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Abstract 
Finding patterns in data is a main task in data mining and data exploration. Clustering 

algorithms find patterns in the form of a partition into groups of data points, where a proximity 

measure governs the partitioning. Quantum clustering (QC) is a clustering algorithm, inspired by 

quantum mechanics, which models the probability distribution function (pdf) of data points as a 

wave function of a particle in a potential, and identifies minima of the potential as clusters. The 

members of each cluster are all data points which lie in the basin of attraction of the minimum. 

We present two new formulations of QC. The first is an entropy formulation, showing that 

potential minimization is equivalent to maximization of the difference between the pdf and the 

entropy field. The entropy field is associated with the probabilities to assign a point in feature 

space to a data point. The entropy field can be viewed as a transformation on the pdf that levels 

out its peaks and results in the potential. The entropy formulation also leads to a new clustering 

algorithm, similar to QC, but where the objective is to maximize the entropy. The second 

formulation shows that QC is related to the fuzzy 𝑐-means algorithm. Whereas in the latter the 

optimization is performed over the locations of cluster centers, QC is shown to be equivalent, 

under a certain initialization, to an optimization process over the data points while cluster centers 

remain constant. 

QC depends on one free parameter, 𝜎, which determines the scale of the clusters. Running QC 

repeatedly, at different values of 𝜎, can be used for data sets which exhibit patterns at various 

scales, or when the scales of clusters are not known in advance. We introduce an alternative 

approach, of hierarchical quantum clustering (HQC). In HQC, as 𝜎 is gradually increased, clusters 

are merged into larger ones. This ensures that clusters at different scales follow an agglomerative 

structure, which is easy to interpret. The branches of the hierarchical tree can be cut at different 

scales to obtain various clustering assignments. 

We then apply HQC to the problem of asteroid spectral taxonomy. The data set consists of 

measurements of the reflectance spectra of asteroids in the visual and near infrared ranges. The 

reflectance spectrum of an asteroid is an indication of its surface composition. For example, S-

type asteroids are stony and show two absorption features in their spectra. We use 365 

measurements, of 286 unique asteroids. We first examine the hierarchical clustering at a scale large 

enough to merge multiple measurements of the same asteroid into one cluster, and show that at 

this scale the clusters are very heterogeneous, leading to the conclusion that we should cluster 

spectra and not asteroids. We then turn to a smaller scale, and find that HQC leads to 26 clusters, 

some of them of flat spectra and some of wavy waveforms. 101 spectra remain singletons. We 

compare the results to the Bus-DeMeo taxonomy, and show that the proposed HQC taxonomy is 

based on clusters with smaller variances.  
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 OVERVIEW OF CLUSTER ANALYSIS 

A.  Introduction 
Cluster analysis, or simply clustering, is the task of partitioning a set of objects into groups, 

such that the objects that belong to each group are similar to each other, and objects that belong to 

different groups are less similar. These groups are called clusters. The precise meaning of “similar” 

and the required magnitudes of similarity and dissimilarity depend on the specific problem being 

solved. The set of objects is called a data set, and is commonly1 a finite subset of ℝ𝑑. The integer 

𝑑 is the dimension of the data. Each dimension represents a feature of the data, and ℝ𝑑 is called 

the feature space. The members of the data set are data points. The goal of clustering can be seen 

as finding patterns, or structure, in the form of clusters2, in the data set. It is a main task of data 

mining, exploration and analysis. 

Clustering algorithms differ in their precise objective, and in the steps done to achieve the 

objective. No single clustering algorithm is suitable for all clustering problems, and an algorithm 

should be chosen based on the problem specifications, such as the metric of similarity. A common 

problem encountered by practitioners is that the problem specification is often ill-defined: A 

dataset is given in which it is not clear beforehand what metric and objective should be chosen. A 

good choice is one which would result in clusters which are meaningful, but the practitioner may 

not know in advance what structure he/she is looking for. This may happen especially when the 

data set doesn’t have a good generative model, when the data set is large or has a high dimension, 

or when it has structures with different scales. In these situations, the practitioners should handle 

the problem by trying out various clustering algorithms with various parameters. 

Clustering algorithms perform unsupervised learning – their input is unlabeled data and their 

task is to find structure in the data or an efficient representation of the data. Semi-supervised 

clustering algorithms, in which some prior information about whether some pairs of objects should 

be grouped together, or where this information is provided by a human agent at some stages of the 

algorithm, also exist[1]. 

B. Examples of Clustering Algorithms 
Clustering algorithms differ by the metric they use on the data, how they define a cluster, the 

steps they perform to find clusters, and the assumptions they make on the data set. In the next 

paragraphs, we’ll give some examples of clustering algorithms and clustering algorithms families. 

 Hierarchical Clustering 

Agglomerative hierarchical algorithms build clusters in a bottom-up fashion. They initialize 

each data point to be a singleton cluster (that is, a cluster composed of a single point), and proceed 

by iteratively merging closest clusters into one cluster. The process ends either when all data points 

                                                 

1 In this work I shall talk only about clustering of data in  ℝ𝑑, but other forms of data exist, such as categorical data.  

2 A data set may have structure which is not in the form of clusters, such as symmetry or manifoldness. Detecting 

these forms of structure are the goals of other tasks 
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are merged into one cluster or when the smallest distance between clusters crosses a threshold. 

The result is a hierarchy of clusters, which has the form of a rooted binary tree (also called a 

dendrogram) whose leaves are the singleton clusters, and every node represents the clusters 

obtained by merging its two children. Edges of this tree may then be removed (manually or 

otherwise) to obtain a final clustering of the data. 

The simplest agglomerative hierarchical algorithms are single-linkage[2], in which the 

distance between two clusters is defined as the smallest distance between a pair of elements, one 

from each cluster; complete-linkage[2], in which the distance between two clusters is defined as 

the largest distance between a pair of elements, one from each cluster; centroid-linkage[2], in 

which the distance between two clusters is defined as the distance between the clusters’ centroids; 

and group-average[2], in which the distance between two clusters is defined as the average distance 

between pairs of elements, one from each cluster. All of these algorithms need a metric to be 

specified on ℝ𝑑. 

More sophisticated agglomerative hierarchical algorithms were developed to overcome 

shortcomings of the previously mentioned algorithms. For example, CURE[3] is a compromise 

between single-linkage and centroid-linkage, in which each cluster is represented by a small 

number of representative points, and the distances between two clusters is the smallest distance 

between a pair of elements, one of each set of representative points of the clusters. Thus CURE is 

more immune to outliers than single-linkage, and to non-spherically shaped clusters than centroid-

linkage. Another example is CHAMELEON[4], which defines the distance between clusters as a 

combination of their “closeness” – a measure of the smallest width3 along the “seam” joining the 

two clusters – and “interconnectivity” – a measure of the total width of the seam. CHAMELEON 

copes better with clusters of various shapes and densities. 

 Partitional Clustering Algorithms  

In contrast to hierarchical methods, which form a hierarchical set of clusters, partitional 

clustering algorithms yield only a single set of clusters. The algorithms include iterative steps, but 

only the final set of clusters is considered valid. An example of such an algorithm is 𝑘-means[5], 

which seeks to locate 𝑘 clusters such that the total sum of squared distances between each data 

point and its cluster’s centroid is minimized. 𝑘 is a parameter chosen by the user. An optimal 

solution to this optimization problem is hard, but various heuristics exist that find a local minimum, 

the most standard being the periodic iterations of these steps, until convergence: (1) assign each 

data point to the closest centroid, (2) update the centroid to be the mean of the data points assigned 

to it. An initialization of the centroids is required, and the algorithm is known to be sensitive to the 

initialization. A variation of 𝑘-means is 𝑘-medoids[6], in which clusters are not represented by 

their centroids (means), which may not be part of the cluster, but rather by a member of the cluster 

which is the most similar to the other points of the cluster. The similarity measure does not have 

to be the squared distance as in 𝑘-means, and is typically chosen to be an absolute distance instead, 

                                                 

3 A better choice of words would be “hyper-width”, for large dimensions. 
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being more robust to outliers. 

 Fuzzy Clustering 

𝑘-means can be generalized into fuzzy 𝑐-means[7], which belongs to the fuzzy clustering 

algorithms family. In these algorithms, each data point is not assigned uniquely to one cluster, but 

rather gets assigned to all clusters with a certain probability (weight). The probability reflects the 

degree to which the data point is a member of a cluster. Fuzzy 𝑐-means is similar to 𝑘-means in 

that it minimizes the sum of squared distances between data points and clusters, the difference 

being that the squared distances are average4 squared distances between each data point and all the 

clusters it may belong to. Thus, the optimization algorithm optimizes over the probabilities and 

the centroids’ locations. 

 Probability Distribution-Based Clustering Algorithms 

An algorithm related to fuzzy 𝑐-means, is the expectation-maximization (EM) algorithm for 

a Gaussian mixture model (GMM)[2]. In GMM, it is assumed that the data set can be generated 

by repeating the following steps: (1) Choose one of 𝑘 Gaussians by some probability. (2) Sample 

a point from the chosen Gaussian. 𝑘 is a predefined number. The means of the Gaussians are not 

known in advance. The covariances of the Gaussians and the probability to choose each Gaussian 

may or may not be assumed to be known. The unknown parameters are then estimated using EM, 

which is an algorithm for obtaining the maximum likelihood estimation: The chosen estimated 

parameter values give the highest probability to have obtained the data set. Once these parameters 

are estimated, cluster assignment can be fuzzy, based on posterior probability of each point to have 

been sampled from each Gaussian; Or a non-fuzzy assignment can be chosen, based on the 

maximum posterior probability. 

Assuming unknown covariance matrices for the all the Gaussians in GMM means that there 

are a lot of parameters to estimate, and this implies heavy computation and slow convergence. A 

simpler, more tractable, approach is to take a diagonal covariance matrix, with a known, pre-

determined, constant variance 𝜎2, and use the same covariance matrix for all Gaussians. This 

means that all Gaussians produce data points with independent components and same variance. 

The problem with this approach is that the choice of 𝜎2 is in fact a choice of scale for the problem. 

Clusters with characteristic sizes much smaller or larger than 𝜎 may go undiscovered. Also, the 

number of Gaussians, which is the number of clusters, is arbitrarily chosen while it could actually 

vary in different scales. One possible solution is to take a scale-space approach[8]. In this approach, 

the number of Gaussians is taken to be the number of data points, such that each Gaussian is located 

on a data point. The sum of all of these Gaussians is an estimation of the probability density 

function (pdf) that the data points were sampled from. The Gaussians’ locations are now not 

considered unknown, and therefore maximum likelihood estimation is not needed. Clusters are not 

                                                 

4 More precisely, it does not work to use the average, since this leads upon optimization to a “hard” (as opposed to 

fuzzy) probability distribution. Therefore, in the expression for the average the probabilities are taken to some constant 

power greater than 1 
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defined by these Gaussians, but rather by the peaks of the estimated pdf. Each data point is assigned 

to the nearest peak. Clustering is performed for various values of 𝜎, and the result is a hierarchy 

of clusters, spanning different scales. The “correct” scales to use, according to this method, are 

stable scales, that is, scales in which the number of clusters remains constant along wide range of 

values of 𝜎. 

Another mode-finding method is the mean-shift algorithm[9], where each point is moved in 

the direction of the highest density of points. Data points that converge to the same final location 

are grouped into a cluster. The density of points is defined by summing a kernel function over each 

point, as in the scale-space approach. The kernel does not have to be Gaussian, and it can also be 

truncated at a certain radius. There are two versions of the mean-shift algorithm: (1) The density 

is taken constant while the points are moving. (2) As the points are moving, the density of points 

is updated by the new locations of the points. This second version is called blurring. 

 Density-Based Clustering Algorithms 

Instead of finding locations with high density, as in the previously described approaches, 

density based algorithms try to detect connected regions of ℝ𝑑 which have a higher density of data 

points, compared to their surrounding. The data points in each such region are considered a cluster, 

and points falling out of these regions are considered outliers. An algorithm that follows these lines 

is DBSCAN[10]. It finds dense sets of points by finding “core points”- points that have at least 𝑘 

neighbors within distance 𝜖. A cluster is defined as a maximal set of core points which can be 

pairwise connected by a sequence of core points such that each element of the sequence is within 

distance 𝜖 of the previous elements. A cluster also includes non-core points that are within distance 

𝜖 of a core point in the cluster. 𝑘 and 𝜖 are parameters of the algorithm that determine the minimal 

density of the region. A similar algorithm, OPTICS[11], uses just 𝑘 as a parameter, and finds 

clusters that correspond to different values of 𝜖, thus allowing clusters with different densities. The 

result is a hierarchy of clusters. 

 Support Vector Clustering 

Support vector clustering[12] takes a different approach, based on cluster boundaries rather 

than densities. The idea is to map all data points to a very high dimensional space, possibly infinite, 

and to surround the high-dimensional points with a hyper-sphere with the smallest possible radius. 

When the hyper-sphere is mapped back to the original feature space, it still surrounds the points, 

but it is no longer a sphere. It turns into a set of separated closed boundary surfaces, and each such 

surface encloses a cluster. 

 Clustering Using Neural Networks 

Another framework for clustering is based on artificial neural networks. These algorithms are 

partially inspired by the information processing and learning mechanisms in the brain. One 

example is the self-organizing map[13]. Here, a grid of “neurons” is spread in feature space. The 

grid is regular and defines a neighbor for each neuron. The goal is to update the locations of the 

neurons so as to get a good representation of the data set. The update is performed iteratively as 

follows: In each iteration, one data point is chosen. The neurons that are close to the data point get 
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pulled in its direction, but there is also a resistive force applied from the neighbors of the neurons. 

After convergence, clusters can be identified as the regions where the neurons converged to.  

 Physics-Inspired Clustering Algorithms 

Another source of inspiration for clustering algorithms is physical systems. Physics-inspired 

algorithms include the maximal entropy clustering[14], which is a form of fuzzy clustering, similar 

to fuzzy 𝑐-means. The algorithm repeats the following steps, until convergence: (1) Assign 

probabilities of cluster-membership based on the maximum entropy principle, subject to the 

constraint of a given total “energy”, which is a sum of average squared distances between data 

points and cluster centers, multiplied by some factor. (2) Update cluster centers to become the 

average locations of data points, weighted by their membership probability. The first step gives 

the Boltzmann-Gibbs distribution, and the second step is in essence a mean-shift update. 

Decreasing the factor in the energy constraint amounts to increasing the temperature of the 

systems, which makes the clustering fuzzier. In the process of increasing the temperature, clusters 

may merge. These are identified as phase transitions. The process of increasing the temperature is 

equivalent to the process of increasing 𝜎 in the scale-space approach. 

Another physics-inspired clustering algorithm is Quantum Clustering (QC), which is the 

subject of the next chapter. 
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 QUANTUM CLUSTERING (QC) 

A.  Method Introduction 

 The Quantum Mechanical Basis 

Quantum clustering[15] is motivated by the quantum mechanical system of a single particle 

in 𝑑-dimensional space. The Hamiltonian operator of such a system is:  

 �̂� =
𝑝2

2𝑚
+ 𝑉(�̂�)  , (1) 

where �̂� is the operator of the 𝑑-dimensional momentum, �̂� = (�̂�1 , �̂�2 , … , �̂�𝑑)
𝑇 is the vector of 

position operators, and 𝑚 is the particle’s mass. The momentum operators are given by: 

 �̂�𝑖 = −𝑖ℏ
𝜕

𝜕𝑥𝑖
  . (2) 

Inserting equation (2) into equation (1) gives the differential form of the Hamiltonian:  

 �̂� = −
ℏ2

2𝑚
∇2 + 𝑉(𝐱) . (3) 

The ground state of this system is described by a wave function 𝜓(𝐱) which is an eigenfunction of 

the Hamiltonian:  

 �̂�𝜓(𝐱) = 𝐸𝜓(𝐱)  , (4)  

where 𝐸 is the lowest eigenvalue of the Hamiltonian. We can assume that 𝐸 =
𝑑

2
, as in the ground 

state of a harmonic oscillator, since any constant shift in energy can be absorbed into the definition 

of 𝑉(𝐱). Thus, the eigenvalue equation is:  

 −
ℏ2

2𝑚
∇2𝜓(𝐱) + 𝑉(𝐱)𝜓(𝐱) =

𝑑

2
𝜓(𝐱)  . (5) 

 The QC Algorithm 

The starting point for QC is constructing the wave function 𝜓(𝐱) out of the data set {𝐱𝑖}𝑖=1
𝑛 ⊂

ℝ𝑑, where 𝑛 is the number of data points. This is done using the Parzen window method[16], 

which convolves the data points with a fixed Gaussian kernel with covariance 𝜎2I, where I is the 

𝑑×𝑑 unit matrix:  

 𝜓(𝐱) = 𝑐 ∑ exp (−
(𝐱−𝐱𝑖)

2

2𝜎2 )𝑛
𝑖=1   , (6) 

where 𝑐 is a constant factor required for 𝜓(𝐱) to have a unit 𝐿2 norm. This expression is usually 

used as an estimation of the probability density function (pdf) that the data points were sampled 

from. In quantum mechanics, Born’s rule states the pdf of measuring a particle in a certain location 

is given by the squared modulus of the wave function, and not by the wave function itself (which 

may be complex-valued). However, in QC this detail is usually ignored, and 𝜓(𝐱) is viewed both 

as a wave function and as a probability distribution. The main reason for this is that the 

mathematics becomes more cumbersome if 𝜓(𝐱) is taken to be the square root of the Parzen 

estimator. Also, the fact that 𝜓(𝐱) is always real, whereas wave functions are generally complex-

valued, is consistent with choice of 𝜓(𝐱) being the ground state of the Hamiltonian, since a ground 

state always has a constant phase, which makes it equivalent to a real wave function. 

In a typical problem of quantum mechanics, a given Hamiltonian is solved to yield its 

eigenfunctions. In QC, the reverse is done: 𝜓(𝐱) is given by equation (6), and 𝑉(𝐱) is sought for. 
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This turns out to be a much easier problem, since all it amounts to is eliminating 𝑉(𝐱) from 

equation (5). The solution is:  

 𝑉(𝐱) =
ℏ2

2𝑚

∇2𝜓(𝐱)

𝜓(𝐱)
+

𝑑

2
  . (7) 

The physical constants ℏ and 𝑚 have no significance in the QC setting, so they can be dropped. 

Instead, the parameter 𝜎2 will be used, to make the potential unit-less:  

 𝑉(𝐱) =
𝜎2

2

∇2𝜓(𝐱)

𝜓(𝐱)
+

𝑑

2
  . (8) 

An explicit expression for the potential is obtained by plugging equation (6) into equation (8): 

 𝑉(𝐱) =
1

𝜓(𝐱)
∑

(𝐱−𝐱𝑖)
2

2𝜎2 exp (−
(𝐱−𝐱𝑖)

2

2𝜎2 )𝑛
𝑖=1   . (9) 

The idea behind QC is that the minima points of the potential 𝑉(𝐱) can be thought of as the 

locations where a physical attractive force originates. For example, if 𝑉(𝐱) were the potential of a 

harmonic oscillator, then the fixed end of the “spring” attached to the particle would be the 

minimum of 𝑉(𝐱). A classical lowest energy particle state would be constantly located at the 

minimum of 𝑉(𝐱), which would correspond to a delta function expression for 𝜓(𝐱). But in 

quantum mechanics, a consequence of the uncertainty relations is that such a solution has an 

infinite momentum and therefore it cannot be a ground state. The ground state is more spread-out, 

the spreading caused by the Laplacian operator in equation (3), and therefore there is a non-zero 

probability of observing the particle at locations different from the minima of 𝑉(𝐱). 

This quantum description can be thought of as the model that generated the data points. For 

comparison, in a Gaussian mixture model, the points are modeled to have been generated by a pdf 

which is the weighted sum of a few Gaussians. The variance of the data points around each cluster 

is caused by the non-zero variance of the Gaussians. In contrast, in QC the data points were 

generated by a quantum mechanical system with potential 𝑉(𝐱), and the variance of the data points 

around each cluster is caused by the quantum effect of a non-localized wave function. 

In QC, each data point is associated with a close minimum of 𝑉(𝐱), where the point would 

presumably have been located if there were no spreading of the wave function. This is achieved 

by moving the point down the potential5, using gradient descent6, until convergence to a local 

minimum. Unlike many other optimization problems, in QC it is desired that the minimum is local 

and not global, since the former is taken as the cluster location. A few examples of 𝑉(𝐱), for 

synthetically generated two-dimensional7 data and various values of the Gaussians’ width 𝜎, are 

shown in Figure 1. 

                                                 

5 Interestingly, similar dynamics are described in the de-Broglie-Bohm formulation of quantum mechanics [47]. In 

this formulation, a particle’s motion is dictated by the gradient of the quantum potential, which is given by an 

expression similar to equation (8), where 𝜓 is replaced by |𝜓|. 

6 Other gradient methods, such as Newton’s method, can also be used, as long as they find the local minimum whose 

basin of attraction contains the data point. 

7 Caution should be taken when drawing conclusions from two-dimensional examples, about the generality of 

clustering algorithms in higher dimensions.  
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The QC algorithm steps are depicted in Box 1. In the algorithm, (𝛁𝑉)(𝐱𝑖
′) denotes the gradient 

of the potential, evaluated at point 𝐱𝑖
′. The gradient has an analytic expression which can easily be 

derived from equation (9). The parameter 𝜂 determines the step size of the descent. It may be taken 

constant or adaptive, and in particular it may depend on the norm of the gradient, thus allowing 

the gradient to be normalized to unity.  

(a) (b) 

(c) (d) 

Figure 1: The potential 𝑽(𝒙𝟏, 𝒙𝟐) for synthetically generated data in two dimensions, for various values of 

𝝈.  The data consists of 500 points.  (a) 𝝈 = 𝟐   (b) 𝝈 = 𝟏𝟎   (c) 𝝈 = 𝟐𝟎    (d) 𝝈 = 𝟔𝟎 

 

Box 1: The QC algorithm 

Quantum Clustering  

(QC1) Repeat for each data point 𝐱𝑖: 

(QC1.1) Create a “replica” of data point 𝐱𝑖, which will be denoted 𝐱𝑖
′, to be located 

on 𝐱𝑖. 

(QC1.2) Repeat the gradient descent step until convergence: 

(QC1.2.1)   𝐱𝑖
′ ← 𝐱𝑖

′ − 𝜂(𝛁𝑉)(𝐱𝑖
′) 

(QC2) Group replica points that fell into the same minimum as a cluster. 
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B. The Significance of  𝜎, and Hierarchical QC 
The parameter 𝜎 – the width of the Gaussian in the Parzen window estimator - is a hyper 

parameter of the algorithm that is chosen by the user. The value of 𝜎 influences the resulting 

clusters. If 𝜎 is smaller than the distance between points in the data set, then each data point is 

already on a minimum of its own Gaussian, the other Gaussians being too far to have any influence. 

Thus, the resulting clusters will be singletons, with each data point its own cluster (unless there 

are identical points in the data set, in which case they will form a non-singleton cluster). On the 

other extreme, if 𝜎 is larger than the domain size of all points, then all points will fall under gradient 

descent to the same location, and will all be grouped into one cluster. An intermediate value of 𝜎 

will give clusters on a corresponding scale. 

A data set may have structures at different scales, and we cannot expect one 𝜎 to reveal all 

these structures. Figure 1 showcases such a situation. It shows four main clusters, bust some of 

these clusters are composed of smaller clusters, and each cluster has a different size and density of 

points. The obvious way to deal with this difficulty is by running QC multiple times for a range of 

𝜎 values, representing different scales, and aggregating the results. The main problem with this 

approach is the inefficiency of the process. A more efficient approach is using Hierarchical QC 

(HQC), which is described in Box 2. The algorithm performs QC between successive increments 

of 𝜎, and whenever replica points fall into a cluster they are merged into one replica point that 

continues to be moved by QC replica dynamics. The potential 𝑉(𝐱) remains defined on the basis 

of all original data points and the current 𝜎.  

There are two advantages to using HQC. The first is computational: As 𝜎 grows, there are less 

and less replicas that undergo the process of gradient descent, hence clustering at higher scales 

demands less computational steps. 

The second advantage of HQC is conceptual: Clusters obtained from all values of 𝜎 form a 

hierarchical tree, in which the leaves are the initial, singleton clusters, and each node in the tree 

represents a cluster which is the union of the clusters which are its children. The tree is 

Box 2: The HQC algorithm 

Hierarchical  Quantum Clustering  

(HQC1) Initialize a small value for 𝜎. If data points have errors assigned to them, this 𝜎 

should preferably be larger than these errors. 

(HQC2) Run QC. 

(HQC3) Repeat until 𝜎 is high enough: 

(HQC3.1) From each resulting cluster, take one representative replica point and 

discard the rest. 

(HQC3.2) For each replica point, perform the gradient descent of QC, as in (QC1.2). 

(HQC3.3) Group replica points into clusters as in (QC2). 

(HQC3.4) Increase 𝜎 by a small amount. 
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topologically equivalent to the trajectories of replicas under the QC dynamics. This is an obvious 

outcome of the merging of the replicas. The hierarchy is not mathematically guaranteed when 

performing ab initio QC on a range of values of 𝜎. The advantage of a hierarchy in the set of 

clusters is that it is more consistent with the idea of scale. If at a small scale two data points are 

members of the same cluster, then we would like them to stay in the same cluster also on larger 

scales. Also, if there is a requirement for a single set of mutually disjoint clusters, then this can be 

done consistently by removing edges in the tree of clusters, the results being clusters which have 

different scales. 

An illustration of the clustering tree of the synthetic data from Figure 1, generated by HQC, 

is displayed in Figure 2. It shows that clusters form at multiple scales. Some clusters show stability 

over a wide range of 𝜎 values. The evolution of replica points is demonstrated in Figure 3. The 

most general way to obtain a final partitioning of the data is to choose a cutoff 𝜎 for each branch 

of the tree. The cutoff can be chosen either manually or automatically. A reasonable cutoff value 

for a cluster (branch) can be chosen, for example, based on a combination of these conditions: (1) 

The cluster is stable, in the sense that it hasn’t changed for a large range of 𝜎 values (this is in the 

spirit of scale-space clustering). (2) The cluster is not the result of a merging of two relatively large 

clusters. (3) The cluster is not the result of a merging of two clusters which have very different 

characteristic sizes, where the characteristic size of a cluster is the latest value of 𝜎 that caused the 

cluster to change.  

Figure 2: (a) Hierarchical clustering tree obtained from 

HQC using the data presented in Figure 1. The data 

points are represented as the leaves of the tree, along 

the x-axis, at the bottom of the graph. As 𝝈 increases, 

clusters merge into larger clusters. The width of the 

lines represents the cluster sizes, and the colors 

represent cluster membership. (b) The data points, with 

the same coloring as in the tree. 

(a) 

(b) 
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HQC is bottom-up – starting with clusters of size one and merging them repeatedly. A top-

down hierarchical version of QC has also been proposed in [17]. In Top-Down QC (TDQC), QC 

is applied to the dataset, and then the dataset is divided into two separate data sets, the first one 

consisting of all data points that fell into the cluster with minimal value of the potential 𝑉(𝐱), and 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 3: Evolution of replicas under HQC, using the data presented in Figure 1 and Figure 2. Each figure 

corresponds to a different value of 𝝈. Each square represents a cluster at the corresponding scale. The size 

of the square corresponds to the number of members of the cluster. The colors of each square indicate its 

members; refer to Figure 2(b) to the color encoding. (a) 𝝈 = 𝟐  (b) 𝝈 = 𝟗 (c) 𝝈 = 𝟏𝟐   (d) 𝝈 = 𝟐𝟏  (e) 𝝈 =
𝟐𝟕   (f) 𝝈 = 𝟓𝟖   
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the second one consists of the rest of the data points. The procedure is then repeated reclusively 

on the two new data sets. A main difference between TDQC and HQC is that TDQC uses a single 

value of 𝜎 while HQC increases 𝜎 to find multiscale clustering. 

C. Entropy Formulation 
QC employs the minima of 𝑉(𝐱) for cluster assignments. An alternative algorithm could have 

assigned data points to clusters based on the maxima of 𝜓(𝐱), as is done in the scale state approach. 

Although similar, these two methods can yield different results (see for example [15]), and 

understanding the source of the differences can help deciding which algorithm is better for a given 

problem. In this section, we describe the entropy formulation of QC which relates 𝑉(𝐱) and 𝜓(𝐱) 

by an entropy term. This formulation can shed light on the differences between minimizing 𝑉(𝐱) 

and maximizing 𝜓(𝐱). 

The Parzen estimation of the pdf, equation (6), can also be viewed as a Gaussian mixture 

model (GMM). The process of sampling a point 𝐗 ∈ ℝ𝑑 from the underlying distribution is 

equivalent to a two-step process: (1) Sample uniformly a number 𝑁 for the set {1,2, … , 𝑛} (2) 

sample a point 𝐗 from the Gaussian distribution centered at 𝐱𝑁 with covariance 𝜎2𝐈, where 𝐈 is the 

𝑑×𝑑 identity matrix. Under this description, the pdf 𝜓(𝐱) can be written as:  

 𝜓(𝐱) = ∑ ℙ(𝐗 = 𝐱 | 𝑁 = 𝑖)ℙ(𝑁 = 𝑖)𝑛
𝑖=1    . (10) 

ℙ(∙) is used to denote both the probability of an event and the probability density of an event, and 

it should be clear which one by its argument. It follows that:  

 ℙ( 𝑁 = 𝑖 | 𝐗 = 𝐱) =
ℙ( 𝐗=𝐱 | 𝑁=𝑖)ℙ(𝑁=𝑖)

𝜓(𝐱)
   . (11) 

From uniformity, ℙ(𝑁 = 𝑖) =
1

𝑛
, and this expression becomes:  

 𝑃(𝑖|𝐱) ≡ ℙ( 𝑁 = 𝑖 | 𝐗 = 𝐱) =
exp(−

(𝐱−𝐱𝑖)
2

2𝜎2 )

∑ exp(−
(𝐱−𝐱𝑗)

2

2𝜎2 )𝑛
𝑗=1

   . (12) 

𝑃(𝑖|𝐱) is the probability that a given point 𝐱 was sampled from the 𝑖’th Gaussian. In a GMM where 

the number of Gaussians is small, the maximum value of 𝑃(𝑖|𝐱) can be used for cluster assignment 

of the point 𝐱. In the current setting, the number of Gaussians is the number of data points, and 

each data point coincides with a Gaussian center, so there is no sense in making such an 

assignment. 

Using equation (12), we can rewrite the explicit expression for 𝑉(𝐱) in equation (9) as:  

 𝑉(𝐱) = 𝔼 [
(𝐱−𝐗)2

2𝜎2  | 𝐱]    , (13) 

where 𝔼 is the expectation function, 𝐗 is a random variable whose outcome can be any of the data 

points {𝐱𝑖}𝑖=1
𝑛 , where the probability of outcome 𝐱𝑖 is 𝑃(𝑖|𝐱). This expression can be thought of 

as describing 𝑉(𝐱) as an average energy at point 𝐱. 

A point 𝐱 (not necessary from the data set) has an uncertainty as to which Gaussian it was 

sampled from. This uncertainty can be quantified using the entropy:  

 𝑆(𝐱) = −∑ 𝑃(𝑖|𝐱) log 𝑃(𝑖|𝐱)𝑛
𝑖=1   . (14) 
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A lower bound on the value of 𝑆(𝐱) is 0, which corresponds to a situation in which the first nearest 

neighbor of 𝐱 is much closer to 𝐱 than the rest of the data points. An upper bound is log 𝑛, which 

describes a situation in which all the data points are equidistant from 𝐱. It can be shown that the 

following relation holds between the quantum potential, the entropy, and the Parzen estimation of 

the pdf (wave function):  

 𝑉(𝐱) = 𝑆(𝐱) − log𝜓(𝐱)   . (15) 

This relation is analogous to the following relation in the statistical mechanical description of a 

canonical ensemble:  

 𝑈 = 𝑇𝑆 − 𝑘𝐵𝑇 log 𝑍   . (16) 

Here, 𝑈 is the internal energy of the system, given by the average energy taken upon all accessible 

microstates of the system; 𝑆 is the entropy of the system; 𝑍 is the partition function; 𝑘𝐵 and 𝑇 are 

Boltzmann’s constant and the temperature respectively.  

The probability that the system is in a microstate with energy 𝐸 is, by Boltzmann’s 

distribution, proportional to 𝑒−𝐸/𝑘𝐵𝑇. The partition function is given by the sum ∑𝑒−𝐸𝑖/𝑘𝐵𝑇 over 

all possible energies of microstates. Obviously 𝑈, 𝑆, 𝑍 in statistical mechanics are analogous to 

𝑉(𝐱), 𝑆(𝐱) and 𝜓(𝐱) in the QC setting, respectively, and 𝑃(𝑖|𝐱) is the Boltzmann distribution. A 

difference should be noted, though: in statistical mechanics these quantities describe the state of 

an entire system, while in the QC setting, these are functions of location x in feature space.  

Equation (15) suggests that the minima of 𝑉(𝐱) may be in different locations than the maxima 

of 𝜓(𝐱), and are shifted by the entropy 𝑆(𝐱). In the trivial case where all 𝑛 data points are located 

in the same location, 𝑆(𝐱) = log 𝑛 and the extrema coincide. Another trivial situation is the limit 

𝜎 → 0, such that the distances between data points become much larger than 𝜎, and therefore 𝑆(𝐱) 

is almost 0 in the neighborhood of each data point. Otherwise, 𝑆(𝐱) can change the gradients of 

𝜓(𝐱), such that the basins of attraction of maxima in 𝜓(𝐱) are different from the basins of 

attraction of minima in 𝑉(𝐱), thus providing different clustering schemes. 

Another enlightening way to look at equation (15) is to write it as:   

 𝑒−𝑉(𝐱) =
𝜓(𝐱)

𝑒𝑆(𝐱)   . (17) 

ψ(𝐱) is a pdf, with values proportional to the density of data. In particular, ψ(𝐱) has high values 

in regions of high density.  The value of 𝑒𝑆(𝐱) is dominated by the highest probabilities in equation 

(14), that is, by the closest data points to 𝐱. Therefore, 𝑒𝑆(𝐱) can be thought of as a measure of the 

number of nearest data points to the point 𝐱. Thus, like the pdf, 𝑒𝑆(𝐱) is also high in regions of high 

density. In this view, 𝑒−𝑉(𝐱) is obtained from the pdf by locally normalizing by the number of 

nearest neighbors. The effect of this is an attenuation of high peaks to the values of the lower 

peaks. 

To see this, we show in Figure 4 an example of the three functions 𝑒−𝑉(𝐱), 𝜓(𝐱), and 𝑒𝑆(𝐱) for 

a synthetic data set in one dimension, for three value of 𝜎. For some 𝜎, 𝑆(𝐱) has a maximum in 

the regions where 𝑉(𝐱) has a minimum and where 𝜓(𝐱) has a maximum. This suggests that 𝑆(𝐱) 

can also be used as a target function for clustering, just as 𝑉(𝐱) is used in QC, and 𝜓(𝐱) is used in 
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the scale-space approach. These three algorithms all follow the same lines of flow of replica points 

in feature space, but with different target functions: QC, described in Box 1; Maximal Entropy 

Clustering (MEC), which is obtained by replacing −𝜂(∇⃗⃗ 𝑉)(𝐱𝑖
′) with +𝜂(∇⃗⃗ 𝑆)(𝐱𝑖

′) in Box 1; and 

Maximal Probability Clustering (MPC), which is obtained by replacing −𝜂(∇⃗⃗ 𝑉)(𝐱𝑖
′) with 

+𝜂(∇⃗⃗ log 𝜓)(𝐱𝑖
′) in Box 1. All three algorithms also have hierarchical versions, analogous to HQC 

described in Box 2. 

D.  Blurring Dynamics 
In the dynamics described by QC, MEC and MPC, the replica points move in the 

corresponding fields - 𝑉(𝐱), 𝜓(𝐱) or 𝑆(𝐱) – which are determined by the original data points. 

Alternatively, we could have defined the points 𝐱𝑖 in equation (9) to be the replica points 

themselves, such that the function 𝑉(𝐱) changes on each replica update.  This requires the replica 

updates to be performed concurrently, and not to wait for convergence of each replica point before 

moving the next one as described in Box 1. In [9], a similar process is called blurring, thus we call 

this algorithm Blurring Quantum Clustering (BQC) and it is described in Box 3. Blurring versions 

of MEC and MPC can similarly be described. A motivation for the blurring algorithm is that after 

each replica point has been updated, it is a bit closer to its “source” and therefore may serve as a 

better estimator for the actual pdf of the data. Disadvantages of the blurring process are: (1) The 

dynamics does not necessarily converge. (2) In regular QC, it is possible to assign novel data points 

Figure 4: The values 𝒆−𝑽(𝐱),  𝒆𝑺(𝐱) and 𝝍(𝐱) for a one dimensional synthetic data set of 300 points and for three 

values of 𝝈. The points are marked as vertical lines along the x-axis. For ease of comparison between the three 

functions, the functions are normalized to have the same maximum value. (a) 𝝈 = 𝟎. 𝟒  (b) 𝝈 = 𝟎. 𝟕  (c) 𝝈 = 𝟐 

(a) 

(b) 

(c) 
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to previously derived clusters using the original potential 𝑉(𝐱) formed by the initial data points. 

This cannot be done in BQC, since 𝑉(𝐱) becomes a dynamic field that depends on the 

instantaneous positions of the replicas. (3) The dynamics and final positions of the replica depend 

on the precise prescription used in gradient descent, thus adding more degrees of freedom to the 

algorithm. For example, the step size 𝜂 can be chosen to be constant, or to be proportional to the 

inverse of the gradient’s norm, or based on a line search, or based on Newton’s method or on a 

Quasi-Newton method [18]. Each choice may result in a different update for each replica and 

therefore in different dynamics of the field 𝑉(𝐱). 

E.  Relation to Fuzzy 𝑐-means 
In 𝑘-means, the objective is to minimize the loss function  

 𝐿(𝐜1, 𝐜2, … , 𝐜𝑘) = ∑ (𝐱𝑖 − 𝐜(𝑖))
2

𝑖   , (18)  

where 𝐜1, 𝐜2, … , 𝐜𝑘 are cluster centers and 𝐜(𝑖) ∈ {𝐜1, 𝐜2, … , 𝐜𝑘} is the cluster center closest to the 

data point 𝐱𝑖. Cluster centers are initialized by some specific scheme, and the dynamics updates 

the cluster centers so as to minimize the loss. 

In Fuzzy 𝑐-means, the “hard” assignment of a data point to a cluster is replaced by a “soft” 

assignment, such that data point 𝐱𝑖 is assigned to the cluster with center 𝐜𝑗  with a probability (or 

weight) 𝑝(𝑗|𝐱𝑖 ), such that ∑ 𝑝(𝑗|𝐱𝑖)𝑗 = 1. Thus the loss function of the fuzzy algorithm is:  

 𝐿(𝐜1, 𝐜2, … , 𝐜𝑘) = ∑ (𝐱𝑖 − 𝐜(𝑖))
2
𝑝(𝑗|𝐱𝑖)𝑖   . (19)  

The relation between this approach and QC can be demonstrated as follows: choose8 the 

assignment probability as in equation (12). Choose the number of cluster centers 𝑘 to be equal to 

the number of data points 𝑛, and the initial locations of the clusters 𝐜𝑖 to be the locations of the 

data points 𝐱𝑖. In other words, we take the fuzzy 𝑐-means setting, with initial cluster centers to lie 

exactly on all data points. In this setting, it can be seen that the loss function becomes:  

 𝐿(𝐜1, 𝐜2, … , 𝐜𝑛) = 2𝜎2 ∑ 𝑉(𝐱𝑖)𝑖   , (20)  

where 𝑉(𝐱) is given by equation (9) (or, equivalently, equation (13)), and where for each 𝑖, the 

                                                 

8 This is different from the probability assignment in conventional fuzzy 𝑐-means, see [7] 

 

Box 3: QC version with blurring 

Blurring Quantum Clustering  

(BQC1) Repeat until convergence into clusters: 

(BQC1.1) {𝐱𝑖
′}𝑖=1

𝑛 ← {𝐱𝒊}𝑖=1
𝑛  

(BQC1.2) For each replica point 𝐱𝑖: 

(BQC1.2.1) perform one gradient descent update:  

      𝐱𝑖 ← 𝐱𝑖 − 𝜂(∇⃗⃗ 𝑉)(𝐱𝑖), where 𝑉 is formed by the replica points {𝐱𝑖
′}𝑖=1

𝑛  

(BQC2) Group replica points that fall into the same minimum as a cluster. 
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initial location of  𝐜𝑖 is 𝒙𝑖. It is important to emphasize that although we choose initially 𝐜𝑖 = 𝐱𝑖, 

we treat the variables 𝐜𝑖 and 𝐱𝑖 as independent. The optimization performed by fuzzy 𝑐-means is 

over the variables 𝐜𝑖, keeping the data points  𝐱𝑖 fixed. 

Choosing as many cluster centers as there are data points is not in the spirit of the 𝑘-means or 

fuzzy 𝑐-means algorithms, since the number of clusters is expected to be much smaller than the 

number of data points. On the other hand, placing a cluster center on each data point has the 

following appealing property: a-priori, the best candidate locations for cluster centers are on data 

points, hence all candidate locations for cluster centers are considered, albeit with redundancy. 

Furthermore, if the number of data points is not very small, we can assume there is no need to 

actually move the cluster centers, since they are probably already located in good positions. In 

Fuzzy 𝑐-means this means that all there is left to do is to assign probabilities. But, an alternative 

approach could be the following: Instead of moving the cluster centers while keeping the data 

points fixed, move the data points while keeping the cluster centers fixed. Thus, in equation (20), 

instead of optimizing over 𝐜𝑖, we optimize over 𝐱𝑖. This means that each term in equation (20) can 

be optimized independently. The optimization should be done locally, so that each data point 𝒙𝑖 is 

driven to its local minima, which is determined mainly by the local distribution of the cluster 

centers. 

The dynamics described in the previous paragraph is identical to the dynamics suggested by 

QC. We see that in this context, QC can be seen as a dual algorithm to fuzzy 𝑐-means, where 

instead of moving cluster centers while keeping data points fixed, it moves replicas of the data 

points while keeping cluster centers fixed. QC is recovered when the initial cluster centers are 

taken to be exactly the data points. 

Another interesting perspective is obtained by rewriting equation (20) using equation (15), 

within the conventional fuzzy 𝑐-means setting, where the number of clusters and their locations 

are initialized at will:  

 𝐿(𝐜1, 𝐜2, … , 𝐜𝑘) = 2𝜎2 ∑ 𝑆(𝐱𝑖) − 2𝜎2 log∏ 𝜓(𝐱𝑖)𝑖𝑖   . (21)  

It follows then that the conventional fuzzy 𝑐-means seeks to minimize a loss that is comprised of 

two terms: The first is a total entropy of the system, and the second is the (negation of) the log-

likelihood of the data, given that it was generated with a Gaussian mixture model. 

F. Extending QC to Big Data 
A data set can be “big” in two respects: (1) the number 𝑛 of data points. (2) the dimension 𝑑 

of feature space. In an era of big data sets, a very desirable property of a clustering algorithm is its 

ability to run on such data sets in reasonable time. 

The time complexity of the QC algorithm is 𝑂(𝑛2𝑑𝑡), where 𝑡 is the number of steps required 

for the gradient descent to converge9. 𝑡 is highly dependent on the data set structure and on the 

type of gradient descent algorithm used. The reason for the 𝑛2 term is that the gradient on each of 

                                                 

9 Each data point may need a different number of gradient descents steps. Thus, 𝑡 should be thought of as an average 

quantity. 
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the 𝑛 replica points is calculated using all of the 𝑛 data points. The 𝑑 term is there because 

calculating distances and differences between two points in 𝑑 dimensions requires summing over 

𝑑 numbers. 

Dealing with the 𝑡 term can be done using an efficient gradient-based algorithm. In [19], for 

example, the use of the Broyden-Fletcher-Goldfarb-Shanno algorithm [18] was suggested. The 𝑑 

term can be dealt with using dimensionality reduction techniques, such as principal component 

analysis (PCA) [20] or diffusion maps [21]. Reducing the dimensions should be done with care, 

since the objective of some of these techniques is to reduce dimensions with small global variance, 

but these dimensions may have valuable information for the local structure of clusters. Also, the 

time complexity of reducing dimensions needs to be taken into account. 

The most important factor on the performance of QC on big data is the 𝑛2 term. In the 

following, we describe some strategies that can be used to cope with a big number of data points. 

These strategies can be combined. Some of them are ideas that haven’t been tested yet and should 

be further researched. 

Parallelism: QC is “embarrassingly parallel”, in the sense that the gradient descent of each 

replica can be calculated completely in parallel to all others. This calls for a multi-threaded or 

cluster-distributed implementation of QC. It does require, though, that all data points are stored in 

the memory of each cluster. 

Hierarchical QC: As described above, in HQC the number of replica points is reduced as the 

algorithm proceeds. This can help, but the initial clustering, for low 𝜎, is still using 𝑛 replicas. The 

performance of HQC depends strongly on the choice of the grid of 𝜎 values. 

Approximate QC (AQC): As suggested in [22], the wave function 𝜓(𝐱) is replaced by an 

approximation �̂�(𝐱), constructed using a small subset of the data points 𝐱𝑖. These representative 

points are chosen so as to give a good representation of the original 𝜓(𝐱). When constructing the 

approximate �̂�(𝐱), the Gaussian of each representative point is multiplied by a coefficient 

representing the density of data points around its location. 

QC with Stochastic Gradient Descent: In this approach, the gradient of a replica point at a 

certain iteration is calculated using a small, random subset of the data points 𝐱𝑖. This random batch 

is sampled anew on every iteration and for any replica point. The gradient calculated using the 

batch can be thought of an estimation of the true gradient. This approach removes the need to 

perform any 𝑂(𝑛2) calculations. However, there is a tradeoff between the size of the batch and the 

size of the gradient step. A small batch means that the estimation of the gradient will have high 

variance, thus a small step size is needed to ensure that replica points don’t deviate from their path. 

Another important issue that should be looked at is the bias of the estimate. If it is biased, repeated 

use can lead a replica point in wrong directions. A disadvantage of this approach is that small 

clusters, or outliers, may be overlooked since a random batch has a high chance of missing the 

data points in the small cluster, and therefore they won’t generate any gradient force on the replica. 

Using nearest neighbors: This is similar to the previous method, the difference being that the 
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gradient is calculated using just a set of 𝑘-nearest data points. For low dimensions, a repeated 

query of 𝑘-nearest neighbors can be done efficiently using the 𝑘-d tree data structure [23]. For 

higher-dimensions, an approximate nearest-neighbor calculation can be used, such as Locality-

Sensitive Hashing [24]. 

QC on a graph: Calculating a new gradient for each replica point on each iteration of the 

algorithm is what takes the most compute time. If the movement of replica points were restricted 

only to the set of data points, then there would be no need for a new calculation of the gradients 

for each iteration, since each replica will always be in a location where the gradients have already 

been calculated. A prescription is needed for updating the location of a replica point, given a 

gradient. This approach has two more beneficial properties: (1) if two replica points meet at one 

location, they may be fused into one. (2) If a replica point 𝑎 arrives at a location which was earlier 

occupied by a previous replica point 𝑏, then the future dynamics of 𝑎 is identical with the dynamics 

of 𝑏 when it was at that location, so there is no need to progress 𝑎 any more since we know its 

future. 
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 APPLICATION TO ASTEROID SPECTRAL TAXONOMY 

A.  Introduction to Asteroids 

 Asteroids and their Distribution and Formation 

Asteroids are small solid objects that orbit the sun. They can have a diameter as small as tens 

of meters, or as big as thousands of kilometers. The millions of asteroids in the solar system are 

mainly distributed among asteroid belts. The largest asteroid belt, in terms of the number of 

asteroids, is the Main Belt10. It contains asteroids whose elliptical orbits have a semi major axis in 

the range 1.52 AU to 5.2 AU, between Mars and Jupiter. More than 99% of the solar-system 

asteroids are contained in the Main Belt. Figure 5 shows the distribution of asteroid mass within 

the Main Belt. It can be further divided into families based on semi-major axis values. 

The fact that most asteroids reside in the Main Belt can be explained by the process of asteroid 

formation11 [25]. Asteroids, like planets, were formed from solar nebula, containing gas and dust 

left over from the sun’s formation. Clumping of the solar nebula, along with collisions between 

these clumps, led to objects of sizes of about 10 km over the course of millions of years. As the 

process continued, larger objects were formed, some of which eventually, merged into the 

terrestrial planets. But objects at distances of around 2 AU to 4 AU from the sun had a different 

history. When Jupiter was formed, some of these objects were in resonance with it. This means 

that the ratio of the orbital period of Jupiter around the sun to the orbital period of these objects is 

close to a ratio of small integers, and therefore the gravitational influence of Jupiter on these 

objects adds up coherently in time. Saturn also formed resonances with some of these objects. The 

resonances caused an increase in the velocity of the objects, which upon collisions would shatter, 

rather than clump, into smaller objects, which became the asteroids. The gravitational interaction 

of Jupiter with other solar system objects caused it to migrate inwards towards the sun, and as this 

migration occurred, the resonating regions were swept along the asteroid belt, exciting more 

objects to higher speeds, thus forming more asteroids. 

Another, smaller, group of asteroids is the Near-Earth Objects (NEO), which consists of 

asteroids (and comets12) whose semi-major axes are close to earth’s semi-major axis. 

 Asteroid Designation 

By the International Astronomical Union (IAU) standards, asteroids can be identified both by 

a name and by a numerical designation. For example, Ceres is the name of the asteroid whose 

designation is 1. To get a name and a permanent numerical designation, the asteroid must be 

observed a number of times at different oppositions. Before it gets a permanent designation, a 

provisional designation is used, which includes the year of observation and some additional 

characters, for example 2001-VS78. Asteroids are given names only after approved by a committee 

                                                 

10 The Kuiper belt is a larger asteroid belt that lies beyond Neptune, the farthest planet from the sun. 

11 I give a simplistic description here. 

12 Comets are objects similar to asteroids, the main difference being that comets are also composed from ice  
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of the IAU. 

B. Asteroid Composition and Their Taxonomy 

 Composition 

A main source for the study of asteroid composition is the observation, using ground-based 

telescopes, of the colors of the sun light reflected off the asteroids, both in the visual and near 

infrared domains. Analysis of the reflected spectrum teaches us about the presence of absorbing 

material on the surface of the asteroid. Other, less common, methods to gather information about 

asteroid composition are by performing close-up measurements by a spacecraft orbiting the 

asteroid (such as the space probe Dawn, launched by NASA, which was in orbit around the asteroid 

Vesta during 2011 and 2012, and as of 2017 it is in orbit around Ceres), and by analyzing the 

composition of meteorites that have fallen onto earth. 

Asteroids come in three major types[26], based on their composition: S-type asteroids are 

stony and consist mainly of silicates, that are manifested in the spectrum by absorption features at 

around 1𝜇m and 2𝜇m. C-type asteroids are carbonaceous. Their spectra show absorption at the 

ultraviolet end, bellow 0.5𝜇m. The third group consists of metallic asteroids, whose spectra are 

featureless. Yet the classification of asteroids into these three types is by no means clear-cut, since 

asteroids can be made up of mixtures of these materials, or of other materials. Therefore, finer 

taxonomies have been proposed over the years. In the following paragraphs, we’ll describe two of 

the proposed asteroid spectral taxonomies. 

 Tholen Taxonomy 

The taxonomy suggested by Tholen [27] in 1984 is based on the reflected spectrum in eight 

wavelengths in the range 0.337𝜇m to 1.041𝜇m. This range overlaps with the visual range (VIS) 

and with some of the near-infrared range (NIR). In addition, albedo measurements are used. A 

total of 589 asteroids have been measured. The data was preprocessed to have unit variance for 

each wavelength and was normalized to have unit reflectance at wavelength 0.55𝜇m, thus reducing 

the dimension by one. The normalization is needed since the measured reflectances represent 

relative magnitudes, not absolute ones.  

Figure 5: Total mass of Main Belt asteroids per 𝟎. 𝟎𝟐 𝐀𝐔 bins, and names of asteroid families. Only asteroids 

larger than 5 km are considered here. Note that the Trojan family is not shown in this figure. The figure was 

reproduced from [48] 
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The 589 measurements were divided into 405 “high-quality data” and 184 “low-quality data”, 

based on their given measurement errors. Using the high-quality data, a minimal spanning tree was 

constructed. The vertices of the tree are the asteroids and the value on each edge was taken as the 

Euclidian distance between the asteroids’ seven dimensional spectra. Edges with large values were 

manually removed, and the resulting connected components were each considered to be a cluster. 

Some of the clusters were further partitioned to smaller clusters using the albedo data. At this point, 

a repeated process of optimizing the clusters has been performed, where on each step, all data 

points (high-quality and low-quality) were attributed to clusters based on their three nearest 

neighbors from within the high-quality data points. Cluster centers were computed by the mean 

over all asteroids whose three nearest neighbors belong to the cluster. The repeated process 

terminates when cluster centers converge. Finally, albedo data was used to refine the clusters. 

The Tholen taxonomy comprises of 14 classes. The carbonaceous classes B, C, F and G all 

have an ultra-violet feature, whose main absorption wavelength is just bellow the smallest 

measured wavelength. The depth of the feature and the sign of the slope at higher wavelengths 

differ between the four classes. 

The stony classes S, and A have features around 1𝜇m. In the A class, the feature is more 

prominent. 

The classes E, M and P are featureless, and differ in their albedo. T and D are also featureless. 

These classes are distinguished by the behavior of their slope. 

Three more classes - Q, R and V were used for asteroids with unique spectra, making them 

singleton classes (in Tholen’s data set). All of these spectra show absorption features around 1𝜇m. 

 Bus-DeMeo Taxonomy  

An improved taxonomy was suggested by DeMeo et al.[28] in 2009, which we refer to as the 

Bus-DeMeo taxonomy. The range of measured wavelengths is larger than Tholen’s: 0.45𝜇m to 

2.45𝜇m, but albedo data wasn’t used. The 371 asteroid spectrum measurements were spline-

interpolated to a wavelength grid of 0.05𝜇m. The reflectance was normalized to 1 at the 

wavelength 0.55𝜇m. 

A guiding principle in the construction of the Bus-DeMeo taxonomy was to be consistent with 

an older taxonomy, by Bus and Binzel [29]. The Bus taxonomy was performed in VIS, and the 

Bus-DeMeo taxonomy is its extension into NIR. Thus, in accordance with the Bus taxonomy, the 

slopes of the spectra were computed and removed. The slope of a spectrum is defined as the 

number 𝛾 which makes the line 𝑟 = 1 + 𝛾(𝜆 − 0.55𝜇m ) closest as possible to the spectrum (in 

least-squares sense). When the slope is found, the spectrum is divided by the line. The reason the 

slope is removed is that it was found that consecutive measurements give rise to large variations 

in the slope. The slope depends on factors such as humidity and clouds, and also on angle of 

observation. 

After the slope was removed, PCA was applied to the data, and the spectra were examined in 

six dimensions which include projection on the five first principal components, and the parameter 
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𝛾. Thus, although the slope was removed from the spectra,  𝛾 is still reinstated as a feature. 

Clustering was performed manually by examining the data in planes spanned by pairs of the 

six dimensions. Classes were defined by dividing the space into regions with linear boundaries, 

with the Bus classes as guidelines. 27 classes were formed in this taxonomy. 

C. The Data 

 Data Acquisition 

The reflected spectrum of an asteroid is measured using ground-based telescopes with a 

charge-coupled device (CCD) sensor for VIS[30], or a NIR spectrograph for NIR[31]. The 

measured quantity is the intensity of sun light that is reflected from the asteroid’s surface, and then 

passes through the earth’s atmosphere before being detected. Atmospheric absorption and 

scattering cause attenuation of the measured signal, and the spectral shape of the attenuation 

depends on atmospheric conditions, such as humidity and clouds. Also, the attenuation can depend 

on the direction of observation, since in each direction the light travels through different air masses. 

To correct for this distortion, the measured spectrum is divided by the measured spectrum of an 

analog solar star in a direction close to that of the asteroid. This is a star with a spectrum similar 

to that of the sun. 

Noise in the sensor, atmospheric attenuation and solar analog correction all introduce errors 

to the resulting spectrum. The amount of uncertainty in the measurement can be calculated based 

on the sensor gain, noise and on the correction. 

It is important to note that the measured spectrum represents only an average characteristic of 

the surface of the asteroid over the disk illuminated by the sun light that is reflected to earth. It is 

Figure 6: Wavelength ranges of data. Each horizontal slice of this figure represents one asteroid measurement. 

The wavelength spanned by the slice are the wavelengths measured. This figure does not represent the 

resolution of measurements. 
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usually assumed that the bulk of the asteroid has a similar composition to the surface, but grain 

size, temperature, exposure to radiation and viewing angle can affect the spectral properties. 

 Data Source 

The data was downloaded from the MIT Planet Spectroscopy group website [32], which 

contains data from multiple sources[29] ([29],[34]-[45]), some of them unpublished. The data 

consists of spectra of asteroids, primarily from the Main Belt but also from the NEO family. At 

the time of access, the website contained measurements of 2659 asteroids, in VIS and NIR. 

The measurements in NIR were performed mainly using the spectrograph SpeX with the 

NASA Infrared Telescope Facility in Mauna Kea, Hawaii [31]. It has two operation bands, 0.8 −

2.5𝜇m and 2.5 − 5.5𝜇m. The former band, which is less corrupted by thermal background noise 

from the telescope and sky, was used for the asteroid measurements. SpeX includes a dispersive 

prism that splits the different wavelength onto an array of InSb pixels. This allows the simultaneous 

Figure 7: The hierarchical clustering tree obtained from applying HQC to the asteroid spectrum data. 
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capturing of the entire spectrum, and it is therefore guaranteed that spectra taken at the same time 

come from the same position. In particular, this means that the effect of the asteroid rotation on its 

instantaneous intensity can be neglected. 

For VIS, one of the instrument used was the Mark III spectrograph with the Hiltner telescope, 

located at the Michigan Dartmouth MIT Observatory in Arizona. Like SpeX, this spectrograph can 

also capture the entire spectrum in a single exposure, onto a CCD pixel array. 

 Each measurement file consists of a list of wavelengths, and for each wavelength there exists 

a reflectance value and a measurement error. The reflectance values were normalized such that the 

reflectance at wavelength 0.55𝜇m equals 1. 

The total number of asteroid measurements is 3518, as some asteroids were measured more 

than once. Spectra of asteroids with multiple measurements are not always independent, though, 

since in some cases two different NIR measurements are joined with the same VIS measurement. 

The asteroid measurements don’t all share the same wavelength range and resolution. Some 

asteroids were measured only in VIS and some only in NIR. Figure 6 shows the wavelength range 

of each measurement. In our clustering analysis we demand all data points to be defined on the 

same set of features. This means that we shall disregard all measurements which don’t include 

both VIS and NIR ranges. In particular, we use only measurements which include the wavelength 

range of 0.5𝜇m to 2.43𝜇m, and which don’t have a gap larger then 0.1𝜇m where the spectrum 

Figure 9: (a) Eight different spectra of Eros. (b) The sub-tree of the HQC hierarchical tree spanned by the 

eight Eros measurements, with colors corresponding to the spectrum graphs . Data point numbers correspond 

to Figure 7. 

(a) (b) 

Figure 8: (a) Eight different spectra of Ganymed. (b) The sub-tree of the HQC hierarchical tree spanned by 

the eight Ganymed measurements, with colors corresponding to the spectrum graphs. Data point numbers 

correspond to Figure 7. 

(a) (b) 
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was not measured.  This leaves us with 286 asteroids and 365 measurements. This is about 10% 

of the original data. Most measurements have a resolution of about 0.05𝜇m. 

 Preprocessing 

The data was linearly interpolated to a grid with 0.02𝜇m resolution, with the smallest 

wavelength being 0.5𝜇m. Since the resolution is smaller than the measured resolution, prior to the 

interpolation each spectrum has been smoothed with a triangular filter with a width of 0.02𝜇m. 

Thus, the data after preprocessing consists of 365 measurements in 97 dimensions. 

We decided not to remove slope of the spectra. Although it is considered a less reliable feature 

of the spectra, it may still convey valuable information about physical properties of asteroids. In 

particular, exposure of the asteroid to radiation from the sun and to meteoroids – a phenomenon 

known as space weathering - can cause the slope to increase, thus reddening the asteroids. A young 

asteroid which is the product of older asteroids colliding may have faces which were exposed to 

space weathering for just small amount of times. Also, the Bus-DeMeo taxonomy removes the 

slope to be similar to the Bus taxonomy, which itself tried to preserve the Tholen taxonomy. But 

it may be a good idea to start a taxonomy afresh, without resorting to older taxonomies and 

assumptions, and to examine the results. 

D.  Results of Applying HQC 
HQC was applied to the data. The starting 𝜎 was chosen to be 0.01, which is small enough to 

cause hardly any motion of replicas. 𝜎 was then increased by 0.01 at each step of HQC. The code 

implementing HQC can be found in [33]. 

The hierarchical tree obtained from the clustering is presented in Figure 7. The most general 

way to obtain a final clustering of the data is to choose a cutoff value for 𝜎 separately for each 

branch of the tree. Here we will focus on a constant cutoff applied to the whole tree. 

One may think that a guiding principle in the selection of the final 𝜎 value could be that the 

spectra of different measurements of the same asteroid should all fall into the same cluster. The 

asteroids Eros (433) and Ganymed (1036) both have eight measurements in our data set, more than 

any other asteroid. These are shown, respectively, in Figure 9 and in Figure 8, along with the sub-

tree that shows when these measurements merge. From these figures it is seen that for Eros, if we 

Figure 10: (a) The largest cluster obtained from 𝝈 = 𝟎. 𝟓𝟓. (b) The sub-tree of the HQC hierarchical tree that 

leads to this cluster. Data point numbers correspond to Figure 7. 

(a) (b) 
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ignore the one spectrum which is quite different from all others, the value of 𝜎 which merges the 

Eros measurements is 𝜎 = 0.5. For Ganymed, the value is 𝜎 = 0.55, although already for 𝜎 = 0.3 

all but one measurement merge. 

Using 𝜎 = 0.55 as a cutoff, the largest cluster obtained is shown in Figure 10. This cluster is 

quite broad and is very heterogeneous in the spectra it contains, including both flat waveforms and 

wavy waveforms with absorption features. The conclusion is that clustering at scale of 𝜎 = 0.55 

gives clusters which are too coarse. Another conclusion is that we shouldn’t necessarily seek for a 

unique cluster designation for each asteroid. The variance between different measurements of the 

same asteroid gives rise to waveforms which may be significantly different from each other. The 

variance is probably a result of viewing the asteroid from different directions and at different 

Figure 11: Cluster means for the eight largest clusters, among clusters that have two absorption features, 

obtained for 𝝈 = 𝟎. 𝟐𝟐. The shade around each cluster represents the standard deviation of the cluster members 

for each wavelength. The numbers on the right are the HQC cluster designations. 

Figure 12: Cluster means for the six largest clusters, among clusters that have a flat waveform, obtained for  

𝝈 = 𝟎. 𝟐𝟐. The shade around each cluster represents the standard deviation of the cluster members for each 

wavelength. The numbers on the right are the HQC cluster designations 
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angles. The asteroid’s surface is not necessarily homogenous in its grain size, temperature and 

exposure to radiation, and this may be the reason for the differences. The clusters we find, then, 

are classes of spectral types and not of asteroids. This is on par with the conclusion presented in 

[30]: 

“The classification assigned to an asteroid is only as good as the 

observational data. If subsequent observations of an asteroid reveal variations 

in its spectrum, whether due to compositional heterogeneity over the surface of 

the asteroid, variations in viewing geometry, or systematic offsets in the 

observations themselves, the taxonomic label may change. When this occurs, 

we should not feel compelled to decide which label is “correct” but should 

rather accept these distinct labels as a consequence of our growing knowledge 

about that object.” 

Following this conclusion, we look at smaller values of 𝜎. We choose 𝜎 = 0.22, which by 

visual inspection gives tight clusters which are different from each other. Figure 11 and Figure 12 

show the means of the largest clusters. We designate the clusters by consecutive integers, sorted 

by cluster size, starting with 1 for the biggest cluster. The complete association of each asteroid 

spectrum to a cluster is given in Table 1. The spectra of each cluster are shown in Figure 19 to 

Figure 44. 

 The results show that that some clusters, such as 2 and 13, have minute differences that lead 

to their differentiation into separate clusters. The question of whether these clusters should actually 

be merged has no obvious answer. This merger will occur for a larger  value of 𝜎, which can be 

set either globally or locally to this branch of the hierarchical tree. Alternatively, large clusters 

Figure 13: All spectra that fell into HQC singleton clusters at 𝝈 = 𝟎. 𝟐𝟐. 
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such as 1 may be separated into smaller clusters by decreasing 𝜎 for the cluster.  

We obtain, for 𝜎 = 0.22, 101 singleton clusters, displayed in Figure 13. Singletons and small 

clusters may indicate that an asteroid has unique properties which should further be investigated 

by experts. Also, as measurements accumulate in the future, additional spectra might be added to 

the singletons forming new clusters. 

E.  Comparison with the Bus-DeMeo Taxonomy 
The Jaccard similarity score [46] is a measure for comparing two partitions of the same data 

set. It is defined as  

 𝐽 =
𝑛11 

𝑛01+𝑛10+𝑛11
  , (22) 

where 𝑛11 is the number of data point pairs that belong to the same cluster in both partitions, 𝑛10 

Figure 14: Jaccard similarity score between the Bus-DeMeo taxonomy and the HQC clustering for various 

values of 𝝈. 

Members: 5, 7, 14, 17, 20, 25, 26, 27, 29, 30, 37, 

40, 57, 61, 67(1), 67(2), 73, 82, 101, 103, 119, 158, 

264, 288, 371, 389, 403, 532, 631, 699, 719, 793, 

925, 1036(1), 1036(2), 1036(3), 1036(4), 1036(5), 

1036(6), 1036(7), 1036(8), 1065, 1131, 1565, 

1620(1), 1620(2), 1620(3), 1640, 1660, 2335, 3402, 

6585, 8444, 20790, 22771, 2002-AA 

(a) (b) 

Figure 15: (a) The cluster S in the Bus-DeMeo taxonomy. (b) Cluster members. 

Members: 16, 55(1), 55(2), 56, 65, 69(1), 69(2), 

99, 110, 160, 181, 201, 250, 25330 
(a) (b) 

Figure 16: (a) The cluster Xk in the Bus-DeMeo taxonomy. (b) Cluster members. 
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is the number of data point pairs that belong to same cluster in the first partition but not in the 

second partition, and 𝑛01 is the number of data point pairs that belong to same cluster in the second 

partition but not in the first partition. The value of 𝐽 is always between 0 and 1, where higher 

values are obtained when the two partitions are more similar to each other. 

The Jaccard score for the Bus-DeMeo taxonomy and the HQC clustering, for each value of 𝜎, 

is shown in Figure 14. The score is based on a comparison between 235 spectra which are in the 

intersection of the data set used in both the Bus-DeMeo taxonomy and HQC analysis. The highest 

score is 0.28, which is quite low. In particular, for our proposed clustering at 𝜎 = 0.22, the score 

Figure 17: Comparison of the HQC results with the Bus-DeMeo taxonomy. Each vertical stack of columns 

represents the distribution among the Bus-DeMeo classes of a single HQC cluster. The letters in the columns 

are the Bus-DeMeo class designations.   
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is 0.18. This means that the clustering we obtain is substantially different from the Bus-DeMeo 

taxonomy. This is evident by visual inspection of the classes in the Bus-DeMeo taxonomy. Since 

in the initial stage of the Bus-DeMeo procedure the slope is removed, some clusters of the Bus-

DeMeo taxonomy have high variance in terms of the spectra when viewed before slope removal. 

Examples are shown in Figure 15 and Figure 16 for two particular classes13. 

                                                 

13 Class assignment for each asteroid in the Bus-DeMeo taxonomy was taken from [28]. Since our data set consists of 

multiple measurements for some asteroids, all of these measurements get assigned to the same Bus-DeMeo taxonomy 

Figure 18: Comparison of the HQC results with the Bus-DeMeo taxonomy. Each vertical stack of columns 

represents the distribution among the HQC clusters of a single Bus-DeMeo class. The numbers in the columns 

are the HQC class designations. White columns, with no number, are singleton clusters 
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Figure 17 and Figure 18 show the sizes of the intersections between clusters in HQC at 𝜎 =

0.22, and classes in the Bus-DeMeo taxonomy. 

 

                                                 

class. This causes the Bus-DeMeo taxonomy classes as presented here to have slightly larger variances. 
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 Discussion 
The QC algorithm was originally motivated by the quantum mechanical system of a particle 

in a potential. In this work, we have shown that there are more ways to gain insight about the 

algorithm’s workings: The entropy formulation relates the quantum potential to the information 

theoretical concept of entropy, and it was also shown that the algorithm can be understood as a 

sort of a dual algorithm to fuzzy 𝑐-means. Using these alternative formalisms can lead into new 

insights about the algorithm. For example, the entropy relation suggests that QC belongs to a 

family of algorithms which are based on replica flow in feature space. Another algorithm in this 

family is obtained by maximizing the entropy, instead of minimizing the quantum potential.  

Another reason to adopt multiple formulations of QC is to bridge the gap between the physics 

community and other communities that study cluster analysis, since the quantum mechanical 

model may not be accessible to researchers or practitioners without background in quantum 

physics. The concept of entropy, on the other hand, is more widely known. 

It was shown the QC can be turned into an agglomerative hierarchical algorithm, HQC. This 

has the conceptual benefit that clusters which are obtained at larger scales are always disjoint 

unions of clusters obtained at any smaller scale. The result of HQC is a tree representing the merger 

of clusters as the scale gets larger. This tree can then be cut at different branches to obtain a final 

clustering for the problem. Further work could find schemes of performing the cut automatically, 

based on principles such as the stability of clusters for a wide range of scales. 

HQC was applied to the problem of asteroid spectral taxonomy in the VIS and NIR ranges. It 

seems to provide good results – tightly packed clusters, as compared to the Bus-DeMeo taxonomy. 

HQC produces a large number of singleton clusters. This may be an indication that the space of 

asteroid spectral types is very rich, and that the size of the present data set is too small to give a 

good representation of this entire space. Thus, as more data will become available, HQC should 

be run again to update the taxonomy. 

The large number of singletons can also mean that the value of 𝜎 that was chosen does not 

apply uniformly to the entire data set. If larger values of 𝜎 were used at different locations in 

feature space, some of the singletons could fall into clusters. 

We have seen that choosing large enough values of 𝜎, such that multiple measurements of the 

same asteroid all fall into the same cluster, yields clusters which are very large and are not 

meaningful. This demonstrates that the spectrum of an asteroid can vary considerably. It also 

shows where HQC ceases to give a good multiscale clustering for the problem. We saw that 

clusters obtained for large values of 𝜎 contain both flat and wavy spectra. The physical 

understanding of the problem suggests that all wavy spectra and all flat spectra should be merged 

into two separate clusters. HQC fails to do this for large values of 𝜎 since it is based on the 𝐿2 

distance between the waveforms. Had we performed feature engineering on the problem, 

performing clustering not on the raw waveforms but rather on crafted vector representations of the 

waveforms, with features such as the locations of extrema and the slopes between extrema, we 

could have obtained a more natural clustering at larger scales. But this approach has the 
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disadvantage that by choosing the features we use prior assumptions about the spectra. This may 

obscure structure that is present in the data and which we do not expect. Another approach can be 

to separate spectra first, by inspection, into two groups of wavy and flat spectra, and to apply HQC 

to each group separately. 

 

Table 1: The clusters associated with each asteroid by HQC, 𝝈 = 𝟎. 𝟐𝟐. Singleton clusters don’t have a 

designation. Some asteroids have multiple clusters associated with different measurements. 

Designation Name Clusters 

1 Ceres 6 

2 Pallas  

3 Juno 1 

4 Vesta  

5 Astraea 1 

6 Hebe 1 

7 Iris 1 

10 Hygiea 3,6 

11 Parthenope 14 

13 Egeria 3 

14 Irene 1 

15 Eunomia 12 

16 Psyche 5 

17 Thetis 19 

19 Fortuna 4,8 

20 Massalia 1 

21 Lutetia 4,5 

22 Kalliope 5 

23 Thalia 10 

24 Themis 20 

25 Phocaea 2 

26 Proserpina 1 

27 Euterpe 10 

29 Amphitrite 21 

30 Urania 2 

32 Pomona 1 

34 Circe 3 

Designation Name Clusters 

36 Atalante 8 

37 Fides 1 

38 Leda 8 

39 Laetitia 1 

40 Harmonia 1 

41 Daphne 3,4 

43 Ariadne 1 

44 Nysa 6 

45 Eugenia 3 

47 Aglaja 3 

48 Doris 6 

51 Nemausa 14 

52 Europa 26 

55 Pandora 5 

56 Melete 14 

57 Mnemosyne 1 

61 Danae 1 

62 Erato 6 

63 Ausonia 2 

65 Cybele 8 

66 Maja 4,6 

67 Asia 1 

69 Hesperia 5 

73 Klytia 19 

76 Freia  

77 Frigga 5 

78 Diana 4 

Designation Name Clusters 

79 Eurynome 1 

81 Terpsichore 3 

82 Alkmene 11 

87 Sylvia 5 

90 Antiope 26 

96 Aegle 5 

97 Klotho 4 

99 Dike 4 

101 Helena 1 

103 Hera 10 

105 Artemis 4 

108 Hecuba 2 

110 Lydia 5 

111 Ate 6 

113 Amalthea  

114 Kassandra 5 

118 Peitho 1 

119 Althaea 13 

121 Hermione 8 

131 Vala 8 

132 Aethra 4 

141 Lumen 4 

142 Polana 20 

145 Adeona 3 

151 Abundantia  

153 Hilda 5 

158 Koronis 1 
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Designation Name Clusters 

160 Una 8 

175 Andromache 3 

180 Garumna 11 

181 Eucharis 4 

191 Kolga 8 

192 Nausikaa 13 

201 Penelope 14 

208 Lacrimosa 1 

210 Isabella 3 

234 Barbara  

236 Honoria  

237 Coelestina 1 

244 Sita 13 

245 Vera 1 

246 Asporina  

250 Bettina 5 

261 Prymno 14 

264 Libussa 1 

266 Aline 3 

269 Justitia  

279 Thule  

288 Glauke 1 

301 Bavaria 3 

308 Polyxo 24 

339 Dorothea  

345 Tercidina 3 

354 Eleonora  

371 Bohemia 1 

377 Campania 6 

389 Industria 7 

403 Cyane 10 

416 Vaticana 18 

433 Eros 2,13,15 

Designation Name Clusters 

512 Taurinensis 2 

532 Herculina 1 

534 Nassovia 1 

570 Kythera  

584 Semiramis 13 

596 Scheila  

600 Musa 1 

631 Philippina 10 

679 Pax 21 

699 Hela 7 

706 Hirundo 8 

719 Albert 1 

773 Irmintraud 24 

776 Berbericia 4 

785 Zwetana 8 

793 Arizona 17 

808 Merxia 7 

845 Naema 3 

863 Benkoela  

908 Buda  

925 Alphonsina 1 

944 Hidalgo  

984 Gretia  

1021 Flammario 6 

1036 Ganymed 1,2,7 

1065 Amundsenia 10 

1076 Viola 6 

1131 Porzia 1 

1139 Atami 2 

1143 Odysseus  

1300 Marcelle 4 

1374 Isora 12 

1406 Komppa  

Designation Name Clusters 

1494 Savo 22 

1508 Kemi 6 

1542 Schalen  

1565 Lemaitre  

1620 Geographos 1,2 

1627 Ivar 2,10,22 

1640 Nemo 1 

1660 Wood 1 

1685 Toro 1,9,12 

1768 Appenzella 3 

1862 Apollo 16 

1864 Daedalus 9 

1865 Cerberus 7 

1916 Boreas 15 

1917 Cuyo  

1943 Anteros 1,2 

1951 Lick  

1980 Tezcatlipoca 15 

2062 Aten  

2063 Bacchus 9 

2064 Thomsen 1 

2074 Shoemaker  

2078 Nanking 11 

2107 Ilmari 2 

2246 Bowell  

2335 James 2 

2340 Hathor 9 

2850 Mozhaiskij 18 

2956 Yeomans 1 

3102 Krok 1 

3103 Eger 21 

3122 Florence  

3199 Nefertiti  
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Designation Name Clusters 

3200 Phaethon  

3248 Farinella  

3288 Seleucus 2 

3317 Paris  

3352 McAuliffe 2 

3402 Wisdom 10 

3552 Don Quixote  

3628 Boznemcova  

3635 Kreutz 2 

3671 Dionysus 6 

3674 Erbisbuhl 11 

3691 Bede 4 

3753 Cruithne  

3819 Robinson  

3833 Calingasta 3 

3858 Dorchester  

3873 Roddy 7 

3908 Nyx  

4055 Magellan  

4142 Dersu-Uzala  

4179 Toutatis 1,7,12 

4183 Cuno 23 

4197 Morpheus 11 

4558 Janesick 7 

4688    

4744 Rovereto  

4954 Eric 2 

5131    

5159 Burbine 1 

5261 Eureka  

5379 Abehiroshi  

5392 Parker  

5587   11 

Designation Name Clusters 

5604    

5626   1 

5641 McCleese 25 

5646    

5660   16 

5817 Robertfrazer 1 

5836   1,17 

6239 Minos 1,12 

6249 Jennifer 4 

6411 Tamaga  

6455   15 

6585 O'Keefe 7 

6611    

7304 Namiki  

7336 Saunders 23 

7341   9,16 

7358 Oze 9 

7482   1 

7822    

8444 Popovich 1 

9400   1 

11066 Sigurd 1 

11398   1 

11500 Tomaiyowit 1 

14402   3 

15745 Yuliya 1 

16834   1 

16960    

17274    

19127 Olegefremov  

197127    

20786   14 

20790   17 

Designation Name Clusters 

22771   19 

24445   1 

24475   18 

25330    

32906   7 

35107   1,12 

36017    

36284    

37336   7 

65679   20 

66146   9 

68278    

68548    

85818    

85989   4 

85990    

99942 Apophis 1 

100926   1 

137799    

138524   7,11,17 

139622   12 

141052    

143624    

152931    

163000    

175706   3,6 

194268    

194386   11 

219071    

283460   1 

337866   1 

385186    

422686    
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Designation Name Clusters 

1997-AE12    

2000-CK33    

2000-GK137    

Designation Name Clusters 

2000-co101   5 

2001-VS78   1 

2002-AA   6 

Designation Name Clusters 

2002-AL14    

 

 

 

 

 

Cluster size: 67 

Members: 3, 5, 6(1), 6(2), 7, 14, 20, 26, 32, 37, 39, 40, 43, 57, 61, 67(1), 67(2), 79, 101, 118, 158, 208, 237, 245, 264, 

288, 371, 532, 534, 600, 719, 925, 1036(2), 1036(3), 1036(5), 1036(7), 1131, 1620(1), 1620(2), 1640, 1660, 1685(3), 

1943(2), 2064, 2956, 3102, 4179(2), 5159, 5626, 5817, 5836(2), 6239(1), 7482, 8444, 9400(2), 11066, 11398, 11500, 

15745, 16834(2), 24445, 35107(1), 99942, 100926, 283460, 337866, 2001-VS78 

(a) (b) 

(c) 

Figure 19: (a) The spectra of cluster 1, colored by the hierarchical tree.  (b) The hierarchical tree of the cluster.  

(c) The members of the cluster 

Cluster size: 22 

Members: 25, 30, 63, 108, 433(1), 433(7), 512, 1036(4), 1139, 1620(3), 1627(4), 1627(7), 1943(1), 2107, 2335, 3288(1), 

3288(2), 3288(3), 3352(2), 3635, 4954(1), 4954(2) 

(a) (b) 

(c) 

Figure 20: (a) The spectra of cluster 2, colored by the hierarchical tree.  (b) The hierarchical tree of the cluster.  

(c) The members of the cluster 
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Cluster size: 19 

Members: 10(2), 13, 34, 41(2), 45, 47, 81, 145, 175, 210, 266, 301, 345, 845, 1768, 3833, 14402, 175706(1), 175706(2) 

(a) (b) 

(c) 

Figure 21: (a) The spectra of cluster 3, colored by the hierarchical tree.  (b) The hierarchical tree of the cluster.  

(c) The members of the cluster 

Cluster size: 18 

Members: 19(1), 21(1), 21(3), 41(1), 66(2), 78, 97, 99, 105, 132, 141, 181, 776, 1300(1), 1300(2), 3691, 6249, 85989 

(a) (b) 

(c) 

Figure 22: (a) The spectra of cluster 4, colored by the hierarchical tree.  (b) The hierarchical tree of the cluster.  

(c) The members of the cluster 

Cluster size: 15 

Members: 16, 21(2), 22, 55(1), 55(2), 69(1), 69(2), 77, 87, 96, 110, 114, 153, 250, 2000-co101 

(a) (b) 

(c) 

Figure 23: (a) The spectra of cluster 5, colored by the hierarchical tree.  (b) The hierarchical tree of the cluster.  

(c) The members of the cluster 
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Cluster size: 13 

Members: 1, 10(1), 44, 48, 62, 66(1), 111, 377, 1021, 1076, 1508, 3671, 175706(4) 

(a) (b) 

(c) 

Figure 24: (a) The spectra of cluster 6, colored by the hierarchical tree.  (b) The hierarchical tree of the cluster.  

(c) The members of the cluster 

Cluster size: 13 

Members: 389, 699, 808, 1036(1), 1036(6), 1865, 3873, 4179(1), 4558, 6585, 32906, 37336, 138524(2) 

(a) (b) 

(c) 

Figure 25: (a) The spectra of cluster 7, colored by the hierarchical tree.  (b) The hierarchical tree of the cluster.  

(c) The members of the cluster 

Cluster size: 11 

Members: 19(2), 36, 38, 65, 121, 131, 160, 191, 706(1), 706(2), 785 

(a) (b) 

(c) 

Figure 26: (a) The spectra of cluster 8, colored by the hierarchical tree.  (b) The hierarchical tree of the cluster.  

(c) The members of the cluster 
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Cluster size: 10 

Members: 1685(1), 1864, 2063, 2340, 7341(2), 7358, 66146(1), 66146(2), 66146(3), 66146(4) 

(a) (b) 

(c) 

Figure 27: (a) The spectra of cluster 9, colored by the hierarchical tree.  (b) The hierarchical tree of the cluster.  

(c) The members of the cluster 

Cluster size: 9 

Members: 23, 27, 103, 403, 631, 1065, 1627(1), 1627(5), 3402 

(a) (b) 

(c) 

Figure 28: (a) The spectra of cluster 10, colored by the hierarchical tree.  (b) The hierarchical tree of the 

cluster.  (c) The members of the cluster 

Cluster size: 8 

Members: 82, 180, 2078, 3674, 4197, 5587, 138524(3), 194386 

(a) (b) 

(c) 

Figure 29: (a) The spectra of cluster 11, colored by the hierarchical tree.  (b) The hierarchical tree of the 

cluster.  (c) The members of the cluster 
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Cluster size: 8 

Members: 15, 1374, 1685(2), 4179(3), 4179(4), 6239(2), 35107(2), 139622 

(a) (b) 

(c) 

Figure 30: (a) The spectra of cluster 12, colored by the hierarchical tree.  (b) The hierarchical tree of the 

cluster.  (c) The members of the cluster 

Cluster size: 7 

Members: 119, 192, 244(1), 433(3), 433(6), 433(8), 584 

(a) (b) 

(c) 

Figure 31: (a) The spectra of cluster 13, colored by the hierarchical tree.  (b) The hierarchical tree of the 

cluster.  (c) The members of the cluster 

Cluster size: 6 

Members: 11, 51, 56, 201, 261, 20786 

(a) (b) 

(c) 

Figure 32: (a) The spectra of cluster 14, colored by the hierarchical tree.  (b) The hierarchical tree of the 

cluster.  (c) The members of the cluster 
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Cluster size: 5 

Members: 433(2), 433(4), 1916, 1980, 6455(3) 

(a) (b) 

(c) 

Figure 33: (a) The spectra of cluster 15, colored by the hierarchical tree.  (b) The hierarchical tree of the 

cluster.  (c) The members of the cluster 

Cluster size: 5 

Members: 1862(1), 1862(2), 1862(3), 5660, 7341(1) 

(a) (b) 

(c) 

Figure 34: (a) The spectra of cluster 16, colored by the hierarchical tree.  (b) The hierarchical tree of the 

cluster.  (c) The members of the cluster 

Cluster size: 4 

Members: 793, 5836(1), 20790, 138524(1) 

(a) (b) 

(c) 

Figure 35: (a) The spectra of cluster 17, colored by the hierarchical tree.  (b) The hierarchical tree of the 

cluster.  (c) The members of the cluster 
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Cluster size: 3 

Members: 416, 2850, 24475(2) 

(a) (b) 

(c) 

Figure 36: (a) The spectra of cluster 18, colored by the hierarchical tree.  (b) The hierarchical tree of the 

cluster.  (c) The members of the cluster 

Cluster size: 3 

Members: 17, 73, 22771 

(a) (b) 

(c) 

Figure 37: (a) The spectra of cluster 19, colored by the hierarchical tree.  (b) The hierarchical tree of the 

cluster.  (c) The members of the cluster 

Cluster size: 3 

Members: 24, 142, 65679 

(a) (b) 

(c) 

Figure 38: (a) The spectra of cluster 20, colored by the hierarchical tree.  (b) The hierarchical tree of the 

cluster.  (c) The members of the cluster 
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Cluster size: 3 

Members: 29, 679, 3103 

(a) (b) 

(c) 

Figure 39: (a) The spectra of cluster 21, colored by the hierarchical tree.  (b) The hierarchical tree of the 

cluster.  (c) The members of the cluster 

Cluster size: 2 

Members: 1494, 1627(3) 

(a) (b) 

(c) 

Figure 40: (a) The spectra of cluster 22, colored by the hierarchical tree.  (b) The hierarchical tree of the 

cluster.  (c) The members of the cluster 

Cluster size: 2 

Members: 4183, 7336 

(a) (b) 

(c) 

Figure 41: (a) The spectra of cluster 23, colored by the hierarchical tree.  (b) The hierarchical tree of the 

cluster.  (c) The members of the cluster 
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Cluster size: 2 

Members: 308, 773 

(a) (b) 

(c) 

Figure 42: (a) The spectra of cluster 24, colored by the hierarchical tree.  (b) The hierarchical tree of the 

cluster.  (c) The members of the cluster 

Cluster size: 2 

Members: 5641(2), 5641(3) 

(a) (b) 

(c) 

Figure 43: (a) The spectra of cluster 25, colored by the hierarchical tree.  (b) The hierarchical tree of the 

cluster.  (c) The members of the cluster 

Cluster size: 2 

Members: 52, 90 

(a) (b) 

(c) 

Figure 44: (a) The spectra of cluster 26, colored by the hierarchical tree.  (b) The hierarchical tree of the 

cluster.  (c) The members of the cluster 
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