGGAAAAAACGCGAAAAAACGCGAAAAAACGCGAAAAAACGCGAAACTTCAGTGCA
YLR372W GAGAAAAAAAAACGCGAAAAAACGCGAAAAAACGCGAAAAAACGCGAAATTTTTCTTCC
YNL283C_YNL282W AACAGGAAAAAACGCGAAAAAACGCGAAAAAACGCGAAAAAACGCGAAATGTCCGTAAC
YOL090W AAAAATAGAAAACGCGAAAAAACGCGAAAAAACGCGAAAAAACGCGAAAACTTGTCATT
YDR081C_YDR082W CAAAATTCAAAACGCGAAAAAACGCGAAAAAACGCGAAAAAACGCGAACTAGTCACGAT
YPL145C_YPL144W CAGCTAGTAAAACGCGAAAAAACGCGAAAAAACGCGAAAAAACGCGAACGGAATGAGTT

Fig. 4.16: The appearance of one motif, AAAACGCGAA, in 12 promoters, i.e. 12 data-paths of
MEX, which is a natural multiple alignment tool.

discovery is quite straightforward. It obeys my criteria because of the variance of pre-

fixes and suffixes of this motif. Thus we realize that MEX can serve as a very useful

tool in performing multiple alignment: just load the strings of interest as data-paths,

extract sequence motifs, and check single or multiple alignments of any order in the

data.

4.2.2.2.4 Results II: Expression Coherence Test In order to check which of the

motifs extracted by MEX are likely to function as regulatory elements in yeast, we

have characterized each of them using the expression coherence (EC) method (Pilpel

et al. 2001, Sudarsanam et al. 2002, Lapidot and Pilpel 2003). The EC score of a

motif that appears in the promoters of N genes is defined as the fraction of gene

pairs, (i, j) in the set such that the Euclidean distance between their mean- and

variance-normalized expression profiles, Dij, falls below a threshold, D, divided by

the total number of gene pairs in the set, 0.5(N −1)N . The value D is determined as a

distance that random gene pairs have a probability p of scoring below. The EC score
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may range between 0 and 1 and is higher for sets of genes that cluster in one or a

few tight clusters. Additionally, a sampling-based means exists for the assessment of

the statistical significance, in terms of p-value, of EC scores, given the gene set size

N (Lapidot and Pilpel 2003).

The EC scores and p-values were calculated for each of 6708 sequence-motifs in

each of 40 conditions in which whole-genome mRNA expression of yeast was moni-

tored using DNA chips and microarrays (http://arep.med.harvard.edu/cgi-bin/ExpressDByeast/EXDStart).

The 6708 s-motifs were chosen from the α = 0.5 set, constrained by length larger than

6 and occurrence rate between 5 and 30. To account for the testing of multiple hy-

potheses and to control for the amount of false positives, the false discovery rate

(FDR) theorem was used (Benjamini and Hochberg 1995) to determine the p-value

cutoff below which motifs are guaranteed to be statistically significant at a specified

false discovery rate. Setting this rate at 10%, revealed that 20% of the 6708 sequence-

motifs have a significant EC score in at least one of the conditions. For comparison, in

an equally-sized set of random motifs, with same motif-length distribution, only 0.6%

of the motifs pass this FDR threshold. Figure 4.17 shows a comparison of the ranges

of p-values obtained when computing EC scores for the motifs derived by MEX, rel-

ative to the p-values obtained for the randomly generated motif set. As clearly seen,

relative to random motifs, MEX provides an enrichment in highly scoring motifs and

an under-representation of low-scoring motifs.

Expression analysis of genes that contain regulatory motifs in their promoters al-

lows not only to select potentially functional motifs, but also to decipher their seman-

tics. A comprehensive semantic characterization of a regulatory motif would amount

to describing the condition in which it acts, and its regulatory effects, e.g. increase in

expression during a particular stress, or peaking of expression profile, during a par-

ticular phase of the cell cycle. Figure 4.18 shows such semantic annotation of two of

the high-scoring sequence-motifs generated by MEX. These motifs govern opposite re-
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Fig. 4.17: The s-motifs extracted by MEX are enriched with significant motifs, as judged by
the p-values on their EC scores, computed over 40 different expression conditions
(http://arep.med.harvard.edu/cgi-bin/ExpressDByeast/EXDStart ). EC scores and
p-values were computed for the set of motifs extracted by MEX, as well as for a
random set of motifs with equal length distribution. For both data sets, the fraction
of motifs falling in each p-value range was computed. The graph shows the ratio
between the fraction of MEX motifs in each bin and the fraction of random motifs.
It is apparent that MEX motifs are enriched with highly scoring motifs, whereas
low-scoring motifs are under represented.

sponses to hypo-osmotic pressure. Manual analysis on individual motifs can be done

through the expression coherence site http://longitude.weizmann.ac.il/services.html.

I have outlined here a combined semantic and syntactic approach for the discov-

ery and analysis of promoter regulatory motifs in S.cerevisiae. This approach has

identified most of the known regulatory motifs, and discovered many new, rigorously

prioritized motifs. It is clearly demonstrated that a combination of both levels of

analysis performed here is crucial for efficient and meaningful motif discovery. The

underlying principle should prove useful in motif derivation efforts also in other con-

texts. For instance in efforts for deriving protein-coding sequence motifs one might

consider characterizing motifs according to the local (e.g. secondary) 3D structure of

the amino acids that constitute the motif.
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Fig. 4.18: A semantic characterization of two of the motifs extracted by MEX. MEX has suc-
cessfully identified two motifs governing opposite responses to hypo-osmotic stress.
As shown by the graph, all the genes containing the s-motif GCGTATGAGAT (corre-
sponding to the PAC motif) in their promoters (plotted in red) behave similarly in
response to hypo-osmotic stress (EC=0.45, p-value <1*e-5), whereas all the genes
containing the s-motif TCCCCCTC (corresponding to the binding site of the MIG1 TF)
in their promoters (plotted in blue), behave similar to each other (EC=0.20, p-value
4*e-5), yet different from the first group of genes. This illustrates the strength of
MEX in identifying sequence motifs corresponding to known s. cerevisiae regulatory
motifs based on promoter sequence alone. The expression data for the analysis was
taken from Gasch et al. .
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One of the crucial features of MEX, and the entire ADIOS approach, is that it is

truly unsupervised. The common motif finding algorithms, in particular those based

on over-representation of motifs, such as Gibbs sampler (Hughes et al. 2000), all re-

quire that promoters will be clustered first (e.g. based on expression or functional

classifications). This is absolutely essential for such methods, as functional regu-

latory motifs are not over-represented on a genome-wide scale and thus are only

detectable by methods such as Gibbs sampling if applied to meaningful clusters.

The application of the MEX algorithm studied here is a first level of feature extrac-

tion from biological sequences. Higher level patterns may be extracted by repeated

application of MEX after the observed sequence-motifs are incorporated as nodes in

the MEX graph. Moreover, the full extent of the ADIOS approach (Solan et al. 2003)

may lead in the future to revealing higher syntactic structures in the data.
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4.3 Computational Complexity

I conducted several experiments based on the TA1 grammar to estimate the compu-

tational complexity of ADIOS. I found four variables that have major effects: the total

number of words in a given corpus, the average sentence length, the size of the initial

lexicon and the value of the context window parameter L. For each of these, I con-

ducted an experiment that exclusively manipulated the variable in question, while

measuring the time until convergence. The results, plotted in Figure 4.19, reveal the

following dependencies: the training time grows linearly with the size of the corpus,

and logarithmically with the average sentence length. It shows inverse power depen-

dence both on respect the lexicon size and on the value of L. Overall, the computa-

tional complexity of ADIOS according to this empirical estimate is O
(
nlog (l) /

(
LλNγ

))
,

where n is the total number of words in the corpus, l is the average sentence length,

L is the value of context window parameter, and N is the lexicon size. The conclu-

sion from this experiment is that ADIOS is easily scalable to larger corpora; this is

consistent with the actual tests described elsewhere in this thesis.
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Fig. 4.19: Four experiments estimating the computational complexity of ADIOS by measuring
the training time until convergence (ordinate) on the TA1 grammar versus: (A) The
total number of words in the corpus; (B) The average sentence length (the experi-
ment manipulated the average sentence length without increasing the total number
of words in the corpus); (C) The initial lexicon size; (D) The value of the context
parameter L.
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In this chapter I distinguish the characteristics of the ADIOS approach from other

grammar induction methods, represented by works such as [100, 66, 79, 96, 26, 39,

10, 25, 52, 95, 99, 21, 61, 48, 3, 70, 86, 62, 2]. I start by reviewing in Section 5.1.1

methods that rely on structurally annotated corpora, and methods that rely on raw,

untagged data. In subsections 5.1.1.3 to 5.1.1.5, I describe in detail the different

approaches to grammar induction, such as local grammar versus global grammar,

Markov models and probabilistic treebank-based. In Section 5.1.2, I describe re-

lated linguistic approaches and distinguish between approaches that are motivated

mainly by linguistic and psychological considerations (Cognitive and Construction

grammars), and those motivated computationally (Local and Tree Adjoining gram-

mars). The final section 5.2 discusses the prospects and the challenges of the ADIOS

algorithm.

5.1 Distinguishing characteristics of the ADIOS’ approach

The ADIOS algorithm differs from other methods of grammar induction in the data it

requires and in the representations it builds, as well as in its algorithmic approach.

Most existing approaches require corpora tagged with part-of-speech (POS) informa-

tion [21]. The very few exceptions are not known to scale up [100], or effectively

try to bootstrap to a POS representation (and run into the scaling-up problem) by

committing ahead of time to learning a Categorial Grammar [48, 3]. The extraction

of grammatical primitives in published methods may rely on collocation frequencies

[100], or on global criteria such as the likelihood of the entire corpus given the gram-

mar [66, 96, 26, 21, 48].

In comparison, ADIOS carries out its inferences locally, in the context provided by

the current search path, alleviating the credit assignment problem in learning, and

making productive use of learned structures safer. Furthermore, ADIOS works with

raw text or transcribed speech, and makes no prior assumptions about the struc-
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tures it seeks. At the same time, the patterns and equivalence classes it learns can

be translated in a straightforward manner into the form of context-sensitive rewriting

rules. These representations are both expressive enough to support extensive genera-

tivity, and, in principle, restrictive enough to capture many of the structure-sensitive

aspects of syntax [80] documented by linguists; examples include long-range agree-

ment (Figure 4.4) and tough movement (Figure 4.5).

It is instructive to consider ADIOS in the context of the problem of language acqui-

sition, which has long been a daunting challenge for cognitive scientists [19, 28, 21].

Because a completely bias-free unsupervised learning is impossible [19, 77], the real

issue in language acquisition is to determine the model constraints. In the approach

developed here, the constraints are defined algorithmically, in the form of a method

for detecting units (patterns) that are hierarchically structured and are supported by

context-sensitive statistical evidence. When considered as a model of language ac-

quisition, ADIOS is clearly incomplete, as it currently relies on syntactic regularities

and leaves out conceptual knowledge and grounding of speech acts in the external

events. Nevertheless, this approach is compatible with a range of findings concerning

language acquisition, such as the use of statistical cues [87, 35] and the importance

of pattern-like constructions [30, 33, 12]. Moreover, it performs well in a wide variety

of situations that require unsupervised learning of structural information from un-

tagged data. In grammar induction from large-scale raw corpora, my method achieves

precision and recall performance unrivaled by any other unsupervised algorithm.

It exhibits good performance in grammaticality judgment tests (including standard

tests routinely taken by students of English as second language), and replicates the

behavior of human subjects in certain psycholinguistic tests of artificial language

acquisition. Finally, the very same algorithmic approach is also proving effective in

other settings where knowledge discovery from sequential data is called for, such as

bioinformatics.
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5.1.1 computational approaches to grammar induction

5.1.1.1 Learning from tagged data.

Methods that rely on structurally annotated corpora [10, 88] are less relevant in the

present context because of my interest in truly unsupervised learning. The most pop-

ular family of approaches to grammar acquisition requires corpora tagged with part-

of-speech (POS) information. As a representative of this line of work, I mention the

classical approach of [96], which learns structure (the topology of a Hidden Markov

Model, or the productions of a Stochastic Context Free Grammar) by iteratively max-

imizing the probability of the current approximation to the target grammar, given the

data. Perhaps because it is global in that all the data contribute to the figure of merit

at each iteration (hence more susceptible to the credit assignment problem), and be-

cause of the overly general nature of the POS categories, this method has “difficulties

with large-scale natural language applications” [96]. More recently, Clark attempted

to learn a grammar from tagged text in two stages, first using local distributional

cues and filtering spurious non-terminals using a mutual information criterion, then

reducing the resulting maximum likelihood grammar greedily to achieve a minimum

description length (MDL) representation [21, 20]. Interestingly, Clark too doubts the

appropriateness of POS tags to support grammatical inference, arguing that “a lot

of syntax depends on the idiosyncratic properties of particular words” [21], p.36;

cf. [24]. I note that unlike the methods just mentioned ADIOS is local in the sense

that its inferences only apply to the current pattern candidate; furthermore, instead

of general-scope rules stated in terms of parts of speech, it seeks context-specific

patterns.

5.1.1.2 Learning from untagged data.

Very few grammar induction methods work (as ADIOS does) with raw, untagged data.

One of these is the unsupervised structure learning algorithm developed by Wolff
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between 1970 and 1985 [100]. The unsupervised structure learning algorithm de-

veloped by Wolff stands out in that it does not need the corpus to be tagged. In a

1988 book chapter describing his system [100], Wolff offers an excellent survey of

earlier attempts at unsupervised learning of language, and of much relevant behav-

ioral data. His representations consist of SYN (syntagmatic), PAR (paradigmatic) and

M (terminal) elements. Although the ADIOS patterns and equivalence classes can be

seen as analogous to the first two of these, Wolff’s learning criterion is much sim-

pler than that of ADIOS: in each iteration, the most frequent pair of contiguous SYN

elements are joined together. His system, however, had a unique provision for coun-

tering the usual propensity of unsupervised algorithms for overgeneralization: PAR

elements that did not admit free substitution among all their members in some con-

text were rebuilt in a context-specific manner. Unfortunately, it appears that Wolff’s

system has not been tested on large corpora of real natural language. Recently, [48]

described a pilot implementation of an unsupervised method for learning a variant

of Lambek’s categorial grammar from raw data (transcribed speech), by iteratively

maximizing the total “disorder” (inverse of interpretability) of a corpus of utterances.

5.1.1.3 Local Grammar and Markov models.

In capturing the regularities inherent in multiple criss-crossing paths through a cor-

pus, ADIOS superficially resembles finite-state Local Grammars [39] and Variable

Order Markov (VOM) models [41, 70] that aim to produce a minimum-entropy finite-

state encoding of a corpus. There are, however, crucial differences, as explained

below. The ADIOS pattern significance criteria involve conditional probabilities of the

form P (en|e1, e2, e3, . . . , en−1), which does bring to mind an n’th-order Markov chain,

with the (variable) n corresponding roughly to the length of the sentences we deal

with. The VOM approach starts out by postulating a maximum-n VOM structure,

which is then fitted to the data. The maximum VOM order n, which effectively deter-
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mines the size of the window under consideration, is in practice much smaller than

in the present approach, because of computational complexity limitations of the VOM

algorithms. The final parameters of the VOM are set by a maximum likelihood con-

dition, fitting the model to the training data.

The ADIOS philosophy differs from the VOM approach in several key respects.

First, rather than fitting a model to the data, I use the data to construct a (recur-

sively structured) graph. Thus, ADIOS naturally addresses the inference of the graph’s

structure, a task that is more difficult than the estimation of parameters for a given

configuration.1 Second, because ADIOS works from the bottom up in a data-driven

fashion, it is not hindered by complexity issues, and can be used on huge graphs,

with very large windows sizes. Third, ADIOS transcends the idea of VOM structure,

in the following sense. Consider a set of patterns of the form b1[c1]b2[c2]b3, etc. The

equivalence classes [·] may include vertices of the graph (both words and word pat-

terns turned into nodes), wild cards (i.e., any node), as well as ambivalent cards (any

node or no node). This means that the terminal-level length of the string represented

by a pattern does not have to be of a fixed length. This goes conceptually beyond

the variable order Markov structure: b2[c2]b3 do not have to appear in a Markov chain

of a finite order ||b2|| + ||c2|| + ||b3|| because the size of [c2] is ill-defined, as explained

above. Fourth, as illustrated in Figure 4.4, ADIOS incorporates both context-sensitive

substitution and recursion, and hence is more powerful even than the eMOTIFs of

[51], which allow equivalence classes and wild cards.

5.1.1.4 Global grammar

Stolcke and Omohundro [96] learn structure (the topology of a Hidden Markov Model,

or the productions of a Stochastic Context Free Grammar), by iteratively maximiz-

1 I note in passing that although ADIOS attains per-character entropy comparable to that of the best
probabilistic FSA while using a fraction of the number of parameters, the goal of entropy reduction per se
is at odds with some of the key principles of cognitive utility: a good representation makes redundancy
explicit and puts it to use, rather than reducing it [8].
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ing the probability of the current approximation to the target grammar, given the

data. In contrast to this approach, which is global in that all the data contribute

to the figure of merit at each iteration, ADIOS is local in the sense that its infer-

ences only apply to the current bundle candidate. Another important difference is

that instead of general-scope rules stated in terms of parts of speech, ADIOS seeks

context-specific patterns. Perhaps because of its globality and unrestricted-scope

rules, Stolcke and Omohundro’s method has “difficulties with large-scale natural

language applications” [96]. Similar conclusions are reached by Clark, who observes

that POS tags are not enough to learn syntax from (“a lot of syntax depends on

the idiosyncratic properties of particular words.” [21], p.36). Clark’s own algorithm

[20] had attempted to learn a grammar from tagged text, by starting with local dis-

tributional cues, then filtering spurious non-terminals using a mutual information

criterion (namely, requiring high MI between pattern prefix and suffix). In the final

stage, his algorithm clustered the results to achieve a minimum description length

(MDL) representation, by starting with maximum likelihood grammar, then greedily

selecting the candidate for abstraction that would maximally reduce the description

length. In its greedy approach to optimization (but not in its local search for good

patterns or its ability to deal with untagged data), the present approach resembles

Clark’s.

5.1.1.5 Probabilistic treebank-based learning.

Bod, whose algorithm learns by gathering information about corpus probabilities

of potentially complex trees, observes that “[. . . ] the knowledge of a speaker-hearer

cannot be understood as a grammar, but as a statistical ensemble of language experi-

ences that changes slightly every time a new utterance is perceived or produced. The

regularities we observe in language may be viewed as emergent phenomena, but they

cannot be summarized into a consistent non-redundant system that unequivocally
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defines the structures of new utterances.” ([10], p.145). Consequently, his memory-

or analogy-based language model is not a typical example of unsupervised learning

through redundancy reduction; I mention it here mainly because of the parallels

between the data representation it employs (Stochastic Tree-Substitution Grammar

[88]) and some of the formalisms discussed later, in section 5.1.2.

5.1.2 Related linguistic approaches

5.1.2.1 Cognitive Grammar.

The main methodological tenets of ADIOS — populating the lexicon with “units” of

varying complexity and degree of entrenchment, and using cognition-general mech-

anisms for learning and representation — are very much in the spirit of the founda-

tions of Cognitive Grammar laid down by Langacker [65]. At the same time, whereas

the cognitive grammarians typically attempt to hand-craft structures that would re-

flect the logic of language as they perceive it, ADIOS discovers the primitives of gram-

mar empirically rather than accept them by fiat.

5.1.2.2 Construction Grammar.

Similarities also exist between ADIOS and the various Construction Grammars [33,

23] (albeit the latter are all hand-crafted). A construction grammar consists of ele-

ments that differ in their complexity and in the degree to which they are specified:

an idiom such as “big deal” is a fully specified, immutable construction, whereas the

expression “the X, the Y” (as in “the more, the better”; cf. [58]) is a partially spec-

ified template. The patterns learned by ADIOS likewise vary along the dimensions

of complexity and specificity (not every pattern has an equivalence class, for exam-

ple). Moreover, there are reasons to believe that these patterns capture much of the

semantics of the sentences from which they are abstracted, just as constructions

are designed to serve as vehicles for expressing the conceptual/semantic content of
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intended messages in a form compatible with the structural constraints that apply

to language. A proper evaluation of this claim must wait for the emergence of a

semantic theory capable of dealing with all the complexities of natural language —

something that current formal theories [81] cannot do. In the meanwhile, I concur

with Jackendoff’s position: “[. . . ] we must explicitly deny that conceptual structures

[. . . ] mean anything. Rather, we want to say that they are meaning: they do exactly

the things meaning is supposed to do, such as support inference and judgment.”

([54], p.306).

5.1.2.3 Tree Adjoining Grammar.

In capturing the regularities inherent in multiple criss-crossing paths through a cor-

pus, ADIOS closely resembles the finite-state Local Grammar approach of Gross [39].2

Note, however, that pattern-based representations have counterparts for each of the

two composition operations, substitution and adjoining, that characterize a Tree Ad-

joining Grammar, or TAG, developed by Joshi and others [55]. Specifically, both sub-

stitution and adjoining are subsumed in the relationships that hold among ADIOS

patterns, such as the membership of one pattern in another (cf. section 3.2). Con-

sider a pattern Pi and its equivalence class E(Pi); any other pattern Pj ∈ E(Pi) can

be seen as substitutable in Pi. Likewise, if Pj ∈ E(Pi), Pk ∈ E(Pi) and Pk ∈ E(Pj),

then the pattern Pj can be seen as adjoinable to Pi. Because of this correspon-

dence between the TAG operations and the ADIOS patterns, I believe that the latter

represent regularities that are best described by Mildly Context-Sensitive Language

formalism [55]. Moreover, because the ADIOS patterns are learned from data, they

already incorporate the constraints on substitution and adjoining that in the original

TAG framework must be specified manually.

2 There are also interesting parallels here to the Variable Order Markov (VOM) models of symbolic se-
quence data [70].
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5.1.3 Representation.

Expressive power. Because the ADIOS patterns and equivalence classes can be trans-

lated in a straightforward manner into the form of (generally context-sensitive) rewrit-

ing rules, the representations acquired by the method described in this thesis are,

in principle, powerful enough to capture most of the structure-sensitive aspects of

syntax documented by linguists [80].3 Openness. At the same time, because ADIOS

makes no prior assumptions about the structures it seeks, it is more general than

algorithms that seek to learn particular classes of grammars, such as that of [48] or

[3].

5.1.4 Psychological and linguistic evidence

Recent advances in understanding the psychological role of representations based on

what I call patterns and equivalence classes focus on the use of statistical cues such

as conditional probabilities [87, 42, 36] and on the importance of exemplars [50] and

constructions [30, 5] in children’s language acquisition [9, 97, 57, 12]. Converging

evidence for the centrality of pattern-like structures is provided by corpus-based

studies of prefabs — sequences, continuous or discontinuous, of words that appear

to be prefabricated, that is, stored and retrieved as a whole, rather than being subject

to syntactic processing [102, 101]. About 55% of words in both spoken and written

English are parts of prefabs [29]; it is no wonder, therefore, that mastery of a language

depends on getting right prefabs such as “pull ’s leg” or “take it to the bank,” (which

is not the same as “carry it to the bank”).

Similar ideas concerning the ubiquity in syntax of structural peculiarities hith-

3 In particular, my representations transcend VOM structures (and a fortiori finite-state grammars). The
VOM approach starts by postulating a maximum-order structure, which is then fitted to the data, usually
by maximizing the likelihood of the training corpus. In comparison, rather than fitting a preset model to
the data, we use the data to construct a system of recursively structured representations. Consider an
ADIOS pattern of the form pi = pj [ck]pl and note that its equivalence class ck may include vertices of the
graph (both terminals and patterns turned into nodes) and wild cards (any node, or no node). Thus, the
terminal-level length of the strings represented by the pattern ||pi|| = ||pj || + ||ck|| + ||pl||, does not have to
be fixed and is, indeed, ill-defined prior to learning.
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erto marginalized as “exceptions” are now being voiced by linguists [24, 54] and, in

particular, by typologists who compare the nature of constructions and the composi-

tion of the construction lexica across different languages [23]. The idea of populating

the lexicon with “units” of varying complexity and degree of entrenchment also fits

the spirit of the foundations of Cognitive Grammar [65]. It should be stressed that

whereas the Cognitive grammarians typically face the chore of hand-crafting struc-

tures that would reflect the logic of language as they perceive it, ADIOS discovers

the units empirically and autonomously. The same is true also for the comparison

between ADIOS and the various Construction Grammars [30, 32, 58, 33, 23].

5.2 Prospects and challenges

I have compared the present approach to unsupervised learning of sequence struc-

ture (which yields good results when applied to raw corpora of language such as

transcribed children-oriented speech [93]) to some recent work in computational lin-

guistics and in grammar theory. The representations learned by the ADIOS algo-

rithm are truly emergent from the (unannotated) corpus data, whereas those found

in published works on cognitive and construction grammars and on TAGs are hand-

tailored. Thus, the present results complement and extend both the computational

and the more linguistically oriented research into cognitive/construction grammar.

To further the cause of an integrated understanding of language, a crucial chal-

lenge must be met: a viable approach to the evaluation of performance of an unsu-

pervised language learner must be developed, allowing testing both (1) neutral with

respect to the linguistic dogma, and (2) cognizant of the plethora of phenomena doc-

umented by linguists over the course of the past half century.

Unsupervised grammar induction algorithms that work from raw data are in prin-

ciple difficult to test, because any “gold standard” to which the acquired representa-

tion can be compared (such as the Penn Treebank [73]) invariably reflects its design-
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ers’ preconceptions about language, which may not be valid, and which usually are

controversial among linguists themselves [20]. As Wolff observes, a child “. . . must

generalize from the sample to the language without overgeneralizing into the area of

utterances which are not in the language. What makes the problem tricky is that both

kinds of generalization, by definition, have zero frequency in the child’s experience.”

([100], p.183, italics in the original). Instead of shifting the onus of explanation onto

some unspecified evolutionary processes (which is what the innate grammar hypoth-

esis amounts to), I suggest that a system such as ADIOS should be tested by moni-

toring its acceptance of massive amounts of human-generated data, and at the same

time by getting human subjects to evaluate sentences generated by the system (note

that this makes psycholinguistics a crucial component in the entire undertaking).

Such a purely empirical approach to the evaluation problem would waste the

many valuable insights into the regularities of language accrued by the linguists over

decades. Although some empiricists would consider this a fair price for quarantining

what they perceive as a runaway theory that got out of touch with psychological and

computational reality, I believe that searching for a middle way is a better idea, and

that the middle way can be found, if the linguists can be persuaded to try and present

their main findings in a theory-neutral manner. From recent reviews of syntax that

do attempt to reach out to non-linguists (e.g., [80]), it appears that the core issues

on which every designer of a language acquisition system should be focusing are

dependencies (such as co-reference) and constraints on dependencies (such as island

constraints), especially as seen in a typological (cross-linguistic) perspective [23].
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