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Abstract 
 

Recently there has been a rapid growth in the number of putative proteins derivable 

from new genomic and metagenomic data. The extended use of environmental 

shotgun sequencing to study diverse microbial systems has made metagenomics a 

vastly growing field leading to a flux of data, calling for development and application 

of new tools that allow its investigation. Conventional tools for predicting the 

function of a protein from its sequence are based on sequence-similarity or sequence-

motifs.  The focus of this work is description of a prediction method that is applicable 

to large numbers of sequences. Its purpose is finding whether each protein in the data 

is an enzyme and, if so, what its EC classification is. This Data Mining of Enzymes 

(DME) is based on the Specific Peptide (SP) method and is carried out by comparing 

the sequences of all proteins with a list of all SPs and looking for matches of the latter 

in the data.  

SPs are strings of amino-acids, extracted from enzyme sequences using the motif 

extraction algorithm MEX, which will be described below. They are selected for their 

specificity to levels of the Enzyme Commission (EC) 4-level functional hierarchy.  

We describe the construction and description of the utilization of enzymatic SPs for 

the purpose of prediction of enzymatic function and other biological functions of 

single proteins, metaproteomes, genomes and metagenomes.  

The first two chapters describe in detail generation of SP datasets and the subsets 

utilized to generate biological predictions, such as active, metal and binding sites, 

gene ontology, gene name and taxonomic lineage of queried sequences. 

 

The third chapter is devoted to DME, whereby we mean a method of applying SPs to 

proteomic data in order to obtain enzymatic predictions.  We present and establish our 

methodology and derive enzymatic predictions for three large metagenomes, one of 

them (Sargasso Sea metagenome) exceeding 1 million proteins. For the latter we 

present all our enzymatic assignments, including a number of proteins having two or 

three enzymatic functional properties.    

We present the concept of enzymatic profile of a proteomic sample and demonstrate it 

on the data that we have studied. 

 

Chapter four presents the analysis of genomes and demonstrates the capability of SPs 

to uncover enzymatic genes on a full genome without any prior knowledge of gene 

boundaries. We present the concept of SP scaffolding to determine approximately the 

beginning and end of a gene. Enzymatic genes are annotated both by SPs, specifying 

their EC assignments, and by FSPs specifying gene names (or protein families). We 

show the capability to detect shifts in nucleotide sequences caused by addition or 

deletion of single or few nucleotides in a coding sequence, detecting traces of genetic 

evolution. We present, as an example, the analysis of H. Pylori 26995, showing the 

enzymatic predictions for its full genome. 

 

Chapter five presents application of the methodology described in the previous four 

chapters to analysis of short reads of metagenomes, without requiring gene 

reconstruction or contig formation. We present the SPSR (SP Short Reads) method 

used to generate enzymatic function predictions, and the TSPSR (Taxon Specific 

Peptides Short Read) method used to generate taxonomic lineage predictions.         
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We apply these concepts to several metagenomes and derive their enzymatic and 

taxonomic signatures. 

 

While most of the emphasis of the research was focused on processing of large 

volume Bioinformatic data, several web tools were provided to demonstrate the 

concepts developed as part of this thesis in an on-line mode.  Chapter seven describes 

these web tools.  

  

The remarkable simplicity and versatility of the SPs is demonstrated in the different 

chapters of this thesis:  Utilization of Specific Peptides consists of searching a pattern 

(SP) within an amino-acid sequence (of a protein or 6 frame translated nucleotide 

sequence of a genome or short-read) followed by calculation of coverage and analysis 

of the results.   We show in this thesis that this simplicity and flexibility allows for a 

variety of different biological predictions utilizing very similar methodologies. 
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1. Introduction:  The SP methodology 
Annotation of protein function facilitates understanding of biological processes. 

Currently there is a widening gap between the number of proteins being identified by 

sequence genomic methods and their predicted function.  In the last few years several 

approaches have been developed in order to bridge that increasing gap. The classical 

approach involves transfer of annotation from a functionally characterized protein to 

its functionally uncharacterized homologs [1.8]. Other methods consist of 

phylogenetic methods, application of sequence motifs, structural similarity and 

structure patterns [1.10]. 

Motif based approaches have been presented by others in the past and they include 

Prosite[1.11], MEME[1.12],  eMotif algorithm and eMotif database[1.13] and   

Protein Sequence Motifs [1.14]. 

 

One of our main goals is to provide a comprehensive methodology to predict 

enzymatic functions of proteins.  

Greater availability of sequence data and decreasing cost of computer resources make 

motifs’ based approaches increasingly attractive and feasible and makes their use one 

of the essential tools of sequence analysis [1.11]. 

In that spirit we employ and investigate the Specific Peptides (SPs) approach.  

SPs are strings of amino acid motifs which are unique to a branch of the Enzyme 

Commission functional classification (EC).  SPs were reported in 2007 by Kunik et al. 

[1.1]. A year later, Meroz and Horn explained their biological roles in enzymes [1.2].  

Data Mining of Enzymes, presented here, is a methodology used to predict the 

enzymatic function of proteins from their sequences using SPs. 

 

The work presented expands the concepts introduced by Kunik et al and Meroz and 

Horn to a methodology capable of providing enzymatic predictions for enzymatic 

functions at large, including metaproteomes and metagenomes.  We assign the 

conglomerate of all enzymes of a species the designation of “Enzome”, and use it also 

for metagenomic studies. 

 

The core of the methodology consists of searching for the SPs within a queried amino 

acid sequence and analyzing the resulting SP hits in order to predict the EC of the 

amino acid sequence.  One of the most important conclusions of the work presented 

here is that the best predictor to determine EC of queried sequences using SP hits is 

the length of coverage of the SPs on the queried sequence, which is the number of 

amino acids in the queried sequence coinciding exactly with the SPs.  

 

The search of SP hits within the queried sequence consists of simple, deterministic 

exact searches of a pattern within text. Searches of SPs within queried proteins have 

been optimized for large volume processing using well known algorithms, such as the 

Knuth Morris Pratt string matching text-processing method [1.3].  The method easily 

lends itself to large volume processing which was conducted in parallel in a farm of 

computer servers using tools such as Condor. 

 

Analysis of the SP hits is a very short prediction algorithm.  This algorithm consists of 

calculating the length of amino acid coverage of SPs on the queried sequence. 
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The construction of SPs uses the Motif Extraction (MEX) algorithm [1.5].  MEX is an 

unsupervised method that neither requires multiple sequence alignment nor relies on 

over-representation. MEX is run against annotated Swiss-Prot enzyme sequences. The 

results of the MEX run are a set of motifs. These motifs are distilled using specificity 

criteria and the final product is a set of SPs. The process is described in detail in the 

Methods section.  

 

The process of generating new SPs has been run twice in the last few years. 

The frequency of future runs will be driven by the need to catch up with new 

annotations in Swiss-Prot. 

 

We have also  generated “Annotated SPs” (ASPs) which are SPs specific not only to a 

certain branch of the EC number tree but also to specific active sites, metal sites, 

binding sites, taxonomies or GO annotations.  These ASPs can be tagged with those 

attributes and can serve as predictors for these attributes.  By searching for the 

particular subsets of ASPs within a protein, it is possible to provide predictions for 

active sites, metal and binding sites of the queried proteins.  Annotated SPs will be 

discussed in detail in a separate chapter below. 

Similarly, we construct Taxa Specific Peptides (TSPs), Gene Ontology based Specific 

Peptides (GSPs) and Family Specific Peptides (FSPs) all of which will be described 

and discussed in a separate chapter below. 

 

 An online system that predicts the EC, active, metal and binding sites has been built 

as part of this research and is available at http://adios.tau.ac.il/DME 

 

While technology does not constitute the main focus of this research, it had a prime 

role supporting analysis of large volumes of data which dominated this work.  

One of the most important aspects of DME is not only its simplicity but the capability 

to use it with great ease in parallel mode processing, which provides significant 

advantages when researching the large amounts of data collected. 

We develop the SP approach further, to exploit the multitude of data available from 

short reads directly. We present tools designed to derive taxonomic signatures directly 

from short reads without utilization of 16S rRNA as a taxonomic indicator.   

This is of significant importance in view of the fact that in many cases composition of 

metagenomic data is unknown and contig assembly from short reads leaves many 

singletons behind. Such short read singletons can be studies with SPSR to provide an 

enzymatic spectrum and some taxonomic signatures. 
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2. Specific Peptide Lists 

2.1 Brief overview of the Enzymes Commission Numbers 

The Enzyme Commission Number set (EC) is a numerical classification scheme for 

enzymes, based on the chemical reactions they catalyze.  Classification is done at four 

levels, in the format n1.n2.n3.n4, where each subsequent level represents a finer 

classification.  There exist repositories for enzyme classification, amongst them 

Swiss-Prot/ENZYME via the following link http://expasy.org/enzyme/ and Brenda at 

http://www.brenda-enzymes.org.  Table 2.0 below shows the classification of 

enzymes by the highest level of the EC number. 

 

Classification of Enzymes at EC level 1  

 

Group Reaction catalyzed Typical reaction 

EC 1 - 

Oxidoreductases 

To catalyze oxidation/reduction reactions; 

transfer of H  

and O atoms or electrons from one 

substance to another 

Oxidation  

A + O → AO   

Reduction 

AH + B → A + BH  

EC 2 - 

Transferases 

Transfer of a functional group from one 

substance to another. The group may be 

methyl-, acyl-, amino- or phosphate group 

AB + C → A + BC 

EC 3 -Hydrolases 
 Formation of two products from a 

substrate by hydrolysis 

AB + H2O → AOH + 

BH 

EC 4 -Lyases 

Non-hydrolytic addition or removal of 

groups from substrates. C-C, C-N, C-O or 

C-S bonds may be cleaved 

RCOCOOH → RCOH 

+ CO2 

EC 5 - Isomerases 

Intramolecule rearrangement, i.e. 

isomerization changes within a single 

molecule 

AB → BA 

EC 6 -Ligases 

Join together two molecules by synthesis 

of new C-O, C-S, C-N or C-C bonds with 

simultaneous breakdown of ATP 

X + Y+ ATP → XY + 

ADP + Pi 

  

 

Table 2.0: Classification of Enzymes at EC level 1 

 

 

Data Mining of Enzymes (DME) is our methodology in which we annotate each SP 

with a single, unique EC and utilize its hits on a queried sequence to provide an 

enzyme number prediction for the sequence of amino acids checked. 

DME consists of two distinctive phases: Construction of SPs and utilization of the 

SPs to predict enzymatic function of proteins, metaproteomes or metagenomes. 

Construction of SPs is conducted using UniProtKB/Swiss-Prot (Swiss-Prot) [1.4] as 

the EC annotation oracle.  Generation of SPs is a labor intensive process which lasts 

several weeks and has been conducted twice during the duration of this project. Once 

the process has completed, SPs can be used repeatedly. 
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2.2 Definition and Construction of the Specific Peptides 

 

Specific Peptides (SP) are strings of amino acid motifs which are unique to a branch 

of the Enzyme Commission functional classification (EC).  We show a sample of a 

few SPs in table 2.1 below. Each SP is assigned with a specific, unique EC number. 

 

 

Specific Peptide EC EC Description 

ELLAELFNIP 2.4.1.17 Glucuronosyltransferase. 

KQFGHEY 2.7.4.22 UMP kinase. 

LKDRLYT 6.1.1.5 Isoleucine--tRNA ligase. 

MIDLVIGYTAIQ 4.1.1.39 Ribulose-bisphosphate carboxylase. 

VVLQHQMP 3.1.1.1 Carboxylesterase 

 

Table 2.1: Example of a few SPs from the Production SP set 

 

Our current Production SP set contains 148,395 SPs.  Figure 2.1 and 2.2 shows the 

number of SPs at various lengths.  

 

Figure 2.1: Histogram of the Production SP set by L=Length of the SP 

 

Figure 2.2 shows the number of SPs at various lengths subdivided at the high EC 

number of the SP. 
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Figure 2.2: Histogram of the SPs according to the length of the SPs and high level of 

their EC number. 

 

Construction of SPs is conducted using UniProtKB/Swiss-Prot (Swiss-Prot) [2.2] as 

the EC annotation oracle.   

We use the Motif Extraction (MEX) algorithm [2.3].  Its input consists of sequences 

of amino-acids belonging to enzymes selected from Swiss-Prot.  MEX [1.7] is  

a motif extraction algorithm used as a method for extraction of words from corpora of 

alphabetic strings. It is based on creating a super-graph whose vertices are the 

elements of the alphabet, and threading through it various strings of the corpus. A 

motif is chosen as such according to its multiple appearances in varying contexts 

within the corpus. MEX is applied here to find sequence-motifs within biological data. 

The alphabet is that of 20 amino-acids, and the strings are protein sequences. 

MEX extracts motifs from proteins sequential data in an unsupervised manner. 

 MEX motifs are deterministic strings in contradistinction to position-specific weight 

matrices or regular expressions. MEX does not require any preprocessing of multiple 

sequence alignment nor does it rely on over-representation of k-mers. Moreover, the 

length of the motif is not pre-determined or constrained.  The results of the MEX run 

are sets of motifs. In the context of the work presented below, the functionality of 

MEX consists solely to extract motifs from sequences of amino acids. In independent 

steps following MEX processing the resulting motifs are distilled using specificity 

criteria and the final product is a set of SPs. The entire process is described in detail in 

the “Construction of SPs” section below.  

Swiss-Prot is used as the EC annotation source because it is manually curated and 

therefore more accurate than other sources.  Another component of Uniprot, 

UniProtKB/TrEMBL (TrEMBL) consists of many putative, machine-generated 

annotations. As of August 2010, 519,348 (5%) proteins are annotated currently in 
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Swiss-Prot.  11,636,205 (95%) entries are annotated in TrEMBL.  The EC annotations 

in TrEMBL are not manually-curated, and their accuracy and reliability is lower 

compared to the ones in Swiss-Prot.  It is possible to use the whole set of UniProt 

annotations (Swiss-Prot and TrEMBL together).  We refrained from including 

TrEMBL in the interest of increasing the accuracy of the predictive power of our 

predictions. Another consideration is that inclusion of TrEMBL would have required 

significantly greater resources to generate the SPs. This decision comes at the price of 

impacting negatively recall.   

We found that utilization NCBI, Kegg [2.3], Brenda [2.4] or a combination of them 

with Swiss-Prot does not significantly increase the number of reliable annotations, 

and their addition would have multiplied the volume of the sequences to be processed.  

This in turn would have increased the computer resources needed to generate the SPs 

and rendered the process highly ineffective.   

 

2.3 Construction of the SP sets 

Construction of enzymatic SPs consists of a mixture of unsupervised and supervised 

procedures and involves the following steps: 

 

 

Table 2.2: List of steps required for the construction of SPs 

Selecting the Training Sets 

Training sets consists of subsets of singly-annotated enzymes in Swiss-Prot. Selection 

of the Training set has been done using as a discriminating parameter the field “Date 

Integrated into Swiss-Prot”. The process of generating new SPs has been run twice in 

the last few years. It was run first on 2006 with a training set of 89,854 singly 

annotated enzymes with a “Date-Integrated” annotation in Swiss-Prot before July 1
st
, 

2006 (“Training Set #1”). The process was run a second time in 2009, with a training 

set consisting of 201,169 enzymes from singly annotated enzymes in Swiss-Prot with 

a “Date Integrated” indicator before July 29
th

 2009 (“Training Set # 2”). 

 

We denote first the SP Production dataset generated in 2006 from Training Set #1 as 

“Production SP dataset V1.0”. Similarly, we denote the SP dataset generated from 

Training Set #2 in 2009 as “Production SP Dataset V2.0”. 

 

Figure 2.3 shows the rapid growth of protein annotations in Swiss-Prot throughout the 

years. 

Step Description 

1. Selection of the Training set 

2 Selection of  subsets of enzymes from Swiss-Prot   

3 Motif Extraction Utility 

4. Assignment of an EC to the MEX Motifs  

5. Elimination of nonspecific EC MEX motifs and promotion of remaining MEX 

motifs to “SPs” 

6. Optimization of the SP dataset 



Page 14  
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Figure 2.3: Growth of number of entries in Swiss-Prot throughout the years [2.14]  

 

The rapid growth of Swiss-Prot annotations, shown in Figure 2.3, is the principal 

driving force to generate new sets of SPs.  

Our goal is that new SPs will reflect the new Swiss-Prot annotations and thus increase 

precision and recall capabilities of our predictions. 

We define precision and recall in the context of this work as follows: 

 

 

 

 

 

 

 

Where P|P represents the number of cases where the model prediction coincides with 

that of the expert, P|DP where the expert provides a different EC assignment, and 

NP|P where the model provides no prediction for enzymes whose EC assignments are 

given by the expert. 

 

A year after generating the second SP dataset, we have seen sporadic cases of 

incorrect predictions when analyzing enzymes in Swissprot that belonged to Training 

Set #2.   Those incorrect predictions result from EC numbers changed by Swiss-Prot 

after Training Set #2 was generated. We predict ECs according to the old annotation 

which has changed in the meantime. The remedial action to overcome this challenge 

is to generate SP sets from fresh Training Sets as often as possible. 

Selection of subsets of enzymes from Swiss-Prot 

This step can be run in supervised or unsupervised mode. It consists of selecting a 

number of subsets of a few thousand singly-annotated enzymes from Swiss-Prot to be 

processed   by MEX.  Multi-functional enzymes in Swiss-Prot (enzymes that have 

multiple ECs annotation per protein) are discarded. 

]|[]|[]|[

]|[

PNPNDPPNPPN

PPN
RECALL

++

=
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In supervised mode, each one of the Swiss-Prot subsets consists of enzymes 

containing the same EC level 4 numbers.  In unsupervised mode, each one of the 

subsets contains a few groups of enzymes with the same EC level 3 number, such that 

each selected subset contains a few thousand enzymes.  We found that the set of SPs 

generated using the supervised selection method was larger by 30% than the 

unsupervised set.  However, recall did not improve significantly using supervised 

selection.  Instead, unsupervised selection required less computer resources and 

human manual labor minimizing total run time.  Therefore, the current production set 

of SPs was generated using the unsupervised selection method.  Using SPs generated 

in supervised selection mode is not a justified process for large-scale predictions 

because of performance considerations. 

Motif Extraction Utility 

The Motif Extraction Utility is an unsupervised step which consists of running the 

Motif Extraction algorithm against each previously selected enzyme subgroups. We 

used 6 subgroups of enzymes when constructing SPs V2.x.  The input to each one of 

the MEX runs are the sequences of enzymes belonging to this subgroup and the 

output are motifs.   It is important to note that MEX does not address EC number at 

all:  Its function is to generate motifs from sequences provided. Assignment of EC 

numbers to the MEX motifs and review for their EC specificity (across all subgroups 

of enzymes) is done in separate subsequent steps and procedures, described below. 

The size of each selected group was limited only by the available machine resources.  

The constraining factors are memory and the CPU’s power to run several MEX runs 

simultaneously, but typically the orders of magnitude are a few thousand enzymes per 

run.  MEX motifs with lengths of lower than 5 amino-acids are discarded because 

they never meet specificity requirements.   

Assignment of an EC number to the MEX Motifs  

MEX Motifs are then assigned EC labels by searching for them in the Training Set 

and assigning them the EC annotation of the Swiss-Prot enzyme they hit.  The search 

of the motifs harvested from MEX within the Training set consists of a simple search 

of patterns within text, which we optimized for performance using the Knuth Morris 

Pratt algorithm, described by Charras and Lecroq [2.13]. 

Elimination of nonspecific EC MEX motifs 

Specificity for motifs harvested from MEX is determined as follows: 

MEX Motifs that have a single EC level 4 label are promoted to the SP set and 

assigned to that particular EC level 4. 

MEX Motifs that have different EC Level 4 labels but have the same EC level 3 

number are promoted to the SP set and assigned that particular EC level 3. 

MEX Motifs that have different EC Level 3 and 4 labels but have the same EC level 2 

number are promoted to the SP set and assigned that particular EC level 2. 

MEX Motifs that do not have the same EC Level 2, 3 and 4 labels but have the same 

EC level 1 label are promoted to the SP set and assigned that particular EC level 1. 

All the other MEX motifs are deemed non-EC specific and are discarded. 

At this point the resulting motifs are considered SPs and we proceed to optimizing the 

resulting SPs dataset.   
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2.4 Comparison of SP dataset V1.0 to SP dataset V2.0 

We are interested to compare set V1.0 and V2.0 not only because of the mere growth 

from V1.0 to V2.0 but to observe their internal structure: Their composition by SP 

length and by the EC level assigned to each SP. 

The size of the SP set increased from 87,017 in SP set V1.0 to 312,465 SPs in SP set 

V2.0.   Figure 2.4 below shows comparative cross sections of SP sets V1.0 and V2.0.  

While the number of SPs more than tripled, their breakdown by EC level remains 

constant. 

 

 

Figure 2.4. Comparative histograms of SPs V1.0 (2006) and V2.0 (2009) by EC level. 

 

Figure 2.5 below shows that the general distribution pattern of the SP lengths 

remained the same. Analysis of the histogram showing normalized values  shows that 

the proportional number of SPs with lengths L=6 through L=9 is greater in the set SP 

V1.0 as compared to SP set V2.0. The trend reverses for L > 9.  This difference can 

be explained by the fact that we utilized different MEX parameters in each case. 
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 Figure 2.5: Comparative histogram of SPs V1.0 and V2.0   by SP length   

 

 

 

Figure 2.6: Comparative histogram of SPs V1.0 and V2.0 by SP length in normalized 

values 
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2.5 Optimization of SP dataset V2.0  

The dramatic increase from 88,017 SPs in SP set V1.0 to 312,465 SPs in SP set V2.0  

motivated  us to research optimization methods designed to minimize run time of 

large scale metaproteomic and metagenomic predictions.  That is because increase in 

number of SPs has a significant negative impact on resources required to generate 

predictions.  This optimization is crucial because as the number of Swiss-Prot 

annotations will increase in the future, so will the corresponding SP dataset. 

Optimization of the SP dataset entails removing a subset of SPs. Our goal was to 

maximize the performance benefits reaped from the trimming while making sure, at 

the same time, to limit the negative impact to precision and recall values.  

 

We conducted the following optimization actions on SP set V2.0: 

1. Removed all SPs assigned an EC level 1 and EC level 2 from the SP set. The 

rationale is that predictions at EC level 1 and EC level 2 are not as significant 

as predictions at EC level 3 or EC level 4. 

2. Discarded all SPs with length L < 7 amino-acids.  The rationale behind this 

trimming is that SPs with length 5 or 6 amino-acids contribute significantly to 

accidental hits and thus to false predictions. The threshold of L < 7 was 

derived by observing the statistics of random hits on tests performed and will 

be discussed below in a separate chapter. 

 

Table 2.3 below shows a summary of the intermediate SP sets built as part of the 

optimization process of SP V2.0. 

  

Version Description Number of 

SPs in the Set 

V1.0 SP set built in 2006 – Based on Training set #1  87,017 

V2.0 SP set built in 2009 – Based on Training set #2 312,465 

V2.1 SP dataset based on V2.0 discarding all SPs with length 

less than 7 

273,186 

V2.15 SP dataset based on V2.1 discarding all “containing” SPs 159,775 

V2.3 

 

SP set based on SP set V2.0 – discarding SPs with L ≤ 6 

and SPs with EC levels 1 and 2 and “containing” SPs.  

148,395 

V2.4 Based on SPs V2.3 and V1.0 that meet specificity criteria. 

Added SPs from V1.0 to V2.3. The process will be 

described in detail below. 

170,491 

 

Table 2.3: Summary of the intermediate SP sets built as part of the optimization 

process of SP V2.0 

Qualitative analysis of the optimization 

SP set V2.3 is considered at the present our Production SP set. We must ascertain the 

impact of trimming 164,070 SPs from set V2.0 to generate set V2.3. 

Before presenting this analysis, we must present three definitions which are central to 

our methodology and assist comparing the performance of these two datasets:  

 

Consistent SPs are SPs whose EC belongs to the same branch in the EC number tree. 

For example: Three different SPs with EC=2.4, 2.4.1 and 2.4.1.227 are consistent. 
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Consistent coverage of SPs on a queried sequence is the total number of amino-acids 

that are in agreement with all consistent SP hits.  

Prediction Threshold Coverage is the minimum consistent coverage to generate a 

prediction on a queried amino-acid sequence 

These metrics will be discussed in detail in the following chapters. 

A brief illustration is shown using Table 2.4 below, which consists of all SP hits (SP 

V2.3) on Swiss-Prot enzyme B9DIX2 - AMPA_STACT, LAP, Leucine 

aminopeptidase for the bacteria Staphylococcus carnosus (strain TM300), which is 

annotated in Swissprot with two ECs:  EC=3.4.11.1 (Leucine aminopeptidase)  and 

EC=3.4.11.10 (Bacterial leucyl aminopeptidase) 

 

 

SP hit 

Location  

within 

the 

enzyme 

Hitting SP  EC of 

Hitting 

SP 

338 EVLNTDAEGR 3.4.11 

341 NTDAEGRL 3.4.11 

336 TVEVLNTDAEGRL 3.4.11.1 

370 TLTGAAVA 6.1.1.14 

 

Table: 2.4: SP hits (SP V2.0) on Swissprot enzyme B9DIX2. 

The first three SPs have consistent ECs with coverage L=13 amino-acids at EC level 

four for EC=3.4.11.1 (Leucyl aminopeptidase)  

The fourth SP has a coverage of 8 amino-acids for EC=6.1.1.14 (Glycyl-tRNA 

synthetase). 

As an example of the impact of choosing different prediction thresholds we select two 

different prediction thresholds and inspect the corresponding results. We select first a 

threshold coverage of L=13 amino-acids and provide a prediction of EC=3.4.11.1 

(consistent with the Swissprot annotation). In this case, we regard the fourth SP hit an 

accidental hit. Setting up the prediction threshold at L=7, we predict a double function 

enzyme: EC=3.4.11.1 and EC=6.1.1.14.   

An important conclusion of this work (see below) is that the optimal prediction 

threshold for proteomic searches is L=7.   Increasing the prediction threshold 

increases precision but could affect recall negatively.  We will discuss in detail in the 

following chapter the optimization of the prediction threshold. 

 

We compare the quality of SP set V2.0 and SP set V2.3  by calculating precision and 

recall values using one of our test sets, “Test Set #3” which consists of  one thousand 

random annotated Swiss-Prot enzymes with integrated date  after July 27
th

 2009, a 

single EC annotation at EC level 3 or EC level4. 

Figure 2.5a below shows the resulting precision curve using SP sets V1.0,  V2.0, V2.3 

and V2.4 varying L=prediction threshold coverage.  
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Figure 2.5a:  Precision as function of L=threshold coverage to generate a prediction 

for SP sets V1.0, 2.0, 2.3 and 2.4 for Test Set #3.  

  

The inset in the figure represents the number of SPs by SP set. Given the construction 

of SPs (No complete mutual inclusion between SPs within a specific set and EC 

specificity) we expect and see that performance of an SP set improves with increasing 

numbers of SPs in the set.   

For threshold prediction coverages L ≥ 8 precision power of sets V2.0, V2.3 and V2.4 

are identical even though the size of the SP set V2.3 is less than half of set V2.0 and 

13% smaller than SP set V2.4. 
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Figure 2.5b:  Recall as function of L=threshold coverage to generate a prediction for 

SP sets V1.0, 2.0, 2.3 and 2.4 for Test Set #3.  

 

From Figure 2.5b we see the impressive increase by more than 10% in recall values 

going from set V1.0 to set V2.0 V2.3 and V2.4.  In addition, we see the impact of 

trimming set V2.0 by half is minimal – around 2%. 

 

The performance implications of reducing the SP set by half are highly significant, 

bearing in mind that many of our analyses consist of large volume processing. An 

example of the scale of magnitude of volumes processed is the predictions on the 

Sargasso Sea metaproteome [2.6], which consisted of 1,001,986 sequences which had 

to be checked for occurrence of every one of the SPs.  

Because of performance considerations, we consider today SP set V2.3 our 

Production SP set. 

Potential uses of SP sets V2.0 and V2.4 consist of analysis of small samples of data, 

where performance is a minor consideration. Precision and recall results in these cases 

would be better than using SP set V2.3. 

  

Unless otherwise noted in this work, this is the SP dataset used for analyses.  It 

consists of 148,395 SPs with EC level 3 and 4 whose SP length L ≥ 7 amino-acids.  

 

Table 2.4a below shows an analysis of the number of SPs added and lost between SP 

sets V1.0 and V2.3. 
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Description Number of SPs 

Total SPs in set V1.0 88,017 

Total SPs in set V2.3 148,395 

SPs common to  SP set V1.0 and SP set V2.3 38,067 

SPs in SP set V1.0 and not in SP set V2.3 (Lost)  48,950 

SPs in set V2.3 and not in SP set V1.0 (Gain) 110,328 

 

Table 2.4a: Analysis of number of SPs added and removed from SP set V1.0 when 

building SP set V2.3 

 

We see from Table 2.4a that a very large number of SPs (56%) were lost from SP set 

V1.0 going on to SP set V2.3.  There are three factors that can result in that loss: 

1. Different MEX runs building the motifs could have generated a motif when 

building SP set V1.0 and that particular motif was not generated running MEX for SP 

set V2.0 

2. Change in Swissprot annotations cause SPs in set V1.0 to change their EC 

annotations  

3. Larger data sets may have new occurrences of old motifs on different sequences, 

causing previous SPs to lose their specificity. 

 

Going from set V1.0 to set V2.3, we see an increase of the number of SPs by a factor 

of 3.6 upon a 2.2-fold increase in input protein number. This can be explained by the 

fact that Swissprot is hand curated and thus adds to its repository strongly 

homologous enzymes and therefore an enrichment of 2.2 in the number of enzymes 

generates more redundancy than adding non-homologous enzymes, which in turn, 

enables Mex to mine more motifs that ultimately become Specific Peptides.   

 

2.6 Addition of existing production SPs to a newly created SP 
dataset 

Starting from the second production release of SPs, we can take advantage of prior 

production releases of SPs and add them to the new production set, as long as they 

meet the following EC specificity and inclusion criteria requirements: 

 

1. The EC Level of the additional SPs is three or four (EC Level one and two 

provide much less insightful information, hence we focus on EC levels three 

and four only) 

2. Additional SPs from old Production release do not fully include any SP from 

the new production set of SPs and  meet EC specificity requirements within 

the new training set of enzymes 

 

The rationale for increasing the size of the SP Production set is to increase the 

predictive capabilities of the set, mainly recall figures. 

Using this strategy, we generated SP set V2.4 from the second production SP set, 

V2.3.  Production set V2.3 was expanded from 148,395 SPs to 165,095 SPs using the 

87,017 SPs belonging to SP V1.0. 
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Table 2.5 below shows that SP set V1.0 contributes 13% of the total SPs to the newly 

created SP set.  Of the 87,017 SPs in set V1.0, 21,336 SPs (25%) are carried to the 

new dataset; 4,636 SPs from the set V2.3 (3.1%) are disqualified. 

 
EC

Level

SPs

 from

V1.0

SPs 

from

V2.3

SPs

 from

V1.0

SPs 

from

V2.3

3 3,532 26,863 2% 16%

4 17,804 116,896 11% 71%

Total 21,336 143,759 13% 87%

165,095 100%

 
Table 2.5: Contributions of SP set V1.0 and V2.3 to SP Set 2.4 

 

2.7 Utilization of SP exact and fuzzy matches for DME 
predictions 

  

MEX extracts exact motifs from the training set of enzymes. Motifs are subsequently 

distilled to include only ones that meet EC specificity criteria. 

We researched whether there is a potential to expand the scope of SP utilization by 

taking advantage of fuzzy matching using BLOSUM matrices (18). The benefit of this 

expansion could be increasing recall of predictions.     

One part of the expansion can be done by introducing modifications to MEX so that it 

generates sets of motifs that are not exact but support fuzzy similarity between them 

up to a certain preset BLOSUM threshold.  Such expansion was out of the scope of 

the present work. 

We researched expanding the comparison of SP hits from exact hits to fuzzy hits 

using BLOSUM matrices [2.8]. This was performed using the “BL2SEQ” utility [2.9] 

which compares two input sequences directly in order to assess the similarities 

between them.        

In order to quantify the quality of predictions using fuzzy matching we tested 99 

random enzymes using SPs V1.0. We searched for each one of the 87,018 SPs within 

each one of the 99 test enzymes using BL2SEQ. 

Table 2.6 below shows analysis of the SP hits on enzyme A2ZAB5 - 

Serine/threonine-protein kinase SAPK3 which is annotated in Swissprot with an 

EC=2.7.11.1.  Each row shows the SP that BL2SEQ found as the highest scoring 

segment, the EC of the SP, the length of the identical sequence and conserved 

sequence. The table is sorted by the difference between the length of the SP and the 

length of the identical sequence.  We consider the SP first entry to be the “BL2SEQ 

SP prediction” – in this case EC=2.7.11.1, in agreement with the Swissprot 

annotation. 
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SP EC 
of  

Nearest 
SP 

(Prediction) 

L 
SP 

L
 I
d

e
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e
d

 

e
V

a
lu

e
 

High Scoring Pair  
Alignment 

 

VGTPAYIAPEVLSRREYDGK 2.7.11.1 20 19 20 0 VGTPAYIAPEVLSR+EYDGK 

PKSTVGTPAYIAPEVL 2.7.11.1 16 16 16 0 PKSTVGTPAYIAPEVL 

CHRDLKLENTLLDGS 2.7.11.1 15 15 15 0 CHRDLKLENTLLDGS 

PRLKICDFGYSKSS 2.7.11.1 14 12 14 0 PR+KICDFGYSKS+ 

ADVWSCGVTLYVM 2.7.11.1 13 13 13 0 ADVWSCGVTLYVM 

MAYSTVGTPDYIAPEIF 2.7.11.1 13 11 12 3E-05 STVGTP YIAPE+ 

RICNAGRFSEDE 2.7.11.1 12 10 11 7E-05 +IC AGRFSEDE 

RICSAGRFSEDE 2.7.11.1 12 10 12 5E-05 +IC+AGRFSEDE 

TSTFCGTPNYIAPEILRG 2.7.11.13 11 9 10 0.0004 GTP YIAPE+L 

VHRDLKPENLLLASK 2.7.11.17 11 9 9 0.002 HRDLK EN LL 

VMELCAGGELF 2.7.11.1 11 9 9 0.001 VME AGGELF 

HLAIVMEYA 2.7.11.1 9 9 9 0.0007 HLAIVMEYA 

REIINHRSL 2.7.11.1 9 9 9 0.0007 REIINHRSL 

RFSEDEAR 2.7.11.1 8 8 8 0.003 RFSEDEAR 

EYAAGGE 2.7.11.1 7 7 7 0.005 EYAAGGE 

YIAPEVL 2.7.11 7 7 7 0.008 YIAPEVL 

 

Table 2.6:  Analysis of SP hits on enzyme A2ZAB5 - Serine/threonine-protein kinase 

SAPK3 using BL2SEQ. 

 

Aggregating the results of this analysis at EC level 3 for the 99 random test enzymes 

selected and comparing the results to predictions using exact matches we find the 

following results: 

 

a b d e   

  

TP FP DME NP 

DME 
NP 
and 

Swissprot 
NP 

Precision Recall 

Exact 
Matching 

73 11 9 6 87% 78% 

Fuzzy 
matching 
using 
BL2SEQ 

62 11 21 5 85% 66% 

 

Table 2.7:  Precision recall analysis for 99 test enzymes using exact and fuzzy SP 

matching. 

 

Fuzzy SP matching is computationally costly and does not contribute to precision or 

recall and therefore most of our studies were conducted using exact SP matching.   

However, we should not discard totally this method and should be used as a second 

layer prediction tool, as there are some cases where it can provide additional insight to 

the exact SP predictions.  As an example of such case we show analysis of an enzyme 
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from Test Set #2: Enzyme A0KIC9 - BIOD_AERHH, Dethiobiotin synthetase is 

annotated in Swissprot with an EC=6.3.3.3. 

With exact matching, we find two SP hits using the Production SP2.3 set with a 

consistent coverage of 12 amino acids, as shown in table 2.8 below: 

 

SP SP Location EC of the SP EC Description 

FVTGTDT 6 6.3.3.3 Dethiobiotin synthase 

GTDTDVGKT 9 6.3.3.3 Dethiobiotin synthase 

Table 2.8: Exact SP hits on Swissprot enzyme A0KIC9 belonging to Test Set #2. 

 

The amino-acid of this sequence looks as shown in figure 2.6 below - we highlight the 

amino acids matching the SPs. 

 
MVKSFFVTGTDTDVGKTLVARTLLLEFAAHGLRCAGYKPISAGCARTPDGLRNLDAVLLQ 

EAASLPLPYDLVNPYAYEPPIAPHIAASEARDAITLKGLSDGLRQIEQAGAELVVVEGAG 

GWFLPLDRKHLLSDWVKQENMPVIMVVGAKLGCLNHALLTFAAIRNNNLPVAGWVINRLH 

GSMSHYQENLDTLRGLLPAPFLGEIPFVNNPLEADLRGRLDISPLL 

 

Figure 2.6:  Exact SP hits on enzyme A0KIC9  

 

Using the fuzzy matching method, we search each one of the 148,395 SPs from the 

SP2.3 Production set within this enzyme using BL2SEQ.  This search produces 17 

fuzzy hits as shown in Table 2.8 below.  EC of fifteen of these SPs coincide with the 

EC annotated for this enzyme – 6.3.3.3 and two do not.  The matched coverage for 

EC=6.3.3.3 is 85 amino acids and the matched coverage for other hits is 15 amino 

acids. 
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SP EC Matched inexact sequence 
FITATGTDIGKTYVTALIIK 6.3.3.3 F+T T TD+GKT V ++ 

GTDTDVGKT 6.3.3.3 GTDTDVGKT 

GTDTEIGKT 6.3.3.3 GTDT++GKT 

NPYTFAEPTSPHI 6.3.3.3 NPY + P +PHI 

EICPYSIEEPLAPRLAMKRAGR 6.3.3.3 PY+ E P+AP +A A 

PAIAPHLAAREAGVELSAARLH 6.3.3.3 P IAPH+AA EA 

QLLQAGAEMVKIEGAG 2.1.2.11 Q+ QAGAE+V +EGAG 

LVRERGADLVVIEGMGRA 2.7.1.33 + + GA+LVV+EG G 

NDIKKLFIEGAGGLMVPLNEQDTWLDFLKLTRIPVILVVG 6.3.3.3 +EGAGG +PL+ + D++K +PVI+VVG 

EGAGGWFTPLS 6.3.3.3 EGAGGWF PL 

EGAGGWRVP 6.3.3.3 EGAGGW +P 

PVVLVVGVRLGCI 6.3.3.3 PV++VVG +LGC+ 

LVSAIKVGCINHTLLTINEL 6.3.3.3 +V K+GC+NH LLT 

RLGCISHALLT 6.3.3.3 +LGC++HALLT 

GCINHALLT 6.3.3.3 GC+NHALLT 

PLAGWVANRIDP 6.3.3.3 P+AGWV NR+ 

VDPATSRLEENLATLAERLPAPCLGRVPRL 6.3.3.3 S +ENL TL LPAP LG +P 

 

Table 2.8: Fuzzy SP hits on enzyme A0KIC9 

 

Figure 2.8 below shows the mapping of the fuzzy hits on the enzyme. Highlighted in 

green the identities and positive matches for EC=6.3.3.3 that coincide with the exact 

SP matches – both with the correct prediction EC.   

Highlighted in blue are the fuzzy matches that coincide with the annotated EC that 

were not discovered using exact matching. 

Highlighted in yellow the identities and positive matches with other ECs - accidental 

hits.  

 

 
MVKSFFVTGTDTDVGKTLVARTLLLEFAAHGLRCAGYKPISAGCARTPDGLRNLDAVLLQ 

EAASLPLPYDLVNPYAYEPPIAPHIAASEARDAITLKGLSDGLRQIEQAGAELVVVEGAG 

GWFLPLDRKHLLSDWVKQENMPVIMVVGAKLGCLNHALLTFAAIRNNNLPVAGWVINRLH 

GSMSHYQENLDTLRGLLPAPFLGEIPFVNNPLEADLRGRLDISPLL 

Figure 2.8:  BLSEQ2 fuzzy SP hits on enzyme A0KIC9.   

 

This figure demonstrates a benefit of using fuzzy matches: large areas of similarity 

which were not discovered using exact SP hits were discovered fuzzy matches.  The 

price is introducing accidental SP hits, which would decrease precision. 

 

An aspect that has weighty implications on the feasibility of utilization of fuzzy 

matching is performance. 

Elapsed time to conduct exact matching for enzyme A0KIC9 against all 148,395 SPs 

totaled   3 seconds. The same process with fuzzy matching using BL2SEQ on the 

same production server took six hours and eighteen minutes which is 7,560 times 

more than the exact matching process. 
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 2.8 Annotated Specific Peptides – ASPs 

 

46% of the 201,169 enzymes in the Training Set #2 carry annotations in Swiss-Prot of 

“Active site,” “Binding site” and “Metal binding site” at specific locations of single 

amino acids.  As stated by Meroz and Horn [2.10], SPs cover these functionally 

important sites significantly more than other loci on proteins, indicating biological 

significance of these SPs.  

SP matches that overlap such sites are compiled and the corresponding SPs are 

denoted as Annotated Specific Peptides (ASPs).  We compiled a list of 27,457 ASPs.   

All ASPs appear at least four times in the training set, and the location of the 

annotation is consistent in the different appearances.  Most ASPs carry single 

annotations (7,442 active sites, 9,247 binding sites and 8,567 metal binding sites); 

2,171 ASPs carry two annotations; and 30 ASPs carry all three annotations. 

We annotate each one of the ASPs with its EC, Activity function (Active Site, 

Binding or Metal Binding) and a bit map of the location of the active amino-acid 

marking the active location.   

Table 2.9 below shows an example of two ASPs. 

 

ActSP Bit Map 

pointing 

to Active 

Site 

EC Active 

Site  

Description 

Bit Map 

pointing  

to Metal 

Site 

Metal 

Site 

Description 

HEIDHLNG 01000000 3.5.1.88, 

Succinyl-

diaminopimelate 

desuccinylase  

 10000000 Iron  

LITSDEEG 00000100 3.5.1.18, 

Succinyl-

diaminopimelate 

desuccinylase 

Proton 

acceptor  

00000010 Cobalt or 

zinc 2  

 

Table 2.9: Example of two ASPs 

  

Table 2.10 below shows the distribution of ASPs according to their function 

 

Active 

sites 

Metal 

Binding 

sites 

Binding 

sites 

Number of 

Annotated 

SPs 

  x 9,871 

 x  9,003 

 x x 865 

x   7,777 

x  x 731 

x x  753 

x x x 34 

 

Table 2.10:    Number of ASPs by Annotation Type in SP set V2.3 
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Using only the annotated subset of the SPs dataset produces high precision predictions 

but severely impacts recall.  The reason is that active, binding and metal annotations 

for enzymes in Swiss-Prot exist for only half of the training set and therefore the 

resulting Annotated set cannot represent the full information that exists in the whole 

Production SP set.  We use the ASPs as a supplementary source of information within 

our online web tool, http://adios.tau.ac.il/DME  which displays SP and ASPs hits on a 

queried sequence of amino-acids.  Figure 7.2 shows sample of analysis of an enzyme 

using our online system demonstrating display of Active, Metal and Binding sites. 

 

2.9 GSPs – Gene Ontology based SPs 

 

The gene ontology GO [2.11] covers three domains: cellular component, the parts of a 

cell or its extracellular environment; molecular function, the elemental activities of a 

gene product at the molecular level, such as binding or catalysis; and biological 

process, operations or sets of molecular events with a defined beginning and end, 

pertinent to the functioning of integrated living units: cells, tissues, organs, and 

organisms. 

We built SPs, that are also specific to the Biological Process annotations of GO -   

GSPs, which contain biological process information. The objective of building such 

SPs is to generate biological process predictions based on their hits on queried 

sequences.  

 

Similarly to the case of Family SPs and Annotated SPs, GSPs is a subset of the 

Production SP set to which we assigned expanded attributes, in this case, biological 

process information.  The procedure required to build the GSPs consists of searching 

for SPs from the Production SP set within the Training Set.  A large portion of the 

enzymes hit contain biological process annotations and those are inferred to the 

hitting SPs.  Filtering is conducted so that the SPs selected belong uniquely to a chain 

of biological processes.  Each GSP is assigned the whole vertical branch of the gene-

ontology tree which contains the leaf hit by the GSP. The purpose of this assignment 

is to provide the capability to generate cross sections at different branch levels of the 

gene-ontology tree. The Production GSP set consists of 30,452 GSPs. Table 2.11 

below demonstrates a sample of three random GSPs showing the Biological GO 

processes assigned to them. For each of the GSPs, we highlighted the biological 

process documented in Swissprot for the Training Set enzyme hit by the GSP.  We 

derived all other leaves in the vertical branch and assigned them to the GSP using the 

tree structure provided in the Gene Ontology Website [2.11]. 
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Sample GSP #1 Sample GSP #2 Sample GSP #3 

FTAGVGE PGADPEVRAA DTRELDR 

Process 

Number 
Process Description 

Process 

Number 

Process 

Description 

Process 

Number 

Process 

Description 

8152 Metabolic process 8152 
Metabolic 

process 
8152 

Metabolic 

process 

44237 
cellular metabolic 

process 
44237 

cellular 

metabolic 

process 

44237 

cellular 

metabolic 

process 

6793 
phosphorus 

metabolic process 
6139 

nucleobase, 

nucleoside, 

nucleotide and 

nucleic acid 

metabolic 

process 

51186 

cofactor 

metabolic 

process 

6796 
phosphate 

metabolic process 
16070 

RNA metabolic 

process 
6732 

coenzyme 

metabolic 

process 

16310 phosphorylation 34660 

ncRNA 

metabolic 

process 

9108 

coenzyme 

biosynthetic 

process 

  6399 
tRNA metabolic 

process 
19363 

pyridine 

nucleotide 

biosynthetic 

process 

  8033 
tRNA 

processing 
9435 

NAD 

biosynthetic 

process 

 

Table 2.11: Three random GSPs – highlighted entries show the GO biological process 

for the Training Set enzyme hit by the GSP. 

 

Because the SP hits are confined strictly to enzymes in the training set, the set of 

biological processes inferred to GSPs are limited to metabolic processes only, which 

is only a partial set of the branches of the entire biological processes tree.    

 

We present below a sample of analysis showing the distribution of GSP hits at level 5 

of the GO ontology tree for two metagenomes.  

The Soudan Red Mine sample data [2.12]   consists of the total microbial community 

taken from the oxidized sediments of the Soudan Mine (Minnesota).   

The Rios Mesquites Stromatolites bacteria sample [2.12] consists of a microbial 

community isolated from the Rios Mesquites microbiolite in Cuatro Cienagas, 

Mexico. 

We assume that highly represented GSP hits reflect important metagenomic biological 

functions and thus we can use such spectrums to conduct comparative studies of the 

biological functions between different metagenomes.  
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We illustrate this point in figure 2.9 below which shows the comparison of the 

number of SP hits for two different metagenomic samples. 

 
 

Figure 2.9: Histogram of GSP hits at level 5 of the GO ontology tree for Red Soudan 

Mine and Mesquites Stromatolites bacteria sample metagenomes. 

 

2.10 Family Specific Peptides - FSPs 
 
Swissprot assigns to each enzyme a “UniProtKB/Swiss-Prot entry name”. 

Every entry name is composed of two elements: 

1. A mnemonic protein  identification code  which consists of  the 

recommended protein name or gene name 

2. Identification of  the organism which is the biological source of the protein 

We tag each of the SPs in the Production SP Set, SP V2.3, with the gene name of the 

enzyme it hits in Training Set 2 and select only SPs that hit only genes that have the 

same gene name, i.e. belong to the same protein family.  The resulting set is labelled 

“Family SPs - FSPs”.   

Figure 2.10 below shows the leading 40 groups of enzymes by gene names in 

Training Set 2.  The inset shows the behaviour of the distribution for the first 2,000 

genes. 
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Figure 2.10: Histogram of the number of enzymes in Training Set 2 of Swissprot by 

gene name. 

 

104,981 SPs (71% of all SPs) are assigned a specific gene tag and are considered 

FSPs.   

Figure 2.11 below shows the histogram FSPs by gene name. The inset shows the 

behaviour of the distribution of FSPs by gene for the first 1,000 genes. 

The behaviour of the distribution of enzymes by gene name as shown in figure 2.11 is 

similar to the behaviour of the distribution of FSPs by gene. The reason for that is that 

if a gene is highly represented in the Training Set, it is expected that the FSPs derived 

for this genes will be highly represented in the FSP set. 
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Figure 2.11: Histogram of Family SPs by gene name 

 

FSPs are generated indirectly using ECs as classifiers in the Training Set and 

therefore the proportional representation of a gene family in Training Set 2 does not 

have to be exactly the same as in the set of FSPs.   

 

Every FSP has a specific gene name in addition to its EC and thus the gene name 

assigned to the FSP can be viewed conceptually as a branch of the EC hierarchy, “EC 

level 5”. 

As an example of this hierarchy we review the set of aminoacyl-tRNA synthetase 

family FSPs, which consist of 11,068 FSPs with EC=6.1.1.{x}. Figure 2.12 below 

shows the distribution of the FSPs by gene within each aminoacyl-tRNA synthetase 

group. 
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Figure 2.12: Histogram of aminoacyl-tRNA synthetase FSPs by tRNA Group and 

Gene. 

For almost all of the groups (EC Level 4) there is a single dominant gene.   

 

Using FSPs we can annotate the gene for a proteome, genome, metaproteome and 

metagenome, much the same way we generate EC predictions. 

In the case of genomic and metagenomic predictions, FSPs have to be in the same 

Open Reading Frame to contribute to consistent coverage. 

Because the FSP set is a much smaller subset of all SPs, recall is negatively impacted.  

Table 2.13 below shows prediction and recall figures using SPs with length greater or 

equal to 7 for the complete genome of H. Pylori 26695.    

 

SP Set and  

coverage 

threshold  (L)  

N 

(P/P) 

N 

(P/DP) 

N 

(P/NP) 

N 

(NP/P) 

N 

(NP/NP) 
Precision  Recall 

L 7 SPs 2.3 

 comparing ECs  

at level 3 

244 11 207 60 1038 95.7% 77.5% 

L 9 SPs 2.3  

comparing ECs 

 at level 3 

225 7 40 83 1205 97.0% 71.4% 

L 9 FSPs comparing  

FSP gene to Swissprot  

gene Annotation 

209 25 90 107 1129 89.3% 61.3% 

 

Table 2.13: Precision recall analysis for H Pylori 26695 using SPs v2.3 and the set of 

FSPs  

In the third case, the precision and recall calculations are conducted not at the EC 

level but at the gene name level.  
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Gene predictions using FSPs provide more detailed biological insight information 

than EC predictions as demonstrated in the following two examples, analyzing genes 

HP0501 and HP0701 of H. Pylori 26695. 

Analyzing gene HP0501 (Swissprot Access ID P55992) of H. Pylori 26695 we 

observe it is hit by five FSPs in the same Open Reading Frame providing a coverage 

length of 47 amino acids, which makes it a very solid 5.99.1.3 EC prediction. 

But beyond that, we predict the gene function of this gene as DNA Gyrase subunit B. 

   

FSP Hit EC Family 

SP 

SIKVLKGL 5.99.1.3 GYRB 

GRGIPVDIH 5.99.1.3 GYRB 

SFVNNIKT 5.99.1.3 GYRB 

QAILPLKGKILNV 5.99.1.3 GYRB 

MGDEVEPRR 5.99.1.3 GYRB 

 

Table 2.12: List of FSP hits on gene HP0501 of H. Pylori 26995 

 

In general, Swissprot annotates DNA Gyrase subunit A enzymes, DNA Gyrase 

subunit B enzymes, Reverse Gyrase enzymes and others with the same EC, 5.99.1.3.    

In this case Swissprot annotates the name of the gene as DNA Gyrase subunit B, in 

agreement with our assignment 

Similar results are obtained for HP0701 (Swissprot Access ID P48370 EC=5.99.1.3) 

for which we generate a very strong prediction of GYRA, with coverage of 60 amino 

acids.  This prediction is in agreement with Swissprot annotation of this gene: DNA 

Gyrase subunit A.   We aggregate Family SP names and build generic groups using 

the prefix of the Family name as identifier.  The purpose of this construction is to 

provide a prediction at a family generic name in cases where two very similar FSPs 

hit a queried entity.  This approach is similar to providing predictions at EC level 3 

when SP hits coincide.  An example of such generic groups is shown in tb_fam03 

below.  The first two Family SP names cannot be aggregated to any Generic SP 

Groups.  Follow examples of Family names that we aggregate. 

 

Family SP Name Generic SP Group 

1A1D 1A1D 

2NPD 2NPD 

5NTC 5NT* 

5NTD 5NT* 

AAPK1 AAPK* 

AAPK2 AAPK* 

AAT AAT* 

AATC AAT* 

AATM AAT* 

ABD12 ABD* 

ABDH ABD* 

 

Table 2.13: Samples of SP Family names with the appropriate Generic SP Family 

Groups.   
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 2.11 Taxon Specific Peptides – TSPs 

 

Swissprot documents each of the enzymes in the Training set with its Taxonomic 

Lineage (TL). As in previous cases of Annotated SPs, Family SPs and GSPs, we 

expand the contents of SPs, assigning them attributes of enzymes they hit in the 

Training Set, this time with  taxonomic lineage information.    

We will adopt the following notation:  

   

Taxonomic 

Lineage 

Level 

Notation 

Kingdom  Level 1 

Phylum  Level 2 

Class Level 3 

 

Table 2.14: Notation convention for taxonomic lineage levels 

 

We apply the following taxonomic lineage specificity filtering rules to build the 

Production TSP set:    

1. SPs in the Production SP set that are specific at Level three are promoted to 

the Production TSP set. 

2. SPs in the Production SP set that are not specific at Level three but are specific 

at Level two are promoted to the Production TSP set. 

3. SPs in the Production SP set that are not specific at Level three but are specific 

at Level one are promoted to the Production TSP set. 

4. All other SPs are discarded 

 

The Production TSP set consists of 134,306 TSPs distributed as follows: 

 

Taxonomic  

Specificity 

Level 

Number of TSPs 

in the ` 

Production Set 

1 28,388 

2 19,415 

3 86,503 

 

Table 2.15: Distribution of TSPs by Taxonomic Specificity Level 

 

Sample of a few TSPs is shown in table 2.14 below. 
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TSP Taxonomic 

Specificity  

Level  

Assigned 

to the TSP 

Level 1 Level 2 Level 3 EC of 

TSP 

DIDAIAVT 1 Bacteria - - 3.4.24.57 

HLGLTPP 1 Bacteria - - 3.6.1 

IRFEDCT 1 Eukaryota - - 3.6.1 

LYKGKNG 1 Bacteria - - 1.4.4.2 

VRADGVI 1 Bacteria - - 3.6.1 

DWENPYVTL 2 Bacteria Firmicutes - 6.1.1.5 

EFFQGFVNH 2 Bacteria Proteobacteria - 4.2.1.19 

LAGMIKLI 2 Bacteria Firmicutes - 6.3.5 

LYPEQRAEG 2 Bacteria Proteobacteria - 3.6.3.27 

QRILEDD 2 Bacteria Firmicutes - 2.1.1.45 

HLQDPLEVL 3 Bacteria Proteobacteria Alphaproteobacteria 2.4.2.21 

LNGFYIP 3 Eukaryota Metazoa Chordata 1.14.14.1 

LVTLLEQT 3 Bacteria Proteobacteria Gammaproteobacteria 2.3.1.181 

RISLRPGPL 3 Eukaryota Fungi Dikarya 3.6.1 

RKDFPTTGYTEVRYDE 3 Bacteria Proteobacteria Alphaproteobacteria 1.6.99.5 

HLQDPLEVL 3 Bacteria Proteobacteria Alphaproteobacteria 2.4.2.21 

 

Table 2.14: Sample of a few TSPs   

 

Taxonomic lineage specificity at level 3 implies taxonomic lineage specificity at level 

two and one.  Similarly, taxonomic lineage specificity at level two implies taxonomic 

lineage specificity at level one.  Predictions using TSPs, the prediction are inclusive 

of lower levels of the Taxonomic Specificity Level Assigned to the TSP.  Predictions 

at Taxonomic Specificity Level one are computed using contribution by TSP hits of 

TSPs with Taxonomic Specificity Level one, two and three.  

  

Figure 2.13 shows the distribution of SPs and TSPs with Taxonomic Specificity Level 

one by the EC level 1 of the SP or TSP.  The distributions are similar – rich EC 

classes that contribute to SPs contribute similarly to TSPs. 
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Figure 2.13:  Histogram of SPs and TSP with Taxonomic Specificity Level one by the 

EC level 1. 

 

Figure 2.14 shows the distribution of TSP with Taxonomic Specificity Level three by 

EC level 4. The inset shows the same distribution for all ECs. This distribution is 

important as it shows that the tRNA Aminoacyl synthetases have sufficient rich 

representation among TSPs. 

 
 

 

Figure 2.14: Histogram of TSP with Taxonomic Specificity Level three by EC level 4. 

The inset shows the same distribution for all ECs.   
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3. Utilization of Specific Peptides for large volume 
enzymatic predictions  

Data mining of Enzymes   

Our article “Data Mining of Enzymes” published in BMC Bioinformatics 2009, 

10:446doi:10.1186/1471-2105-10-446 is included almost in its entirety in this chapter. 

Background  

As mentioned in the introduction to this work, recently there has been a rapid 

growth in the number of putative proteins derivable from new genomic and 

metagenomic data [3.1]. The extended use of environmental shotgun sequencing to 

study diverse microbial systems has made metagenomics a vastly growing field 

leading to a flux of data, calling for development and application of new tools that 

allow its investigation [3.2]. Conventional tools for predicting the function of a 

protein from its sequence are based on sequence-similarity [3] or sequence-motifs 

[3.4, 3.5].  Here we outline a relatively simple and straight-forward method that is 

applicable to large numbers of sequences. Its purpose is finding whether each protein 

in the data is an enzyme and, if so, what its EC classification is. This Data Mining of 

Enzymes (DME) is based on the Specific Peptide (SP) method of [3.6], and is carried 

out by comparing the sequences of all proteins with a list of all SPs and looking for 

matches of the latter in the data.  

SPs are strings of amino-acids, extracted from enzyme sequences using the motif 

extraction algorithm MEX [3.7]. They are selected for their specificity to levels of the 

Enzyme Commission (EC) 4-level functional hierarchy. We have updated the SP set 

of [3.6] by extracting it from all Swiss-Prot enzymes of July 1st, 2006. More details 

are provided in Methods.  

Using SPs for prediction of enzymatic function needs some further decisions as to 

what to do if various SP hits on the same protein have EC assignments that are not 

consistent with one another. Moreover, one should decide when a single SP hit is 

sufficient to make a prediction. The methodology developed here relies on coverage 

length (overall number of amino-acids) of consistent SP hits. This is further described 

below, when testing performance on an enzyme test set, and when discussing a ten-

organism test-set that contains non-enzymatic as well as enzymatic proteins. We 

develop a random model for the latter to assess the effect of accidental SP matches. 

The resulting methodology, which we call Data Mining of Enzymes (DME), is being 

applied to analyze several metagenomes. 

 

Methods 

 

3.1 The new SP sets 

A novel method based on sequence motifs has been proposed by [3.6], who have 

studied enzymes in the Swiss-Prot database. They have demonstrated that enzyme 

functions, as represented by the four-level EC hierarchy, can be deduced from the 

appearance of deterministic short strings of amino-acids, denoted as Specific Peptides 

(SPs), on these enzymes. The SPs were derived from enzyme sequence data using an 

unsupervised motif extraction algorithm MEX [3.7], and filtered by the EC so that 
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each SP is specific to a particular EC branch, specifying the EC function that the 

enzyme performs. Thus, if an extracted motif is found to occur on enzymes belonging 

to only one EC number (i.e., 4th level of the EC hierarchy), this peptide will be 

declared to be an SP labeled with this EC number. If, however, the motif occurs on 

several EC numbers, all of which share the same 3rd-level hierarchy (i.e. the first 

three digits of their EC numbers are the same), the motif is declared as an SP with 

labeling at the third level of EC hierarchy, etc. The SPs of [3.6] comprise on average 

8.4 amino-acids (SD 4.5), and were shown to compete favorably with a Smith-

Waterman based SVM classifier. Usage of the SP methodology is demonstrated by 

our web-tool http://adios.tau.ac.il/DME. Given the sequence of an enzyme, this tool 

searches through the set of all SPs and finds which of them coincide with substrings 

of the sequence, indicating where they lie, what is the EC assignment associated with 

each SP, and provides the EC predicted by the DME method for the protein that is 

being queried. 

 

Kunik et al [3.6] have investigated 50,698 enzyme sequences of the 48.3 Swiss-Prot 

release of October 2005.  We have used the same methodology and applied it to all 

enzymes in the Swiss-Prot/Enzyme records of July 1st, 2006.  The number of 

enzymes that have a single EC assignment is 89,854. Applying MEX and filtering it 

by EC levels in the same way as [3.6], we have obtained 87,017 SPs.  This new 1
st
 list 

of SPs serves as the basis for developing and analyzing our methodology.  

 

In making the prediction of an EC number (i.e. 4
th

 level of the EC hierarchy) based on 

one SP match, or several SP matches that have the same EC number assignment, we 

require that the total number of amino-acids of the protein matched with these SPs be 

at least seven. We refer to this number as the coverage-length L. If L at level 4, L4, is 

less than 7, we check for SP hits that are consistent at level 3 of the EC hierarchy, i.e. 

have identical first three digits in their assignments. Once again, a prediction is made 

if L at level 3, L3, is at least 7.  In principle, the threshold of L at every EC level can 

be viewed as a parameter of our method. Reducing L increases recall at the expense of 

lowering precision, as will be discussed below. 

 

Test data were downloaded from Swiss-Prot Release 56 on July 1st, 2008. We 

consider two types of test sets. The “Enzyme Test Set” consists of all enzymes 

integrated into Swiss-Prot between July 1st of 2006 and 2008. The “10 Organisms 

Test Set” consists of proteins of  E. coli and 9 other bacteria (see Table 3.0 below) 

containing enzymes from the same period of 2006 to 2008, and all other proteins 

incorporated into Swiss-Prot by July 1st, 2008.  
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Table 3.0: List of the ten organisms used as a test-set. 

 

 

Organism # Proteins in test 
Set 

Anabaena variabilis (strain ATCC 29413 / PCC 7937). 240 

Bacillus cereus (strain ATCC 14579 / DSM 31). 269 

Bradyrhizobium sp. (strain BTAi1 / ATCC BAA-1182). 142 

Burkholderia sp. (strain 383). 247 

Cytophaga hutchinsonii (strain ATCC 33406 / NCIMB 

9469). 

128 

Escherichia coli (strain K12). 2,932 

Rhodococcus sp. (strain RHA1). 183 

Solibacter usitatus (strain Ellin6076). 94 

Sorangium cellulosum (strain So ce56). 51 

Streptococcus pneumoniae. 223 

Total 4,509 
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A compilation of the training and test datasets together with precision and recall 

values is displayed in Table 3.1 below.  

 

Dataset 

Selection 

Criteria 

from Swiss-Prot 

 

Number of 

Proteins (and SPs) 
Precision Recall 

Training set #1 

Single EC 

annotation  and 

Date-Integrated 

before 7/1/2006 

 

89,854 

(#SPs=87,017) 
100% 85% 

“Enzyme Test Set” 

EC annotation  and 

Date-Integrated 

between  7/1/2006 

and 7/1/2008  

 

24,443 98% 70% 

“Ten Organism 

Test-Set” 

EC annotation  and 

Date-Integrated  

between  7/1/2006 

and 7/1/2008  

and all non-enzymes 

before 7/1/2008  

 

4,509 98% 76% 

Training set #2 

Single EC 

annotation and Date-

Integrated before 

7/27/2009 

201,169 

(#SPs=312,465) 
100% 94% 

Test Set #3 

1,000 random 

annotated Swiss-

Prot enzymes with 

integrated date after 

July 27
th

 2009 and a 

single EC annotation 

at EC level 3 or EC 

level4. 

1,000   98.8% 76.8% 

 

Table 3.1:  Compilation of training and test datasets. 

 

 It includes also information about precision and recall (for definitions see below) that 

will be further discussed in the first Results section. These values are obtained by 

determining 3rd level EC assignments, using coverage-length of L3≥7. Precision 

values of 100% on the training sets are of course trivial results of specificity. 

 

54% of the proteins in the 1st training set carry Swiss-Prot annotations of ‘active site’, 

‘binding site’ or ‘metal binding site’ at specific locations of single amino-acids. SPs 

cover these functionally important sites significantly more than other loci on proteins, 

thus indicating biological significance of SPs (for an extensive discussion see [3.8], in 

particular Table 1 there). SP matches that overlap such sites are compiled, and the 

corresponding SPs are denoted as Annotated SPs (ASPs).  
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We have thus compiled a list of 6,078 ASPs. All appear at least four times in the 

training set, and the location of the annotation is consistent in the different 

appearances. Most ASPs carry single annotations (1,900 active sites, 1932 binding 

sites and 1,819 metal binding sites), 418 ASPs carry two annotations and 3 ASPs 

carry all three annotations. 

 

A second set of SPs is extracted from Swiss-Prot data dated July 27th, 2009. This 

training set, consisting of all singly annotated enzymes, contains 201,169 proteins. It 

has led to 312,465 SPs. Their length distribution is presented in Additional File Fig. 

3.0 below. 

 

Figure 3.0: Length histogram of the 2nd SP set. 

 

This set includes 285,485 SPs with labels corresponding to EC levels 3 and 4 

(containing 257,598 SPs of length ≥ 7). Only SPs with EC labels at levels 3 and 4 are 

relevant for the assignment of EC level-3 annotations to proteins, and hence for the 

calculation of recall included in Table 3.1. It should be emphasized that only 191,275 

of the Swiss-Prot annotated enzymes in the training set carry EC annotations at levels 

3 and 4. They are the ones on which the EC predictions at level 3 are tested, leading to 

the recall result of 94%. The 2nd SP set is being used for the analysis of metagenomic 

data and is incorporated in our web-tool at http://adios.tau.ac.il/DME. 
 

. 

3.2 Estimate of accidental SP matches 

 

Proteins that do not possess enzymatic functions may still have a substring that 

matches an SP. Such SP matches will be called ‘accidentals’. Their occurrences can 

be modeled by SP hits on random protein sequences. Such random sequences are 

generated from real data by scrambling the order of the amino-acids in every protein, 

conserving only first-order statistics. 3 such sets were produced in order to measure 
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the expected random hits. Estimates of the probabilities of accidental occurrences of 

SPs are derived below for the 10 organism test-set and for Sargasso Sea data. 

 

3.3 Recall-precision analysis of EC annotations in enzymes. 

 

Comparing the results of our method with an expert-method (such as Swiss-Prot) we 

face three possible situations when dealing with a collection of enzymes: P|P where 

the model prediction coincides with that of the expert, P|DP where the expert provides 

a different EC assignment, and NP|P where the model provides no prediction for 

enzymes whose EC assignments are given by the expert. As mentioned in chapter 2,  

we define the following measures in terms of number of occurrences: 

 

 

 

 

 

 

 

This is a generalization of the common terms used in binary classification problems 

where P|P, P|DP and NP|P are replaced by true-positive, false-positive and false-

negative correspondingly. 

3.4 Recall-precision analysis of EC annotations in proteins. 

 

Extending the previous analysis to a collection of proteins we have to add two more 

possibilities: P|NP, where the new method has an EC prediction whereas the expert 

does not have one, and NP|NP where both do not have any EC assignment. Whereas 

the latter corresponds to true-negative in a binary classifier, the former, P|NP could be 

added to P|DP as 'false-positive'. Since, however, there are many cases where the 

absence of an EC assignment does not imply that the protein in question is not an 

enzyme, we opt to define a new measure, putative novelty ratio, as the fraction of 

such P|NP out of all the predictions of the model: 

 

 

 

 

Other measures one can define are 
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and  

 

 

in conventional binary classifications. 

 

 

Results: Analysis of the Methodology  

3.5 Analysis of the Enzyme Test Set using the 1st SP set. 

 

In making the prediction of an EC number (i.e. 4th level of the EC hierarchy) based 

on one SP match, or several SP matches that have the same EC number assignments, 

we require that the total number of amino-acids of the protein matched with these SPs 

be at least seven. We refer to this number as the coverage-length L. In principle, the 

threshold of L at every EC level can be viewed as a parameter of our method. 

Reducing L increases recall at the expense of lowering precision. This is exemplified 

in Table 3.2 below, where we analyze our enzyme test set and show precision and 

recall at 3rd EC level as function of the L3 threshold. 

 

 

L3 

threshold 
Precision Recall 

5 95.1% 72.4% 

6 95.8% 72.3% 

7 98.4% 70.0% 

8 99.4% 67.1% 

9 99.5% 66.2% 

10 99.5% 65.4% 

11 99.5% 65.0% 

12 99.6% 64.8% 

13 99.6% 63.9% 

 
 

Table 3.2: Variation of precision and recall of DME   (based on the 1
st
 SP set) on the 

enzyme test-set as function of the L3 threshold. 

 

Although precision turns out to be quite high, even for low L3 values, recall is low 

when compared to what BLAST [3.9] can achieve on this test-set. Using the most 

significant outcome of a BLAST search against the 1st training set as its prediction, 

and limiting the most significant e-value to stay below e-05, we find BLAST 

precision of 98% and recall of 95%, to be compared with DME values of 98.4% and 

70% when setting L3≥7. Thus while precision is similar, DME loses on recall.  There 

is no direct relation between DME and BLAST, although high coverage-length L 

values of DME go usually hand in hand with very low e-values of BLAST. 

Differences may occur for low L values of DME, and relatively high e-values in 
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BLAST. We refer to Kunik et al. [3.6] for a discussion of such examples (see Table 4 

there). The advantages of SPs in resolving classification problems in situations of 

remote homology have been discussed and exemplified by [3.8]. 

 

It is worthwhile pointing out that the fact that one can abide by such a small threshold 

value of L≥7 is strongly connected to our requirement that the SP matches on the 

protein’s sequence be exact. If one were to allow for insertions or deletions or 

replacements, such as the BLOSUM62 matrix [3.10], this would not work. Based on 

various trials we may state that, whereas reliance on BLOSUM works well for 

BLAST searches over large sequences, it ruins predictivity and specificity of SP 

searches even if only single amino-acid changes are allowed. 

 

3.6 Analysis of the ten organism test-set 

The ten organism test-set contains 4,509 proteins of E. coli and 9 other bacteria listed 

in Additional File Table A2.1. Proteins for this dataset were downloaded from Swiss-

Prot on July 1
st
 2008 and include all proteins that had no EC annotation in Swiss-Prot 

prior to July 1
st
 2006. The intersection between the 10 organism test-set and 1

st
 

training set used to build the SPs is void and allows us to develop and test the SP 

methodology on general proteomic data rather than on enzymes only. SP search on 

this dataset, using our 1
st
 set of 87,017 SPs (see Methods), leads to the results shown 

in Fig. 3.1 below, sorted according to the number n of SP matches.     

 

 

Figure 3.1 - SP hits on the ten-organism test-set. 
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1,079 proteins have at least one SP match (or 'hit'). Some of them may be due to 

random hits and our task is to resolve which of the hit proteins should be recognized 

as enzymes and what their EC assignments should be. As before, we propose to rely 

on coverage length. We judge the prediction not by how many SP hits (with 

consistent annotations) are observed, but by L3, the number of amino-acids matched 

by all SP hits whose EC assignment is identical within the first three digits of the EC 

number. In order to have some intuition about the expected noise level, we compare in 

Table 3.3 below SP hits on real data with random model results for different values of 

L3. Entries of L3=0 refer to either no SP hits, or hits by SPs that have labels with EC 

levels 2 and 1 but none at EC levels 3 and 4. The columns random and stdev refer to 

the average and standard deviation of seven random sets. Noise is the ratio of 

random/real. All 4509 proteins of the ten-organism test-set were included in this 

search. 

 

 

L3 Real Random stdev Noise 

0 3768 4079.86 23.87  

4 0 0.57 0.53  

5 41 53.57 9.81 1.31 

6 305 307.86 14.12 1.01 

7 106 59.43 8.30 0.56 

8 13 4.57 1.40 0.35 

9 5 0.29 0.49 0.06 

10 2 0.14 0.38 0.07 

11 1 0.00 0 0 

12-15 25 0.71 0.76 0.03 

>15 243 0 0 0 

 

Table 3.3 Comparison of results for the ten organism test-set with those of a random 

model as function of coverage-length at level 3 of the EC hierarchy. 

 

 

We will use L3≥7 as our threshold criterion, as in the enzyme data-set discussed in the 

previous section. We note that predictions based on L3=7 may still have a large 

uncertainty, however from L3=8 onwards random hits become very small. Our 

threshold criterion leads to the results displayed in Table 3.4 below, with 

precision=98.4%, recall=75.9%, accuracy=95.1% and putative novelty=35.2%. 

 

 

 DME Swiss-Prot # proteins 

A P P 252 

B P DP 4 

C P NP 139 

D NP P 76 

E NP NP 4,038 

 

 Table 3.4 DME predictions vs. Swiss-Prot EC (level 3) annotations for the 10 

organism Test Set.  
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The interest in this exercise is twofold: to see how well our method performs on 

unassigned proteins, i.e. true-negatives, and how good our predictions are for putative 

novelties. Indeed, our accuracy turns out to be high, 95.1%, which proves that we 

have correct negative assignments.  

Seven out of the 139 putative novelties (category C in Table 3.4) have been annotated 

by Swiss-Prot since July 2008, six out of which are at levels 3 or 4. All observations 

are consistent with the predictions, as shown in Table 3.5 below. Quoted here are also 

all coverage lengths on which the predictions were based. Note that also the one based 

on coverage length 7 has been validated. All this may be viewed as an indication 

(although not a proof) of the validity of DME predictions. The first six entries in 

Table 3.5 belong to E. coli, and the last protein belongs to Bacillus cereus. 

 

ID DME 

Prediction 

(1
st
 SP set) 

L1 L2 L3 L4 Current 

Swiss-Prot EC 

annotation 

P06610 1.11.1 25 22 22 0 1 

P07821 3.6.3 25 25 25 0 3.6.3.34 

P0A9V1 3.6.3 7 7 7 0 3.6.3 

P33360 3.6.3 13 13 13 0 3.6.3 

P76469 4.1.2 9 9 9 0 4.1.2.n3 

P77257 3.6.3.17 14 8 8 8 3.6.3 

Q81IT9 3.6.1 58 58 58 0 3.6.1 

 

Table 3.5:  DME predictions for the ten-organism test-set are compared with recent 

Swiss-Prot EC assignments. L1 to L4 are the coverage-lengths at EC levels 1 to 4 

respectively. 

 

 

3.7 Classification based on Annotated SPs. 

 

It has been noted by [3.6] and [3.8] that some of the SPs can be demonstrated to play 

important biological roles since they carry crucial amino-acids known to serve as 

active sites, binding sites or metal binding sites. Such annotations are available for 

54% of the enzymes in the 1
st
 Swiss-Prot training set. Selecting only SPs that carry 

these annotations we obtain a set of 6,078 Annotated SPs (ASPs), a mere 7% of all 

SPs. We have tested it on the enzyme test set. Using annotation predictions at the 

third level of EC we find precision 99.6% and recall 25.4%. The limited recall is due 

to the fact that ASPs have been derived from only 54% of the training set. 

Nonetheless they possess the advantage of being selected due to their demonstrated 

operational importance to the catalytic function. Because of their limited recall we 

have not used the ASPs as the primary tool for large scale analysis; however we list 

their properties in our web tool http://adios.tau.ac.il/DME. Any queried protein can be 

analyzed by this tool for SP hits and the expected DME prediction. The appearance of 

ASPs may serve as providing additional credence to the prediction, as well as 

specifying the positions of expected active or binding sites. 
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3.8 Analysis of Sargasso-Sea data 

After verifying DME on the two test-sets we turn to an analysis of the 1,001,986 

records in the Sargasso Sea protein data [3.10]. The average length of these proteins is 

194 amino-acids, with SD=109. For this analysis we employ our 2nd set of SPs, 

updated on July 2009.  In order to reduce random hits, we have further limited our SP 

set to include only peptides of length 7 amino-acids or more. Using a random set of 

5,000 proteins selected from these data, we generated three randomized protein sets 

from which we calculated the probabilities of accidental matches. The results are 

displayed as function L3 in Table 3.6 below. The columns random and stdev refer to 

the average and standard deviation of three random sets. Noise is the ratio of 

random/real. 

 

 

 

L3 Real Random stdev Noise 

0 3,910 4,868 5.1  

7 235 127 5.5 0.54 

8 71 6 2.1 0.08 

9 40 0  0 

10 27 0  0 

>10 717 0  0 

 

Table 3.6 Numbers of sequences with consistent SP hits (same category at level 3 of 

the EC hierarchy) are compared between 5,000 proteins randomly chosen from 

Sargasso-Sea data, and a corresponding random model, as function of coverage-

length. 

 

Similar results are obtained for L4. The results of Table 3.6 are slightly better than 

Table 3.3. The reason is that we have limited ourselves here to SPs of individual 

length 7 or more. Once again we choose L=7 as our threshold for DME predictions. 

Applying DME with this threshold we obtain EC assignments at levels 3 and 4 for 

220,278 proteins. All assignments are provided in Appendix 2 – Tables  A2-1-A2.3. 

 

In Fig. 3.2 we display a histogram of the 30 largest EC sub-subclasses (level 3) that 

emerge from our DME analysis. The category with the largest number of different 

proteins is 6.1.1, corresponding to aminoacyl-tRNA synthetases (aaRS). Since there 

are about 20 aaRS enzymes expected for each organism, this allows us to estimate the 

content of the metagenome to be of order of 800 species or so. Looking at level 4 

annotations, i.e. at specific aaRS enzymes, we find that their numbers vary from 116 

to 1326. These differences may be due both to different occurrences of aaRS 

sequences in the sample, and to different efficiencies of the SP methodology for 

different aaRSs. The order of magnitude of 1000 different species remains a 

reasonable estimate. The same order of magnitude can be derived from another 

source. Venter et al. [3.11] have provided some information about single copy 

proteins (Table 2 there) in trying to arrive at estimates of the number of species 

involved. One such protein is the gyrase subunit B enzyme, GyrB.  The same enzyme 

has also been proposed by Watanabe et al. [3.12] for the purpose of spanning a 

database for identification and classification of bacteria. GyrB is one of several 

protein families belonging to EC 5.99.1.3 (DNA gyrase). Checking through the SPs 
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belonging to this EC we have found a subset that is specific to GyrB only. Using this 

subset we estimate the number of GyrB copies in the Sargasso-Sea data to be 1344, 

which is close to the number of maximal fragment depth of 924 quoted in Table 2 of 

[11], and is in the same ball-park as the aaRS estimate.  

In addition to 6.1.1 (aaRS) enzymes we observe the following leading categories: 

3.6.3 (Hydrolases catalyzing transmembrane movement of substances involving 

ATPases), 2.7.7 (Nucleotidyl transferases), 1.1.1 (Oxidoreductases acting on the CH-

OH group of donors), and 4.2.1 (Carbon-oxygen lyases).  

 

There are several EC numbers (i.e. level 4 of the hierarchy) that are particularly 

abundant. They are presented in Table 3.7 below, where we list all cases that appear 

more than 2000 times in the data. Some of them have already been mentioned above: 

the DNA gyrase, and its role in estimating the number of species, and the two ECs 

belonging to the subsubclass of 2.7.7 (Nucleotidyl transferases), playing important 

roles in RNA and DNA polymerases. 

 

EC # proteins Enzymatic activity 

2.7.7.6 5,993 DNA-directed RNA polymerase 

1.6.99.5 2,999 NADH dehydrogenase (quinone) 

5.99.1.3 2,610 DNA topoisomerase (ATP-hydrolysing). DNA gyrase. 

6.3.5.5 2,198 carbamoyl-phosphate synthase (glutamine-hydrolysing) 

3.6.3.14 2,169 H
+
-transporting two-sector ATPase. ATP synthase. 

2.7.7.7 2,083 DNA-directed DNA polymerase 

 

Table 3.7 Leading occurrences of EC-numbers in Sargasso-Sea data 

 

All our predictions for the enzymatic annotations of the Sargasso-Sea data are 

presented in Additional File Tables A2.1-A2.3 in Appendix 2. We wish to point out 

that some of the enzymes contain two or more EC assignments. Table 3.8 below 

reports some of these occurrences. Included here are the most abundant observations 

of dual EC assignments, sorted by the numbers of proteins exhibiting the two 

annotations. 

 

 

Prediction a Prediction b # Proteins 

3.5.4.25 4.1.99.12 27 

3.6.3.44 2.7.1.130 6 

1.1.1.205 1.7.1.7 6 

2.7.1.25 2.7.7.4 6 

 

Table 3.8: Some examples of doubly annotated enzymes uncovered by DME in the 

Sargasso-Sea data.  

 

The first and the last entries in Table 3.8 have many analogs in currently known 

doubly-annotated enzymes in Swiss-Prot. Checking all proteins we find that the SP 

hits that belong to the two different EC numbers do not overlap on the protein 

sequences, thus falling comfortably into the categorization of two different catalytic 

domains. It is interesting to note that finding multiple domains is easier with SPs than 

it is with BLAST: we will not miss out on a small domain of a protein that may be 
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overshadowed by sequence similarities with a larger protein domain, and we can 

immediately check whether the different catalytic regions lie on disjoint sections of 

the protein. A full list of the doubly annotated Sargasso-Sea enzymes is presented in 

Appendix 2, Table A2.2. A further list of triple-enzymatic annotations is presented in 

Appendix 2 Table A2.3. 

 

3.9 Human Gut Metagenome 

Gill et al. [3.13] have analyzed the DNA sequences obtained from fecal DNA of two 

healthy adults – ‘subject 7’ a female aged 28 and ‘subject 8’ a male aged 37. We have 

analyzed the resulting proteins (downloaded from http://img.jgi.doe.gov/m/) with our 

DME method. The two proteomes of subjects 7 and 8 consist of 20,523 and 25,980 

proteins correspondingly. We predict enzymatic annotations for 3,428 proteins of 

subject 7 and 4,102 proteins of subject 8. These numbers are relatively lower than the 

enzymatic content of Sargasso-Sea. Numbers of 6.1.1 enzymes are predicted to be 

260 and 264 for subjects 7 and 8 respectively. Thus the number of different species 

contained in these samples is scaled down by two-orders of magnitude compared to 

the Sargasso-Sea data, which is quite reasonable given the size of the databases. 

Further comparisons between the three metagenomes are offered in the next section. 

3.10 Enzymatic Profile 

Trying to compare different metagenomes with each other one has obviously to resort 

to some normalization method. Normalizing the results of a bar chart like Fig. 3.2 

below by the total number of enzymes that we find, we obtain a spectrum 

characteristic of the genome or metagenome we study, which we will refer to as its 

enzymatic profile. 

 
Figure 3.2: Numbers of enzymes predicted by DME in the Sargasso-Sea data. Shown 

are the thirty leading level 3 EC categories. 
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Figure 3.3 below depicts such profiles for the examples studied in this paper, the 

Sargasso Sea one, and the two gut metagenomes, all based on DME predictions. Since 

all three are bacterial metagenomes the leading EC categories are quite similar. The 

identities of the leading categories have already been described in the previous 

section.  

 

 

 

Figure 3.3 - Enzymatic profiles of three metagenomes. Compared are the relative 

numbers of identified enzymes in the 30 leading sub-subclasses (EC level 3) of the 

Sargasso-Sea meatagenome with those of the gut microbiomes. 

 

In spite of the obvious similarities, there exist differences among the three histograms. 

We use the absolute value of the difference of any two distributions as the difference 

measure (theoretically limited to vary between 0 and 2). Taking into account all level-

3 EC predictions we obtain the distances between the different distributions presented 

in Table 3.9 below. 

 

 

 Metagenome Sargasso Subject7 Subject8 

Sargasso 0 0.42 0.41 

Subject7 0.42 0 0.18 

Subject8 0.41 0.18 0 

 

Table 3.9 Absolute values of differences between enzymatic profiles based on the 

DME predicted distributions at level 3 of EC. 

 

 As expected, the two gut metagenomes are the closest pair. 

It has been emphasized by [3.14] and by [3.15] that the functional characteristics of a 

metagenome vary with the environment in which it is being found. Hence we expect 

the genetic enzymatic profiles to vary accordingly.  
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Our exercise shows that the gross features of microbial communities may be similar, 

thus more attention will have to be paid to smaller details, in particular emphasizing 

the cases where the relative differences between EC categories are the largest. This 

may become a useful tool in the future. 

 

We wish to close this section by emphasizing that the three metagenomic profiles are 

different from those derived from the genome of E. coli, and very different from 

human. The comparisons are presented in Fig. 3.4 below, drawn according to the top 

20 categories of E. coli, and in Figure 3.5 below, displaying the top 20 categories of 

human.  

 

 

 

 

 

 

 

Figure 3.4: Comparison of enzymatic profiles based on the 20 leading categories of E. 

Coli. 
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Figure 3.5: Comparison of enzymatic profiles based on the 20 leading categories of 

human 

 

It is quite evident that the weights (or numbers of different genes) of different EC 

categories change considerably from human to E. coli to bacterial metagenomes. This 

implies that enzymatic profiles contain information that may be of value in future 

studies of novel genetic material. 
  

Discussion  

 

Using SPs it seems quite straightforward to perform data-mining of enzymes. There 

are however several provisos: a) although a majority of enzymes carry SPs, there 

exists a minority that does not; hence not all enzymes are expected to be discovered in 

a new dataset. b) SPs were substantiated on a training set, and their generalization 

carries with it some error, even on a test set composed of enzymes only. Errors may 

be due to a) changes in the official EC classification of an enzyme, or b) real 

biological changes such as evolutionary loss of an active site in a protein that 

resembles a known enzyme but has no catalytic function, or c) random appearance of 

SPs on proteins that have no catalytic activity.  Errors due to reclassification of EC 

numbers cannot be controlled in any a-priori manner. The question of function loss 

can be partially checked through searching for the absence of annotated SPs in cases 

where such annotations may be expected for the enzyme in question. This 

demonstrates the importance of detailed corroboration of each individual prediction of 

the large-scale method studied here. The third source of errors, due to random 

appearance of SPs on proteins other than enzymes, has been taken into account by 
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limiting our predictions to consistent SP hits with minimal coverage length of 7, and 

specifying the L values of our predictions as a measure of their confidence.  

 

DME is based on deterministic motifs only, i.e. strings with specific sequences of 

amino-acids. Comparing it with the well-known motif method of Prosite patterns 

(Bairoch et al, 1997), by using available information in Swiss-Prot, we find that the 

latter has precision of 97% and recall of only 47% on the Enzyme test set, thus falling 

short of DME predictions. When comparing DME to BLAST on the enzyme test-set 

we found that DME had comparable precision (98.4% vs 98%) while BLAST has 

much better recall (95% vs 70.0%). Note that this comparison was based on the 1
st
 SP 

set of July 2006. 

 

It should be appreciated that the comparative procedure based on the Enzyme test set 

has some bias in favor of BLAST, because the latter serves as one of the inputs to 

Swiss-Prot assignments. As a result, cases of remote homology which may be 

captured by DME could have been missed by BLAST-based assignments, as was 

demonstrated by [3.6] and by [3.8]. The SP-based search has two other advantages 

over BLAST: it is conceptually simpler, relying only on a look-up table, and it points 

to specific locations on the queried protein which may be relevant to the expected 

catalytic function of that enzyme. Hence it may have wide practical implications for 

enzyme research and development. 

 

In spite of all the precautions outlined in the first paragraph, our predictions 

concerning the 10 organism test-set reported in this paper, do extremely well. 

Moreover, note that the recall quality of SPs on their training sets increased 

dramatically from 85% in 2006 to 94% in 2009 (see Table 3.1). This means that the 

minority of enzymes without SP hits diminishes with time. The reason is quite clear: 

MEX thrives on redundancy of patterns in the data. Therefore, the more proteins of 

the same family there are in the database, the better MEX will perform. As these lists 

fill up in the Swiss-Prot database, they can be better represented by simple SP motifs. 

Higher recall on the training set will undoubtedly reflect itself also as higher recall on 

future test sets, thus suggesting that the gap between the recall of BLAST vs DME 

will shrink with time. Indeed, carrying out a DME analysis, based on the 2
nd

 SP set, of 

19,849 enzymes that have been added to Swiss-Prot from July 28 to Sep 29, 2009, we 

find on this novel test set precision of 99.2% and recall of 92.4%. This is a 

considerable increase over the recall of 70% of the 1
st
 SP set measured on the enzyme 

test set (see Table 3.1). 

 

A straightforward peptide characterization of protein families seemed hopeless a 

decade or two ago, and hence necessitated the development of more sophisticated 

approaches such as BLAST, to quantify sequence similarities. Our analysis 

demonstrates that this has changed with time (and increasing amounts of data) so that 

nowadays the SP approach may be regarded as a useful tool, leading to valuable 

information. Such information, for three metagenomic data-sets, has been presented 

here as an example of the power of our novel methodology. 
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Conclusions  

The requirement that SP occurrences on protein sequences has some minimal 

coverage length, e.g.  L≥7 amino-acids in our analyses, leads to the novel tool of 

DME. It is applicable to large genomic and metagenomic data, and provides a good 

indicator for the enzymatic classification of the queried proteins, based on a look-up 

table only. A web tool identifying SP (and ASP) occurrences on any queried protein 

sequence, and providing the EC prediction of DME, is available online at 

http://adios.tau.ac.il/DME. 
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4. SP Scaffolding of Genomes 

4.1 Application of SP analysis to Genomic data   

An interesting application of the DME methodology is its utilization in the study of 

genomic sequences of bacteria and archaea.  Results of this analysis can generate EC 

predictions for the coding sequences of genes.  However, beyond EC prediction for 

genes, we can leverage SPs to derive two additional types of information: 

1. Calculate the beginning and end of a gene in a process we label “SP 

Scaffolding” 

2. Utilize SP hits with consistent ECs in adjacent genes to trace genomic 

evolution 

 

4.2 Prediction of Enzymatic Function for Genes  

 

Using as input the complete genome of an organism, the methodology consists of 

translating the whole sequence of nucleotides of the genome into each of the six 

translation frames and searching for all SPs separately in each frame. The SP set used 

is SP set v2.3 which consists of SPs with a length of 7 or more amino-acids. Our 

assumption here is that the beginning and end of each of the genes in the genome of 

the organism are known.  Thus, we make a meaningful EC prediction at the gene 

level.  However, this is not a necessary requirement, and below we discuss the 

generation of delimiters using SP hits. 

 

SP hits on a gene are required to be on the same translated frame in order to be 

considered contributors to consistent SP coverage of a Coding Data Sequence. 

Coverage-length of an SP is defined, as in previous references in this work, as the 

number of amino-acids exactly matching the sequence queried.  We can look at the 

coverage of SP hits on the gene in the same translation frame, and, based on it, an EC 

prediction can be made for the gene. If the coverage of SPs on a certain frame exceeds 

our predetermined threshold (usually 9 amino-acids), the gene is assigned the highest 

EC level of all consistent SPs hitting the gene.   

 

Below, we discuss the choice of L=9 as a coverage threshold to generate a reliable 

prediction, as it differs from the selection of L=7 used in the proteomic case. 

 

The DME methodology (Weingart et al. 2009, chapter 3 in this thesis)) is based on 

employing SPs with individual length (i.e. number of amino-acids) L=7 or more. This 

has also been adopted by the SPSR methodology of (Weingart et al. 2010, chapter 5 

below). Here we wish to test its sensitivity on the E. coli genome. The latter contains 

4,639,675 nucleotides. We convert it in six possible ways to a long string of amino-

acids and search for SP hits on them. We find 20,073 such records. The latter are 

compared with known NCBI and Swiss-Prot EC annotations.  

SP hits on genic regions are classified as true-positive (TP) or false-positive (FP) 

according to the expert EC annotations.  SP hits on intergenic regions serve as a 

convenient ‘negative set’ to define random false-positive hits. We find only 60 hits 

on intergenic sections, with 53 of SP length L=7, 6 of L=8, and 1 of L=10. 
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The total size of intergenic regions = 4,639,675 (Total Genome Length) -4,132,557 

(Total CDS) =507,118 nucleotides. 

 

Analysis of the intergenic regions: 

L=7: 53 hits. 53/507118=1.05e-4 hits/nucleotide 

L=8: 6 hits, leading to1.2e-5 hits/nucleotide 

L=10: 1 hit, meaning 1.97e-6 hits/nucleotide 

 

Analysis of the genic regions, presented as FP/TP (based on expert annotations):  

L=7:  965/7485= 0.13 

L=8: 237/4235= 0.056 

L=9:  100/2346= 0.043 

L=10:  68/1361= 0.05 

Using the intergenic hits as a valid random model, we expect the following errors to 

occur in the genic regions: 

L=7: 1e-4*4132557=413 false hits 

L=8: 1.2e-5*4132557= 49 false hits 

L=10: 2e-6*4132557= 8 false hits 

Comparing with the larger number of FP predictions, we conclude that the remaining 

errors are false annotations. In other words, we expect 4-5% of the annotations to be 

wrong, assuming the SP errors are correctly estimated by the intergenic region 

analysis. Our main conclusion from this analysis is that, using SPs of length L=9 and 

10 we should expect errors of less than 1%. 

 

We gauge the quality of DME predictions using precision and recall metrics, 

comparing our predictions to Swissprot annotations for the corresponding coding 

sequences. 

In addition, we can look at the impact of using different coverage length threshold on 

the quality of our predictions, by reviewing precision and recall figures. 

 

When we focus on high accuracy predictions we use L=9, but for general exploration 

of enzymatic gene structures we are content with L=7 and use that threshold. 

 

4.3 SP Scaffolding 

Beyond predicting the functional annotations of genes, we use the SP hits as a 

scaffolding prediction mechanism to determine approximately the beginning and end 

of the gene set in a process we label “SP Scaffolding.”  

The goal of SP scaffolding is enzymatic gene discovery, which includes annotation of 

known genes, known pseudo genes and unknown genes. 

The last category means genes that were not recognized as such but we find their 

traces with SP hits.  

We define the coding sequence as the domain bounded  by the first Met after the 

'Stop' that occurs to the left of the left-most SP and the final 'Stop' on the amino-acid 

sequence on which we observed all SP hits. 

As in the cases before, all consistent SP hits must be consistent not only for EC but 

must be in the same reading frame.  Obviously, accidental SP hits in the inspected 

frame and SP hits in other frames within the same region need to be disregarded.   

Our method has the inherent drawback that neither EC predictions nor scaffolding can 

be done for DNA regions that are not enzymatic.  Another obstacle we encounter to 
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generate good predictions consists of the fact that in some cases, because of the 

structure of the training set we did not generate SPs applicable to the checked 

sequences even though they were enzymatic. 

 

SP Scaffolding is demonstrated below using a random domain of H. Pylori 26995, 

selected so that the consistent SP coverage in the same frame exceeds 50 amino acids. 

The following table shows the selected domain.  

Eight SP hits with EC=1.1.1.267 contribute to a total coverage of 55 amino acids all 

in frame 1.  First SP hit with EC=1.1.1.267 is at nucleotide 224,696 and last SP hits at 

nucleotide 225,248. 

 

SP Hit  

Location 

EC 

Of  

SP 

Frame 

Hit 

SP 

224,570 2.7.7.41 1 HGGVLDR 

224,696 1.1.1.267 1 GSTGSIG 

224,930 1.1.1.267 1 SNLVLNAIVGVAGL 

225,008 1.1.1.267 1 LALANKE 

225,014 1.1.1.267 1 LANKESL 

225,152 1.1.1.267 1 ASGGAFRD 

225,215 1.1.1.267 1 ALKHPNW 

225,224 1.1.1.267 1 HPNWSMG 

225,248 1.1.1.267 1 KITIDSA 

236,738 1.8.1 1 IGGGSGG 

 

Table 4.1: SP hits for sample a domain in H Pylori 26995 with consistent coverage ≥ 

50 with EC=1.1.1.267.  Shown also the SP hits in the same frame prior and after the 

consistent hits domain. 

 

 

 

 

 

K E T A V F L G D Stop Met V V L G S T G S I G K N A L K I A K 

K F G I E I E A L S C G K N I A L I N E Q I Q V F K P K K V A 

I L D P S D L N D L E P L G A E V F V G L E G I D A Met I E E 

C T S N L V L N A I V G V A G L K A S F K S L Q R N K K L A L 

A N K E S L V S A G H L L D I S Q I T P I D S E H F G L W A L 

L Q N K T L K P K S L I I S A S G G A F R D T P L E F I P I Q 

N A Q N A L K H P N W S Met G S K I T I D S A S Met V N K L F 

E I L E T Y W L F G A S L K I D A L I E R S S I V H A L V E F 

E D N S I I A H L A S A D Met Q L P I S Y A I D P K L A S L S 

A S I K P L D L Y A L S A I K F E P I S Met E R Y T L W C Y K 

D L L L E N P K L G V V L N A S N E V A Met E K F L N K E I A 

F G G L I Q T I S Q A L E S Y D K Met P F K L S S L E E V L E 

L D K E V R E R F K N V A G V Stop 

 

Figure 4.1: Translation of frame 1 of area subsequence starting at nucleotide 224,682 

in H. Pylori 26995. 
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We define the coding sequence as the domain bounded  by the first Met after the 

'Stop' that occurs to the left of the left-most SP and the final 'Stop' on the amino-acid 

sequence on which we observed all SP hits. 

We predict therefore the start of the coding sequence at 224,692 for a length of 1,104 

nucleotides. Our prediction is in agreement both with NCBI’s location of the start, 

length of the gene and its EC annotation. 

4.4 Analysis of a full genome: H. pylori 

All predictions for H. Pylori are included in 4.6 below. 

There are several erroneous predictions using coverage-length L=9. Six of them 

consist of enzymes where the EC in the Swissprot annotation was modified recently 

from one that agreed with the DME prediction to a new EC. Extended details of two 

such cases are described as follows: 

 

HP0086 (Swissprot O24913): 
Swissprot annotates this gene as “Malate dehydrogenase [quinone]” with an  

EC=1.1.5.4.  The DME prediction very strong signal with a consistent coverage at EC 

level 4 of 155 amino acids with an EC=1.1.99.16.  Our research shows that 

EC=1.1.99.16 was transferred by Swissprot into EC=1.1.5.4.   

 

HP1059 (Swissprot O25699)  
Swissprot annotates this gene as “Holliday junction ATP-dependent DNA helicase 

ruvB” and an EC=3.6.4.12, which translates to DNA helicase. 

DME predicts EC=3.6.1, which translates to “Hydrolases, acting on acid anhydrides 

in phosphorous-containing anhydrides” with a very strong signal of L3=150 generated 

by 25 SP hits in frame 1.   

Research of this entry shows that on the 13
th

 of July 2010, the annotation for this entry 

was modified by Swissprot from EC=3.6.1.- to EC=3.6.4.12. 

 

The examples shown above exemplify the dependency of our training set on 

Swissprot.  This dependency causes DME to be adversely impacted whenever 

Swissprot renumbers ECs or whenever Swissprot re-annotates proteins after the 

Training Set of the SPs was generated.  A partial remedy to fix this problem is to 

generate new SP sets as frequent as possible. 

 

Similarly to the proteomic environment, the chances of DME to provide real novelties 

are the cases of remote homology, with low SP coverages that exceed the threshold to 

determine a prediction, typically in the region of L3= 9 or 10 amino acids. 

 

87% out of the 225 correct predictions are at EC level 4 and the rest are at EC level 3. 

The reason for the preponderance of EC level 4 predictions as compared to other test 

datasets we have studied is that we are conducting SP searches of large areas of 

complete nucleotide sequences that are rich in enzymatic cDNA sequences. 

 

Figure 4.2 below shows the histogram of all correct predictions by SP coverage at EC 

level 4, for Helicobacter pylori 26695.   
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Figure 4.2: Histogram of gene predictions at EC level 4 for H. Pylori 26995 

4.5 Locating traces of genetic evolution 

 

Another interesting application of the analysis of SP hits is detection of shifts in 

nucleotide sequences caused either by addition or deletion of single or few 

nucleotides in a coding sequence.  These are cases of genes that have very high EC 

consistent coverage.  The adjacent gene is hit by a single SP the same consistent EC 

but in a different frame.   

 

One possible explanation to this phenomenon is that the original large gene included 

part of the adjacent gene, an indel event occurred, and the boundaries of the genes 

have been shifted.  The set of genes HP0760 and HP0761 in H. Pylori serves as an 

example of this phenomenon.   

Figure 4.3 below is a diagrammatic description of SP hits on genes HP0760 and 

HP0761 of H. Pylori 26995. 
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Figure 4.3: Diagrammatic description of SP hits on genes HP0760 and HP0761 of H. 

Pylori 26995 

 

Gene HP0760 (Swissprot Accession ID O25455) is annotated with an EC=3.1.4.16 

(2',3'-cyclic-nucleotide 2'-phosphodiesterase) and spans the locations between  

814,054 and 815,442 nucleotides in the complement strand (L=1,388 nucleotides).  It 

is hit by 9 SPs in frame six with EC=3.1.4.16 with a total SP coverage of 113 amino-

acids.  The adjacent gene, HP0761 (Swissprot Accession ID O25456) spans the 

locations between 815,545 and 816,147 nucleotides in the complement strand (L=602 

nucleotides) and is hit by a single SP, “GLIYISLEV,” in frame four with EC=3.1.4.16 

as shown in table 4.2 below. 
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Gene HP0760 Start 

Gene 

814,054 End 

Gene 

815,442 

SP EC SP Hit 

Location 

Frame 

GVEKAYA 3.1.4.16 814,237 6 

ECASVCAADALSAGRPGARRKSDEEYAKRMQALEEIAL 3.1.4.16 814,267 6 

AHHGHEE 3.1.4.16 814,393 6 

LGVEVCKR 3.1.4.16 814,450 6 

LHDIGKA 3.1.4.16 814,507 6 

KLARRAG 3.1.4.16 814,531 6 

LIRRYEK 3.1.4.16 815,086 6 

MLNYMAYTK 3.1.4.16 815,170 6 

 

LKHLEAQHKEFVRDEKRYLEKEK 3.1.4.16 815,299 6 

Gene HP0761 Start 

Gene 

815,545 End 

Gene 

816,147 

 SP EC SP Hit 

Location 

Frame 

HP0761 GLIYISLEV 3.1.4.16 815,610 4 

 

Table 4.2: SP hits of genes HP0760 and HP0761 of H. Pylori 26995 

[ 

We can predict that there was a SNP between the end of gene HP0760, 815442, and 

the beginning of SP hit GLIYISLEV at 815,560. 

  

4.6 List of predictions for H. Pylori 

We used SPs to generate enzymatic predictions and FSPs to generate gene predictions 

for the whole genome of H. Pylori 26995. 

Aggregation of prediction results are presented in Table 4.3: 

 
Pred. 
Type 

P|P P|DP P|NP NP|P Precision Recall Putative 
Novelties 

EC 225 7 40 83 97.0% 71.4% 14.7% 

Gene 232 2 5 116 99.1% 66.3% 2.1% 

 

Table 4.3: Summary of DME predictions vs. Swissprot annotations for H. Pylori. 

 

Table 4.4 below shows all results except all cases resulting in NP|NP. L3 and L4 are 

SP coverages on the gene at EC Level 3 and EC Level 4. 

Cases that have hits with L3<9 do not generate a DME enzymatic prediction, 

therefore they are classified in the NP|P or NP|NP category, depending on whether 

they have a Swissprot annotation.   
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Table 4.4: List of predictions vs. annotations for H. Pylori 26995:  

 
Locus 

Tag 
EC 

DME 
Prediction 

EC 
Swissprot 
Annotation 

1 

EC 
Swissprot 
Annotation 

2 

DME 
Gene 

Prediction 

Swissprot 
Gene 

Annotation 

L3 L4 

HP0002 2.5.1.9 2.5.1.9  RISB RISB 80 80 

HP0003 2.5.1.55 2.5.1.55  KDSA KDSA 110 110 

HP0004  4.2.1.1   CYNT   

HP0005 4.1.1.23 4.1.1.23  PYRF PYRF 29 29 

HP0006 6.3.2.1 6.3.2.1  PANC PANC 62 62 

HP0012  2.7.7   PRIM   

HP0026  2.3.3.1   CISY   

HP0027 1.1.1.42 1.1.1.42  IDH IDH 87 87 

HP0029  6.3.3.3   BIOD   

HP0034 4.1.1.11 4.1.1.11  PAND PAND 40 40 

HP0044 4.2.1.47     34 34 

HP0051  2.1.1.37    7 7 

HP0054  2.1.1.37      

HP0072 3.5.1.5 3.5.1.5  URE1 URE1 258 258 

HP0073 3.5.1.5 3.5.1.5  URE23 URE23 106 106 

HP0074 3.4.23.36 3.4.23.36  LSPA LSPA 32 32 

HP0075 5.4.2.10 5.4.2.10  GLMM GLMM 201 201 

HP0086 1.1.99.16 1.1.5.4  MQO MQO 155 155 

HP0089  3.2.2.9   MTNN   

HP0098  4.2.3.1   THRC   

HP0105 4.4.1.21 4.4.1.21  LUXS LUXS 62 62 

HP0106 2.5.1.48 2.5.1.48  METB METB 9 9 

HP0107 2.5.1.47 2.5.1.47   CYSM 16 16 

HP0116 5.99.1.2 5.99.1.2  TOP1 TOP1 64 64 

HP0121 2.7.9.2 2.7.9.2  PPSA PPSA 71 71 

HP0123 6.1.1.3 6.1.1.3  SYT SYT 247 235 

HP0132  4.3.1.17   SDHL 7 7 

HP0134 2.5.1.54     25 25 

HP0136  1.11.1.15   BCP   

HP0154 4.2.1.11 4.2.1.11  ENO ENO 227 227 

HP0157 2.7.1.71 2.7.1.71  AROK AROK 66 66 

HP0160  3.5.2.6   HCPD   

HP0163 4.2.1.24 4.2.1.24  HEM2 HEM2 22 22 

HP0175 5.2.1.8    Y175 11 11 

HP0176 4.1.2 4.1.2.13   ALF 25 0 

HP0179 3.6.3     15 0 

HP0180  2.3.1   LNT   

HP0182 6.1.1.6 6.1.1.6  SYK SYK 184 174 

HP0183 2.1.2.1 2.1.2.1  GLYA GLYA 189 189 

HP0191  1.3.99.1   FRDB   

HP0192  1.3.99.1   FRDA   

HP0194 5.3.1.1 5.3.1.1  TPIS TPIS 104 104 

HP0195  1.3.1.9   FABI   

HP0196 2.3.1 2.3.1  LPXD LPXD 56 7 

HP0197 2.5.1.6 2.5.1.6  METK METK 241 241 
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Locus 
Tag 

EC 
DME 

Prediction 

EC 
Swissprot 
Annotation 

1 

EC 
Swissprot 
Annotation 

2 

DME 
Gene 

Prediction 

Swissprot 
Gene 

Annotation 

L3 L4 

HP0198 2.7.4.6 2.7.4.6  NDK NDK 71 71 

HP0201  2.3.1.n2   PLSX   

HP0202 2.3.1 2.3.1.180  FABH FABH 113 0 

HP0211  3.5.2.6   HCPA   

HP0212 3.5.1.18 3.5.1.18  DAPE DAPE 144 144 

HP0215  2.7.7.41   CDSA 7 7 

HP0216 1.1.1.267 1.1.1.267  DXR DXR 55 55 

HP0220 2.8.1.7 2.8.1.7   ISCS 38 38 

HP0224 1.8.4.12 1.8.4.11 1.8.4.12 MSRA, 
MSRB - 
Dual 
function 

MSRAB 28 28 

HP0230 2.7.7.38 2.7.7.38  KDSB KDSB 109 109 

HP0235  3.5.2.6   HCPE   

HP0237 2.5.1.61 2.5.1.61  HEM3 HEM3 158 158 

HP0238 6.1.1.15 6.1.1.15  SYP SYP 289 289 

HP0239 1.2.1.70 1.2.1.70  HEM1 HEM1 102 102 

HP0244  2.7.13.3    7 7 

HP0247 3.6.1     61 0 

HP0250 3.6.3     40 0 

HP0255 6.3.4.4 6.3.4.4  PURA PURA 185 182 

HP0258 3.4.24 3.4.24   Y258 21 0 

HP0259 3.1.11.6 3.1.11.6  EX7L EX7L 173 173 

HP0281 2.4.2.29 2.4.2.29  TGT TGT 160 160 

HP0283 4.2.3.4 4.2.3.4  AROB AROB 132 132 

HP0286 3.4.24     10 0 

HP0290 4.1.1.20 4.1.1.20  DCDA DCDA 22 15 

HP0294 3.5.1.4 3.5.1.4  AMIE AMIE 180 180 

HP0301 3.6.3     36 0 

HP0306 5.4.3.8 5.4.3.8  GSA GSA 196 196 

HP0319 6.1.1.19 6.1.1.19  SYR SYR 194 186 

HP0321 2.7.4.8 2.7.4.8  KGUA KGUA 29 29 

HP0328 2.7.1.130 2.7.1.130  LPXK LPXK 80 80 

HP0329 6.3.1.5 6.3.1.5  NADE NADE 77 77 

HP0330 1.1.1.86 1.1.1.86  ILVC ILVC 71 71 

HP0336  3.5.2.6   HCPB   

HP0339  3.2.1.17      

HP0347  5.4.99   Y347 7 0 

HP0349 6.3.4.2 6.3.4.2  PYRG PYRG 171 171 

HP0354 2.2.1.7 2.2.1.7  DXS DXS 182 182 

HP0360 5.1.3     9 0 

HP0361 5.4.99.12 5.4.99.12  TRUA TRUA 93 93 

HP0363 2.1.1.77 2.1.1.77   PIMT 15 15 

HP0364  1.17.4.1   RIR2   

HP0370 6.4.1.1     15 15 

HP0372 3.5.4.13 3.5.4.13  DCD DCD 77 77 

HP0374  2.1.1   RSME   

HP0376 4.99.1.1 4.99.1.1  HEMH HEMH 95 95 
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Locus 
Tag 

EC 
DME 

Prediction 

EC 
Swissprot 
Annotation 

1 

EC 
Swissprot 
Annotation 

2 

DME 
Gene 

Prediction 

Swissprot 
Gene 

Annotation 

L3 L4 

HP0380 1.4.1.4 1.4.1.4   DHE4 79 34 

HP0387  3.6.4   PRIA 7 0 

HP0388 2.1.1 2.1.1  CMOA CMOA 73 7 

HP0389 1.15.1.1 1.15.1.1   SODF 19 19 

HP0390  1.11.1   TPX 7 0 

HP0392 2.7.13.3     11 11 

HP0400 1.17.1.2 1.17.1.2  ISPH ISPH 123 123 

HP0401 2.5.1.19 2.5.1.19  AROA AROA 111 111 

HP0402  6.1.1.20   SYFB 7 7 

HP0403 6.1.1.20 6.1.1.20  SYFA SYFA 134 122 

HP0409 6.3.5.2 6.3.5.2  GUAA GUAA 230 230 

HP0417 6.1.1.10 6.1.1.10  SYM SYM 65 58 

HP0419 2.1.1 2.1.1  CMOB CMOB 115 0 

HP0422 4.1.1.19 4.1.1.19    19 15 

HP0440 5.99.1.2     9 9 

HP0475 3.6.3.31   POTA  26 9 

HP0476 6.1.1.17 6.1.1.17   SYE1 171 164 

HP0493 2.7.8.13 2.7.8.13  MRAY MRAY 119 119 

HP0494 6.3.2.9 6.3.2.9  MURD MURD 50 50 

HP0496  3.1.2   Y496 8 0 

HP0500  2.7.7.7   DPO3B   

HP0501 5.99.1.3 5.99.1.3  GYRB GYRB 121 121 

HP0510 1.3.1.26 1.3.1.26  DAPB DAPB 93 93 

HP0512 6.3.1.2 6.3.1.2   GLNA 31 31 

HP0515 3.4.25 3.4.25  HSLV HSLV 89 0 

HP0527 3.5.1     14 0 

HP0549 5.1.1.3 5.1.1.3  MURI MURI 100 99 

HP0550 3.6.1 3.6.4  RHO RHO 68 0 

HP0552  2.1.1   RSMI   

HP0557 6.4.1.2 6.4.1.2  ACCA ACCA 127 127 

HP0558 2.3.1     22 7 

HP0566 5.1.1.7 5.1.1.7  DAPF DAPF 120 120 

HP0570 3.4.11.1 3.4.11.1  AMPA AMPA 171 171 

HP0572 2.4.2.7 2.4.2.7  APT APT 75 75 

HP0576  3.4.21.89   LEP 7 7 

HP0577  1.5.1.5 3.5.4.9  FOLD   

HP0581 3.5.2.3 3.5.2.3  PYRC PYRC 105 105 

HP0598  2.3.1.47 2.3.1.29  BIKB 7 7 

HP0604 4.1.1.37 4.1.1.37  DCUP DCUP 129 129 

HP0615 6.5.1.2 6.5.1.2  DNLJ DNLJ 92 92 

HP0617 6.1.1.12 6.1.1.12  SYD SYD 261 245 

HP0618 2.7.4.3 2.7.4.3  KAD KAD 81 81 

HP0620  3.6.1.1   IPYR 8 8 

HP0623 6.3.2.8 6.3.2.8  MURC MURC 114 114 

HP0625 1.17.7.1 1.17.7.1  ISPG ISPG 158 158 

HP0643 6.1.1.17 6.1.1  SYE2 SYE2 182 175 

HP0646 2.7.7.9     10 10 

HP0648 2.5.1.7 2.5.1.7  MURA MURA 171 171 
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Locus 
Tag 

EC 
DME 

Prediction 

EC 
Swissprot 
Annotation 

1 

EC 
Swissprot 
Annotation 

2 

DME 
Gene 

Prediction 

Swissprot 
Gene 

Annotation 

L3 L4 

HP0649 4.3.1.1 4.3.1.1  ASPA ASPA 76 76 

HP0653  1.16.3.1   FTN 8 8 

HP0658 6.3.5 6.3.5  GATB GATB 145 0 

HP0661 3.1.26.4 3.1.26.4  RNH RNH 36 36 

HP0662 3.1.26.3 3.1.26.3  RNC RNC 95 95 

HP0663 4.2.3.5 4.2.3.5  AROC AROC 150 150 

HP0665 1.3.99.22 1.3.99.22  HEMN HEMN 21 21 

HP0680 1.17.4.1 1.17.4.1   RIR1 14 14 

HP0683  2.7.7.23 2.3.1.157  GLMU   

HP0690 2.3.1.9     41 16 

HP0691 2.8.3.5 2.8.3.5   SCOA 18 18 

HP0692 2.8.3.5 2.8.3.5   SCOB 23 23 

HP0700  2.7.1.107   KDGL   

HP0701 5.99.1.3 5.99.1.3  GYRA GYRA 120 120 

HP0705 3.6.3    UVRA 15 0 

HP0707 2.1.1 2.1.1  MRAW RSMH 123 0 

HP0715 3.6.3.25   LPTB  25 9 

HP0723 3.5.1.1 3.5.1.1   ASPG 34 10 

HP0728  6.3.4   TILS   

HP0734 2.3.1    RIMO 14 0 

HP0736  2.6.1   Y736   

HP0738 6.3.2.4 6.3.2.4  DDL DDL 56 56 

HP0742 2.7.6.1 2.7.6.1  KPRS KPRS 43 43 

HP0745 5.4.99 5.4.99   Y745 17 0 

HP0747 2.1.1.33 2.1.1.33  TRMB TRMB 45 38 

HP0748 3.6.3     25 0 

HP0760 3.1.4.16 3.1.4.16  CNPD CNPD 113 113 

HP0761 3.1.4.16     9 9 

HP0774 6.1.1.1 6.1.1.1  SYY SYY 80 73 

HP0776  2.7.7.6   RPOZ 8 8 

HP0777 2.7.4.22 2.7.4.22  PYRH PYRH 83 83 

HP0779 4.2.1.3 4.2.1.3  ACON2 ACON2 47 47 

HP0791  3.6.3.3 3.6.3.5  HMCT 7 0 

HP0793 3.5.1.88 3.5.1.88  DEF DEF 73 73 

HP0794 3.4.21.92 3.4.21.92  CLPP CLPP 117 117 

HP0799  2.7.7.n5   MOG   

HP0802 3.5.4.25 3.5.4.25  RIBA RIBA 39 39 

HP0804 4.1.99.12 4.1.99.12   RIBB 25 25 

HP0808 2.7.8.7 2.7.8.7  ACPS ACPS 46 46 

HP0822 1.1.1.3 1.1.1.3   DHOM 9 9 

HP0825  1.8.1.9   TRXB   

HP0829 1.1.1.205 1.1.1.205  IMDH IMDH 63 63 

HP0830 6.3.5 6.3.5  GATA GATA 205 0 

HP0831  2.7.1.24   COAE   

HP0832 2.5.1.16 2.5.1.16  SPEE SPEE 99 92 

HP0843 2.5.1.3 2.5.1.3  THIE THIE 22 22 

HP0844  2.7.1.49 2.7.4.7  THID   

HP0845 2.7.1.50 2.7.1.50  THIM THIM 69 69 
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Locus 
Tag 

EC 
DME 

Prediction 

EC 
Swissprot 
Annotation 

1 

EC 
Swissprot 
Annotation 

2 

DME 
Gene 

Prediction 

Swissprot 
Gene 

Annotation 

L3 L4 

HP0846 3.1.21.3     14 14 

HP0854 1.7.1.7 1.7.1.7  GUAC GUAC 161 161 

HP0857 5.3.1 5.3.1  GMHA GMHA 38 0 

HP0858  2.7.1 2.7.7  HLDE 7 7 

HP0859 5.1.3.20   HLDD  12 12 

HP0860  3.1.3   GMHB   

HP0862  2.7.1.33   COAX   

HP0865 3.6.1.23 3.6.1.23  DUT DUT 39 39 

HP0867 2.4.1.182 2.4.1.182  LPXB LPXB 126 126 

HP0871 3.6.1.26 3.6.1.26  CDH CDH 60 60 

HP0875 1.11.1.6 1.11.1.6  CATA CATA 113 113 

HP0877 3.1.22.4 3.1.22.4  RUVC RUVC 76 76 

HP0883 3.6.1 3.6.4.12  RUVA RUVA 73 0 

HP0886 6.1.1.16 6.1.1.16  SYC SYC 245 245 

HP0888 3.6.3    Y888 12 0 

HP0919 6.3.5.5 6.3.5.5  CARB CARB 199 199 

HP0921 1.2.1.12 1.2.1.12  G3P G3P 27 12 

HP0922 1.1.1     14 7 

HP0924  5.3.2   Y924   

HP0926 5.4.99 5.4.99  TRUD TRUD 79 0 

HP0927 3.4.24 3.4.24  HTPX HTPX 77 0 

HP0928 3.5.4.16 3.5.4.16  GCH1 GCH1 65 65 

HP0930 3.1.3.5 3.1.3.5  SURE SURE 103 103 

HP0941 5.1.1.1 5.1.1.1  ALR ALR 157 157 

HP0949 2.1.1 2.1.1  RLMH RLMH 50 0 

HP0950 6.4.1.2     24 24 

HP0955 2.4.99 2.4.99  LGT LGT 88 0 

HP0956  5.4.99   Y956 7 0 

HP0960 6.1.1.14 6.1.1.14  SYGA SYGA 150 150 

HP0961 1.1.1.94 1.1.1.94  GPDA GPDA 98 98 

HP0972 6.1.1.14 6.1.1.14  SYGB SYGB 208 201 

HP0974 5.4.2.1 5.4.2.1  GPMI GPMI 99 99 

HP0975  6.3.5   GATC   

HP0976 2.6.1.62 2.6.1.62  BIOA BIOA 14 11 

HP0980 3.4.24     14 0 

HP0981 3.1.11.6   EX7L  19 19 

HP1010 2.7.4.1 2.7.4.1  PPK PPK 50 50 

HP1011 1.3.3.1 1.3.5.2  PYRD PYRD 131 131 

HP1013 4.2.1.52 4.2.1.52  DAPA DAPA 129 129 

HP1019 3.4.21     23 0 

HP1020  2.7.7.60 4.6.1.12  ISPDF   

HP1026 3.4.21.53     9 9 

HP1036  2.7.6.3   HPPK   

HP1038 4.2.1.10 4.2.1.10  AROQ AROQ 22 22 

HP1045 6.2.1.1 6.2.1.1  ACSA ACSA 243 236 

HP1050 2.7.1.39 2.7.1.39  KHSE KHSE 38 35 

HP1052 3.5.1 3.5.1  LPXC LPXC 57 0 

HP1058 2.1.2.11 2.1.2.11  PANB PANB 115 115 
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Tag 

EC 
DME 

Prediction 

EC 
Swissprot 
Annotation 

1 

EC 
Swissprot 
Annotation 

2 

DME 
Gene 

Prediction 

Swissprot 
Gene 

Annotation 

L3 L4 

HP1059 3.6.1 3.6.4.12  RUVB RUVB 150 0 

HP1063 2.1.1 2.1.1  RSMG RSMG 53 7 

HP1068 2.1.1 2.1.1  PRMA PRMA 20 0 

HP1069 3.4.24 3.4.24   FTSH 75 0 

HP1071  2.7.8.8   PSS   

HP1072 3.6.3.4 3.6.3.4   COPA 189 162 

HP1082 3.6.3.43     21 14 

HP1084 2.1.3.2 2.1.3.2  PYRB PYRB 131 131 

HP1088 2.2.1.1     29 22 

HP1098  3.5.2.6   HCPC   

HP1100 4.2.1.12 4.2.1.12  EDD EDD 32 18 

HP1101 1.1.1.49 1.1.1.49   G6PD 18 18 

HP1102  3.1.1.31   6PGL 7 7 

HP1103 2.7.1.2 2.7.1.2  GLK GLK 122 122 

HP1112 4.3.2.2 4.3.2.2  PUR8 PUR8 15 15 

HP1121  2.1.1.37      

HP1123  5.2.1.8   SLYD   

HP1132 3.6.3.14 3.6.3.14  ATPB ATPB 291 262 

HP1134 3.6.3.14 3.6.3.14  ATPA ATPA 276 252 

HP1141 2.1.2.9 2.1.2.9  FMT FMT 117 117 

HP1148 2.1.1.31 2.1.1.31  TRMD TRMD 47 47 

HP1153 6.1.1.9 6.1.1.9  SYV SYV 156 134 

HP1155 2.4.1.227 2.4.1.227  MURG MURG 183 183 

HP1158  1.5.1.2   P5CR   

HP1160 3.4.24 3.4.24   Y1160 41 0 

HP1166 5.3.1.9 5.3.1.9  G6PI G6PI 172 172 

HP1171 3.6.3.31     24 10 

HP1178 2.4.2.1 2.4.2.1  DEOD DEOD 17 17 

HP1179 5.4.2.7 5.4.2.7  DEOB DEOB 148 148 

HP1189 1.2.1.11 1.2.1.11  DHAS DHAS 12 12 

HP1190 6.1.1.21 6.1.1.21  SYH SYH 216 216 

HP1198 2.7.7.6 2.7.7.6  RPOBC RPOBC 1268 1246 

HP1206 3.6.3     9 0 

HP1210 2.3.1.30 2.3.1.30   CYSE 21 21 

HP1213 2.7.7.8 2.7.7.8  PNP PNP 87 87 

HP1218  6.3.4.13   PUR2   

HP1220 3.6.3.25     12 9 

HP1221 2.5.1.31 2.5.1.31   UPPS 33 33 

HP1228 3.6.1 3.6.1  RPPH RPPH 62 0 

HP1229 2.7.2.4 2.7.2.4  AK AK 19 19 

HP1237 6.3.5.5 6.3.5.5  CARA CARA 54 46 

HP1238 3.5.1.49 3.5.1.49  AMIF AMIF 201 201 

HP1241 6.1.1.7 6.1.1.7  SYA SYA 372 372 

HP1248 3.1.13    RNR 11 0 

HP1249 1.1.1.25 1.1.1.25  AROE AROE 78 78 

HP1253 6.1.1.2 6.1.1.2   SYW 27 20 

HP1257 2.4.2.10 2.4.2.10  PYRE PYRE 78 78 

HP1259 3.5.1 3.5.1   NPD 9 0 
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HP1260  1.6.99.5      

HP1261 1.6.99.5 1.6.99.5   NUOB 50 50 

HP1262  1.6.99.5    7 7 

HP1263 1.6.99.5 1.6.99.5  NUOD NUOD 131 131 

HP1267 1.6.99.5 1.6.99.5  NUOH NUOH 70 70 

HP1268 1.6.99.5 1.6.99.5  NUOI NUOI 78 78 

HP1270  1.6.99.5   NUOK   

HP1275 5.4.2.10   GLMM  10 10 

HP1277 4.2.1.20 4.2.1.20  TRPA TRPA 139 139 

HP1278 4.2.1.20 4.2.1.20   TRPB 117 117 

HP1279 4.1.1.48 4.1.1.48 5.3.1.24  TRPC 25 25 

HP1280 2.4.2.18 2.4.2.18  TRPD TRPD 79 79 

HP1281  4.1.3.27   TRPG   

HP1282 4.1.3.27 4.1.3.27  TRPE TRPE 70 70 

HP1293 2.7.7.6 2.7.7.6  RPOA RPOA 56 49 

HP1299  3.4.11.18   AMPM   

HP1323 3.1.26.4 3.1.26.4  RNH2 RNH2 115 115 

HP1325 4.2.1.2 4.2.1.2  FUMC FUMC 145 145 

HP1335 2.8.1 2.8.1  MNMA MNMA 104 0 

HP1337  2.7.7.18   NADD   

HP1345 2.7.2.3 2.7.2.3   PGK 45 45 

HP1347 3.2.2 3.2.2.27  UNG UNG 61 0 

HP1348  2.3.1.51   PLSC   

HP1355  2.4.2.19   NADC   

HP1356  2.5.1.72   NADA 8 8 

HP1357 4.1.1.65 4.1.1.65  PSD PSD 54 54 

HP1362  3.6.4.12   DNAB 7 0 

HP1364  2.7.13.3      

HP1375 2.3.1.129 2.3.1.129  LPXA LPXA 91 91 

HP1376 4.2.1 4.2.1  FABZ FABZ 55 0 

HP1379 3.4.21.53 3.4.21.53   LON 56 56 

HP1385 3.1.3.11 3.1.3.11  F16PA F16PA 63 56 

HP1386 5.1.3.1 5.1.3.1   RPE 10 10 

HP1394 2.7.1.23 2.7.1.23  PPNK PPNK 126 119 

HP1399  3.5.3.1      

HP1406  2.8.1.6   BIOB   

HP1413 1.7.1.13 1.7.1.13  QUEF QUEF 63 63 

HP1415 2.5.1.8 2.5.1.75  MIAA MIAA 120 120 

HP1418  1.1.1.158   MURB   

HP1420 3.6.3.14 3.6.3.14   FLII 15 15 

HP1422 6.1.1.5 6.1.1.5  SYI SYI 243 229 

HP1428 2.1.1 2.1.1  RLMN RLMN 135 0 

HP1431 2.1.1 2.1.1  KSGA RSMA 92 0 

HP1441  5.2.1.8   PPIA   

HP1443 2.7.1.148 2.7.1.148  ISPE ISPE 30 30 

HP1448 3.1.26.5 3.1.26.5  RNPA RNPA 38 38 

HP1459  5.4.99   Y1459   

HP1460 2.7.7.7 2.7.7.7  DPO3A DPO3A 70 70 
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HP1468 2.6.1.42 2.6.1.42   ILVE 14 14 

HP1470 2.7.7.7 2.7.7.7   DPO1 28 28 

HP1474 2.7.4.9 2.7.4.9  KTHY KTHY 84 84 

HP1475 2.7.7.3 2.7.7.3  COAD COAD 59 59 

HP1476  4.1.1   PAAD 7 0 

HP1478 3.6.1     24 0 

HP1480 6.1.1.11 6.1.1.11  SYS SYS 177 177 

HP1482  3.1.11.6   EX7S   

HP1494 6.3.2 6.3.2.13   MURE 17 8 

HP1495 2.2.1.2 2.2.1.2  TAL TAL 55 55 

HP1497 3.1.1.29 3.1.1.29  PTH PTH 64 64 

HP1503 3.6.3     14 0 

HP1509  2.3.1.n3   PLSY   

HP1513  2.9.1.1   SELA   

HP1523 3.6.1 3.6.4.12   RECG 21 0 

HP1532 2.6.1.16 2.6.1.16   GLMS 61 61 

HP1533  2.1.1.148   THYX   

HP1540  1.10.2.2    7 7 

HP1541 3.6.1 3.6.4   MFD 36 0 

HP1547 6.1.1.4 6.1.1.4  SYL SYL 286 286 

HP1563 1.11.1.15 1.11.1.15   TSAA 14 14 

HP1576 3.6.3.28 3.6.3  METN METN 111 10 

HP1582 2.6.99.2 2.6.99.2  PDXJ PDXJ 138 138 

HP1583 1.1.1.262 1.1.1.262  PDXA PDXA 127 127 

HP1584 3.4.24.57 3.4.24.57  GCP GCP 142 142 

 

 

Transformation between SP hit location and corresponding 
nucleotide 

 

Transformation formulae relating the location of the SP hit to the corresponding 

nucleotide location in the genomic sequence for every frame. 

 

Using the following notation: 

G: = Length of the genome 

X: = Location of SP hit (in amino acids) 

L: = Length of hitting SP   

F: = Frame number {1,2,3,4,5 or 6} 

 

S: = Start location of SP hit (in nucleotides) 

E: = End location of SP hit (in nucleotides) 
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 S = Start location of SP hit 

(in nucleotides) 

E=End location of SP hit 

(in nucleotides) 

 

Forward strand 3(X-1) +F 3(X -1) + 3L+ (F-1) 

Reverse strand G- 3(X-1) – 3L + (5-F) G -3(X-1) +(4-F) 

 

Table 4.6: Transformation formulae relating the location of the SP hit to the 

corresponding nucleotide location in the genomic sequence for every frame 
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5. Deriving enzymatic and taxonomic signatures of 
metagenomes from short reads  
 Our article, “Deriving enzymatic and taxonomic signatures of metagenomes from 

short read data” published in BMC Bioinformatics 2010, 11:390doi:10.1186/1471-

2105-11-390 is included in its entirety as part of this work.   

5.1 Background 

 

Characterizing complex microbial ecosystems remains a challenge for metagenomics. 

Environments such as soil, containing many thousands of species require massive 

sequencing power to obtain a reasonable coverage of the microbial community. In 

practice this means that such studies may suffer from highly incomplete sampling, see 

for example Tringe et al. [5.1]. The so called "deep sequencing" technologies offer 

hope due their tremendously high-throughput – the Illumina Genome analyzer 

(Illumina) and the SOLiD 3 (Life Technologies) can currently produce over 10 Gb, 

and up to 40 Gb of high quality reads, respectively. However these fantastic capacities 

come with a price – a short read length that currently stands at 100 bases or lower for 

both these technologies. For a recent review of experimental and computational 

achievements and challenges in metagenomics see Wooley et al. [5.2]. 

 
Unlike a bacterial genome, where short reads can be compensated for by using paired 

ends and relying on assembly, a highly complex metagenome will often not enable 

such assembly, and the short individual reads will therefore constitute the data from 

which information has to be extracted. Of course, getting significant BLAST hits with 

queries of 100 nucleotides or below is challenging, which results in no match that can 

be assigned a putative function for the vast majority of sequence reads. In the seminal 

paper by Dinsdale and coworkers [5.3] using reads of 105 bases and below, most of 

the biomes investigated yielded less than 20% BLAST hits, many of which could not 

be ascribed a function. 

  

Conventionally, one first tries to reconstruct a long contig from short reads. The 

contigs are then analyzed for open reading frames (ORFs) which may be translated 

into putative proteins. The function of the putative proteins can be deduced by 

comparing them with known proteins whose sequence similarity is high enough (e.g. 

very low BLAST e-values) to warrant such predictions. This can be improved by 

combining various methods such as studying both phylogeny and function [5.4]. The 

problems of handling and analyzing these environmental data have been recently 

discussed by Raes and Bork [5.5]. 

 

We propose to forego some of the stages used in conventional analysis and consider 

the multitude of available short reads directly. This can allow us to gather inclusive 

information. We use this term to imply functional information on the aggregate of all 

data rather than the exclusive information specifying what are the exact genes present 

and to which species these genes belong. Here we present such a tool employing 

peptide-based enzymatic signatures and demonstrate its application to quality control 

and functional investigation of metagenomic data. 
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Extending the peptide-based approach, we can also derive taxonomic signatures from 

metagenomic short reads. Current technologies for estimating microbial phylogenetic 

diversity of metagenomes involve calculation of similarity between sequences 

encoding rRNAs to database entries such as the ones available in the Ribosomal 

Database Project, RDP [5.6]. This procedure requires the expensive operation of 

assembly of contigs, and is based on the premise that 16S rRNA sequences provide a 

suitable basis for taxa-separations, defining operational taxonomic units (OTUs) [5.7]. 

Our approach differs from this conventional method in two respects: first we deal 

directly with short reads, second we do not employ the 16S rRNA as the taxonomic 

indicator. Instead we use SPs of aminoacyl tRNA synthetases (aaRS) for taxonomic 

indication. 

 

Recently, the algorithm of CARMA [5.8] was introduced to provide phylogenetic 

classification directly from short reads. It is composed of two components: detection 

of Pfam domain and protein family fragments (EGTs) that are conserved in an 

environmental sample and reconstruction of a phylogenetic tree for each matching 

Pfam family. The authors state that environmental gene tags as short as 27 amino 

acids can accurately be classified with high specificity. We provide an accurate 

alternative to this approach, based on peptides of lengths 7 amino acids and higher, 

and therefore more suitable for short read data. 

 

The workflow of our paper is the following:  

a. Based on the concept of Specific Peptides (SPs) we propose their direct 

application to short read (SR) analysis. 

b.  We derive factors that reflect the ratio between counts of SPs, corresponding 

to a specific EC category, on a set of SRs of a genome or a metagenome, and 

the numbers of enzyme sequences carrying the same EC annotation on the 

genome or the metagenome. This is exemplified first on Escherichia coli data 

and further developed on artificial metagenomes of known bacteria, relying on 

their genomic sequences and enzymatic annotations of their proteins in 

Uniprot. 

c. We develop the concept of TSPs, taxa-specific SPs, using amino-acyl tRNA 

synthetases that are known to appear only once per species. The 

determinations of which SPs are taxon-specific, and their associated factors, 

are derived from all enzymatic data of Swiss-Prot. 

 

The methodology is explained in detail in the following section, and then exemplified 

and tested in the Results sections. 

Methods 

5.2 The Specific Peptides Approach. 

 

Kunik et al. [5.9] have extracted very short (~8aa) deterministic motifs, named 

Specific Peptides (SPs), whose presence in the protein sequence is a good marker for 

enzymatic functions. The use of motifs has a long history in bioinformatics [5.10; 

5.11]. It is only recently, however, that the increasing amounts of annotated protein 

data, combined with novel motif-extraction techniques [5.12], allowed extracting 

short SPs and using them with good precision and recall values.  SPs are strings of 

amino-acids, extracted from enzyme sequences using the motif extraction algorithm 
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MEX [5.12]. They are selected for their specificity to levels of the Enzyme 

Commission (EC) 4-level functional hierarchy. Weingart et al [5.13] have 

demonstrated how SPs can be employed for Data Mining of Enzymes (DME) on any 

given ensemble of protein sequences. Their methodology relies on coverage length 

(L, overall number of amino-acids) of SP hits that carry the same EC assignments. In 

their analysis, L≥7 has led to highly accurate results. They have also updated the SP 

list, extracting them from a training set of Swiss-Prot data dated July 27th, 2009. This 

set includes 257,598 SPs of length ≥ 7 with labels corresponding to EC levels 3 and 4. 

The latter are further filtered for redundancy to discard any SP that contains within it 

a shorter SP with the same EC specification. This leaves us with a final set of 148,395 

SPs that we use in our analysis. Testing the DME approach on a set of 19,849 

enzymes that were integrated into Swiss-Prot from July 28th until September 22nd 

2009, Weingart et al [5.13] obtained precision of 99.2% and recall of 92.4%, thus 

vouching for the high quality of DME predictions at the 3
rd

 level of the EC hierarchy. 

 

Here we propose using an SP search on raw Short Read (SR) data, independent of 

gene reconstruction. Available reads of k nucleotides, where 50 ≤ k ≤ 200, may be 

turned into peptide candidates in six possible ways, counting 3 possible ORFs and 2 

possible strands. Each of these pseudo-peptides is checked for SP hits. The latter are 

required to reside completely within the pseudo-peptides and have a length of 7 

amino-acids or more. Ignoring shorter matches has proved to reduce considerably the 

number of false positive hits in various trial runs. This reliance on k=7 and higher k-

mers agrees with the DME methodology of Weingart et al [5.13]. 

 

Given a set of short reads we try to obtain a prediction of the number of enzymes in 

the different EC categories that are expected to be found in the studied metagenome. 

For that we have to develop a method that relates the number of SP hits observed on a 

given ensemble of short reads to the expected number of related genes. We define this 

ratio as the raw-factor, RF(EC) = (number of SP hits)/(number of enzymatic genes) 

defined for each EC category. To explain this concept we will first illustrate it on a 

single organism and then proceed to derive it for suitable metagenomes. 

 

5.3 The SPSR methodology: Training on Escherichia coli. 

 

Here we study the derivation and meaning of factors on E. coli, making use of its 

well-studied genome and its well-annotated genes. We notice that if we insert the full 

genomic sequence instead of short reads in the evaluation of the RFs, these factors 

coincide with the average number of SP hits on an enzyme within each EC category. 

Given the genome, we generate SRs randomly, making sure we obtain a 5-fold 

coverage of the full genome. Calculating the raw-factors, we realize that they vary as 

we change the length of our SRs. The RFs for finite short read lengths are always 

lower than their asymptotic values, because SP lengths have to fit inside the lengths of 

the SRs. Figure 5.1 below displays the distribution of SP lengths for all EC categories. 

It allows us to estimate the reduced efficiency of SP detection according to the length 

of the SR.  
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Figure 5.1 – Histogram of SP lengths – represents the distribution of numbers of SPs 

as function of their length (number of amino-acids). 

 

Thus for a 50 nucleotide short read, no SP hit is expected with length larger than 16 

amino-acids. Given this geometrical constraint, the relative efficiency of observation 

of an SP with length L amino-acids, will be (17-L)/16, just by counting the number of 

times it can fit into a window of 16 amino-acids. Given the distribution in Figure 5.1 

we estimate the total efficiency for a 50 nucleotide short read to be 0.48. Similarly, we 

estimate the efficiency for SRs of 100 and 200 nucleotides, to be 0.73 and 0.87 

respectively. In practice the numbers may vary somewhat between EC categories, 

since their SP length distributions are not all equal to one another.  

Testing this procedure on E. coli, we obtain the factors displayed in Figure 5.2 below, 

following the general trend explained above.  
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Figure 5.2 - Raw factors. 

  

 

 

 

The 3
rd

 level EC category with the largest factor is 6.1.1, the aminoacyl tRNA 

synthetases (aaRS). Since all SPs are subject to similar constraints, we observe that if 

we measure the relative amounts of different EC categories, as shown in Figure 5.3, 

they remain approximately constant as we vary the SR length.  
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Figure 5.3 - Normalized factors. 

Factors normalized to the 6.1.1. raw-factor for the same data as in Figure 5.2. 

 

 

We will therefore normalize the raw factors by dividing them by the highest raw 

factor as follows (Figure 5.3): NF(EC)=RF(EC)/(RF(6.1.1)). The stability of the NFs 

will allow us to employ them in metagenomic studies of variable SR lengths.  

 

 

5.4 The SPSR methodology: Training on 11 bacteria. 

  
Next we use a set of 11 bacteria to serve as a training set, to provide factors that are 

suitable for metagenomic studies. The identities of the bacteria are displayed in Table 

5.1 below, together with another set of 11 bacteria that will be used as a test set for the 

resulting factors. The bacteria were chosen from different phyla and classes to provide 

a balanced representation of the expected variance in metagenomic studies. Moreover, 

care was taken to choose species with well-studied genomes, having many EC-

annotated enzymes. Proteomic information has been derived from Uniprot. 
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Organism Name ID Phyla Total 

Uniprot 
Proteins 

Total 
Uniprot 

Enzymes 

Choice 

Mycobacterium tuberculosis. B01 Actinobacteria 5,971 1,371 Train 

Mycobacterium bovis. B02 Actinobacteria 3,986 1,253 Test 

Sulfurihydrogenibium azorense B03 Aquificae 1,708 486 Train 

Aquifex aeolicus. B04 Aquificae 1,556 368 Test 

Cytophaga hutchinsonii  B05 Bacteroidetes 3,771 895 Test 

Gramella forsetii  B06 Bacteroidetes 3,554 992 Train 

Pelodictyon luteolum  B07 Chlorobi 2,078 496 Test 

Chlorobium chlorochromatii  B08 Chlorobi 1,991 609 Train 

Nostoc punctiforme   B09 Cyanobacteria 6,601 1,534 Train 

Anabaena variabilis  B10 Cyanobacteria 5,643 1,362 Test 

Synechocystis sp  B11 Cyanobacteria 3,529 575 Train 

Bacillus cereus (strain ZK). B12 Firmicutes 5,638 1,469 Test 

Bacillus cereus (strain ATCC). B13 Firmicutes 5,248 1,546 Train 

Pseudomonas aeruginosa. B14 Proteobacteria 9,091 848 Train 

Rhizobium meliloti  B15 Proteobacteria 7,107 1,583 Test 

Salmonella typhimurium. B16 Proteobacteria 5,768 1,279 Train 

Shigella flexneri. B17 Proteobacteria 5,395 813 Test 

Salmonella typhi. B18 Proteobacteria 5,351 942 Test 

Escherichia coli (K12). B19 Proteobacteria 4,412 1,443 Train 

Caulobacter crescentus  B20 Proteobacteria 3,852 1,238 Test 

Leptospira biflexa  B21 Spirochaetes 3,730 957 Train 

Thermotoga petrophila B22 Thermotogae 1,784 411 Test 

 

Table 5.1: Bacterial genomes used for training and testing the SPSR methodology. 

 

Each genome on this list has been randomly divided into reads of length 50, with 5 

fold coverage of each genome, and submitted to SP analysis. To gather statistics we 

have analyzed 15 combinations of 7 out of the 11 organisms of the training set. Each 

such set of 7 organisms served to define a super-organism (or artificial metagenome) 

with given annotated enzymes and SP counts.  The resulting numbers of SP hits were 

then compared with the known numbers of enzyme-genes, leading to the desired 

factors for each EC category. Normalized factors of leading categories are presented 

in Table 5.2 below. 
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EC 
Normalized 

 factor 
Standard  
Deviation 

1.1.1 0.15 0.014 

1.2.1 0.28 0.024 

2.1.1 0.22 0.030 

2.3.1 0.11 0.023 

2.4.1 0.16 0.028 

2.4.2 0.26 0.011 

2.5.1 0.25 0.011 

2.6.1 0.17 0.010 

2.7.13 0.03 0.003 

2.7.7 0.45 0.022 

3.1.1 0.08 0.022 

3.1.3 0.07 0.010 

3.2.1 0.07 0.017 

3.5.1 0.15 0.034 

3.6.1 0.89 0.026 

3.6.3 0.45 0.064 

4.1.1 0.25 0.019 

4.2.1 0.30 0.024 

6.1.1 1.00 0.000 

 

Table 5.2: Factors normalized to the 6.1.1 raw factor  derived from an analysis of SRs 

with length of l=50 nucleotides belonging to15 combinations of 7 out of the 11 

organisms of the training set listed in Table 5.1. 

 

 

Technical details 

 
We utilize the Knuth Morris Pratt algorithm to perform the search of SPs of length m 

amino-acids on the six-mode translations of short reads of length n bases. This leads 

to temporal complexity of order O(m+2n). Our system runs on a four-processors 

Intel(R) Xeon(R) CPU 2.33GHz Linux machine and performs a search of the full SP 

list on approximately 50,000 nucleotides per hour.  

We provide an online web tool that processes short read files provided by users.   The 

system can be accessed at http://horn.tau.ac.il/SPSR. 

 

 

5.5 Taxon Specific Peptides 

 
The SP methodology can be further developed to characterize taxon-specific SPs, to 

be denoted as TSPs. This is of interest for pervasive EC categories, some of which we 

will encounter in our metagenomic analysis. The idea is then, for a particular EC 

category (6.1.1, aminoacyl tRNA synthetases, aaRS) to filter the SPs according to 

whether they are specific to a given domain, given phylum or class. The training data 
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on the quoted EC categories are rich enough to allow separation into Archaea, 

Eukarya and Bacteria, and further specification of bacteria into Proteobacateria, 

Firmicutes, Cyanobacteria and Actinobacteria. The phylum Proteobacteria, being the 

largest in the data, allows for further filtering into alpha-, beta- and 

gammaproteobacteria. 

We further concentrate on those aaRS EC numbers that are known to have a single 

protein per species. An analysis of all bacterial aaRS in Swiss-Prot leads to the 

statistics displayed in Table 5.3 below.  

 

 

 

EC 
# 

doublets 

# 

triplets 

# 

Proteins 

% 

multiples 
S61 

6.1.1.1 18 0 474 3.80  

6.1.1.2 3 0 125 2.40  

6.1.1.3 1 0 616 0.16 x 

6.1.1.4 2 0 703 0.28 x 

6.1.1.5 10 0 524 1.91 x 

6.1.1.6 60 3 527 12.52  

6.1.1.7 1 0 628 0.16 x 

6.1.1.9 0 0 293 0.00 x 

6.1.1.10 2 0 421 0.48 x 

6.1.1.11 4 0 735 0.54 x 

6.1.1.12 2 0 688 0.29 x 

6.1.1.13 68 1 172 40.70  

6.1.1.14 276 0 825 33.45  

6.1.1.15 10 0 762 1.31 x 

6.1.1.16 14 0 691 2.03 x 

6.1.1.17 114 0 808 14.11  

6.1.1.18 0 0 139 0.00 x 

6.1.1.19 4 0 675 0.59 x 

6.1.1.20 251 0 877 28.62  

6.1.1.21 6 0 627 0.96 x 

6.1.1.22 1 0 256 0.39 x 

 

Table 5.3: Statistics of bacterial aaRS enzymes in Swiss-Prot data. 

The column ‘%multiples’ refers to the percentage of species that display multiple 

proteins with the same EC number. The sub-set S61, defined by x entries in the last 

column, is selected for taxonomic classification. 
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Confining ourselves to aaRS that have up to 2% multiple entries, we select the 

subgroup to be denoted S61 (single proteins in the 6.1.1 EC category), indicated on 

Table 5.3. It is this S61 set that we will employ for taxon classification. Eliminating 

aaRS categories with many multiples helps in reducing the margin of error in our 

predictions. 

 

TSPs are selected for their phylum-level and class-level specificity, after scrutinizing 

the enzyme data-set of Swiss-Prot. We make use of the same data-set to determine the 

raw-factors that may be associated with the various TSPs. These would theoretically 

correspond to very large reads, and only their ratios should be trusted for short reads. 

Table 5.4 below represents the factors for the S61 subset of the EC category of 6.1.1. 

 

 

 Taxon # enzymes # TSPs # hits factor 

 Archaea 543 408 1807 3.33 

 Eukaryota 259 150 260 1.00 

 Bacteria 7752 8310 98556 12.71 

 

Bacteria Proteobacteria 4341 3768 34376 7.92 

Bacteria Firmicutes 1561 1130 7457 4.78 

Bacteria Cyanobacteria 328 175 541 1.65 

Bacteria Actinobacteria 494 392 1874 3.79 

Bacteria Tenericutes 193 25 72 0.37 

Bacteria Bacteroidetes 132 103 223 1.69 

Bacteria Spirochaetes 185 71 173 0.94 

Bacteria Thermotogae 81 9 22 0.27 

Bacteria Chlamydiae 114 140 383 3.36 

Bacteria Chlorobi 90 31 79 0.88 

Archaea Crenarchaeota 165 53 158 0.96 

Archaea Euryarchaeota 359 281 932 2.60 

 

Proteobacteria Gammaproteobacteria 2372 1624 13622 5.74 

Proteobacteria Alphaproteobacteria 870 675 3806 4.37 

Proteobacteria Betaproteobacteria 638 394 1950 3.06 

Proteobacteria Epsilonproteobacteria 223 178 430 1.93 

Proteobacteria Deltaproteobacteria 229 9 19 0.08 

Firmicutes Bacillales 614 327 1811 2.95 

Firmicutes Clostridia 374 142 567 1.52 

Firmicutes Lactobacillales 573 387 2543 4.44 

Cyanobacteria Chroococcales 114 64 184 1.61 

Bacterioidetes Bacteroidia 85 67 138 1.62 
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Table 5.4. Raw factors of TSPs corresponding to the S61 subset of EC category 6.1.1, 

as derived from TSP hits on proteomes in the Enzyme Swiss-Prot data-base. 

Shown are all taxa that have more than 80 aaRS enzymes listed in this data-base, 

numbers of TSP associated with the S61 set corresponding to the relevant taxa, their 

hits and the deduced raw factors. For bacteria and archaea, predicted numbers of 

enzymes are assumed to be proportional to numbers of cells present in the sample. In 

eukaryotes one should apply a further reduction by 1.5, the average number of aaRS 

enzymes per cell known to be detected in Uniprot data.  

 

 

We provide an online web tool that processes short read files queried by users, 

leading to a prediction of relative taxonomic mixtures of the presented data.   The 

system can be accessed at http://horn.tau.ac.il/S61TSPSR. 

 

Results: Analysis of the Methodology 

 

5.6 Test of the SPSR methodology. 

 

In the present section we test the factors derived from the artificial metagenomes (the 

super-organisms consisting of 7 out of the 11 training set organisms) on the test-set 

organisms listed in Table 5.1. Using the errors (standard-deviations) determined by 

the training procedure, we quote the quality of fits by using the chi-square test, which 

is expected to be of the order of the number of degrees of freedom, E[(X-µ)
2
/σ2

]=N 

(where E is the expectation value, X is the variable whose average is µ and standard-

deviation is σ, and N is the number of degrees of freedom). Overall, when the factors 

are applied to novel artificial 7 species metagenomes, the generalization errors are 

about the same as expected from the training set errors (Figure 5.4 below), with E ~ 

1.5 N.  
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Figure 5.4 - SPSR test on artificial metagenomes.  

 

However, when the same factors are applied to single species predictions (Figure 5.5 

below) the deviations are much larger.  



Page 86  

 

 

Figure 5.5 - SPSR test on bacterial genomes. 

 

 

The chi-squared test leads to E ~ 27N. Somewhat better fits are obtained for raw 

predictions, with E ~ 8N. The poor chi-square values reflect the fact that 

metagenomic averages smooth-out differences between single organisms. A similar 

behaviour is observed also for single species from the training set. Another aspect of 

the same effect is seen when larger metagenomes are considered, e.g. one composed 

of all 22 species, with predictions that are better than the training-set errors shown in 

Figure 5.6, where E ~ 0.4 N. 
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Figure 5.6 - SPSR test on a metagenome of all 22 bacteria.  

5.7 Test of the TSPSR method at the phylum level. 

 
We have applied the S61 TSPs to the 22 bacteria of Table 5.1. In each case we have 

calculated the TP (true-positive) signals (i.e. predicted numbers of enzymes associated 

with the correct phylum) and the FP (false-positive) ones. The results shown in Table 

5.5 validate this methodology. 

 
Organism Phylum Precision 

Mycobacterium tuberculosis. Actinobacteria 96% 

Mycobacterium bovis. Actinobacteria 96% 

Sulfurihydrogenibium azorense  Aquificae no prediction 

Aquifex aeolicus. Aquificae no prediction 

Cytophaga hutchinsonii Bacteroidetes 74% 

Gramella forsetii  Bacteroidetes 74% 

Pelodictyon luteolum Chlorobi 91% 

Chlorobium chlorochromatii Chlorobi 95% 

Nostoc punctiforme  Cyanobacteria 81% 

Anabaena variabilis  Cyanobacteria 89% 

Synechocystis sp.  Cyanobacteria 96% 

Bacillus cereus (strain ZK). Firmicutes 94% 

Bacillus cereus (strain ATCC 14579 ). Firmicutes 95% 

Pseudomonas aeruginosa. Proteobacteria 94% 

Rhizobium meliloti Proteobacteria 97% 

Salmonella typhimurium. Proteobacteria 99% 

Shigella flexneri. Proteobacteria 100% 
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Salmonella typhi. Proteobacteria 100% 

Escherichia coli (K12). Proteobacteria 99% 

Caulobacter crescentus Proteobacteria 88% 

Leptospira biflexa serovar Patoc  Spirochaetes 72% 

Thermotoga petrophila  Thermotogae 91% 

 

Table 5.5:  Phylum predictions  according to S61 TSPs for the 22 species of Table 

5.1. 

 

Although some of the data has been included in the training procedure, it should be 

emphasized that whereas training (i.e. assignment of TSPs) was carried out on all 

Swiss-Prot enzymes, the calculations of Table 5.5 are carried out on the full genomes 

of the 22 organisms, i.e. the procedure includes processing all genic and intergenic 

regions of these organisms. Precision is defined as TP/(TP+FP). No assignment has 

been made if the number of predicted enzymes, on the basis of TSPs, was less than 1. 

This was the case for the two species of Aquificae, for which we have no 

corresponding TSPs. 

 

5.8 Results: Environmental Metagenomic Analysis  

 

Enzymatic signatures of several metagenomes. 
Figure 5.7 below displays our analysis of 3 metagenomes taken from Dinsdale et al 

[5.3].  

 

 

Figure 5.7 - Enzymatic annotations predicted for three metagenomes. 

Predictions of number of enzymes in many EC categories for 3 metagenomes 

[Dinsdale et al. , 2008]  
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All of them comprise short reads, with average lengths of around 100 nucleotides. 

SPSR predictions are represented in absolute terms, i.e. predicted numbers of 

enzymes, using the l=100 raw factors, to exhibit common and different trends among 

these three examples.  

 

The Rios Mesquites Stromatolites bacteria (to be denoted Rios Mesquitos henceforth) 

and the Soudan Mine Red biofilm data (to be denoted Soudan Red) have more than 60 

predicted proteins in the EC category 6.1.1., while the Soudan Mine Black biofilm 

(Soudan Black) has only about 20 such proteins. Thus one would conclude that the 

total coverage content of the first two metagenomes is of the order of three cells or 

more, while that of the Soudan Black should be only of the order of one cell. In the 

two large metagenomes we find large contributions of EC category 1.1.1 (alcohol 

dehydrogenases with NAD
+
 or NADP

+
 as acceptor) and EC category 3.6.3 

(hydrolases catalysing transmembrane movement of substances). The Rios Mesquitos 

has the strongest signal in EC 1.10.2, oxidoreductases acting on diphenols with 

cytochrome as acceptor. 
It is clear from Figure 5.7 above that the Soudan Black metagenome is very different 

from the two others. In particular, it has a very strong signal for 5.4.99., 

intramolecular transferases. Follow up analysis indicates that this signal is due to 426 

SRs that carry the EC 5.4.99.2 (methylmalonyl-CoA mutase) signature. Their 

identification is due to two SPs with this assignment, NSISISGYH occurring 276 

times, and ISISGYHMQEAG occurring 185 times in these data. As these peptides 

partly overlap, there exist many short reads on which the two occur together.  These 

results stand out for several reasons: their numerous counts outnumber all other 

enzyme classes by more than an order of magnitude; no other SP of the same EC 

category is observed in the data; extending these SRs by other partially overlapping 

short reads does not lead to considerably larger putative proteins. These lines of 

evidence hint that the Soudan Black data-set should be reexamined, as some artifact 

has likely been introduced at some point. While such an examination is outside the 

scope of this paper, we wish to emphasize that the SPSR methodology quickly 

highlights such anomalies and can therefore serve, among other purposes, also as a 

rapid quality assessment tool for metagenomic data. 
  
 
 

5.9 Taxonomic analysis of metagenomes using TSPs. 

 
Taxonomic analysis of the three metagenomes analyzed above has been carried out 

using S61 TSPs. In all of the metagenomes examined we conclude that Bacteria are 

the dominant kingdom (with small traces of Archaea in the Soudan mine data). Both 

Soudan Red and Rios Mesquitos show that, among Bacteria, there is an order of 

magnitude difference in the quantities of Proteobacteria vs Firmicutes. Soudan Black 

data have the same order of magnitude for both, but given the artifact we have noted, 

this estimate should be taken with a grain of salt. Predictions for classes of 

Proteobacteira in Soudan Red are shown in Table 5.6 below, where they are compared 

with the results of the 16S rRNA-based analysis of Edwards et al [5.14] and with a 

CARMA analysis [5.8] of the same data.  
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Class Edwards CARMA S61TSP 

Alphaproteobacteria 40% 37% 45% 

Gammaproteobacteria 54% 40% 45% 

Betaproteobacteria 2% 8% 8% 

Epsilonproteobacteria 0% 2% 2% 

Deltaproteobacteria 3% 13% 0% 

 

Table 5.6: Comparison of class predictions within proteobacteria for the Soudan Red 

data. 

 

 

The Edwards results were estimated from Figure 1 of their paper, and the CARMA 

analysis was carried out by us using their website. There is an overall agreement 

regarding relative abundance of alpha- and gamma-proteobacteria, but the details of 

the minor classes differ among the different methods. This may be because the three 

methods rely on three different aspects of the data. 

 

A fourth metagenomic data-set to which we have applied our taxonomic analysis is 

that of DeLong et al. [5.15] who have studied metagenomes in the ocean at different 

depths, thus obtaining stratified microbial assemblages. The latter have been analyzed 

according to taxonomic groups, functional gene repertoires and metabolic potential. 

Their data were assembled into contigs of average length of 1000 nucleotides, and 

their taxonomic analysis has been carried out by comparing cumulative TBLASTX 

high-scoring sequence pairs bit scores of each depth against one another. The 

different depths were grouped into Photic Zone (10m, 70m and 130m) and Deep 

Water zone (500m, 770m and 4000m). Analysis of these data using S61 TSPs leads to 

the results displayed in Table 5.7 below. 

 

Kingdom Photic Zone Deep Water 

Archaea 3 3 

Eukaryota 1 0 

Bacteria 22 32 

 

Phylum Photic Zone Deep Water 

Proteobacteria 9 12 

Firmicutes 1 2 

Cyanobacteria 8 2 

Actinobacteria 2 2 

 

Table 5.7: Taxonomic predictions of DeLong data based on S61 TSPs. 

Numbers signify expected numbers of S61 aaRS enzymes. The latter are proportional 

to the numbers of cells of the different taxa in the data.  

 

Numbers shown are predicted numbers of enzymes in the data. Obviously the quantity 

of the data amounts to just a few cells in total of all depths. Data are dominated by 

bacteria although there are some traces of archaea and eukaryotes (with decrease of 

the latter in deep water). Among bacteria we find a relatively large abundance of 

Cyanobacteria at low depths (mostly 10m and 70m). Proteobacteria, whose fraction in 

the community is relatively stable as function of depth, may be further analyzed for 
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their breakdown into classes. We find the ratio of Alphaproteobacteria: 

Gammaproteobacteria:  Betaproteobacteria to be 4:3:1 in the photic zone, and 3:4:1 in 

deep water, i.e. roughly stable with depth (not shown in Table 5.7). 

 

DeLong et al. [5.15] have constructed large contigs (average length 1000 nucleotides) 

that can provide much more specific taxonomic information than our EC 6.1.1 based 

analysis. Nonetheless the latter is consistent with theirs. The advantage of the TSP 

analysis is that it allows one to obtain a rough taxonomic breakdown of the microbial 

community when short reads are the sole source of information.  

It should be noted that the raw factors of the TSPs were determined by Swiss-Prot 

data. Since the latter may be richer in SP hits than yet unassigned proteins that are 

identified by our methodology, the absolute values quoted in Table 5.7, being based 

on these raw factors, should be regarded as lower bound estimates of the true 

taxonomic distribution. 

 

Conclusions 

 

The use of SPs allows deriving enzymatic information directly from short reads of 

genomic and metagenomic data. This is of great importance in view of the large 

amount of data-analysis performed with short read methods. It is of particular 

importance in metagenomic studies, where the organismal composition of the studied 

data is usually unknown and contig assembly is often impossible. Thus one may 

functionally study high complexity ecosystems, such as soil and seawater, 

overcoming the barrier of genome reconstruction, by deriving enzymatic signatures in 

a straightforward manner. 

 

The enzymatic signatures obtained may serve for coarse grain functional 

characterization of the environment. Lapierre and Gogarten [5.16] have pointed out 

that "character genes" typical to taxonomic groups, such as methanogen-specific 

enzymes, may also inform us of the composition of the microbiome. We have shown 

that the use of TSPs for aaRSs, can serve as the basis for taxonomic analysis. Our SP 

signatures can also serve as indicators for novel functionalities and, in extreme cases, 

as indicators for the possible contamination of the data-set that is being analyzed.  

 

We provide a webtool at http://horn.tau.ac.il/SPSR that analyzes sets of short reads, 

extracting all those that have SP hits, together with the indication of their EC 

categorization. These lists can be further processed, by the tools explained above, to 

provide enzymatic spectra, or to search for consistency of the analyzed data. 

 

The aaRS super-family plays a special role in our analysis because of several reasons. 

The first is the large over-all similarity of aaRS enzymes throughout all kingdoms of 

life, leading to extraordinarily large numbers of 6.1.1 SPs derived from the training-

set. This is reflected by the large factors of the 6.1.1 category in Figures 5.2 and 5.3. 

The second reason is their usefulness in discriminating among species, by providing a 

large number of TSPs. Finally, the fact that for many of the aaRS enzyme types there 

exists one corresponding protein on each bacterial genome, allows using this super-

family as a suitable calibrating device. 
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Our use of the aaRS SPs as taxonomic measures can be compared to the phylogenetic 

classification based on Environmental Gene Tags (EGTs) introduced by Krause et al 

[8] in their CARMA tool. Their method is based on selecting DNA fragments of 

lengths of order 100 bases, i.e. short reads, and comparing them to Pfam profile 

HMMs. The identified short reads are defined as EGTs. Incorporating them into 

phylogenetic trees, the authors developed an algorithm that provides a taxonomic 

distribution with relatively high accuracy. The similarity between the two tools is that 

both depend on protein-markers rather than on 16S rRNA ones, which is the gold 

standard of prokaryotic taxonomy. 

There are however many differences. First, they employ Pfam domains over many 

protein families, whereas we concentrate on SPs of aaRS enzymes only. This 

guarantees that their tool is more powerful, in the sense that its larger statistics allows 

for extension to lower taxonomic levels than ours. Second, their methodology relies 

on employing a battery of tools of the trade, such as BLASTX for sequence matching, 

pHMM for the Pfam generated ETGs, and PHYLIP for clustering phylogenetic trees. 

This is commonly regarded necessary, in order to take into account all the generated 

know-how in bioinformatics. We, on the other hand, rely on a simple look-up table of 

SPs that has been generated from the enzymes that exist on Swiss-Prot. Its advantage 

is its simplicity. Third, both methods suffer from biases, since their tools are 

constructed on existing labeled data. CARMA provides its final results by counting 

the number of EGTs correlated with each taxon. The analog in our case would have 

been to count the TSPs. Because of the simplicity of our approach we are aware of 

one explicit bias: TSP hits differ among taxa because of differences in the sizes of 

TSP pools. We are able to address this bias by correcting the numbers of TSP counts 

through the use of raw-factors, providing expected numbers of proteins that should be 

proportional to numbers of cells. Thus, without diminishing the value of tools like 

CARMA, we believe that our tool has some clear advantages, and should be used as 

an additional source of information.  

We provide a taxon-search webtool at http://horn.tau.ac.il/S61TSPSR. Upon 

submission of a list of short reads, it extracts taxonomic distributions at levels of 

kingdoms, bacterial phyla, and bacterial classes.  
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 6. Summary 
The work presented here expands previous studies of SPs into many different venues 

of the Bioinformatic research:  analysis of single proteins, metaproteomes, single 

bacterial and archaea genomes, metagenomes and analysis of short reads.  

We presented the construction and structure of enzymatic SPs sets, selection of 

training sets, pros and cons of utilization of supervised and unsupervised methods and 

optimization of the SP datasets. In addition to the production SP set we constructed 

specialized subsets:       

ASPs: Annotated SPs:  Used to predict Active, Metal and Binding properties   

GSPs: Gene ontology SPs used to predict Gene Ontologies    

FSPs:  Family SPs used to predict gene names 

TSPs: Taxon SPs used to predict taxonomic lineage  

 

We have developed the methodology of employing SPs for data mining of enzymes 

(DME). In particular we have shown in Chapter 3 that the requirement that SP 

occurrences on protein sequences has some minimal coverage length, e.g.  L≥7 

amino-acids in our analyses, leads to the novel tool of DME. It is applicable to large 

genomic and metagenomic data, and provides a good indicator for the enzymatic 

classification of the queried proteins, based on a look-up table only. We have 

successfully applied it to Sargasso Sea Data and the Human Gut Metagenome, 

presenting our results as enzymatic profiles of these data. A web tool identifying SP 

(and ASP) occurrences on any queried protein sequence, and providing the EC 

prediction of DME, has been made available online at http://adios.tau.ac.il/DME. 

 

Using the same spirit we have developed the SP scaffolding method, applicable to full 

genomes. This is based on pinpointing SP hits on the genomic strands, and concluding 

from them where enzymatic genes occur and what their EC assignments are. The 

capability of this method has been demonstrated on the full genome of H. Pylori 

26995. In Chapter 4 we have used for this application our FSP sets, providing not 

only EC classification of enzymatic genes but also the gene names of the families to 

which they belong. 

  

 

We proceeded to describe the expansion of the DME methodology to derive 

enzymatic and taxonomic information directly from short-reads of genomic and 

metagenomic data. This is of great importance in metagenomic studies, where the 

organismal composition of the studied data is usually unknown and contig assembly is 

often impossible.   Utilizing our methodology we can overcome the barrier of genome 

reconstruction, by deriving enzymatic signatures and taxonomic information in a 

straightforward manner. We provide a web tool at http://horn.tau.ac.il/SPSR that 

analyzes sets of short reads, extracting all those that have SP hits, together with the 

indication of their EC categorization. These lists can be further processed, by the tools 

explained in Chapter 5, to provide enzymatic spectra, or to search for consistency of 

the analyzed data. 

     

We have extended the short read analysis to provide also taxonomic signatures of 

metagenomic data. This has been done by employing SPs belonging to aaRS 

enzymes. Applying it to metagenomic results we came up with predictions that were 

consistent with other authors who employed different methodologies. We provide a 
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taxon-search web tool at http://horn.tau.ac.il/S61TSPSR. Upon submission of a list of 

short reads, it extracts taxonomic distributions at levels of kingdoms, bacterial phyla, 

and bacterial classes.  

 

An important and exciting direction for future expansion of this work will be 

generation of Protein Family SPs: Only one fifth of proteins are enzymes, therefore 

the scope of predictivity power of Protein Family SPs will be far greater than that of 

enzymatic SPs.  Construction of Protein Family SPs will be conducted selecting 

groups of families of proteins, running MEX against each group and implementing 

specificity criteria,   the final result being a set of Protein Family SPs.    A major 

contribution of this work is laying the methodological and software foundation for 

this future expansion. 

 

SPs possess excellent predictivity power, accuracy, versatility and ease of use for 

large volumes of Bioinformatic data, and are therefore a very powerful instrument in 

the Bioinformatics toolkit. 
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7. Web tools 
In parallel of batch processing for large volume DME predictions, we have 

developed a number of web applications. 

7.1: Data Mining of Enzymes - Peptide Search 

  http://adios.tau.ac.il/DME/ 

  

 

 

  

Figure 7.1:  http://adios.tau.ac.il/DME/  - Input screen 

 

Processing consists of search of each one of the SPs belonging to the Production 

SP set V2.3. Hits are analyzed and an enzymatic prediction for the sequence is 

generated as shown in figure 7. 2 below. The application shows metal, binding 

and active sites hit by the Annotated SPs. Default L3 threshold for a prediction is 

7 amino-acids.  Analysis is real-time and typical response time is sub-second for 

sequences of two to three hundred amino-acids.   

As an example we display the analysis of Swissprot enzyme Q8DKM1 

(PDXJ_THEEB), for Thermosynechococcus elongatus (strain BP-1).  This 

enzyme is annotated in Swissprot with an EC=2.6.99.2 (Pyridoxine 5'-phosphate 

synthase).  
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Figure 7.2:  Results of online inquiry for enzyme  Q8DKM1 in  

http://adios.tau.ac.il/DME/ 

_____________________________________________________________________ 

 

Data Mining for Enzymes Search Utility  
 
Active, Metal and Binding Site Annotations based on Training Swissprot Dataset  

Specific 

Peptide 
EC Function 

Location 

of SP in 
Protein 

Act 

Site 

Act Site 

Desc 

Metal 

Site 

Metal Site 

Desc 

Binding 

Site 

Binding 

Site Desc 

LGVNIDH 2.6.99.2; 

Pyridoxine 5'-

phosphate 

synthase. 

4 - - - - 4 

3-amino-2-

oxopropyl 

phosphate. 

TVEPDPV 2.6.99.2; 

Pyridoxine 5'-

phosphate 

synthase. 

20 - - - - - - 

EPDPVAAA 2.6.99.2; 

Pyridoxine 5'-

phosphate 

synthase. 

22 - - - - - - 

HLREDRRH 2.6.99.2; 

Pyridoxine 5'-

phosphate 

synthase. 

43 1 

Proton 

acceptor 

(By 

similarity 

- - 3 

1-deoxy-

D-xylulose 

5-

phosphate 

LLRQTVR 2.6.99.2; 

Pyridoxine 5'-

phosphate 

synthase. 

58 - - - - - - 

TVRTHLNLEMA 2.6.99.2; 

Pyridoxine 5'-

phosphate 

synthase. 

62 9 

Proton 

acceptor 

(By 

similarity 

- - - - 

NLEMAAT 2.6.99.2; 

Pyridoxine 5'-

phosphate 

synthase. 

68 3 

Proton 

acceptor 

(By 

similarity 

- - - - 

PDYVTLVPE 2.6.99.2; 

Pyridoxine 5'-

phosphate 

synthase. 

86 - - - - - - 

VPERREE 2.6.99.2; 

Pyridoxine 5'-

phosphate 

synthase. 

92 - - - - - - 

EVTTEGG 2.6.99.2; 

Pyridoxine 5'-

phosphate 

synthase. 

98 - - - - 3 

1-deoxy-

D-xylulose 

5-

phosphate 

TTEGGLD 2.6.99.2; 

Pyridoxine 5'-

phosphate 

synthase. 

100 - - - - 1 

1-deoxy-

D-xylulose 

5-

phosphate 

VSLFIDA 2.6.99.2; 

Pyridoxine 5'-

phosphate 

synthase. 

128 - - - - - - 

SLFIDAD 2.6.99.2; 

Pyridoxine 5'-

phosphate 

synthase. 

129 - - - - - - 

FIELHTG 2.6.99.2; 

Pyridoxine 5'-

phosphate 

synthase. 

149 - - - - - - 
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ELHTGRYA 2.6.99.2; 

Pyridoxine 5'-

phosphate 

synthase. 

151 - - - - - - 

VNAGHGL 2.6.99.2; 

Pyridoxine 5'-

phosphate 

synthase. 

187 5 

Proton 

donor (By 

similarity). 

- - 6 

3-amino-2-

oxopropyl 

phosphate; 

AGHGLTY 2.6.99.2; 

Pyridoxine 5'-

phosphate 

synthase. 

189 3 

Proton 

donor (By 

similarity). 

- - 4 

3-amino-2-

oxopropyl 

phosphate; 

EELNIGHTI 2.6.99.2; 

Pyridoxine 5'-

phosphate 

synthase. 

208 - - - - - - 

AVRDMKAL 2.6.99.2; 

Pyridoxine 5'-

phosphate 

synthase. 

228 - - - - - - 

 

Mapping of the SPs in the Protein  
 

Red characters denote the location of the Specific Peptide Matches 
 
 
---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+ 
MATLGVNIDHVATIRQARRTVEPDPVAAALLAELGGADGITVHLREDRRHIQERDVRLLRQTVRTHLNLEMAATPEMVAIALDIRPDYVTLVPERREEVT 
TEGGLDVVSQQEPLTQVVQTLQGAGIPVSLFIDADPTQLAAAAKTTAQFIELHTGRYAEAKGEVAQQRELAILADGVQQAKALGLRVNAGHGLTYSNVGA 
IARLEGIEELNIGHTIISRAVLVGMVQAVRDMKALISP 

 
 
 

DME EC Prediction for this protein is: 2.6.99.2  
Check another protein 

 

________________________________________________________________ 

 

Figure 7.2: Results of online sample analysis of amino-acid sequence 

   

7.2: Derivation of Enzymatic Signatures from Short Read Data 

http://adios.tau.ac.il/SPSR.html 

 

This application accepts as input a file containing short reads and generates as output 

the enzymatic signatures of the short reads provided. 
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Figure 7.3:  Derivation of enzymatic signatures from short reads data: Input screen. 

 

Processing flow:  Processing is on-line, real time. The file provided by the user is 

uploaded onto the server and each short read is translated into the six possible 

translation frames generating six records of pseudo peptides for every short read. 

All SPs from SP set V2.3 are searched within each and one of the pseudo peptides. 

Results of the SP hits are displayed in an output screen.  

 

 

 
 

Figure 7.4:  Sample output results of online utility to derive enzymatic signatures 

from short reads. 
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7.3 Derivation of Taxonomic Signatures from Short Read Data 

http://www.cs.tau.ac.il/~uriweing/tspSPSR.html 

 

This application accepts as input a file containing short reads and generates as output 

the taxonomic signatures of the short reads provided. 

Processing consists of translation of each one of the short reads into the 6 reading 

frames and generating pseudo-peptides. 

Search is conducted to find all Taxonomic SPs with EC=6.1.1 within each one of the 

pseudo peptides.  Results are aggregated at the level of super kingdom, phyla and 

class. 

This application differs from DME and SPSR because of its more sophisticated  

architectural design:  To enable processing of large files, process is asynchronous: 

Each short read file is uploaded to the server, time stamped and an independently 

processed by a started task which scans the request queue a few times a day. Results 

are provided to the user via a notification email providing him with a link to the web 

page containing the results.  

 

 
 

Figure 7.5:  Input screen to derive Taxonomic Signatures from Short Read Data 

application. 

 

Sample of results from this application for the Rios Mesquites Stromatolites bacteria 

set (Dinsdale et al. 2008) are shown in figure f_8.06 below: 
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Figure 7.6:  Derivation of taxonomic analysis of Rios Mesquites Stromatolites 

bacteria set (Dinsdale et al. 2008) 



Page 102  

Appendix 1 

Abbreviation List 

 

Abbreviation Description 

ASP Annotated Specific Peptide  

DME Data Mining of Enzymes 

DP Different Prediction 

EC Enzyme Commission functional classification 

Enzome The conglomerate of all enzymes  

FP False Positive 

FSP Family Specific Peptides  

GSP    Gene Ontology based Specific Peptides 

HSP High-scoring segment pairs  (Blast) 

MEX Motif Extraction  

NP No Prediction 

SP Specific Peptide 

SP V1.0 The first production Specific Peptides dataset – 87,017 SPs 

SP V2.3 The second production Specific Peptides datasets – 148K SPs 

SPSR Specific Peptide Short Reads Method, used to generate enzymatic 

functionality predictions 

TP True Positive 

TSP  Taxon Specific Peptide  

TSPSR  Taxon Specific Peptides Short Read method used to generate 

taxonomic lineage predictions 
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Appendix 2 

Table A2.1: List of DME predicted single EC annotations of 
proteins in Sargasso-Sea data.  

 

This table can be downloaded from http://adios.tau.ac.il/DME_Additional_Material/ 

 

Table A2.2: List of DME predicted double EC annotations of 
proteins in Sargasso-Sea data 
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.

Entries ann1 and ann2 refer to the two DME predicted EC annotations. Entries 

cov1 and cov2 refer to coverage length L4 of the relevant annotations. 

 

 

id ann1 cov1 ann2 cov2 

1084002109508 1.1.1.205      28 1.7.1.7        9 

1084002025518 1.1.1.205      22 1.7.1.7        9 

1084001361194 1.1.1.205      21 1.7.1.7        9 

1084000026840 1.1.1.205      19 1.7.1.7        9 

1084000038344 1.1.1.205      19 1.7.1.7        9 

1084001646054 1.1.1.205      19 1.7.1.7        9 

1084000060030 2.7.1.25    18 2.7.7.4        8 

1084002379210 2.7.7.4        43 2.7.1.25       39 

1087009015737 2.7.7.4        43 2.7.1.25       31 

1087011115979 2.7.7.4        43 2.7.1.25       29 

1087011915511 2.7.7.4        36 2.7.1.25       28 

1087008719463 2.7.7.4        31 2.7.1.25       29 

1087009908931 3.5.4.25       40 4.1.99.12      15 

1084002372452 3.5.4.25       36 4.1.99.12      21 

1087012809981 3.5.4.25       36 4.1.99.12      17 

1087011308203 3.5.4.25       33 4.1.99.12      15 

1084000038672 3.5.4.25       25 4.1.99.12      14 

1084000045336 3.5.4.25       25 4.1.99.12      14 

1084001104054 3.5.4.25       23 4.1.99.12      15 

1084002413820 3.5.4.25       23 4.1.99.12      15 

1087009815615 3.5.4.25       23 4.1.99.12      15 

1087010814081 3.5.4.25       23 4.1.99.12      15 

1087009611321 3.5.4.25       21 4.1.99.12      9 

1084000846178 3.5.4.25       15 4.1.99.12      14 

1084001467546 3.5.4.25       15 4.1.99.12      14 

1087009614331 3.5.4.25       15 4.1.99.12   9 

1087011319241 3.5.4.25       15 4.1.99.12      14 

1084001304578 3.5.4.25       10 4.1.99.12      9 

1084002015760 3.6.3.44       40 2.7.1.130      14 

1087009217043 3.6.3.44       40 2.7.1.130      32 

1087012119815 3.6.3.44       40 2.7.1.130      34 

1087008920589 3.6.3.44       37 2.7.1.130      26 

1087012113699 3.6.3.44       32 2.7.1.130      26 

1084001244192 3.6.3.44       23 2.7.1.130      14 

1084001940220 4.1.99.12      28 3.5.4.25       10 

1084002357612 4.1.99.12      26 3.5.4.25       25 

1084002364102 4.1.99.12      25 3.5.4.25       17 

1084001118292 4.1.99.12      23 3.5.4.25       10 

1084001028776 4.1.99.12      19 3.5.4.25       10 

1084001420468 4.1.99.12      17 3.5.4.25       10 

1084001241634 4.1.99.12      15 3.5.4.25       9 

1084002074160 4.1.99.12      15 3.5.4.25       9 

1087011012271 4.1.99.12      15 3.5.4.25       9  
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Table A2.3: 

List of DME predicted triple EC annotations of proteins in 
Sargasso-Sea data. 

 

Triple enzymatic predictions for Sargasso-Sea data. 

Entries ann1 to ann3 refer to the three DME predicted EC annotations. Entries cov1 

to cov3 refer to coverage lengths L3 or L4 as appropriate to the relevant annotations. 

 

 

id ann1 cov1 ann2 cov2 ann3 cov3 

1084001889232 3.6.3.42 22 2.7.1.130 17 3.6.3.43 14 

1087009516643 2.7.1.130 38 3.6.3.42 22 3.6.3.43 14 

1087009912363 2.7.1.130 37 3.6.3.42 22 3.6.3.43 14 

1087010109485 2.7.1.130 49 3.6.3.42 22 3.6.3.43 14 

1087010219179 3.6.3.20 16 3.6.3.28 14 3.6.3.25 11 

1084000851830 3.6.3.36 17 3.6.3.25 13 3.6.3.28 10 

1087011411429 2.7.1.130 21 3.6.3.43 14 3.6.3.42 8 

1084001061496 3.6.3 17 6.3.2 9 4.2.1.11 7 

1084001195166 1.1.1.205 14 1.7.1.7 9 1.1.1.158 7 

1084001469430 1.1.1.85 23 1.1.1.41 17 1.1.1.42 7 

1084002305812 2.7.9.1 74 6.1.1.14 35 4.2.1.11 7 

1084002325204 3.5.4.25 19 4.1.99.12 9 3.6.3.14 7 

1084002328128 3.5.4.25 15 4.1.99.12 9 3.6.3.14 7 

1084002368428 2.7.1.130 26 3.6.3.44 13 6.1.1.7 7 

1084002409024 1.2.4.2 76 4.1.1.71 20 2.7.4.6 7 

1084002411944 2.3.1 32 5.4.3.8 9 5.1.1 7 

1087010109959 1.1.1.85 23 1.1.1.41 17 1.1.1.42 7 

1087011014211 2.7.1.130 21 3.6.3.43 14 3.5.1 7 
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תקציר   
 

תזה זו מתמקדת בבנית ותאור השימוש בפפטידים יחודיים לצורך נבוי הפונקציונליות האנזימאטית 
.גנומים-גנומים ומטה, פרוטאומים-מטה, ופונקציות ביולוגיות נוספות של חלבונים יחידים  

ות של שני הפרקים הראשונים מתארים בפרוטרוט את יצירת קבוצות האנזימים היחודיים ואת תת הקבוצ
אתרי ,  אתרי קישור, כגון אתרים פעילים, האנזימים היחודיים המשמשים לצורך יצירת תחזיות ביולוגיות

.אונטולוגיה של גנים ויוחסין טאקסונומי של רצפים, מתכות  

 

שכוונתו שיטה להפעלת הפפטידים היחודיים על , הפרק השלישי מוקדש לכרית נתונים אנזימאטיים
אנו מציגים ומבססים את המתודולוגיה ומסיקים את .  כדי לקבל נבויים אנזימאטייםחלבוניים-נתונים רב

כולל ) גנום של ים סארגאסו-המטה(אחד מהם , גנומים גדולים- הנבויים האנזימאטיים עבור שלושה מטה
שכוללים מספר חלבונים , אנו מציגים עבורו את כל הנבויים האנזימאטיים.בתוכו מעל למליון חלבונים

אנו מציגים את המושג של פרופיל אנזימאטי של מדגם . י פעילות אנזימאטית כפולה או משולשתבעל
.גנומי ומדגימים אותו בעזרת הנתונים שחקרנו- מטה  

 

פרק ארבע מציג את הניתוח של גנומים ומציג את היכולות של הפפטידים היחודיים לחשוף גנים 
פיגום "אנו מציגים את המושג  של .   גבולות הגניםאנזימאטיים על פני גנום שלם ללא ידע מוקדם על

גנים אנזימאטיים .  המיועד לאמוד בקירוב התחלה וסוף של גנים"  גנים בעזרת פפטידים יחודיים
איתם אפשר לנבא , מאופינים הן על ידי הפפטידים היחודיים והן על ידי פפטידים יחודיים משפחתיים

אנו מציגים את היכולת לגלות תזוזות ברצפים נוקלאוטידיים ). או משפחות חלבונים(שמות של גנים 
תוך , שנוצרים כתוצאה של תוספת או מחיקה של נוקלאוטיד יחיד או של מספר נוקלאוטידים ברצף קידוד

, 26995פילורי . אנו מציגים בתור דוגמא את הניתוח של ה.  כדי גילוי עקבות שנויים אבולוציונים גנטיים
.חזיות האנזימאטיות עבור כל הגנוםתוך כדי הדגמת הת  

 

 short-reads  פרק חמש מוקדש ליישום המתודולוגיה שתוארה בפרקים הקודמים לנתוח של   

.contigs  בלי הצורך להפעיל שחזור של גנים או ייצור, גנומים- של מטה  

נו מיישמים את א. אנו מציגים את שיטת הפפטידים היחודיים לקריאות קצרות ליצור נבויים טאקסונומיים
.גנומים ומסיקים את החותמות הטאקסונומיות  והאנזימאטיות שלהם-המושגים האלה על כמה מטה  

 

יצרנו מספר , אינפורמטיים- בעוד שמירב הדגש של המחקר הוקדש על עיבוד נפח גדול של נתונים ביו
ע מציג את הכלים פרק שב.  כלים ברשת כדי להראות מושגים רבים שפותחו כחלק מהתזה באופן מקוון

.האלה  

 

השימוש בפפטידים : הפשטות והגמישות הרבה של הפפטידים היחודיים מוצגת בפרקים השונים של התזה
 6חלבון או תרגום של (בתוך רצף ) פפטיד יחודי(רצף -יחודיים כרוך אך ורק בחיפוש פשוט של תת

.ישוב כיסוי ואנליזה של התוצאותשאחריו ח) מסגרות הנוקלאוטידים או נתונים שמקורם בקריאות קצרות  

אנו מראים בתזה שהפשטות והגמישות האלה מאפשרים ליצור מיגוון רב של תחזיות ביולוגיות תוך כדי 
.שימוש במתודולוגיות מאד דומות  
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