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ABSTRACT 

 

Motivation 

Current methodologies for selection of putative transcription factor binding sites 

(TFBS) rely on various assumptions such as over-representation of motifs occurring 

on gene promoters, and the use of motif descriptions such as consensus or PSSM. As 

regulatory motifs are not necessarily over represented in the entire genome, the first 

demand brings the need for pre-processing of the data and to initially group genes that 

appear to be co-regulated, using additional data sources to the sequential ones. In 

order to avoid bias introduced by such assumptions we apply an unsupervised motif 

extraction (MEX) method, originally designed for extracting words from corpora of 

natural languages, to sequences of promoters. This allows us to seek biological 

insights that have previously been overlooked due to such assumptions. The work 

presented in this dissertation is based on an article that has recently been submitted for 

publishing. 

 

Methods 

We have applied MEX on the promoter regions of S. cerevisiae, aiming to identify 

putative cis-regulatory motifs through a genome-wide analysis. MEX does not depend 

on over-representation of the motifs in the genome, nor does it rely on clustering or 

other pre-processing of its input. Instead it uncovers motifs that are significant within 

the relatively local context of the promoters on which they occur. 

The putative cis-regulatory motifs have been further screened, in terms of their 

regulatory significance, via the expression coherence (EC) of their genes in 40 

experiments. 

We have then clustered the regulatory motifs based both on their DNA sequence and 

on the biological conditions in which they govern coherent gene expression. Such 

grouping reveals biological insights that are easily missed by conservative clustering 

methods, which rely either on sequence or on numerical data alone. 

 

Results 

The MEX methodology is applied to all S. cerevisiae genes and is found to be very 

successful when tested on results of 40 gene expression experiments, via the EC 

analysis. Clustering regulatory motifs that have highly significant scores of EC, we 



 iii 

describe 20 clusters, some of which regroup known TFBS. The clusters display 

different EC profiles, correlated with typical changes in the nucleotide composition of 

their relevant motifs.  In several cases, a variation of a single nucleotide is shown to 

lead to distinct differences in expression patterns. These results are confronted with 

other available information, such as in-vivo binding of transcription factors to groups 

of genes. Detailed analysis is presented for clusters related to MCB/SCB, STRE and 

PAC. In the first two cases we provide evidence for different binding mechanisms of 

different clusters of motifs. For PAC related motifs we uncover a new cluster that has 

so far been overshadowed by the stronger effects of known PAC motifs. 

 

Conclusions 

While conventional representations of motifs by consensus or PSSM are common and 

simple, such representations involve the loss of information and may lead to wrong 

predictions. As MEX does not use such representations, we can analyze each motif 

independently, and only then generate clusters of regulatory motifs, gaining a better 

understanding of the regulation without reducing the sequence information or biasing 

the results. We have learned from our analysis that single changes of a nucleotide 

within a motif can go a long way in affecting the regulation of genes. The strength of 

regulation may depend on various mechanisms. We have tested the repetition rates of 

motifs on the promoters and the localization of motifs upstream to genes to decide 

whether any of them should carry the burden for higher or lower regulation strength, 

or whether it is the binding mechanism of the TF to specific motifs that does it. In 

both the MCB/SCB and STRE clusters we have concluded that the latter is the case. 

Both examples demonstrate that small variations in regulatory motifs lead to high 

magnitude effects on regulation. Even a single nucleotide substitution at the motifs of 

these clusters is sufficient for such effects, acting as a tuner of regulation. 

 

Key words 

Saccharomyces Cerevisiae, transcription factor, binding site, regulatory motif, gene 

expression, clustering, motif extraction 
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1 INTRODUCTION 

1.1 Transcription factor binding sites 

Regulation of gene expression is mainly mediated through specific interactions of 

transcription factors (TF) with DNA promoter elements. The TF binding sites (TFBS) 

are short (typically of length 6-20 bases) and comprise a minority of the nucleotides 

within a promoter region. The binding sites are embedded within a sequence that is 

assumed to be nonfunctional with respect to transcription. Furthermore, a single 

transcription factor protein may interact with a variety of sequences. Identifying 

genuine binding sites is a challenging task as the physical extent of a promoter is 

rarely well defined, and within this ill-defined region we are seeking sparsely 

distributed, short and imprecise sequence motifs. 

1.2 Related work on motif extraction from promoter regions 

Advances in genome research, including whole genome sequencing and mRNA 

expression monitoring have allowed the development of computational methods for 

binding site prediction. Among the most popular and powerful methods for ab initio 

detection of regulatory motif is Gibbs-sampling [23, 20]. In this method motifs that 

are over represented in the data may be found. However since regulatory motifs are 

very short, while in contrast, the regulatory portion of the genome is very long (e.g., 

6,000,000 base-pairs in yeast, and much longer in mammals), and since the size of 

gene regulatory networks is relatively small (typically tens of genes), most regulatory 

motifs are not expected to be over-represented on a genome-wide scale. The task of 

motif identification is thus often first tackled by grouping together relatively small 

sets of genes (tens or hundreds) that are likely to be co-regulated, followed by motif 

searching within such groups [9, 19, 43, 32]. 

Other methods employ phylogenetic footprinting for the task of motif finding. Such 

methods compare upstream regions of orthologous genes from related species, 

assuming that TFBS are relatively conserved. The choice of species is crucial for 

obtaining reliable results; Comparing species with a short divergence time may yield 

false positives, as conservation is likely to reflect evolutionary proximity rather than 

functional constraints. A choice of too distant species will fail to recover species-

specific sites. For instance, about 40% of human functional TFBS are expected to be 

non functional in rodents [13]. Furthermore, the alignment of orthologous intergenic 
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sequences is non-trivial. Well-conserved sequence blocks of different lengths are 

interspersed with sequences that show little conservation. It is common practice to 

restrict the binding site search to genomic regions that are relatively conserved among 

all selected species. However, regulatory sites are not necessarily restricted to such 

conserved genomic segments, as has been shown in yeast and flies [14, 16, 38]. 

For most TFs, there appears to be no unique sequence of bases that is shared by all 

recognized binding sites. However there are typically clear biases in the distribution 

of bases that occur at each binding site position. These biases are commonly 

represented mathematically by position specific scoring matrices (PSSM), whose 

components give the probabilities of finding each nucleotide at each binding site 

position [7, 41]. 

Motif representations by PSSM, however, ignore dependencies between nucleotide 

positions in regulatory motifs. Such dependencies are known to occur [6, 10]. 

Statistical models that account for such dependencies include hidden Markov models, 

and Bayesian networks [15]. Yet, even sophisticated models of this kind have 

relatively low values of sensitivity and specificity when required to represent the 

known binding sites [3]. 

1.3 Motivation and outline 

The work presented in this dissertation is based on an article that has recently been 

submitted for publishing [37]. Here we employ a different approach that attempts to 

avoid the limitations and inherent assumptions discussed above. We adapt a recently 

published unsupervised algorithm [39], designed originally to extract patterns from 

natural-language corpora. This motif extraction algorithm (MEX) is based on a 

statistical model that identifies consecutive chains of interdependencies between 

adjacent nucleotide positions. It can thus successfully identify motifs as statistically 

significant on a genome-wide scale, even without significant over-representation. The 

algorithm readily detects the motif boundary, as the position where the series of 

highly probable transitions begins or terminates. MEX both overcomes the 

requirement to pre-group potentially co-regulated genes, and captures 

interdependencies between motif positions. 

Applying MEX to genome-wide yeast regulatory sequences, we extract sequence 

motifs. We then validate their biological significance using whole genome mRNA 

expression data. We use the expression coherence (EC) score [22, 33] in order to 
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check which of the identified putative motifs exert significant effects on the 

expression profiles of their down stream genes. The expression analysis shows an 

enormous enrichment of highly-scoring motifs among MEX’s predictions, and it also 

identifies potential biological conditions in which these motifs act. We further group 

the high-scoring motifs into subsets based not only on their raw DNA sequence, but 

also on the biological conditions in which they govern coherent expression. Such 

grouping reveals biological insights that are easily missed by conservative clustering 

methods, which rely either on sequence or on numerical data alone. For instance 

partially overlapping binding sites that are bound by distinct TFs regulating different 

biological conditions, are indistinguishable by sequence, yet may appear in separate 

clusters using our method. Another biological phenomenon we can capture is slight 

variations in binding site sequence which result in different expression outputs. Our 

analysis shows that the commonly used PSSM description does not capture some very 

important properties as there exist specific structural relations that correlate with high 

EC values in particular biological conditions, i.e. they are of functional importance. 
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2 METHODS 

2.1 Motif Extraction algorithm (MEX) 

MEX is a motif extraction algorithm [39] that extracts statistically significant motifs 

from sequential data. MEX is a data driven unsupervised algorithm, hence does not 

need any preprocessing of the data or additional information apart from the data set 

itself. Furthermore, MEX finds motifs that are not necessarily over-represented in the 

data.  

MEX was originally developed in a linguistic context, as a distillation tool for 

extracting words from corpora of natural language. As more intuitive, let us first 

describe the algorithm in its original context. 

Consider a corpus of sentences, whose word delimiters have been removed (such as 

spaces, capital letters, punctuations, etc.). The problem at hand is to uncover the 

words that have originally constructed the sentences. MEX receives as an input such 

corpus, consisting of many sequences of a given finite alphabet of size N (e.g. N=26 

letters in the English alphabet, N=20 amino acids in proteins and N=4 nucleic acids in 

the case of DNA). The algorithm uses a directed graph, whose vertices, V, are 

composed of the letters of the given alphabet, in addition to a ‘begin’ and an ‘end’ 

vertices. A set of ordered pairs of vertices (directed edges) represent the order in 

which the letters appear in the corpus. For example, the edge e(t,h), represents a 

connection from the vertex ‘t’ to the vertex ‘h’, which means that the letter ‘h’ 

appears at some point along the corpus after the letter ‘t’. MEX loads the given corpus 

onto a directed graph, one sentence after the other. The edges representing each 

sentence are built, starting with the ‘begin’ vertex, followed by the letters composing 

the sentence, one after the other, and ending with the ‘end’ vertex. This way, ordered 

paths are created in the graph, such that each sentence is represented by a path. Each 

path is saved by MEX and will be used as a search path for patterns. This procedure is 

demonstrated in figure 2.1. 

 

 

 

 



 5 

 

 

 

 

 

 

 

Figure  2.1 MEX loads the corpus onto a directed graph, one sentence after the other. The graph 
is composed of vertices representing the letters of the given alphabet, in addition to two vertices 

representing the beginnings and the endings of sentences (A). One sentence at a time, directed 

edges are added to the graph, representing the order in which letters appear in each sentence (B-

D). The ordered edges composing a sentence are considered a path along the graph. In this 

example, four paths are loaded onto the graph: ‘alicewas’ (blue path), ‘isalice’ (light green path), 

‘saidalice’ (turquoise path) and ‘alicein’ (red path), one after the other.  

A) B) 

D) C) 

alice was 

is alice 
said alice to 

alice in 
. . . 
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Once the entire corpus has been represented as search paths on a directed graph, the 

algorithm starts searching for statistically significant patterns. Intuitively, for each 

search path MEX looks for sub-paths that may be considered as candidates for being 

significant patterns. A sub-path that represents a significant pattern is expected to be 

shared by other paths throughout the graph, such that these paths will converge into 

the sub-path at its first vertex, form a bundle along the sub-path and scatter after the 

sub-path’s last vertex. This follows the assumption that at different instances of a 

given word throughout the corpus, after the word ends, it is likely to find many 

different possible words following it. In such a case many paths will form a bundle 

along the sub-path representing the word and scatter immediately after it ends. The 

vertex after which such a divergence occurs may be considered as the last vertex of 

the pattern. A similar notion underlies the way MEX searches the start points of 

patterns, by looking for a divergence of a bundle while going leftwards through a 

search path. Figure 2.2 demonstrates this idea. The four paths in figure 2.2 converge 

and form a bundle along the sub-path ‘a→l→i→c→e’, after which they diverge. 

This can be rephrased into a probabilistic language; for each search path (sentence) 

that is to be explored for patterns, two probability functions are defined, based on 

information inheres in the complete graph. The first one, PRight, is the right moving 

ratio of the through-going flux of paths to the incoming flux of paths, which varies 

along the search path. Starting at the vertex e1 we define PRight at e2 as: 

total no. of paths passing from e1 to e2  ( ) ( ) == 1221 |, eepeePRight
total no. of paths entering  e1  

At e3 PRight becomes:  

total no. of paths passing from e1 through e2 to e3  ( ) ( ) == 21331 |, eeepeePRight
total no. of paths passing from e1 to e2  

And generally:  

total no. of paths passing from ei up to ej-1 and continue to ej ( ) ( )== −++ 121|, jiiijjiRight eeeeepeeP �
total no. of paths passing from ei up to ej-1 

Similarly, a second function, PLeft, is defined as we proceed leftward from some 

vertex ej down the search path towards the vertex ei and examine the left-going ratio 

of the through-going flux of paths to the incoming flux of paths: 

total no. of paths passing from ei to ej ( ) ( )== −++ jjiiiijLeft eeeeepeeP 121|, �
total no. of paths passing from ei+1 to ej 
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Figure  2.2 A partial view of the graph used by MEX. The search path no. 1, ‘alicewas’ (blue line), 

shares the sub-path ‘a→l→i→c→e’ with three other paths: ‘isalice’ (2), ‘saidalice’ (3) and 

‘alicein’ (4). The four paths form a bundle that may constitute a significant pattern. The 

conditional probabilities PRight and PLeft, originating at the vertices ‘a’ and ‘e’, respectively, are 

illustrated for the example shown here. A sharp drop in the right moving probability, PRight, 

indicates that the paths constructing the bundle have scattered, thus may denote the end of the 

pattern.  Similarly, a sharp drop in PLeft may indicate the beginning of the pattern, hence reveal 

the pattern ‘alice’. 

 

 
 
 
 

 
 
 

 
 
 
 

 
 
 

Table  2.1 Calculating right-going conditional probebilities for the search path 

‘alicewasbegining...’. Probablities are calculated for a given serach path, based on information 

inheres in the entire graph. The corpus used in this example was the sentences from Alice in 

wonderland, by Lewis Carroll. 

Vertex Conditional Probability Expression PRight 

a P( a ) = 8770 / 109625 0.08 

l P( al | a ) = 1046 / 8770 0.12 

i P( ali | al ) = 486 / 1046 0.45 

c P( alic | ali ) = 397 / 486 0.85 

e P( alice | alic ) = 397 / 397 1 

w P( alicew | alice ) = 48 / 397 0.12 

a P( alicewa | alicew ) = 21 / 48 0.44 

s P( alicewas | alicewa ) = 17 / 21 0.81 

b P( alicewasb | alicewas ) = 2 / 17 0.12 

e P( alicewasbe | alicewasb ) = 2 / 2 1 

g P( alicewasbeg | alicewasbe ) = 2 / 2 1 
. . . 

. . . 
. . . 

1 
2 

3 

4 
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MEX calculates PRight from different starting points to each vertex down the search 

path. Going rightwards through a sub-path that represents a significant pattern, it is 

expected that PRight will first increase since other paths join the search path to form a 

coherent bundle, and then decrease as many paths leave the search path.  

In order to demonstrate this, let us examine as a toy problem the corpus of Alice in 

wonderland, by Lewis Carroll. MEX has received as an input the sentences within 

Alice in wonderland, after all word delimiters have been removed. Going through the 

first search path ‘alicewasbeginningtogetverytired...’ MEX calculates the rightward-

going probabilities, PRight, along the path, as demonstrated at table 2.1. MEX starts at 

the first vertex ‘a’ and calculates the probability of its appearance in the corpus, 

PRight(a); as ‘a’ appears in 8770 cases out of the total of 109625 letters in the corpus, 

PRight(a)= 109625
8770 =0.08. MEX continues to the next vertex ‘l’, calculating the probability 

of its appearance after the previous vertex, i.e. PRight(al|a); in this case, ‘l’ appears 1046 

times after the 8770 instances of ‘a’, hence PRight(al|a)= 8770
1046 =0.12. MEX continues 

calculating the rightward-going probabilities PRight(ali|al), PRight(alic|ali) and so on, up 

to the end of the search path. As can be seen in table 2.1, the rightward-going 

probabilities initially rise and then drop sharply. Such a dramatic drop may occur 

owing to the sudden divergence of a coherent bundle, and will be considered as a 

candidate for terminating a pattern.  

We will define the end of a motif as the vertex after which a dramatic drop in the 

right-moving probabilities is apparent (expressing the divergence of edges from that 

vertex), and the beginning of a motif as a dramatic drop in the left moving 

probabilities (expressing the convergence of edges to that vertex).  

Formally, let us define a “decrease ratio”: 

( )
( )
( )

1,

,
,

−

=
jiRight

jiRight

jiRight
eeP

eeP
eeD  

( )
( )
( )

1,

,
,

+

=
ijLeft

ijLeft

ijLeft
eeP

eeP
eeD  

We will declare ej-1 as a candidate end point of the pattern if DRight(ei,ej) is smaller 

than a preset cutoff parameter η<1. Similarly, ei+1 will be declared as candidate start 

point of a pattern if DLeft(ej,ei)<η. 

The statistical significance of the decreases in PRight and PLeft must be evaluated.  PRight 

and PLeft can be regarded as variable-order Markov probability functions. We can 
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define their significance in terms of a null hypothesis stating that PRight(ei,ej) ≥ 

ηPRight(ei,ej-1) and PLeft(ej,ei) ≥ ηPLeft(ej,ei+1), and require that the p-values of both 

DRight(ei,ej)<η and DLeft(ej,ei)<η be, on average smaller than a preset threshold 

parameter α<1. 

A bundle of coinciding paths whose end-points obey these significance conditions is 

declared as a possibly significant pattern. Given a search path, we calculate both PRight 

and PLeft from all of the possible starting points, traversing each path leftward and 

rightward, correspondingly. This technique defines many search-sections, which may 

be candidates for significant patterns. The most significant ones of these candidates 

are returned as the outcome patterns for the search path in question. 

2.2 Applying MEX on promoter regions of S. cerevisiae 

Given a set of DNA sequences, such as the promoters of all genes in S. cerevisiae, 

one may regard each promoter as a sentence with an alphabet of size four, 

corresponding to the four nucleic acids composing the DNA. This corpus of promoter 

regions in S. cerevisiae was given to MEX as an input, aiming to extract regulatory 

motifs. 

In the yeast problem we apply MEX to 4800 promoters of 6300 genes (some 

promoters are shared by two genes because they fall within the intergenic region of 

two genes that are located on opposite strands of the DNA chain). Each promoter 

sequence, of length up to 1000bp, is considered as a path on the graph. After all 

information is loaded onto the graph, we use all 4800 sequences as trial-paths in order 

to extract motifs. 

MEX selects motifs according to some edge criteria rather than over-representation in 

the data set. Nonetheless it can pick up repetitive motifs, in particular those of very 

high occurrence (in the thousands), that may be completely unrelated to regulatory 

functions. Hence we limit ourselves to motifs whose occurrence rate is between 5 and 

100 per promoter. We also require a lower limit of length 6 for the motifs. 
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2.3 Expression Coherence analysis 

In order to check which of the motifs extracted by MEX are likely to function as 

regulatory elements in yeast, we have used the expression coherence (EC) method 

[22, 33, 42]. The EC score of a motif that appears in the promoters of N genes is 

defined as the fraction of gene pairs (i,j) in the set S, such that the Euclidean distance 

between their mean and variance normalized expression profiles, D(ij), falls below a 

threshold, D, divided by the total number of gene pairs in the set, ½N(N-1). The value 

D is set as a distance at which random gene pairs have a probability p of scoring 

below. The EC score may range between 0 and 1 and is higher for sets of genes that 

cluster in one or a few tight clusters.  

A sampling-based means exists for the assessment of the statistical significance of EC 

scores, in terms of p-value, given the gene set size N [22]. In order to account for the 

testing of multiple hypotheses and to control the amount of false positives, the EC 

analysis uses the false discovery rate (FDR) theorem [5]. The FDR criterion 

determines the p-value cutoff below which motifs are guaranteed to be statistically 

significant at a specified false discovery rate.  

Expression analysis of genes that contain regulatory motifs in their promoters allows 

not only to select potentially functional motifs, but also to decipher their semantics. A 

comprehensive semantic characterization of a regulatory motif would amount to 

describing the condition in which it acts, and its regulatory effects, e.g. increase in 

expression along a particular stress, or peaking of expression profile during a 

particular phase of the cell cycle. Figure 2.3 shows such semantic annotation of two 

high scoring sequence-motifs generated by MEX. These motifs govern opposite 

responses to hypo-osmotic pressure. 
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Figure  2.3 A semantic characterization of two of the motifs extracted by MEX. MEX has 

identified two motifs governing opposite responses to hypo-osmotic stress. As shown by the 

graph, genes containing the motif CGATGAGCT (corresponding to the PAC motif) in their 

promoters (black lines) behave similarly in response to hypo-osmotic stress (EC=0.12, p-value < 

6*e-4), whereas genes containing the motif TAAGGGGA (corresponding to STRE) in their 

promoters (green lines), behave similarly to each other (EC=0.38, p-value < 1*e-5), yet differently 

from the first group of genes. This illustrates the strength of MEX in identifying sequence motifs 

corresponding to known S. cerevisiae regulatory motifs based on promoter sequence alone. The 

expression data for the analysis was taken from Gasch et al.[18]. 
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2.4 Finding functional clusters of motifs 

We have formulated an iterative method for clustering motifs, according to their 

sequences and EC scores information. We first initiate clusters by gathering motifs 

that share some building blocks, or `seeds'. Then, a series of iterations improves the 

clusters, using various procedures detailed below. The clusters refinement steps 

include the addition and removal of motifs from existing clusters and splitting and 

merging of clusters. We have quantified the quality of clusters using several criteria 

associated with sequential patterns and EC score patterns of the motifs. The metrics as 

well as the refinement steps are listed below.  

The clustering algorithm may be used to cluster any type of sequential data that are 

linked to numerical data. The input to the algorithm is a set of sequences of a given 

alphabet (e.g. motifs) and a complementary set of vectors (e.g. EC vectors), holding 

an additional information that needs to be taken into account in the clustering process.  

Our clustering method may be considered ‘fuzzy’ in the sense that single motifs may 

belong to several clusters. Additionally, not all motifs must be clustered and may be 

left as singletons. 

Initiating clusters by seeds 

Our set of motifs was scanned to find short strings of nucleotides (of length 6) that 

appear within at least three motifs, to be called `seeds'. Selecting all motifs that 

contain a given seed defines a preliminary cluster. 

Pruning clusters to increase EC tightness 

For each motif one defines an EC vector of length 40 whose entries specify the p-

values of significantly successful EC experiments (that had passed the FDR criterion). 

Such vectors comprise the matrices in figures 3.3 to 3.5. Let us define the space of all 

these vectors as EC space and define an EC divergence measure for a cluster of motifs 

as the average distance of all pairs of its EC vectors. In order to decide whether to 

eliminate a motif from a given cluster, we ask whether its presence increases the 

divergence of the cluster. To decide whether a motif m should be eliminated from a 

cluster MC, we compare the EC divergence of MC with the empirical distribution of 

EC divergence scores resulting from replacing m with every one of the motifs that lie 

outside the cluster MC (that is, with a background sample MB). The motif will be 

pruned from the cluster if it does not significantly reduce the cluster’s EC divergence, 

in comparison to motifs from the random background. The deletion of motifs from a 
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cluster occurs after all motifs have been tested, thus the order of tested motifs does not 

affect their chances of remaining in the cluster. A pseudo code describing this 

procedure is available in box 2.1. An example is shown in Figure 2.4. 

 

 

 

 

 

 

 

 

Figure  2.4 An example for testing the contribution of a specific motif to the cluster’s tightness. 

The EC-divergence score of the cluster including the motif AAACGCGAAAA (black triangle) is 

compared to the empirical distribution of EC-divergence of clusters, in which the motif in 

question has been replaced with random motifs (histogram). Our null hypothesis claims that the 

motif does not reduce EC-divergence of the group (which is equivalent to saying that the motif 

harms the tightness of the cluster). In this example, however, the divergence-score of the cluster 

with the motif included in it is very small. Hence, we can reject the null hypothesis with a 

probability value of 0.001 and include the motif in the cluster. 
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Expanding clusters 

We search for new motifs to be added to the cluster without increasing its EC 

divergence. To decide whether a motif m should be added to a cluster MC we compare 

the EC divergence resulting from its addition (MC+m) with the empirical EC 

divergence distribution resulting from additions of each of the motifs lying outside MC 

(that is, in a background sample MB), one at a time. 

At the same time we also require sequential similarity of the new motif to the ones 

that belong to the cluster. The sequential distance between motifs is defined as the 

edit distance of their best alignment, not allowing gaps. The sequential distance score, 

D, is normalized between 0 and 1, such that D=0 if the short motif is fully contained 

in the long one and D=1 if the motifs have no match at all. 

A cluster will be expanded by motifs that keep its tightness, as well as being strongly 

similar to the cluster by sequence. The addition of motifs to a cluster occurs after all 

motifs in MB have been tested, thus the order of tested motifs does not affect their 

chances of being added to the cluster. A pseudo code is available in box 2.2. 



 15 

 

 

 

Box 2.2: Expanding clusters 

Given a set M of motifs, their EC scores vectors, 40ℜ∈∈MiEC  and two disjoint subsets, MMM BC ⊂, , 

we wish to expand 
CM  by similar motifs from a background set 

BM  that do not increase its EC 

divergence. 

 

Pseudo code: 

1. Find candidates motifs for addition,  M  M Bcand ⊂ , that show strong similarity by sequence to at least 

one motif in 
CM .  

2. Calculate the EC distance between every pair of EC vectors in 
BC MM ∪ : 

|)(| jiij ECECavgECdist −=  ; 
BC MMji ∪∈, . 

3. Create a new candidate subgroup 
candCM ,

 by adding 
CM  a single motif from

candM . 

4. Calculate
candCM ,

’s divergence score: )(
, ijM ECdistavgDivScore
candC

=  ; candCMji ,∈< . 

5. Create a new test group 
jCM ,
 by adding 

CM  a single motif from 
candB MM ≠  

6. Calculate
jCM ,
’s divergence score. 

7. Repeat steps 5, 6 for all 
candB MMj ≠∈  to generate the empirical distribution of divergence scores 

of the test groups. 

8. Calculate the probability value for getting the divergence score of 
candCM ,

 by chance. 

9. Expand the group by the current motif candidate if it produces a significantly low divergence score 

(lower than some preset significance value,α ). 

10. Repeat steps 3-9 for every motif candidate in respect to the original cluster
CM . 

Box 2.1: Pruning clusters to increase EC tightness 

Given a set M of motifs, their EC scores vectors, 40ℜ∈∈MiEC , and two disjoint subsets, 

MMM BC ⊂, (the cluster in question and a background subset of motifs, respectively), we wish to 

eliminate from cluster 
CM  motifs that increase its EC divergence. We will test the contribution of

CM ’s 

motifs to its EC divergence, by comparing them to
BM ’s motifs contribution to 

CM ’s EC divergence. 

 

Pseudo code: 

1. Calculate the EC distance between every pair of EC vectors in 
BC MM ∪ : 

|)(| jiij ECECavgECdist −=  ; 
BC MMji ∪∈,  

2. Calculate
CM ’s divergence score: )( ijM ECdistavgDivScore

C
=  ; 

CMji ∈< . 

3. Create a new subgroup 
ijM  by replacing the i’th motif of 

CM  with the j’th motif of
BM . 

4. Calculate
ijM ’s divergence score. 

5. Repeat steps 3, 4 for all
CMi∈ , 

BMj∈  in order to examine the effect of each motif i on
CM ’s 

tightness. 

6. For each motif
CMi∈ , generate the empirical distribution of divergence scores, as found in the 

replacement of motif i with every motif
BMj∈ . 

7. For each motif
CMi∈ , calculate the p-value of getting the divergence score of 

CM  by chance. 

8. Compare each p-value to a preset significance valueα . 

9. Eliminate motifs that are not significantly reducing the divergence of the group in comparison to the 

randomly sampled motifs. 
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Fusion of clusters 

Clusters will be merged if they share a minimum percentage of motifs and are also 

found to be similar in EC. EC distance between two clusters A and B is defined by a 

Fisher criterion, as the distance between the centers of the clusters, divided by the 

sum of their standard deviations: 

BA

BA

BAF
σσ

µµ

+

−
=,  

µA and µB are the mean EC vectors of the two EC matrices (the center of each cluster). 

For each cluster we define σ as the vector of the 40 standard deviations corresponding 

to the 40 EC experiments. Clusters will be merged if their Fisher distance, F, is 

smaller than some threshold, as long as they also obey the sequential similarity 

criterion. 

 

 

 

Figure  2.5 A demonstration of the Fisher criterion. The fisher distance for distant clusters 
exceeds the value 1 (A). The smaller the fisher distance is, the more difficult it gets to distinguish 

between the clusters (B, C). 
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Splitting of clusters 

Clusters will be split into K smaller clusters if they exceed a given size. Splitting is 

done using the K-means algorithm on the EC space of the cluster. After applying this 

indiscriminative step, however, a fusion step is applied, so that unnecessary splitting 

will be reversed. 

Fine refinement of clusters 

The former procedures are applied iteratively in a preset order, to generate clusters 

that are rather tight in EC and in sequence and differ from each other in sizes, EC 

patterns and motif sequences. In a final pruning step finer parameters are used. Then 

the improvement of each cluster is tested with respect to a cluster score, assessing the 

quality of the cluster, and the pruning is accepted or rejected accordingly. The clusters 

are given a cluster score, a heuristic function encapsulating the various measures used 

in the analysis: 

( )2,otherscluster

others

cluster

others

cluster

FMC

DivScore

DivScore

eSeqDivScor

eSeqDivScor

reClusterSco
⋅

⋅

=  

SeqDivScorecluster, DivScorecluster are the cluster’s sequential and EC divergence 

scores, respectively (the former is defined similarly to the latter, as the average 

sequential distance of all pairs of motifs within the cluster). SeqDivScoreothers, 

DivScoreothers are the sequential and EC divergence scores of all the motifs outside the 

cluster, respectively. Fcluster,others is the EC fisher distance between the cluster and the 

rest of the motifs, and MC is the number of motifs within the cluster. The smaller the 

cluster score is, the better the quality of the cluster is considered. 

The cluster score quantifies the quality of a cluster in terms of its internal tightness 

relatively to the background. As affected by many different factors, the cluster score 

is sensitive to noise. Hence it is only used at a late stage along the algorithm, when 

clusters are already coherent to a great extent. 

Flow of the algorithm 

After initiation, cycles of the various iterations occur, gradually improving the 

clusters with respect to their sequences and EC patterns. The algorithm stops when the 

rate of change of the clusters falls below a certain cutoff (a stopping criterion) or if no 

clusters are found. Clusters that are too small (below a preset threshold) are 

disregarded.  
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2.5 Finding GO annotations of clusters 

Co-regulated genes might be involved in similar cellular processes and functions. 

Information regarding the functional tendencies of the genes on the promoters of 

which the cluster’s motifs are found may be helpful in getting a notion about the 

identity of clusters. Hence, we have used GO TermFinder [8] in order to test the GO 

enrichment [2] of the sets of genes that are relevant to the our clusters. 

GO (gene ontology) is a project aimed to provide a common language for describing 

aspects of a gene product’s biology. GO provides annotations for genes in three 

categories: the molecular functions of the gene product (e.g. transporter activity, 

kinase activity, transcription factor, etc.), the biological process as part of which the 

gene product acts (e.g. mitosis or protein metabolism) and the cellular component in 

which it acts (e.g. sub-cellular structures, locations, and macromolecular complexes). 

GO TermFinder looks for significant enrichments of GO terms that are used to 

describe a given set of genes. This tool gives an insight on what is common among 

the genes within a set, in terms of GO annotations. GO TermFinder calculates p-

values, using a hyper-geometric distribution, as the probability of x or more out of n 

genes having a given annotation, given that K of N have that annotation in the 

genome in general. A corrected p-value cutoff is calculated to account for multiple 

hypotheses. 

2.6 TF binding rates 

In order to further validate the identity of clusters with respect to known TFs, we have 

performed a comprehensive estimation of the binding of various S. cerevisiae TFs to 

the promoters on which our motifs are found. For that purpose we have employed 

yeast genome-wide location analysis data [19], in which the genomic occupancy of 

203 DNA-binding transcriptional regulators had been measured in vivo via ChIP-on-

chip experiments at various environmental conditions. We have calculated the binding 

rates, i.e. the percentage of promoters within each cluster that are bound by each 

transcription factor. Since some transcription factors are less specific, and typically 

bind more genes than other factors, we define incremental binding rates by 

subtracting the mean binding rate of each TF from the binding rates of each TF to 

every cluster. For this analysis we have used a p-value cutoff smaller or equal to 

0.005 at the original TF binding data, to decide whether a TF binds a given promoter.  
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The significance of the observed binding rates was tested using a hyper-geometric 

distribution and probability of getting at least the observed number of bound 

promoters (for each cluster and a given TF) by chance was estimated. P-values were 

calculated as the probability that x or more, out of n promoters, are observed to be 

bound by a particular TF, given that K of N promoters are bound by that TF in 

general. 

Figure 3.2 displays the incremental binding rates of each of the 203 tested TFs to our 

clusters of motifs and the results of the hyper-geometric tests. 
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RESULTS 

2.7 Extraction of motifs from promoters of S. cerevisiae 

We have applied MEX to 4800 promoters of 6300 genes (as some promoters fall 

within the intergenic regions of couples of genes). We have chosen rather permissive 

parameters for MEX in order to attain many putative motifs that will be further 

screened based on their regulatory activities. Using the parameters α=0.1 and η=0.99 

MEX has extracted 9370 motifs. Considering the occurrences of motifs on both 

strands of the DNA as identical objects, we identify motifs with their reverse 

complements. Hence, the set has been reduced to 8498 unique putative motifs. 

2.8 Testing Expression Coherence 

We have calculated EC scores and their p-values for each of our 8498 putative motifs 

in 40 experiments where whole-genome mRNA expression of S. cerevisiae had been 

monitored using DNA chips
*
. Setting the false discovery rate to 0.1, we have 

discovered that 25% of the sequence motifs have a significant EC score in at least one 

of the experiments. This should be contrasted with a 0.6% success rate, under the 

same FDR condition, for random sequences of lengths between 7 and 11 nucleotides. 

In other words, MEX does a good job of selecting motifs that are relevant to the 

problem at hand. 

In order to lower the chances for false positives, we have applied further screening to 

our motifs, requiring each one to exhibit at least one EC success with a p-value of 

0.001 or lower. This distilled set contains 694 significant regulatory motifs. Almost 

half of these motifs match perfectly (or are included in) known binding sites of 85 

transcription factors (motifs published by Harbison et al. and Pritsker et al. [19, 35]). 

2.9 Clustering motifs 

Our algorithm finds 20 clusters, covering a total of 182 motifs. 14 of our clusters have 

large overlaps with known motifs. Figure 3.1 displays the Fisher distance matrix of 

these 14 clusters. On the diagonal (where F=0) we have added F-values that are 

obtained by randomly dividing each of the given clusters into two arbitrary ones, in 

order to provide some examples when F values are too low to serve as a criterion for 

separation among clusters. We clearly obtain groups of related clusters, and we will 

study and name them accordingly. In the following we will discuss in detail 8 of our 

clusters.  

                                                 
*
 EC analysis has been performed by Prof. Yitzchak Pilpel and his student Michal Lapidot. 
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Figure  0.1 Fisher distances between our final clusters. On the diagonal (where F=0) we have 

added the mean F-values obtained by randomly dividing each of the clusters into two arbitrary 

ones (mean over 1000 random divisions for each cluster). The values along the diagonal are anti-

correlated to the sizes of the clusters (with correlation coefficient of -0.85).  These values give a 

notion for cases when the F-values are too small to serve as a criterion for separation between 

clusters. It appears that most clusters’ EC patterns are rather distant from each other (F≈1). Yet, 

we clearly obtain groups of related clusters (e.g MS1-MS4). 
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Figure  0.2 Binding of transcription factors to promoters that carry our clusters’ motifs. 

A. Incremental binding rates for each of the 203 transcription factors (columns) to every cluster 

(rows). Hot colors (dark red) represent high Incremental binding rates. B. The results of hyper-

geometric tests, calculating the probability of getting at least the observed number of bound 

promoters (for each cluster and every given TF) by chance, with respect to a given TF. Black 

indicates that the test’s p-value equals 0.001 at most.  

The first four clusters (MS1-MS4) have large overlaps with well-known TFBS, such as those 

bound by MCB (MluI cell cycle box) and SCB (SWI4-SWI6 cell cycle box). The first is a well 

known complex, formed by the proteins MBP1 and SWI6, while the latter consists of SWI4 and 

SWI6. This reassures the identity of clusters MS1-MS4, as the highest incremental binding rates 

attained for these clusters are of MBP1, SWI4 and SWI6. A similar validation arises for other 

clusters as well. Note that the TFs which bind the sites known as PAC have not yet been 

discovered, as is also reflected by the lack of signal for the clusters P1 and P2. 

B 

A 
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2.10 MCB/SCB clusters 

The first four clusters shown in Figure 3.2 have large sequential overlaps with well 

known TFBS, such as the MCB (MluI cell cycle box) and SCB (SWI4-SWI6 cell 

cycle box) clusters. MBF (MluI cell cycle box binding factor) and SBF (SWI4-SWI6 

cell cycle box binding factor) are two related protein complexes involved in 

transcriptional regulation of the transition from the G1 to S phase of the cell cycle. 

The two DNA binding complexes are heterodimeric and contain the regulatory 

protein SWI6 as a subcomponent. MBF contains the DNA binding protein MBP1, to 

which SWI6 is bound, while the DNA binding subunit in SBF is SWI4. MBF and 

SBF play important roles in the regulation of many processes, such as DNA synthesis, 

DNA repair and budding [1, 31, 34]. 

We have found four clusters associated with MCB and SCB known motifs. These 

clusters and their EC patterns are provided in Figure 3.3. The identity of our four 

clusters was further validated in two manners. First, we have tested the GO 

enrichment of the set of genes on the promoters of which the cluster’s motifs are 

found. Indeed, the four clusters are found to be significantly enriched with GO terms 

such as DNA metabolism, DNA repair and response to various types of stress. This 

analysis provides some information regarding the functional tendencies of the four 

clusters. It does not, however, provide a high enough resolution for discriminating 

between them, in terms of specific cellular processes and functions of the genes 

associated with those clusters. 

A second analysis has estimated the incremental rate of binding of transcription 

factors to the set of promoters of each cluster (See Methods and figure 3.2). With 

agreement to the results of the previous analysis, it appears that the four clusters at 

hand show a significantly high incremental binding rate to MBP1, SWI4 and SWI6.  

Combining the information of known motifs, GO annotation enrichment and the 

binding of transcription factors to the genome, we have concluded the following: The 

first cluster, MS1, contains “classic” MCB and SCB elements bound by MBP1, SWI4 

and SWI6. The cluster is very significant in experiments testing the cell cycle and 

various environmental stresses. The motifs of cluster MS2 are identified as MCB 

elements, while those of MS3 are identified as SCB motifs. It appears that MS2 is 

particularly important in cell cycle experiments, whereas MS3 is significant in stress 

related experiments and not as much in cell cycle ones. Cluster MS4, whose motifs 
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are functional at cell cycle experiments, is identified mostly as MCB, though some of 

its motifs fit SCB as well. 

The EC patterns of the four clusters show clear differences (Figure 3.3). The latter can 

be correlated with the detailed nucleic acid decomposition of their motifs. Motifs of 

MS1 and MS2 have different common cores, ACGCGA and ACGCGT respectively. 

Hence, the single adenine to thymine substitution in the core of these motifs may be 

responsible for the relevance of MS1 to a particular heat shock experiment (Figure 

3.3) and for leading MS2 in its effect on the menadione and hydrogen peroxide 

experiments. 

The MS3 cluster displays a core of TCGCGA, differing from MS1 at another position 

within the motif cores. Here again it appears that the particular sequence to which a 

transcription factor is bound plays an important role in the regulation of gene 

expression. In particular, note the absence of significance of the MS3’s motifs in most 

cell cycle experiments and their relative importance in the heat-shock ones. 

MS4 displays a complementary behavior to MS3, relevant only to cell cycle 

experiments. Most of its motifs have a core of ACGCCA. Thus we show that the 

avidity of clusters, and the TFBS that they contain, is strongly dependent on particular 

details of their motifs. 
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Figure  0.3 Four of our clusters contain motifs that are known MCB and SCB elements (Top to 
bottom: MS1, MS2, MS3 and MS4). Each matrix represents the EC patterns of the motifs within 

one cluster. The EC pattern of a motif is a vector of 40 p-values of EC tests for 40 environmental 

experiments (low p-values are represented by dark colors, with a grayscale proportional to -

log(p-values), white implies FDR>0.1). The bars indicate the percentage of motifs that had 

significant success in each experiment. 
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2.11 STRE clusters 

Another demonstration of the importance of specific sequences of TFBS can be seen 

in two clusters that have been identified as STRE (Stress Response Elements). STRE 

are known to be bound by two related transcription factors, MSN2p and MSN4p. 

These two Cys2His2 zinc finger proteins are known to take part in regulating the 

expression of many stress related genes [29].  

The first cluster associated with STRE (ST1) has high overlap with well known 

binding sites of MSN2p and MSN4p. The sequences composing the second cluster 

(ST2) show sequential similarity to the known binding sites of MSN2p and MSN4p 

though have not been identified as STRE in previous studies.  

The genes belonging to the promoters on which the two clusters are found are highly 

enriched with GO annotations such as response to stress, energy reserve metabolism, 

sporulation and more. This agrees with the fact that MSN2p and MSN4p regulate the 

expression of stress related genes.  

It appears (Figure 3.2) that while ST2 shows high incremental binding rates to 

MSN2p and to MSN4p, the well known STRE sequences of ST1 show lower binding 

rates to these TFs. Note, though, that the incremental binding rates of ST1 to all the 

other tested TFs are even lower.  

Furthermore, as can be seen in Figure 3.2, the incremental binding rate of ST1 to 

MSN4p is higher than its incremental binding rate to MSN2p, whereas in cluster ST2 

the opposite is the case. 

As expected, the EC pattern of ST1 is especially rich for stress related conditions 

(Figure 3.4). Although similar in tendency to ST1, the EC pattern of ST2 is not as 

strong as that of ST1. 
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Figure  0.4 Matrices of EC patterns for the two clusters ST1 and ST2. These clusters contain 

motifs that are identified as STRE, to which MSN2p and MSN4p bind, regulating the expression 

of stress related genes. 
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2.12 PAC clusters 

A third group of clusters contains P1 and P2. P1 has a large overlap with Polymerase 

A and C (PAC) motifs. The EC pattern of P1 (Figure 3.5) is extremely rich in 

significance for a vast majority of the experiments. This agrees with the fact that PAC 

regulates many ribosomal genes, thus affecting numerous cellular processes [12]. 

Regulation of ribosomal biogenesis is of major importance to the cell; e.g. more than 

50% of the growing cell’s total transcription is devoted to the biogenesis of the 

ribosome [30, 45]. 

The identity of cluster P1 was further validated through the GO annotations analysis 

of the relevant genes, pointing mainly to the biogenesis of the ribosome. The genes 

associated with P1 have not been found to be significantly bound by any of the 203 

transcription factors tested by Harbison et al (Figure 3.2). This is not surprising, 

however, since the transcription factor binding PAC motifs is unknown.  

The motifs of the second cluster, P2, show some similarity to known PAC motifs, 

though some of them have not been previously identified as such. Here as well, we 

find the relevant genes to be significantly enriched with GO annotations associated 

with the biosynthesis of the ribosome. Similarly to P1, no transcription factor was 

found to bind the motifs of P2, and many of the EC patterns are highly significant for 

many experiments, as in P1. Although the EC patterns of P1 and P2 are similar in 

their tendencies, they are different in potency (Figure 3.5). 
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Figure  0.5 Matrices of EC patterns for clusters P1 and P2. The upper cluster (P1) contains 

known PAC motifs, while most of the motifs of the lower cluster (P2) have not yet been described. 

The EC patterns of the two clusters are significantly rich. This agrees with the fact that PAC 

regulates many ribosomal genes, hence affect numerous cellular processes. 
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2.13 Other clusters 

Apart from the three groups of clusters discussed above, twelve more clusters of 

motifs have been found via our analysis. These clusters’ identities, EC patterns and 

other analyses are described in appendix B. Among these clusters, six have large 

sequential overlaps with well known TFBS. Some of the motifs composing cluster 

RR, for example, are known as RRPE (Ribosomal RNA processing elements), while 

the motifs of clusters R1, R2 and R3 show high sequential similarity to known RAP1 

(Repressor activator protein 1) binding sites, as well as to FHL1 known motifs (R1), 

to SFP1 motifs (R2) and to AFT1 (R3) [19, 35]. The EC patterns of clusters RR, R1 

and R2 are extremely rich in significant experiments and show resemblance to that of 

P1. This makes sense, given that PAC, RRPE, RAP1, SFP1 and FHL1 are known to 

be involved in the regulation of ribosomal genes, hence affect many biological 

processes [12, 21, 27, 28, 44, 17].  

The RR cluster shows significant GO enrichments at processes such as the biogenesis, 

assembly and maintenance of the ribosome, transport from the nucleus, tRNA 

metabolism, etc. The R1-R3 clusters are found to be enriched with GO processes such 

as ribosome biogenesis and assembly, chromosome organization and biogenesis, 

telomere organization and biogenesis, histone modification and others, in agreement 

to the sequential and EC information.  

The only significant binding rate of cluster RR is to ABF1, a chromatin reorganizer 

transcription factor. This is interesting as the TF that binds RRPE has not yet been 

described. Furthermore, the RRPE motifs are not included in the set of motifs 

published by Harbison. 

The binding rates of clusters R1-R3 are particularly high for RAP1 as well as for 

FHL1 and SFP1. In addition, the incremental binding rates of clusters R1 and R2 are 

high for GAT3 and YAP5, which are assumed to be involved in cell cycle progression 

and stress related regulation. This is not unexpected, as ribosome biogenesis is known 

to be tightly coupled to cell cycle progression as well as to environmental changes 

that affect growth rate [21].  

Interestingly, in the case of the ribosomal clusters, P1, P2, RR, R1, R2 and R3, about 

40% of the genes that contain RRPE on their promoters (RR) and 20% of the 

promoters containing RAP1\SFP1\FHL1 (R1-R3) also have PAC motifs (P1, P2). 

This implies that the regulation of ribosomal genes is complex and involves the 
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cooperation of several TFs. In fact, it has been recently shown in vivo that regulation 

by
 
RRPE might be SFP1 dependent [17]. It has been further suggested that PAC 

motifs serve
 
as a repressing element of ribosomal genes, while RRPE motifs activate

 

transcription of those genes in a SFP1 dependent manner. 

Although genes coding for ribosomal proteins represent only 2% of yeast genes, they 

contain about one third of all S. cerevisiae’s annotated introns [11, 25, 40]. In 

particular, a major class of intron containing genes is that encoding ribosomal 

proteins, tRNA, translation factors and factors involved in ribosome biogenesis. We 

have tested the enrichment of intron presence on genes on the promoter of which the 

clusters’ motifs are found, in comparison to a background random model (of random 

groups of motifs of the same sizes as those of the clusters in question). It appears that 

the three RAP1 clusters, R1-R3, are significantly enriched with genes that contain 

introns, with a p-value smaller than 0.001 in the case of R1 and R2, and with a p-

value smaller than 0.01 at cluster R3. In contrast, clusters P1, P2 and RR have not 

shown a significant over representation of intronic genes, nor have any of our other 

clusters. Moreover, clusters P1, P2, C16, C17 and C19 have shown a significant under 

representation of intronic genes. 

 

The motifs of two more clusters have been identified as known TFBS. Cluster A1’s 

motifs are similar to ADR1 and STRE motifs, while those of cluster RP have been 

identified as RPN4 motifs. Six other clusters, C15-C20, have not been identified as 

known clusters of motifs (Appendix B) [19, 35]. In the following analyses we will 

mainly discuss the first three groups of clusters introduced in the previous sections. 
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2.14 Mechanisms determining strength of regulation 

Genes that are regulated by the same transcription factor are often found to display 

various levels of expression. This is biologically motivated by the need to provide a 

wide range of behavior, allowing sub-groups of genes to be regulated in different 

manners. 

Variability of regulation may arise through four major causes: (1) specific TFBS 

binding mechanism, (2) different numbers of TFBS occurrences on the promoters, (3) 

specific localizations of the TFBS along the promoter [36] and (4) interactions 

between different transcription factors [42, 4]. A combination of these causes may 

control the high variability in gene expression as well as act as a fine tuner of gene 

regulation. 

We expect the last cause to be of secondary importance in our analysis of clusters, 

since there exist only small overlaps between genes that carry motifs of two different 

clusters (Appendix C), or between every cluster and each of our single motifs. 

Furthermore, as the EC analysis was conducted one motif at a time, we do not expect 

such effects to be visible through our EC results.  

We have further analyzed the first three possible causes for the clusters at hand, to 

decide which is relevant to the different regulation effects that we have seen in figures 

3.3, 3.4 and 3.5. 

For each motif within a cluster, we have tested the distribution of its appearances on 

the promoters. This was compared with the distribution of randomly sampled motifs. 

The random background model was based on all 694 motifs. It appears that the 

distributions of number of appearances of the clusters' motifs on the promoters have 

not been found significantly different from the background model for all clusters. 

Furthermore, no significant differences have been detected in the number of 

appearances on motifs between the different clusters. 

A second analysis tested the localization of motifs of each cluster along the 

promoters. In Figure 3.6 we provide histograms of motif distances from the 

translation start site. This was compared with the localizations of randomly sampled 

groups of motifs (of the same sizes as those of the clusters in question).  
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Figure  0.6 Localization of motifs on the promoters of several clusters. The black lines indicate, 

for each position upstream to the genes (up to -500bp), the percentage of promoters on which the 

cluster’s sequences have been found. This can be compared to the localization of randomly 

sampled groups of motifs (of the same sizes as those of the clusters in question). For each cluster, 

the dark gray line shows the mean motif occurrence per position over 1000 such randomly 

sampled groups, while the light gray area represents the samples’ standard deviation of 

occurrences per position. 
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The motifs of clusters MS1 and MS2, for example, have a similar number of 

appearances per promoter. Furthermore, the number of appearances of the motifs of 

these clusters on the promoters is distributed in a similar manner to that of a 

background model. In addition, the analysis of motifs' localization, described at 

Figure 3.6, does not provide any distinction between these two clusters. Hence, we 

infer that the difference in their functional behavior in some of the tested experiments 

(Figure 3.3) is caused by stronger binding mechanisms of the motifs in MS1.  

Changes in magnitude of the binding mechanism may result from a specific binding 

affinity of the TF to the TFBS, causing varying preferences of the TF to various TFBS 

or affecting possible competitions between more than one TF over similar TFBS. 

Alternatively, such effects can result from conformational changes of the TF while 

bound to a specific TFBS [24, 26]. Conformational changes may also affect the 

recruitment of cofactors, thus alter regulation.  

The same holds also for comparisons of MS1 with MS3 and MS4. In all these cases 

the changes in regulation strength seem to be caused by variations in the binding 

mechanisms of TFs to the relevant TFBS. Thus we conclude that in the case of these 

four clusters, changing a single nucleotide in a TFBS have a strong impact on the 

binding mechanism of the TF to the promoter. 

A similar trend is observed at the STRE clusters. Once again, their differences are 

caused neither due to different numbers of copies of motifs on promoters nor due to 

specific localizations along these promoters (Figure 3.6). Hence we conclude once 

again that the small changes in nucleotide compositions of the relevant motifs lead to 

differences in binding mechanisms of the TFBS. 

Clusters P1 and P2 tell a different story. As in the previous examples, the motifs of 

the two clusters appear with similar rates on the promoters. However, in the case of 

P1, motifs strongly tend to occupy the region between -60bp to -150bp upstream to 

the genes. This tendency is significantly different from the background model, with a 

p-value smaller than 0.001. Thus, at the PAC clusters the whereabouts of the motifs 

along the promoters have strong effects on regulation. 

An apparently similar phenomenon is observed at cluster RR, whose motifs show a 

significant tendency to occupy the region between -80bp and -190bp upstream to the 

genes (Figure 6.2). As in cluster P1, the EC pattern of RR is extremely rich with 

significant experiments. Cluster RR, however, is the only cluster whose motifs have 

been identified as RRPE. Hence, RR’s potency cannot be compared to other clusters, 

in terms of the mechanisms affecting the strength of its regulation. 
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3 DISCUSSION 

3.1 Motif clustering 

We have clustered motifs according to both their sequences and their regulatory 

semantics, as reflected in the motifs' EC patterns. Such grouping reveals biological 

insights that are easily missed by conservative clustering methods, which rely either 

on sequence or on numerical data alone.  

The resulting clusters of regulatory motifs and their relationships to known TFs have 

been analyzed in various manners. In several cases we have obtained few clusters of 

motifs that contain elements of several known TFBS groups. Examples are clusters  

MS1-MS4 that contain motifs traditionally labeled as MCB and SCB (bound by the 

protein complexes MBF and SBF correspondingly). Our clustering does not 

necessarily follow conventional labeling; e.g. all MCB motifs belong to one PSSM in 

Harbison et al [19], whereas they are scattered among all of our clusters MS1-MS4. 

3.2 Mechanisms determining strength of regulation 

Differences in EC patterns imply different regulation strengths associated with the 

relevant motifs in various sets of experiments. Regulation strength may depend on 

various mechanisms. We have looked at repetition rates and loci of motifs on 

promoters to decide whether any of them should carry the burden for higher or lower 

regulation strength, or whether it is the binding mechanism of the TF to the motif that 

does it. 

In both the MCB/SCB and STRE clusters we have concluded that the latter is the 

case. Different binding mechanisms may occur due to specific TF-TFBS binding 

affinity or conformational changes of the TF while bound to a specific TFBS, but may 

also come about because of the existence of different TFs competing for similar 

TFBS. Comparing Figure 3.2 to Figure 3.3 one can reach very interesting tentative 

conclusions: MS4 has very weak or no binding to SWI4, and this may be the reason 

why no effect is observed in all stress experiments. MS3 has weak binding to MBP1 

and this may be the reason for the absence of effects on four of the cell cycle 

experiments.  

In the case of our STRE clusters, their differences in regulation may result from the 

different tendencies of the clusters’ motifs to be bound by MSN2p and MSN4p. As 

can be seen in Figure 3.2, the preferred binding factor of ST1 is MSN4p, while in the 
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case of ST2 MSN2p binds the cluster’s motifs with a higher incremental binding rate 

than MSN4p.  

3.3 Variations in regulatory motifs lead to high magnitude effects on regulation 

Both the MCB/SCB and the STRE clusters demonstrate that small variations in the 

regulatory motifs lead to high magnitude effects on regulation. It has been shown that 

even a single nucleotide substitution at the motifs of those clusters is sufficient for 

such effects. This has been demonstrated between clusters, and can also be seen 

within clusters. At the latter case, variation of motifs may act as a fine tuner of 

regulation. 

Our PAC clusters P1 and P2 show a different behavior. P1 shows higher EC 

significance and also has an enhanced spatial distribution within a specific range 

along the promoters. The latter may perhaps be correlated with the loci of 

nucleosomes on the DNA, affecting the strength of the regulation [36]. We presume 

that in this case this is one of the reasons for the much higher regulation strength of 

P1 motifs. 

3.4 Motif representations 

The conventional representations of motifs by Position Specific Scoring Matrices 

(PSSM) or via consensus sequences encapsulate the sequential information of a group 

of aligned motifs. The simplicity of such representations involves the loss of 

information and leads to possibly wrong conclusions. Mononucleotide frequency 

weight matrices cannot depict accurately the binding site specificities of their 

included motifs [10]. Even though some positions show distinct preferences to certain 

nucleotides, such preferences may depend on the nucleotides occupying other 

positions. Inter-dependencies between positions within the binding sites may affect 

the binding of the TF to the DNA, hence the regulation.  

Consensus and PSSM representations are inherent in many motif extraction 

algorithms [23, 20, 9, 19, 43, 32]. Even though these methods seem to capture a large 

share of the transcription factor binding sites, the predictions of such methods depend 

on the way they represent motifs and inherit the assumptions and faults of those 

representations. 

Here we have started out with single motifs, as extracted by MEX from sequence 

data, and filtered by the EC analysis. MEX does not use motif representations such as 

PSSM or consensus sequences in its search for motifs. This allows us to analyze each 
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sequence independently, and only then generate clusters of motifs, gaining a better 

understanding of the regulation without reducing the sequence information. As a 

result, inter-dependencies within the sequences are not lost. Furthermore, we have left 

our clusters in the form of groups of motifs, rather than combining them into PSSM 

representations, as we have learned from our analysis that single changes of a 

nucleotide in a motif can go a long way in affecting the biological behavior.  

Another problem is that a PSSM is built using a finite set of known sequences, which 

may be incomplete and biased, hence resulting in biased predictions. For instance, 

most of the P2 motifs have not been mentioned in the literature, presumably because 

the effects of P1’s TFBS overshadow them. This demonstrates that one needs a 

discriminating analysis to distinguish the P2 motifs from their stronger P1 relatives. 

MEX tests the significance of each motif in an independent manner, and is not limited 

by statistical considerations such as over-expression or over-representation within a 

given class of genes or a given class of motifs. Hence MEX may uncover TFBS, such 

as those of P2 that have been overlooked by other methods. 
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4 APPENDIX A – EC EXPERIMENTS 

 

Experiment short name Experiment name
1 

Cell cycle (1) ExpressDB Cho - cell cycle 

Cell cycle (2) ExpressDB Spellman - cell-cycle alpha 

Cell cycle (3) ExpressDB Spellman - cell-cycle cdc15 

Cell cycle (4) ExpressDB Spellman - cell-cycle cdc28 

Cell cycle (5) ExpressDB Spellman - cell-cycle eluteration 

Sporulation ExpressDB Chu - sporulation 

MapK ExpressDB - MapK 

Diaux shift ExpressDB Gasch environmental response - diaux shift 

YPD (1) ExpressDB Gasch environmental response - YPD1 

YPD (2) ExpressDB Gasch environmental response - YPD2 

X media vs. car1 ExpressDB Gasch environmental response - x media vrs car1 

YPx media vs. car2 ExpressDB Gasch environmental response - YPx media vrs car2 

Nitrogen depletion ExpressDB Gasch environmental response - Nitrogen Deplation 

Amino acid starvation ExpressDB Gasch environmental response - Amino Acid starv 

Acid ExpressDB Environmental response - Acid 

Alkali ExpressDB Environmental response - Alkali 

Diamide ExpressDB Gasch environmental response - diamide 

Hydrogen Peroxide (H2O2) ExpressDB Environmental response - Peroxide 

Constant H2O2 ExpressDB Gasch environmental response - constatnt h2o2 

Menadione ExpressDB Gasch environmental response - Menadione 

NaCl ExpressDB Environmental response - NaCl 

Hypo-osmotic ExpressDB Gasch environmental response - Hypo-osmotic 

DTT (1) Eisen - dtt 

DTT (2) ExpressDB Gasch environmental response - DTT1 

DTT (3) ExpressDB Gasch environmental response - DTT2 

Sorbitol (1) ExpressDB Environmental response - Sorbitol 

Sorbitol (2) ExpressDB Gasch environmental response - sorbitol 

DNA damage Jelinsky - DNA Damage 

Cold Eisen - cold 

Heat shock (1) ExpressDB Environmental response - Heat 

Heat shock (2) Eisen - heat 

Heat shock (3) ExpressDB Gasch environmental response - 37-25 shock 

Heat shock (4) ExpressDB Gasch environmental response - Heat Shock 1 

Heat shock (5) & sorbitol ExpressDB Gasch environmental response - hs 29-33 1m sorbitol 

Heat shock (6) ExpressDB Gasch environmental response - hs 29-33 

Heat shock (7) ExpressDB Gasch environmental response - hs 29-33 No sorbitol 

Heat shock (8) ExpressDB Gasch environmental response - Heat Shock2 (3 time zero) 

Heat shock (9) ExpressDB Gasch environmental response - hs various temp to 37c 

Various temp growth ExpressDB Gasch environmental response - various temp growth 

Various temp steady state ExpressDB Gasch environmental response - var temp steady state 

Table  4.1 List of the 40 EC experiments 

 

_________________________ 

*
 Expression data was collected at: Pilpel et al. 2001, Sudarsanam et al. 2002 and Lapidot and Pilpel 

2003 [22, 33, 42] 

Data are located at:   http://arep.med.harvard.edu/ExpressDB/yeastindex.html  

http://www-genome.stanford.edu/yeast_stress/ 
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5 APPENDIX B – ALL CLUSTERS 

5.1 List of clusters 

Our algorithm finds 20 clusters, covering a total of 182 motifs. 14 of our clusters have 

large overlaps with known clusters: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cluster name Identified as 

MS1 MBF / SBF 

MS2 MBF / SBF 

MS3 MBF / SBF 

MS4 MBF / SBF 

ST1 STRE 

ST2 STRE 

P1 PAC 

P2 PAC 

RR RRPE 

R1 RAP1 

R2 RAP1 

R3 RAP1 

A1 ADR1 / STRE 

RP RPN4 

C15 Unknown 

C16 Unknown 

C17 Unknown 

C18 Unknown 

C19 Unknown 

C20 Unknown 

Table  5.1 List of clusters 
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5.2 Clusters’ EC patterns 

Within this dissertation we have put our focus on three groups of clusters: the four 

clusters that correspond to the MCB/SCB binding sites, those that match STRE and 

the two clusters that correspond to the PAC binding sites. In addition to the clusters 

that have been discussed previously, 12 more clusters of motifs have been found via 

our analysis. Following are the EC patterns of those 12 clusters: 

 

Figure  5.1 EC patterns of clusters RR, R1, R2, R3, A1, RP, C15, C16, C17, C18, C19 and C20 
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5.3  Localization of motifs on the promoters of clusters  

Following are localization analyses done for our 12 clusters that have not been 

previously shown within the body of this dissertation: 

Figure  5.2 Localization of motifs along the promoters: clusters RR, R1, R2, R3, A1, RP, C15, 

C16, C17, C18, C19, and C20 
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6 APPENDIX C – INTERSECTIONS BETWEEN CLUSTERS 

We have examined the number of genes that are shared by every couple of clusters: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  6.1 Gene intersections between clusters – absolute numbers. For i≠j, each value represents 

the number of genes that are shared by cluster i and cluster j. On the diagonal appear the 

numbers of genes on the promoter of which the clusters motifs are found. 
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Figure  6.2 Gene intersections between clusters – rates. The matrix above specifies the fractions of 

genes that are shared by every cluster i and cluster j, out of cluster i (i in rows, j in columns). In 

the cases of i=j, each value indicates the amount of genes on the promoter of which the clusters 

motifs are found (the color on the diagonal is set as 100%, in respect to the grayscale of the rest 

of the matrix). 

i 

j 
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7 LIST OF ABBREVIATIONS 

 

AP-1  Activator protein-1 

EC  Expression Coherence 

FDR  False discovery rate 

FHL1  Fork-head like 1 (transcription factor) 

GO  Gene Ontology 

MBF  MCB-binding factor (transcription factor) 

MCB  MluI cell cycle box (transcription factor binding site) 

MEX  Motif Extraction algorithm  

PAC  Polymerase A and C (transcription factor binding site) 

PSSM  Position specific scoring matrix 

RAP1  Repressor activator protein 1 (transcription factor) 

RRPE  Ribosomal RNA processing elements (transcription factor) 

SBF  SCB-binding factor (transcription factor) 

SCB  SWI4/6 dependent cell cycle box (transcription factor binding site) 

SFP1  Split finger protein (transcription factor) 

STRE  Stress response elements (transcription factor binding site) 

TF  Transcription factor 

TFBS  Transcription factor’s binding site 

YAP5  Yeast AP-1 (transcription factor) 
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 להימנע במטרה .צפישימוש במידע נוס) מלבד המידע הרתו' , לקבוצות המבוקרות באופ� דומה

 הלא מוכוו� את האלגורית�על רצפי הפרומוטרי�  הפעלנו ,מעיי� אלהמהטיות הנובעות מהנחות 

)unsupervised(מיצוי מוטיבי� מרצפי� ל , MEX) Motif Extraction( ,במקור,אשר יועד , 

,  העבודה המוצגת בחיבור זה מבוססת על מאמר.משפטי� בשפות טבעיותאוס) למציאת מילי� מ

  .שהוגש לאחרונה לפרסו�

  

  שיטות

על מנת לזהות מוטיבי� , S. cerevisiae רצפי הפרומוטרי� של השמר  עלMEXהפעלנו את 

 אינו מסתמ' על ביטוי יתר של המוטיבי� על פני הפרומוטרי� ואינו MEX. �אפשרייבקרתיי� 

  . לרבות קיבוצ� לקבוצות המבוקרות יחדיו, דורש עיבוד מקדי� של רצפי הפרומוטרי�

באמצעות ,  למשמעות הבקרתית שלה�תייחסהמ,  עברו סינו� נוס)MEXתוצרי האלגורית� 

ו מצוי אשר מוטיב כלשה, של הגני�) Expression Coherence, EC( הביטוי תאימותבדיקת 

 . של המוטיבי� התבצע על פני ארבעי� ניסיי� ביולוגי� שוני�EC ( ניתוח ה. בפרומוטרי� שלה�

 על סמ' הניסויי� ובו זמנית על פי הרצפי� שלה� )clustered (קיבצנוהבקרתיי� את המוטיבי� 

  חושפי�אלו שיטותמציאת המוטיבי� וקיבוצ� ב. בה� ה� הביאו לביטוי מתוא� של הגני�

  . להבחי� בה� באמצעות השיטות המקובלות היהקשה אשר , חדשותתובנות ביולוגיות

  

  תוצאות

את  נמצאה כמועילה מאד במציS. cerevisiae על רצפי הפרומוטרי� של השמר MEXהפעלת 

 בקיבו& המוטיבי� . ביולוגי� שוני�תבארבעי� ניסיונו, EC (� החעל סמ' מבבקרתיי� מוטיבי� 

אשר חלק� , )clusters(מתקבלי� עשרי� צבירי� ,  המשמעותיי�  ביותרEC (בעלי ציוני ה

 ,ת ייחודיוEC יש תבניות  שנמצאורי�ילצב.  של גורמי שעתוקמוכרי�קישור  מתאימי� לאתרי

במקרי� . ברצפ�ספציפיי�  להבדלי� ל במקבי, האופי הבקרתי של המוטיבי�המעידות על

 EC ( בתבנית השונות של חומצת בסיס יחידה על פני המוטיב מביאה להבדל מובהק , מסוימי�

 מדידת הקישור, כגו�, תוצאות אלה נבדקו ביחס למידע זמי� נוס). של המוטיבי� בקבוצה

. רי� השוני�ימי שעתוק אל הפרומוטרי� המשתייכי� לצב של גור)in vivo(באורגניזמי� חיי� 

. PAC ושל MCB/SCB ,STRE ניתוח מקי) של הצברי� המתאימי� לאתרי הקישור של ביצענו



 ב 

רי� השוני� יש אופני קישור שוני� בי� פקטור יבשני המקרי� הראשוני� אנו מראי� כי לצב

אשר ככל הנראה מוסכו עד , בי�ר חדש של מוטיי גילינו צבPACבמקרה של . DNA (השעתוק ל

  .PACר המוכר של יכה בשל האפקט החזק של המוטיבי� הכלולי� בצב

  

  מסקנות

, הוא נפו& ופשוט) PSSM(בעוד שייצוג מוטיבי� באמצעות קונצנזוס או מטריצת הסתברויות 

 אינו MEX (מכיוו� ש.  לטעויותלהביאשיטות ייצוג שכאלה מביאות לאיבוד מידע ועשויות 

ורק אז לקב& , מש בשיטות ייצוג של מוטיבי� אנו יכולי� לבחו� כל מוטיב באופ� בלתי תלוימשת

מבלי לאבד מידע או , לקבלת הבנה ביולוגית טובה יותר,  לצבירי�בקרתיי�את המוטיבי� ה

נית� לראות כי שינוי בחומצת בסיס יחידה ,  מתוצאות האנאליזה שביצענו.להטות את התוצאות

בוע ממספר נחוזק הבקרה עשוי ל. עשוי להשפיע באופ� דרמטי על בקרת הגני�, על פני המוטיב

טרי� ואת מיקומ� על פני הפרומוהבקרתיי� בחנו את שיעור החזרות של המוטיבי� . גורמי�

מנת לבדוק הא� ה� הגורמי� להבדל בחוזק הבקרה או שמא מדובר על , במעלה הפרומוטר

במקרי� של . DNAבשינוי באופי הקישור בי� גור� השעתוק לרצ) המוטיב המסוי� על פני 

 אלובמקרי� .  הסקנו כי האחרו� הוא המקרהSTRE ( וכMCB/SCB (הצבירי� אשר זוהו כ

  . ותיי� בבקרת הגני� הבדל יחיד ברצ) המוטיב מביא להבדלי� משמעהראנו כי
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