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Abstract

Unsupervised learning in general and clusteringarticular, are the starting point of
many exploratory studies, in order to find inteirggpatterns with no prior knowledge
in new data. Big data sets become more commomainy fields and the search for

novel tools to extract and store knowledge is isifiead.

We try to find new insights on two existing largatal sets by using the quantum
clustering method. On financial data, our methodwsh clustering of stocks to
different groups, with correlation to their indystsector. Also, we show that by
looking at the market as a time series we canngjgish between different states

which the market shifts between.

On a catalog of earthquakes in the Eastern Meditean Region and the Dead Sea
Fault, we demonstrate that earthquakes can be ngdalty clustered with respect to
geophysics features alone. Correlating these chkisteith time and location
information then leads to novel insights regardimg characteristics of major faults.
We conclude that our methodology has been validaed our unsupervised analysis

has led to a new perspective and understanding€omplex data set.

On the technical side we implemented three new iegimns. First, a new
preprocessing step for quantum clustering , wheells to reduction in the algorithm
complexity and thus running it on big data sete#sible. Second, a newer version of
COMPACT, with implementation of support vector ¢ering, and few enhancements
for the quantum clustering algorithm. Third, an lempentation of quantum clustering

in Java.



Chapter 1

Introduction

Several authors in different fields have shown byatising clustering techniques, one
can extract important and previously unknown undeding of the data in question.
Samples of this might include work done on generesgion data social network

analysié, medical imaging) chemistry, and many other diversified fields of interest.

Quantum Clusterimg and Dynamic Quantum Clusterfhare two clustering methods
which were inspired by quantum mechanics. Bothhelsé methods showed great

promise in exposing hidden patterns of data strastu

In this work we will perform exploratory searchngithese methods on new data sets,
trying to find new conclusions on the related tgpid/e will also suggest a new way
allowing the QC method to tackle big-data problems.

1.1 Background
1.1.1 Pattern recognition:

From the dawn of life on earth, all creatures veiimse organs depend deeply on the
ability to analyze quickly data that comes fromithgense organs for survival,
causing them to evolve highly sophisticated nearad cognitive systems for such
pattern recognition tasks — taking in raw data pedorming an action depending on

the category of the recognized pattern.

The ease of which humans can identify a face inr@ava, understand poor
handwriting, recognize words over a bad telephamaection or sense danger by a
faint smell, sometimes falsely lead us to think thech actions are "easyand might
be easily reproduced by machines.

In order to understand the problem of creatingoanpmuter program which can
recognize patterns, let's think of a real-worldhpeon — a system for handwritten zip
code recognitioh Using constraints, like that the digits are veritin a specific place
on the envelope and with fixed space between tlsemplifies the problem, but the
bigger problem remains of assigning the correcit §@39) to each written character.

If the computer had a base of all handwritingshie world this would be a simple



exercise, the program would only need to scan tirall of the possible images and
match the digit to the exact image. This of couss@ot realistic; assuming every
literate person agrees to provide such a sammeagegulting data-base would be large
enough to make querying it impossibly long, anadaifirse there is no guarantee that

one's handwriting stays constant over time.

Instead, the system should be able to "learn" ¢ogeize handwriting, by mimicking

humans' ability to deduce the right digit basedpaor knowledge. This means that
we do not provide the system set of rules to diffidiate between digits, rather we
give a set of examples with their correct labets] ket the system find the rules by
itself. Thus, the system might return a differegttaf rules based on different example

sets.
1.1.2 Supervised Learning:

The problem described above is part of a subfidldmachine learning called
Supervised Learning.® In these cases the algorithm has prior knowledymiathe
problem in the form of a training set. The trainsgf consist of examples composed
of both thefeatures of the problem (each sample has one or more diffefleatures),
and a label assigning each sample to the righs cldgs means that the system knows
both the number of different classes, which cantie or more, and the correct

assignment of each sample.

The training data is given to the learning algantkwhich produces alassifier. A
classifier is a function that maps between a nawpéaand a class. In some cases the
classifier can also return an indecisive answeinggayne result may not be determined

in a good confidence level.

This means that after using the training set tédithie classifier it is time to use a real
data-set with an unknown classification, and comphe results from the classifier to

the data-set’s samples.

Techniques like this are used in a variety of défe fields; we have already
mentioned the use in computer vision to recognaedivriting or computer prints.
Another important application is to diagnose dissai this case the features might
be different patient physical parameters and thellwill be if he is sick or healthy. A
more common case is to perform DNA tests on a tusandrbased on those figure out
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if the tumor is malignant or not. Other applicasomay be found in speech

recognition, on-line marketing etc.
1.1.3 Unsupervised Learning:

The key assumption in the supervised learning dlguos is that a known training set
is present. Such a training set is not always ptesand sometimes the prior
knowledge is enforced by the expert and is notyeaanifested in the data. To tackle
those problems the unsupervised learning techniggssme no labeling knowledge

on the input data, and just try to find the natgraupings of the input patterns.

The result of the fact that there is no prior knedge is that there is no need for a
training set. Rather the algorithm unravels theewlythg similarities and groups

“similar” vectors together.

1.1.4 Clustering

Clustering is an unsupervised learning technidus;the process of dividing a set of
data into "natural” groups. The input to a clustgralgorithm is a set of N data points
Xi in d dimensional space. The output is a proposed &ilzsin of the data points

into groups.

In some cases the number of desirable clusteigaes @s a constraint to the
algorithm, in others there are parameters thataffee number of clusters and their
character. Clustering algorithms can be eithenptéassification or hierarchical. In
hierarchical algorithms the output is a dendogramtivis a tree that describes the
classification of the data into groups and the kadean of these groups into further

smaller groups.

Examples of well-known clustering algorithms arenéand’, hierarchical
clustering’, SOM'? and mean-shift clusterifhg

1.2 Purpose of research

In information age, when new data sets of varioelsl$ emerge in an overwhelming

speed, techniques able to handle large data setddshe developed. We apply



clustering techniques to large data, trying talfimdden details which might be
exposed only with this kind of analysis. We alsggest a new step in the Quantum

Clustering algorithm, to enable it to work on batal problems

1.3 Thesis organization

The rest of the thesis is organized as followspt#ra2 describes the algorithms and
formalism we use to analyze the data, singularevdiecomposition formalistf) the
support vector clusterify quantum clusteririg approximate quantum clustering and

dynamic quantum clusterifi@lgorithms.
In chapter 3 we analyze a financial data set usingalgorithms.

In chapter 4 we analyze the complete Israel seismiwork catalog, containing all

the earthquakes which took place in the regiocesit990.

In chapter 5 we compare the quantum clusteringridhgo® with the support vector
clustering® one, and present the use of the approximate queclustering algorithm
on real data.

Part of chapter 2 and chapter 4 are based on asti@piLthat has been submitted for

publication (Shaked, Weinstein, Hofstetter, Horn)



Chapter 2

Algorithms and related formalism

2.1 Singular Value Decomposition (SVD:

Our study concerns different types of x n data matrices X with rank =

min(m, n). The equation for the singular value decomposiibX is as follows:
X=UsyT

Where S is a (non-square) diagonal matrix, and dre/orthogonal matrices.

This can be re-written in a sum representation=ohiki(m,n) unitary matrices of rank
1

k
X = Z w;s;vl
i

Ordering the non-zero elements®in descending order, and taking only the first
values give us
r
XT=Us"VT = Zuisl-viT
i
Which is the best approximation of rankio X, i.e. it leads to the minimal sum of

square deviations

m n
b= ZZ(XU ~vy)’
T

Once SVD is applied to a given matixtwo spaces dual to each other emerge.

The matrixU has orthogonal columns that serve as axes foesepting the rows of
U, while the matrixV'T has orthogonal columns that serve as axes foesepting all
rows ofl/. Truncating these representations ttimensions leaves the truncated rows
of U and the truncated columns &f with non-equal norm. This leads to many

vectors accumulating near the origin, which thead$eto problems in the clustering



algorithm that is applied on these spaces. Thexefoe project each vector onto a

unit sphere inr-space (each vector is rescaled to a unit vectoisipace)

2.2 Support Vector Clustering (SVC)™:

Support Vector Clustering (SVC) is a clustering imoek using the approach of support
vector machin® (a classification approach). In the algorithmadaints are mapped
from the data space to a high dimensional feafp@eesusing a Gaussian kernel. In
this feature space, the smallest sphere enclosenddta is looked for. This sphere is
then mapped back to the data space, forming & sentours which are interpreted as
cluster boundaries. As the width parameter of taassian kernel is decreased, the
number of disconnected contours in data spaceasess leading to an increasing
number of clusters. Outliers can be dealt with g the soft margin approach. With
this approach the sphere in the feature spacéisead to not enclose all data points,
leaving only the cluster cores. In this way ovepliag clusters can also be dealt with.

The calculation uses the SVM mechanism with thiefahg soft margin constraint
[P(x;) —all* < R* +§; Vi

Using the Gaussian kernel on the dual problem dghites the following Lagrangian

n n n
-~ 2 2 2
L= Z(e_quxi_xiuz) B — Z BiBje—QIIXi—lel =1- Z BiBje—QHXi—XJ’”
i=1 ij i

n n
subjectto 0 < B; < C, Z Bi=1, Z Biyi = a
i=1 i=1

Solving this set of equations —one derives theadst from any point to the hyper-
sphere center

R?* = |o(x) — all?

Using the Gaussian kernel gives

n n

2 2

RZ—=1—72 Z pre~allx=x;1" 4 Z B B;ealxi=xil
i Lj



Using any one of the support vectors gives theusadf this hyper-sphere.

So far there was no differentiation between pdimds belong to different clusters. A
geometric approach involves the radius calculdoreach point that is used. Given
any two data points which belong to different adust any path that connects them
must exit from the sphere in feature space. Toutatle the relation between any two

points, we sample the shortest path between thesar{d 20 points).

-
fal

Figure 1 - A- points in data space, green represestipport vectors, and shortest paths between
them. B — the shortest paths in feature space. Patltonnecting different clusters exit the hyper-
sphere.

An adjacency matrix can be defined as

_ {1, If for all y on the line segment connecting x; and x; R(y) <R
ij =

0, Otherwise
Clusters are now defined as the connected comp®oétiie graph induced by A.

The outliers are not classified by this procedafter finding the cluster centers, they

can be assigned to the closest cluster.

This approach of building the adjacency matrix gitlee exact solution. But it
becomes infeasible when dealing with "big data’bjfgms (> ~16data points), with a

large number of dimensions.

For these situations, we develop a Heuristic Spfr@ach . We first consider a
significant amount of points to be outliers. S\&being used to separate the data into
outliers and core points. The latter have to beiged into ‘core clusters’ which

should be quite separate from each other makingrder to avoid the costly

10



adjacency matrix pairings of points, we use theaathge of large separations and
employ the K-meariSalgorithm to the core points. Since there is niiomoof the
"real" number of clusters, we use a technique naBikduetté’ which attempts to

determine it.

The technique provides a succinct graphical reptasen of how well each object

lies within its cluster.

Let us define a(i) = average Euclidian distancaltother nodes within the same core
cluster.

b(i) = minimum d(i,Cj) - the minimum Euclidian déstce to other clusters (the nearest
cluster is chosen).

From these two numbers we can define:

_ b)) —a(@)
~ max{a(i),b(i)}

s(i)

Finally, averaging on all s(i) gives us the disamity value for this choice of cluster

numbers. Comparing s(i) to different cluster areangnts will give the best one.

Since we assume that the cluster centers arevediatistinct, the best silhouette

score will be defined as the "correct" number oftdrs.
The algorithm will be:

1) Use the SVC algorithm to get the core points
2) For k=2 to N (the number of max clusters to check
2.1) run Kmeans with k as the number of clusters
2.2) check the silhouette value of the Kmeans swiut
3) Find the highest silhouette value and use thiefmd the core clusters
4) Go over all outliers o(i)
4.1) find nearest core point c(i)
4.2) assign o(i) to the same cluster as c(i)

11



2.3 Quantum Clustering (QCY:
The main clustering algorithm we are going to us¢he Quantum Clustering (QC)

algorithm originally suggested by Horn and Gottlieb

It starts by assigning a Gaussiaf,with width ¢ to each data points in the Euclidean
SVD coordinates.

N 2
~(xi—x;)

Y(x;) = 2 e 202

=1

Then constructing the sum of the individual Gausdianction to obtain what is

known as the Parzen window estimator

w = Z_‘P(xl-)

Finally define the potential function associatethvwthe Parzen function to be

v=2T%
T2y
where
. o ViY
= mlnz Wy

V' has the unique property that it serves as thenpatdunction of the Schrédinger

equation
0.2
HY = —7V2 + V(X) Y =E¥

for whichW is the ground state. In this equation, the paéfiinction V(x) can be
regarded as the source of attraction, whereasrgtd_fgrangian term is the source of
diffusion, governed by the parameter(In the earthquake section a potential of this
kind will be shown.). The QC looks for minima in $nce these correspond to

regions where the density of the data is a locadimam, thus define cluster centers.

In Fig. 2 we present examples of two Gaussiansecetitat 0 and A and having

width=1, and their corresponding potentials. It dear that the potential can
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distinguish between overlapping Gaussians, anatensifies the differences betwe

them

A=0.016080402 A=1334673367

‘ 1 S ‘ i

¥ b Yy ' ‘ _‘|'

Figure 2 - a function of two Gaussians (green) and its poterati (red).
A represents the distance between the

o is a parameter of QC which has to be chosen byuieg to satisfy subjecti

criteria, such as limiting oneself to relativelyaimumbers of clusrs

Once V is constructed we can use the gradient desdgorithn'®, where the powe
moving the dat-points is the classical force that is giver—VV. This leads the de-

points to follow the dynamics
yi(t + At) = y;(£) = n(®)VV (y; (1))
Date-points that descend to the same minimum are dectaree in the same clust

The time complexity of calculating the potential ¢tion at a certain point O(r - N)
where r is the number of truncated dimensions #fieiSVD, and N is the number
date-points, since the potential at each point is ationoof all original dati points. A
complete step of the gradient descent is of cO(r - N?) because all of thmoving

points need to be processed. Therefore the compétalation is of ord:
O(m-r-N?)

13



where m is the number of iterations of the gradésscent.

2.4 Approximate Quantum Clustering (AQC):

As the field of machine learning developed andgdolextract data sets improved, it
is no longer rare to find data sets with more ti#f samples and features. As
mentioned before with the help of SVD a reductiorféature space is possible but
because the complexity of the QC algorithm is afeot? (N?), it is still infeasible to

run on big data sets.

In order to improve the complexity we first needattalyze a QC step. In each step it
is required to calculate the effect of each datatpon every other moving point.
Since each data-point is represented by a Gausdiaof the points taken together
form an over-complete set. If we could find a serafiet of Gaussians with different
coefficients that might forrf¥ which will approximate¥, the complexity of the AQC

will be of orderO(c - N) , wherec is the number of Gaussians in this reduced set.

To calculate this set we will employ the bra-ketation

1 _(x=xy)?
Y(x) = Wz 202 Z(Xh)

where|i) is the set of original Gaussians a#ids the number of dimensions. We

introduce another s¢t) which will serve as the approximate set.

We define the matri¥y/ as
Ngp = (a]B)

And the projection operator

P = )N g6l
ap

This operator obey$? = P and projects the original set of vectdiy onto the

approximated sdtr)

14



Now we use this projection operator to get
T = @IPli) = ) (xla) (V- DglB1)
i iaf

With the definition of

Cai = ) (N (B10)
B

Co = Z Cai
L

P can be written as:

P = Z(xla) C,

From® we can calculat&as in the QC algorithm.

The coefficientsC, are calculated only once, as a precursor to tadignt descent

phase.

Of course the choice ofr) has crucial importance, since picking a set wkicés not
span the data space correctly will harm the appration. In order to get a reasonable

choice of Gaussian base, the following heuristengployed

1. Find min-max of all of the dimensions

2. Divide the space into voxels

3. Go over all voxels
3.1.If there is one or more data points in the voxkétane
3.2.Else do nothing

The size of the voxels is left for the user to dealepending on how rough does he
want the approximation to be, with respect to edintension range anslchosen.
Usually, since SVD and renormalization is perforiregich dimension is bound in the
[—1..1] range, therefore dividing each dimension into @®els works reasonably

well.

15



2.5 Dynamic Quantum Clustering (DQCY:

Dynamic Quantum Clustering (DQC) is a method whichased on QC but replaces
the gradient-descet dynamics with that of a timpetielent Schrodinger equation. It
lets eachyi develop for a short while under the Schrddinggquation, and then
constructs a new corresponding and proceeds for many such steps using the
original V, thus this dynamics may be regardedhasSchrédinger equation analog of

gradient descent.

In this formalism each data point will be viewed the expectation value of the

position operator in a Gaussian wave funcigfi) = Ce~&-%*/20* where C is the

appropriate normalization factor.

Thus the expectation value of the operatds simply the coordinates of the original

data point
% = Wildl) = [ AR )
Now the time evaluation of each stgtgXx) can be determined by the time-dependent

Schrédinger equation

. a‘l"l(i t)
—— =

Lo [ v S .
E T HY; (X, t) = I—% + V(X)l Ui (X, t)

whereV(X) is the potential function and m is an arbitradhposen mass parameter. It
allows for tunneling between near-by valleys of tiius connecting between data

points in nearly degenerate potential minima.
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Chapter 3

Financial data

3.1 Data:

We analyze all 440 stock data of the Standard ao'$ (S & P) 500 list that were
recorded daily throughout the period Januaty 2000 — February 24 2011. The
total number of active trading days was 2803. Ngt#bs includes the crises of 2002
and of 2008

3.2 Analysis:

We use this data to examine various features oQ@ealgorithm and to demonstrate

how we can extract information from data matrices.

We start by building the daily relative return nmatR (440X2803). Submitting R to
SVD we truncate it to 10 dimensions, and projeetdhata onto the unit sphere in the
10 dimensional SVD space. The QC algorithm, whepliegp on this matrix
(440X10), results in 9 clusters. We will refertteese clusters asections Half of
them have high overlaps with the §€ctorsinto which these stocks are traditionally
classified (one of the sectors — Diversified - baly one member).

Figure 3 displays the correspondence between thandial sectors (ordered

sequentially on the x-axis) and the nine sectionstlie y-axis). The ten sectors are: 1.
Basic Materials, 2. Communications, 3.Consumeygli€al, 4. Consumer, Non-

cyclical, 5. Energy, 6. Diversified, 7. Financia#8, Industrial, 9. Technology,

10. Utilities.

|IIIIIII I|IIIII|IIIIII" II |11 I;IIIIFIIF | III-IIIIIIIIIII

I Illl’lll (] ] #VFI HIIM [ Iillll wldwﬁ

[ T = T SO L

(LA ! P I !
50 100 150 200 240 3[][] 50 400

Figure 3 - Correspondence between stock classificatis into nine financial
sectors, ordered along the x-axis, and their QC ctering into nine clusters
(sections). Each short vertical bar represents orgock

" Based on joint work with Erez Persi, Marvin Weinstein and David Horn (unpublished)
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It can be seen that this kind of clustering finlst tsome sectors have high correlation
between the stocks associate to them (like thatigsilor Financial sectors), but in
some cases there exists mixing between sectorshwieads to cross sectors

correlations.

Performing a similar exercise on a matrix composkdaily data of weekly returns,
we find, for the same sigma, only 6 clusters asemted in figure 4. Moreover, these
clusters group some sectors together; in other sydtee mixing of basic materials
and industrials observed in cluster 3 of figure &dmes a much more spread
phenomenon. Evidently this means that the behawbrdaily returns, that
characterizes some sectors, washes out by conglegiated sectors within a few

days.

e A w1

[ . LI

50 100 15[] 2[][] 25[] 3[][] 35[] 400

[=3]
T

Figure 4 - Correspondence between stock classificatis on a weekly
return into six financial sectors

Next we try to look at this problem the other wayumd, trying to cluster the
temporal domain int@pochs This requires considering the 2803 days as iddali
variables. Reducing once again R into ten-dimergi8WVD space, and projecting the
points onto a unit sphere, the DQC algorithm fibgd® major clusters that contain
days from all along the temporal domain, and mather clusters with scarcer
content. These results do not suggest any reasombipretation other than that R is
a matrix of almost random fluctuations with zer@mage; hence it does not allow for
simple clustering boundaries to appear in the 4d@edsional stock-space (or within

its 10-dimensional SVD reduction).

In order to find temporal clusters we need to ndifferent representation which will
not fluctuate too much. A suitable choice is thdrird@ of daily stock prices (relative
to the starting price on Jafi,22000). Since the time series of each stock Hatvely

small fluctuations, it is possible for (close-byné-points to exhibit similar vectors

within the 440 stock-space, and thus fit into thme temporal cluster.

18



+ Clusters
12 S&P 500, daily normalized return * - —16

—{10

L L
04
0 600 1000 1600 2000 2500 3000
Time [days]

Figure5 - Temporal DQC clustering of the matrix P irio 17 epochs, represented by bars. For
comparison we plot the S&P 500 index for the same #sg, just to serve as an indicator of the
known market behavior with its crises of 2002 and @08.

The results, displayed in Fig. 5, show the existeocmany clusters for the second
half of the studied period (including the 2008 is)isbut only three epochs during the
first five years (with only one covering the 200&is). Each temporal cluster has its
unique characteristics in stock prices. One waydigplaying this property is by

plotting the daily prices of stock averaged ovdfedent sectors. This is displayed in
Fig. 6 on a 3-d plot spanned by three dominantosectThe 17 epochs are

distinguished by different colors.

LR Y L L L B A R BN
35 3 25 2
Sector |

Sector 5
1.5

Figure 6 - Average daily prices for three sectors (1Basic Materials, 5 - Energy, 7 - Financial) are
plotted in a space spanned by these sectors in tdifferent orientations. The data are seen to
cluster into different epochs, distinguished by thalifferent colors
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An alternative is to investigate the Pearson cati@hs between threturn values o
stocks during eaconeof the 17 epochs. These are displayed in 7, with stocks
arranged such that those that belong to the sawctersdie near each other. 1
ordering of the matrixlots corresponds to the ori of appearance the epochsThe
first three epochs cover more than half of the @malpspan, extending from 2000
2005. These epochs are characterized by signifjcdotver correlations amon
stoks of different sectors than during the followingpehs Each of the 17 epochs

characterized by a different correlations matiixist exhibiting its unique behavi

Epoch 1

Epoch3 Epoch 4 Epoch5
T ERIBE i o E

CNC

F
1f
TI 4R
u

MC CC CNCDE F | TU

MCCC CNCDE F | TU MC CC CNCDE F‘ I Tu

Epoch 7

Epoch 12

LR
MC Ci NCDE F | TU

U e 8 A SRR i GRREREH R o
MC CC ICDE F MC CC CNCDE F | TU

c i

i il TS
MC CC CNCDE F

Epoch 13 Epoch 14 Epoch 15 Epoch 16 Epoch 17

i bl - | i i ) 5 g EiRT—
MCCC CNCDE F | TU MC CC CNCDE F | TU MCCC CNCDE F | TU MC CC CNCDE F | TU MCCC CNCDE F | TU

Figure 7 - Pearson correlations among all the different stockr the each one of the 17 epoch
the order of the displayed by heemap matrices (darker implies stronger correlations)
corresponds to the temporal ordering of the epoch

We can also sethat some sectors exhibit higher correlations @leof the differen
epochs like the energy and utility sectcThere s no surprise that these two sec
are the ones best matched to QC section, since SVD also calculates t
correlationbetween the different stoc
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3.3 Discussion

When studying complex systems one often tries tegoaize their phenomena and
cluster or classify their different dynamical véaes. We have seen that our clustering
approach helps us attain such goals. Using thg datiirn matrix we have obtained
clustering of stocks, into what we called sectiarg] using the daily price matrix we
have obtained temporal clustering into epochsdtukl be emphasized that neither the
sections nor the epochs should be viewed as ctustéh rigid boundaries. Our
clustering procedure depends on the density of gatats, and clustering results
depend on the parameter sigma that defines thébmigood to which each point is
sensitive. Nonetheless, the qualitative structfitbese clusters remains the same even
if the details of the boundaries may vary or clisst®ay merge with one another as

sigma increases.

Clustering allows us to discuss market phenomertarms of discrete categories, in
analogy with market sectors (for stock charactéomq or market periods

characterized by increases or decreases of the.inleereas the latter are quite
common intuitive descriptions, clustering allowstasput them on a more objective

mathematical footing.

In a recent paper, Munnix et?al proposed, using correlations between stocks, over
short time periods (e.g. week or month), to defitaes of the market. In other words,
different states will be associated with considigralifferent correlation matrices. Our
proposal of clustering the temporal domain intoakysois an alternative: each epoch
may be viewed as a state of the market realizelirw#tock-space. In detail the two
methods may disagree about the specific divisibm @pochs, because they are based
on different mathematical manipulations of the dBtat both serve as alternatives for
discretizing the complex system into categories #flaw for a quantified analysis of

the market structure.
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Chapter 4
Earthquakes data

4.1 Background:

The Dead Sea Fault separates the African-Sinag lam the Arabian plaf&?>2324

The Gulf of Agaba, constituting the southern pathe Dead Sea Fault, is seismically

@5,26,27,28,29,30,

activ 3132 The strongest earthquake in thd"2@ntury occurred in the

gulf on November 22, 1995, at 04:15 GMT at 28.R6 34.66 ° E, according to data
from Cyprus, Egypt, Israel, Jordan, and Saudi Axalit measuredM,, = 7.2 on the

moment magnitude scale and was strongly felt ight@ring countries. The Gulf of
Agaba earthquake was followed by an intense swamaftershocks that reached well

over 5,000 recorded events, which lasted for abaatyear, including several strong

earthquakes with the largest magnitiig =56 (on Feb. 26, 1996). The Eastern

Mediterranean Region (EMR) is also seismically\agti.e. the Cypriot Arc with a
major earthquake on Oct. 9, 1996. These majorhgaakes, their following
aftershocks and the activity in between the magueaces are listed in the catalog of
the Israel Seismic Network. The general activitypetween major earthquakes has
on average about one event per day over the pefitite last 30 years somewhere in
the EMR, if we do not take into account the aftecsh sequences that are
characterized by outstanding intense activity. sehevents are described not only in
terms of magnitude and geographic location of thithguake, but also in terms of
various geophysical and seismic parameters, thessemeters are described in the
catalog of the Israel Seismic Network. This catalogudes all earthquakes with
Mg >2 with a confidence level of 90%. It is based information collected from
stations in Israel and neighboring countries. Tkaegal activity in between major
earthquakes has on average about one event pesveayhe period of the last 30
years somewhere in the EMR, if we do not take attoount the aftershock sequences
that are characterized by outstanding intenseigctilhese events are described not
only in terms of magnitude and geographic locatdrithe earthquake, but also in

" Based on a manuscript by Guy Shaked, Marvin Weinstein, Rami Hofstetter and David Horn,
submitted for publication
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terms of various geophysical and seismic paramefdrsence of such parameters in
the catalog is in no way correlated with the chimastics of the event.

Out of this catalog we have analyzed 5,693 fultheprake records (out of 18850
recorded earthquakes) that contain, besides tlaidocand time of occurrence, also
the following features describing each eveng:-Mhe coda duration magnitude of the
earthquake, M- seismic moment, stress drop, source radius@ndarner frequency.
Thus we attempt to cluster earthquakes in terntiseaf geophysical properties alone

4.2 Earthquake data

Several authors have inverted the teleseismic baalye seismograms to obtain the
seismic moment and the source mechanism of the shaick, which is found to be in
agreement with INSAR observatiéhd’*? Hofstetter et al”’. have also inverted 57
moderate to strong aftershocks, using the meth&tl which were clearly observed

by the regional broad band stations BGIO, JER, K&&. In the case of small

earthquakes, usualiMd < 4.0, the seismic momelM ., corner frequency f, , stress

drop, and source radiuir, are determined based on the dislocation model of

Brune®**®

using the spectra of S-waves recorded by shoibgbestations (three-
components or vertical component). Details of tppliaation of the method to the

Israel Seismic Network are presentediapira et al*.

4.3 QC analysis

Since in this case the dimensions of the problefedfures) are already small we will
not reduce the number of SVD dimensions for thea@orithm, so the input matrix
will be of size5693 x 5.
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Fig. 8 presents the data points in the first 3 disnens of SVD

Figure 8 - first 3 dimensions of the SVD matrix. Tl different colors represent the different
clusters that are identified at the end of the grai@nt-descent process witls = 0.3

As we have seen in the QC algorithm explanationcarethink of the potential like a
topographic map. In Fig. 9, we illustrate the pa@riopographic map in the original
feature space. Here we draw the potential valuegpdints belonging to different

clusters displayed for the original featurg &hd k.
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Figure 9 - The topographic plot of the potential catulation. Each point is drawn in the real Md,
FO space with its potential value on the Z-axis. Thcolors represent the different clusters that
are identified at the end of the gradient-descentrpcess withe = 0.3

The different minima are clearly visible, and th#edent cluster colors suggest that
the gradient descent algorithm does in fact moeedéta points to their closest point
of attraction.

Since the potential is a scalar, it cannot be ptegton a sub-space for better
visualization and understanding. For this reasomwilause "force" induced by the
potential or simply-VV. This vector can be projected on different SVD elisions,

S0 we can see the direction of convergence inm@kdsions as seen in figure 10.
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Figure 10 -Unit vectors, designating the directions of the fare derived from the potential in
SVD space, exhibit four clear centers of attractionA(left): PC=1 and 2. B(right): PC=3 and 4
The QC parameter was chosen as=0.3. The arrows are colored accordingo the clusters that are
identified at the end of the gradien-descent proces

The dynamics of gradient descent make all pointyeme onto cluster centers at
various minima of the potential; the number andiite of these clusters depend
the vdue of the parametes. Forc = 0.3 we obtain ive major clusters, which w
designate by colors red (16 events), blue 199, orange 951) green (3€ and

black 1389),and one additional small cluster containing 2 grearthquake.

Once we have carried out clustering we can retuthe original features of the da
in order to get some understanding on how theréiffeclusters can be characteriz
In Fig. 11 we display our results within edimensional parameter space spai by
My, fo and stress dro|Clearly the red cluster contains events with langgnitude
and low to medium stress drawhile the black cluster contains events with simr
large magnitude but much larger st-drop. The blue cluster contains events
medium magnitude, medium corner freque and low stress drop. The orange clu
contains earthquakes of small magnitude, largeezdraquency and low stress dr
while the green cluster has small magnitude, laoyaer frequency and high stre

drog. The central value¢ of the parameters for all clusters are present@abie 1
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It is quite evident that the boundaries between dlusters are not due to clear
separation between the corresponding events. Rdbiey are due to differences in
the weights of the distributions and to the chait¢he parametes. The same is, of

course, true of the boundaries between the difftecefor fields in SVD space, as
shown in Figure 11.

100-
80.

. 60~
Stress . " Stress ’

40

Figure 11 - Two perspectives of a three-dimensionghrameter space spanned by Md, fO and stress drop

clusters Md Stress drop fo log Mg Source radius M,,
bar Hz | dyne-cm km

2199 Blue 2.0 2 4.04 19.00 0.33 2.0
2116 Red 3.3 7 3.36 19.86 0.41 2.5
951 Orange 1.8 12 8.19 18.90 0.16 1.9
389 Black 3.9 50 3.25 20.86 0.45 3.2
36 Green 2.8 44 7.27 19.71 0.18 2.4
2 5.9 58 0.40| 24.89 10.97 5.9

Table 1: cluster centers for QCo=0.3 in feature space.

4.4 Geographic and temporal characterization.

Once we have obtained clusters and interpreted ienings in terms of earthquake

features, we look at the correlations of thesetetsswith their recorded locations and
times of occurrence.

The distribution of the various clusters of earthkgs along the Dead Sea fault and

the Gulf of Agaba is plotted in Fig. 12 Some gehe@nsequences are that the
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smaller earthquakes clearly trace the Dead Seé# faudl most strong earthquakes,
belonging to the red and black clusters, occurhe Gulf of Agaba. Of particular
interest are the orange and green clusters, sirggedre mainly concentrated in the
Gulf of Agaba.

The amazing observation that the two clusters aneentrated in a single region is
compounded by the additional observation that ey also localized in time:e,,

most of their events followed the major Gulf of Agaearthquake of 1995, during
several months. The temporal distribution of eardliegs is displayed in Fig. 13A,

with a fine-grained expansion in Fig. 13B.
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Figure 12 - earthquake events, classified by ourudtering colors. The region of the Gulf of
Agaba is marked on the regional map on the left siel The "cloud" in the gulf is composed of five
clusters (black, blue, red, orange and green) thatre shown on the right sidé’.
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Figure 13 -A. Yearly histogram of earthquakes throughout the riod of 199:-2011. Colors
correspond to earthquakes belonging to the differerclusters. Open columns stand for registere
earthquakes that lack all or some of the featureshat we have employed itour analysis. B (inset)
Weekly histogram of fully recorded events coveringhe period Nov 1995- June 1996. The majol

=72

earthquake event of Nov 22" 1995, with magnitude My is marked by an arrow. A seconc

M,, = 5.6

arrow designates anotheearthquake of large magnitude ) that occurred in Feb. 199¢

4.5Interpretation of the orange clustel

The eventswe havecharacterized as belonging to the orange clusteparticularly
abundant following thiNovember19¢5 major earthquake whose center was in
Gulf of Agab: Their occurrencs started in conjunction with this major quake, i
continued with a temporal signature that showsamasdowns which is quite differe
from simple decline Many orange events continue show up wuntil theend of
February 199t and they are all concentrated in the [ and Aragones basirg?®?’.
The green cluster is confined mostly to the finst dhird week following the majc

1995 earthquak

The natural interpretation of the oranand greenevents is thi they represer
ruptures that have occurred following the majortterake.lt is interesting to not
that the analysisof events il the relevant period arried out byBaer et al.*®

reproduedobserved slip distributiol which were¢ quite unique tqust this perio.
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4.6 Comparative analysis of the 1993 and 1995 data

Given the interpretation of the orange cluster sitimteresting to reanalyze the
geographic distribution of the different clusteeparately for the 1993 events (the
eight months following the major earthquake thigigiered them) and the 1995 events
(the eight months following the major 1995 earthgg)a Details are shown in Fig.

14,

32" 33" 34" 35" 36" 32" 33" 34' 35" 36" 32" 33" 34" 35 36

32° 33" 34" 35" 36" 32' 33° 34' 35 36" 32° 33" 34" 35" 36" 32" 33" 34" 35" 36°

Figure 14 - Geographic distributions of blue, red ad orange and green events following the
major earthquakes of 1993 and 1995. All availableata during the 8 months following the major
earthquakes are displayed. Note that there are onlg few orange events and no green ones after

the 1993 earthquake. Most orange events and all tlygreen ones occur after the major earthquake
of Nov 22, 1995".
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We observe that there are various differences lestwieese groups, other than the
scarcity of orange events in 1993. First, the 1888vity clearly took place in a
region lying to the south of where the 1995 agtidtcurred. Second, the relative
shape of the blue cluster of events in 1993 is Whbwhereas that of 1995 is
elongated along the Gulf of Agaba. Third, the greeents occur only in the Gulf of
Aqgaba (and only following the 1995 earthquake)alyn we find that there are many
more blue aftershocks along the Dead Sea Fau®93 than in 1995, in spite of the
fact that the latter had a stronger trigger. Nbtd there are many more blue events
than red and orange ones along the Dead Sea Raodith eight months periods of
1993 and 1995. In fact we may conclude from it that basin of the blue cluster in
parameter space, as depicted in Fig. 14 is theralatoajor characteristic of the

frequent weak earthquakes occurring along the BeadFault.

4.7 Inter Quake Intervals

Next, we examine the temporal characteristics efefwrthquake occurrences for each
of the five clusters. The different types of eqtthkes have different rates of
occurrences. Measuring the inter-earthquake-tirrevals (IQI) we find that the

mean interval for black eventsiss x 10°sec, while for the blue, red and orange
events the mean IQI values are 3, 3.1 andk6lR® sec respectively. The group of

green events has the largest average IQkofd’sec.

IQI of earthquakes have been shown to follow logamad distributions. Lomnitz*
has provided a model leading to such distributiéms major earthquakes. A
comparison with a Brownian model of recurrent egutkes has been provided by
Matthews et al.*°.

We find the log-normal to adequately describe sofrtee IQI distributions. The best
example of a log-normal distribution is the 1QI tdisution for all blue events,
displayed in Fig. 15-right. In contrast, the distition of the black events (Fig. 15-
left) is quite skewed. The two events that ledh single entry of the left tail in the
black distribution have occurred south of CyprusQetober 1996 and will be

discussed in section 4.10, their details are ginérable 8.
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Figure 15 -1QI distributions of all blue events (right) and all black events (left) since 1990 on
logarithmic time-difference scale. The plotted curve is a Gaussianitiv the correct average anc
variance. The blue distribution is very close to Ig-normal, whereas the black distribution is
quite skewed

Next we turn to 1QI statistics where ti-intervals of events of one kind (e.g. oran
are measured with respect to the closest eventddferent kind (e.g. red or black
The most interesting correlations 1 we have found are displayed in Fil6.
Whereas the IQI of orange events are quit-normal, when triggered by the mc
recent red eve, theirowndistribution is shifted to the lelandwhen triggered by th
most recent black event, the distribution is sHifte the right. The orange trigger
on red distribution implies that an orange eartlkgua more likely to appear with
the first thousand seconds of a red one, whictcatdia \eak causal relationship. T
orange triggered on black distribution is shifteddrger temporal windows becat
the time span between adjacent black evel.5 x 10° sec) is an order of magnitu

higher than the average orange |
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Figure 16 -1QI distributions of all orange events top middle) on a logarithmic time-difference
scale.Down left: orange events with IQI triggered on the closdged event.Down right: orange
events with 1QI triggered on the closest black ever

Anothel temporal aspect of earthquakes that is worth notinghe frequency c
aftershock occurrences as function of the timesgdsince the major earthquake 1
has triggered the seismic activity. On*! has proposed that they drop like a po
law with an exponent ne:1, and Christneseet al*’. have argued that such behax
is consistent with seorganized criticality of earthquakes. In F17 we show result
of our anaysis for aftershocks following the earthquake ofvN@z"® 1995, for &
period of 8 months. For comparison see also 13 and its inset. The data in Fil7
include all recorded aftershocks, i.e. also thaose which not all seismologic:
parameters arrecorded, demonstrating a behavior (°° setting in at 1* sec anc
continuing until 17 sec after the major earthquake. The frequencieaftefshocks
occurring within the different clusters follow swith their own decreasing behavi
mostly displaying clear power decline after* sec. The orange cluster displ:
different behavior, wh frequencies that stay at the same level for abeutempora

decade:
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Figure 17: Frequencies of aftershock occurrences as functiaf time (in sec) elapsed since tr
major earthquake of Nov. 22nd, 1995. Top data (pure triangles) include all recordec
aftershocks, and are well fit by a behavior of “*°. Other colors representaftershocks that are

classified into our five cluster:.

4.8 Stability and variability of clustering assignments

QC has one parametes, whose value determines the pattern of clusteiieg,the
number of clusters and the association of eachnestwith one of the clusters. In «
analysis we have varies from 0.2 to 0.5. The numbers of clusters have
accordingly from 8 to 4. e clustering patterns we have presented so fanbdia
0=0.3, containing four major clusters, a minor one églecontaining 36 events, a
one minute cluster containing 2 events. The major €lusters dominate the scene
all o from 0.2 to 0.5, buas we reducc we increase the number of smaller clust
We illustrate this phenomenon Table 2, where we compare the clustering patt
of 6=0.25 and=0.3 Interestinglyc=0.25 has three minute clusters, two of which
singletons and one containing 4 events, but itergrduster is considerably larc
than that o0 6=0.3, acquiring additional events from orange and flmatk clusters it

the latter
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0.25\0.3 2199 Blue| 2116 Red 951 Orange 389 Black Grzgn | 2
2302 Blue 2192 88 22 0 0 0
1989 Red 0 1974 15 0 0 0
865 Orange | 1 1 863 0 0 0
412 Black 6 49 0 356 1 0
119 Green 0 0 51 33 35 0
4 0 3 0 0 0 1
1* 0 0 0 0 0 1
1 0 0 0 0 0

Table2 - comparison between QC clustering assignmis of 6=0.25 ande=0.5. The singleton
labeled with * is the strongest recorded earthquakén the data (Nov 22nd, 1995). Small clusters
are labeled just by the numbers of their corresponithg events

Table 3 contains the values of the cluster ceritgrs=0.25, and should be compared
with the analog information fas=0.3 which is contained in Table 1. We note that th
centers of all large clusters for bathvalues are very close to each other. The 4-
cluster includes large-magnitude earthquakes, @ fitee red cluster of 0.3, and one
from the 2-cluster of 0.3. The other earthquaketlod 2-cluster is the major

earthquakes of Nov. 22 1995, which is classified as a singletom#0.25.

0.25 cluster centers| Md Stress dragy log My Source radiug M,
Hz | dyne-cm | km

2302 Blue 2.1 2 4,05 19.01 0.33 2.0
1989 Red 3.3 6 3.37 19.86 0.41 2.5
865 Orange 1.8 11 8.32 18.87 0.16 1.9
412 Black 4.0 45 2.84 20.90 0.47 3.2
119 Green 2.6 45 7.5% 19.67 0.17 2.4
4 5.1 36 0.78| 22.48 1.57 4.3
1* 6.2 69 0.17| 26.86 20.00 7.2
1 3.6 3 0.90| 21.40 1.56 3.6

Table 3 - cluster centers for QGs=0.25 in feature spaceThe singleton labeled by * is the
strongest recorded earthquake in the dataset.
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4.8.1 The smallb=0.25 clusters

As we have seen changing the QC parameters, Mkeringc, one can pick smaller
clusters out of otherwise larger clusters, thudifig particular groups that might be
of major interest. The next tables (4-5) puts fomasome aspects which can be
identified from these small clusters

YearMoDyHrMn | Md | Lat. Lon. log Mo | Stress drop Source radius fo

(°N) (°E) dyne-cm| bar km Hz
199511232228 46| 28.658 34.908 22.01 27 1.18 0.97
199703260422 55| 33.864 35.391 22.91 47 1.95 ).62
199703261320 5.2 33.708 35.565 22.52 33 1.63 0.75
200004060637 5 28.802 34.824 22.49 37 1.53 0.79

Table 4: Data of the 4-cluster of thes=0.25 clustering scheme

YearMoDyHrMn | Md | Lat. Lon. log Mo | Stress drop Source radius fo

(°N) (°E) dyne-cm km Hz
199511220415 6.2 28.762 34.682 26.86 69 20 0.17
200202240956 3.6 | 32069 35469 214 3 1.56 0.9

Table 5 : Data of singletons of the=0.25 clustering scheme

As it can be seen the cluster of four is identitigchigh magnitude values, also it's all
of the 6 events describe here have large souraesradlues in comparison to the rest
of the data suggesting why these were picked umby clustering approach.

4.9 Comparison to DQC

The DQC algorithm is based on the same potentiattfon V as in QC, but its
convergence pattern of instances into clusters@reewhat different, since it is based
on a quantum analog of the gradient descent afgoritt has two parameters: the
Gaussian widtls and a quantum tunneling parameter m. Table 6 slaoegnparison
between the clustering assignment obtained from D@E the parameters=0.25
and m=0.35 and the QC clustering we have used ghau the paper. The four
major clusters remain more or less intact, butther black QC one which splits into
black and red in DQC. The QC Green cluster mengisthe DQC orange one, and a
new DQC cluster of size 255, labeled cyan, turnstoioe composed of some of the
red and some of the blue events in the QC clugiefihe central parameter values of
the DQC clustering are presented in Table 7, whiely be compared with Table 1,

where we have shown the analogous results for helQsters. Note that the DQC
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orange cluster is mostly composed of the QC oramglegreen clusters. The events in
the DQC orange cluster occur in the same locatiahe Gulf of Agaba in Fig. 12.

Hence, our observation of its unique interpretatisemains the same.

DQC\QC 2199 Blue| 951 Orangé 2116 Red 389 Black R&G 2

2052 Blue 2046 5 1 0 0 0
1142 Orange 73 946 77 10 36 0
2012 Red 2 0 1842 168 0 0
229 Black 11 0 7 211 0 0
255 Cyan 67 0 187 0 0 1
1* 0 0 0 0 0 1
2 0 0 2 0 0 0

Table 6: : comparison of a DQC clustering result, sing 6=0.25 and m=0.35,
with our standard QC of 6=0.3.

Clusters Md | Stress drop| fo log Mo Source radius| My,
bar Hz dyne-cm km

2052 Blue 2.0 2| 4.05 18.97 0.32 1.9
1142 Orange 1.9 13 7.78 18.95 0.17 1.9
2012 Red 3.4 9| 3.33 19.96 0.41 2.6
229 Black 3.8 62| 3.46 20.85 0.44 3.2
255 Cyan 3.1 4| 2.49 19.96 0.54 2.6
1* 6.2 69| 0.17 26.86 20.00 7.2
2 2.8 12| 4.51 19.75 0.27 2.5

Table 7: cluster center values of the DQC result iparameter space. 1* is the major earthquake
of Nov 22nd, 1995.

4.10 Geographic clusters

Some of outstanding events in the clustering itufeaspace are also clustered
temporally and geographically, thus related tostlime faults. An example is shown
in Table 8 All these events occurred south of Cgmuring and shortly after the
strong earthquake on Oct. 9, 1996. All five evemtsblack earthquakes. The first two
occurred within a time-difference of 2 minutes. Tokowing three events have very
similar characteristics to each other, and all las@irred within four days. All may
well have belonged to one particular geographisteluof earthquake activities within

the same fault structure.
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YearMoDyHrMn Mgy Lat. Lon log My | Stress drop Source radius fo

(°N) (°E) | dyne-cm bar km Hz
199610091346 3.8 34.206 32.421 21.57 365.29 0.352 2113
199610091348 4.6 34.095 31.843 22.28 830.88 0.463 372
199610202114 3.1 34.158 32529 22 552.78 0.425 2.74
199610231029 3 34.072 32.048 22.08 543.49 0.456 712.4
199610240721 3.3 34,108 32.137 21.93 279.1 0.505 19 |2.

Table 8 - A group of outstanding black events thatorm a geographic cluster of earthquake
activities that occurred in October 1996 south of @prus

Another example of a geographic cluster is givertviny black events (IM=5.5 and
5.2) which belong to the 4-cluster 6£0.2 and are listed as the second and third
entries of Table 4. They occurred within 9 hourgath other in 1997 on the shore of
Lebanon and were followed within a few days by salvaftershocks at the same
location. These aftershocks were of smaller mageglwand were not fully analyzed,;
hence they were not included in our data.

4.11 Summary

The discovery of a special cluster of events, attarzed by low magnitude and high
stress-drop and well defined in localization aneheti corresponds nicely to the
ruptures that have occurred following the majortherake. The latter have been
analyzed in the past with special attention to rfindethe faults that have been
involved®. We have been able to put these events intoferelift context, pointing
out the fact that, by their association with a igatar range of parameters, they define
a new class of events, different in character fetinother earthquake events. Had we
had at our disposal a larger catalog of earthquiikes different regions of the globe,
we could find out to what degree this particulassl of ruptures occurs world-wide,

and analyze their correlation with major earthqsakeat they follow.
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Chapter 5

Comparison between clustering algorithms

5.1 Comparison between SVE and QC°

The SVC algorithm takes a more traditional way loster data, using the SVM
method with Gaussian kernel. Since both SVC andm@thods start by using the
transformation between data points to Gaussitissinteresting to try and compare
the two. For this purpose we will continue to wavkh the earthquake problem, and

see how these two methods match.

As done for the QC, we start with applying SVD armmalizing the results on the

unit 5-dimensional sphere. Running SVC with g=1@ $#=0.7 (see appendix A),

returns 3 core clusters as can be seen in Figridi®)( The three cores are used to
construct three clusters of the total data accgrdmour method explained in 2.2.

Comparing this clustering assignment to the resfute

SVWCp=-07, g=1 SWCp=-07, g=12

dimension 3
dimension 3
L]
%]

dimension 1 dimension 2 dimension 1 dimension 2

Figure 18 - on the left the cluster assignment, thdifferent colors represent different clusters.
on the right only the cluster cores (after throwingthe outliers)

QC algorithm shows overall agreement between tlee assignments. The SVC red
blue and black map into the QC blue red and orange.
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Figure 19 - Correspondence between QC earthquake dsification,
ordered along the x-axis (the order is blue, orangeed, black, green and 2), and their SVC
clustering into 3 clusters. Each short vertical barepresents one earthquake

The QC green cluster is mapped to the SVC bladlstet. We have seen before that
the orange and green clusters are related (seeT@et)QC black cluster has been
divided between the three SVC clusters, with tlteame getting the majority.

In order to compare the matching between the tvasstications one can use the
Jaccard score defined by

Nqq

/= Ny +Nyo + Moy

wheren,; is the number of pairs of samples that appeahénsame cluster both
according to a known classification (in this cabe tegular QC classification as
presented in chapter 4), and according to the hestering algorithm (in this case the
AQC). nyy + ny; is the number of pairs that appear together inatexssification and
not in the other. This score should be 1 for pélfenatched clustering and decrease

as the clustering quality decreases.

As one can see there is a good match between thenethods. The Jaccard score is
0.72, but unlike the QC method which can also detew@ll clusters by adjusting the
sigma parameter, the SVC method is not as sensiind does not return small
clusters no matter what are the g and p paramdteisis due to the fact that in order
to get a classification there is a need of deajplamge number of points as outliers,

and thus letting the clustering be cruder.
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5.2 Approximate QC

As presented before, the main idea of the Approtenq@C is to reduce running time
on big data. In this section we will use the eartlie data to evaluate the accuracy
and benefits of AQC .

In Table 9 we compare several choices for the aqymatied potential base sizes. The

size is determined by letting the user choose timeber of voxels per dimension.

# voxels per| # approximation | # clusters| # miss-matches JaccarBunning

dimension | data points score | time [min]

--------------- 5693 6 el Ml I < 4

0 1096 6 0 1 2:50

666 6 3 0.998 1:58
343 7 37 0.984 1:20
196 7 132 0.928 1:06
104 9 290 0.882 0:57

Table 9 - Comparison between different base sizeQC runs with 6=0.3 and 100 iterations. The
first row represents a regular QC run. The miss-mathes and Jaccard score columns are
calculated by comparing to the QC result withe=0.3. The running time includes all of the process
(building the base + running the gradient descent)

The first row represents a regular QC run (as wadyaed in previous sections), with
0=0.3 and 100 iterations. Remarkably one can sddakimg ~20% of the data points
as the base for the algorithm still gives an exaatch to the regular classification in

only 1/3 of the running time.

To describe the quality of the results we calcyléde each choice of base size, the
Jaccard score (see 5.1).

For the 8 voxels case, the 6 cluster solution dfagsame with only 3 miss-matches.
Reducing the number of voxels leads to less acewlassification as the number of
clusters increases. Although for all of them thg biclusters remain quite the same,
the small cluster of 2 events breaks up. Somégaakes switch clusters, but still the
choice of about 6% of the data as the base retuideccard score of 0.98!. For the
choice of 4 voxels we can see breaking of someersibut still there is a good match

for the big 5 clusters with a Jaccard score of 0.88

For this scenario dividing the space into 8 voxas dimension gives a very accurate

result while reducing the running time to less tB&#o of the original.
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As described in section 2.4 the complexity of AB®f order0(m - N), wherem is
the approximate base size, which is the numbercofimed voxels. Since we carry
out the analysis in a normalized S¥Dspace divided into M voxelsn will stay

roughly the same size even if N is being increased.

The AQC method was employed on a big-data set, rgeee from High Energy

Physics data, containing over 300,000 events innfedsional parameter space.
Carrying out the approximation using 6 voxels gienension, has led to a base size
of m=3888. The complete run for this setup over f@@dient descent steps took
around 18 hours, and has led to significant clustarctures. This shows that the
approximation method can handle data sets that\ame bigger than the ones studied

in the previous chapters.
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Appendices

Appendix A — COMPACT 2.2
As part of this thesis enhancements were performnetie COMPACT 2.5, and a
new version COMPACT 2.2 was introduééd

The main features that were added are:
A.1SVC

The SVC algorithm as presented in section 2.2,intagrated into COMPACT, and

now can be chosen from the method choices pool.

n Clusters Tool (step 4/5) . = P
File View k]
Input Vectors
4 T T
* %
ir o+ .
+ +
i
2 L ¥ -
.*.
o n Support Vector... | =, ﬁ: Al
{ =
22
é p Walle 4 4
= 0r T + -
) +
o Value 10
At + Ul d| =
.*.
o L Cancel oK
2l ¥ I
*
=9 L !
2.5 -2 -15 -1
dimension 1
Input data. 2 dimensions were zelected
Pregprocessing: Using rav data Select methad SWC ¥

Cancel | l << Back ‘ l Mext »s

Figure 20 - The SVC dialog in COMPACT
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The algorithm takes the following parameters asiinp
p value — the percentage of outliers.
g value — the Gaussians width.

Another feature which was added is the abilityievwonly the cluster cores as

assigned to clusters, while the outliers are nsgasd.
The solution for the SVM step was done with LIBS$M
A2 QC

Two new input parameters were added to the QC ighgar

Rescale each step — whether or not to rescale the result after aaeignt descent step

in order to lie on the unit sphere.
eta — controls the eta value, which is the size efdhadient descent step

The other enhancement is the ability to recordgtiaglient descent phase as a movie,
letting the user see the movement of the data dimthis way the user may observe
if the data points converged to a steady solutioiif,changes should be applied to the

input parameters.

The recording of the movie can be done throughQBeparameters dialog, and the
running is performed by a special button placetherresults screen and enabled only
with the QC method.
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Figure 21 — The QC dialog in COMPACT
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Appendix B — QC on JAVA

Since Matlab is not s suitable environment to rigadata on, we have decided to

implement the QC algorithm on JAVA environment.
The decision to use JAVA was made due to:

A) Good running time since it is a compiled program

B) Easy multi-threaded implementation

C) Existence of external libraries for data types algdrithms (like the SVD)
D) Existence of external libraries for 3D viewing

E) Compatibility for all platforms

Since the running time on big data was the majotofefor the reason to export the
algorithm, we have also designed the algorithnutoas multi-threaded, to exploit as

much resources as possible.
Implementation

The porting to Java tries to save as much funclitynaf the COMPACT library, as
can be seen in Fig 22, the basic possibilitiessafgiSVD, normalizing, assigning
parameters, and choosing dimensions are kept.nfpu file is a .txt one, delimited
by "tab", first row and column are treated as hieadland are not taken into account

for the algorithm.

The result screen as can be seen in Fig. 22 hetsger control all aspects like
zoom/pan/rotate, and play the simulation of the imgpdata points. The 3D
environment uses VTK wrapping for Java, and carllealarge data sets. As in
COMPACT each cluster is colored in a different colmlike COMPACT the user
may choose which dimensions he wants to plot. $gtvia classification is also

possible through the 'File' menu bar.
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In each step of gradient descent, the calculatidheoinduced "force" on a data-point
is not affected by the same calculation for theeptifata-points, hence it is the logic
place to perform parallelization. Indeed this iswhae chose to implement the
algorithm. On the earthquake data the speedup djdpehe parallelization was of
factor 3 on a quad core machine. Working on bigdata sets will improve the
speedup, as each thread will live longer, the ceaihof handling them will be less
noticeable, and also will be ideal for more soptéded machines or computer-

clusters.
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