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ABSTRACT

Motivation

Current methodologies for selection of putative transcription factor binding sites
(TFBS) rely on various assumptions such as over-representation of motifs occurring
on gene promoters, and the use of motif descriptions such as consensus or PSSM. As
regulatory motifs are not necessarily over represented in the entire genome, the first
demand brings the need for pre-processing of the data and to initially group genes that
appear to be co-regulated, using additional data sources to the sequential ones. In
order to avoid bias introduced by such assumptions we apply an unsupervised motif
extraction (MEX) method, originally designed for extracting words from corpora of
natural languages, to sequences of promoters. This allows us to seek biological
insights that have previously been overlooked due to such assumptions. The work
presented in this dissertation is based on an article that has recently been submitted for

publishing.

Methods

We have applied MEX on the promoter regions of S. cerevisiae, aiming to identify
putative cis-regulatory motifs through a genome-wide analysis. MEX does not depend
on over-representation of the motifs in the genome, nor does it rely on clustering or
other pre-processing of its input. Instead it uncovers motifs that are significant within
the relatively local context of the promoters on which they occur.

The putative cis-regulatory motifs have been further screened, in terms of their
regulatory significance, via the expression coherence (EC) of their genes in 40
experiments.

We have then clustered the regulatory motifs based both on their DNA sequence and
on the biological conditions in which they govern coherent gene expression. Such
grouping reveals biological insights that are easily missed by conservative clustering

methods, which rely either on sequence or on numerical data alone.

Results
The MEX methodology is applied to all S. cerevisiae genes and is found to be very
successful when tested on results of 40 gene expression experiments, via the EC

analysis. Clustering regulatory motifs that have highly significant scores of EC, we
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describe 20 clusters, some of which regroup known TFBS. The clusters display
different EC profiles, correlated with typical changes in the nucleotide composition of
their relevant motifs. In several cases, a variation of a single nucleotide is shown to
lead to distinct differences in expression patterns. These results are confronted with
other available information, such as in-vivo binding of transcription factors to groups
of genes. Detailed analysis is presented for clusters related to MCB/SCB, STRE and
PAC. In the first two cases we provide evidence for different binding mechanisms of
different clusters of motifs. For PAC related motifs we uncover a new cluster that has

so far been overshadowed by the stronger effects of known PAC motifs.

Conclusions

While conventional representations of motifs by consensus or PSSM are common and
simple, such representations involve the loss of information and may lead to wrong
predictions. As MEX does not use such representations, we can analyze each motif
independently, and only then generate clusters of regulatory motifs, gaining a better
understanding of the regulation without reducing the sequence information or biasing
the results. We have learned from our analysis that single changes of a nucleotide
within a motif can go a long way in affecting the regulation of genes. The strength of
regulation may depend on various mechanisms. We have tested the repetition rates of
motifs on the promoters and the localization of motifs upstream to genes to decide
whether any of them should carry the burden for higher or lower regulation strength,
or whether it is the binding mechanism of the TF to specific motifs that does it. In
both the MCB/SCB and STRE clusters we have concluded that the latter is the case.
Both examples demonstrate that small variations in regulatory motifs lead to high
magnitude effects on regulation. Even a single nucleotide substitution at the motifs of

these clusters is sufficient for such effects, acting as a tuner of regulation.
Key words

Saccharomyces Cerevisiae, transcription factor, binding site, regulatory motif, gene

expression, clustering, motif extraction
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1 INTRODUCTION

1.1 Transcription factor binding sites

Regulation of gene expression is mainly mediated through specific interactions of
transcription factors (TF) with DNA promoter elements. The TF binding sites (TFBS)
are short (typically of length 6-20 bases) and comprise a minority of the nucleotides
within a promoter region. The binding sites are embedded within a sequence that is
assumed to be nonfunctional with respect to transcription. Furthermore, a single
transcription factor protein may interact with a variety of sequences. Identifying
genuine binding sites is a challenging task as the physical extent of a promoter is
rarely well defined, and within this ill-defined region we are seeking sparsely

distributed, short and imprecise sequence motifs.

1.2 Related work on motif extraction from promoter regions

Advances in genome research, including whole genome sequencing and mRNA
expression monitoring have allowed the development of computational methods for
binding site prediction. Among the most popular and powerful methods for ab initio
detection of regulatory motif is Gibbs-sampling [23, 20]. In this method motifs that
are over represented in the data may be found. However since regulatory motifs are
very short, while in contrast, the regulatory portion of the genome is very long (e.g.,
6,000,000 base-pairs in yeast, and much longer in mammals), and since the size of
gene regulatory networks is relatively small (typically tens of genes), most regulatory
motifs are not expected to be over-represented on a genome-wide scale. The task of
motif identification is thus often first tackled by grouping together relatively small
sets of genes (tens or hundreds) that are likely to be co-regulated, followed by motif
searching within such groups [9, 19, 43, 32].

Other methods employ phylogenetic footprinting for the task of motif finding. Such
methods compare upstream regions of orthologous genes from related species,
assuming that TFBS are relatively conserved. The choice of species is crucial for
obtaining reliable results; Comparing species with a short divergence time may yield
false positives, as conservation is likely to reflect evolutionary proximity rather than
functional constraints. A choice of too distant species will fail to recover species-
specific sites. For instance, about 40% of human functional TFBS are expected to be

non functional in rodents [13]. Furthermore, the alignment of orthologous intergenic



sequences is non-trivial. Well-conserved sequence blocks of different lengths are
interspersed with sequences that show little conservation. It is common practice to
restrict the binding site search to genomic regions that are relatively conserved among
all selected species. However, regulatory sites are not necessarily restricted to such
conserved genomic segments, as has been shown in yeast and flies [14, 16, 38].

For most TFs, there appears to be no unique sequence of bases that is shared by all
recognized binding sites. However there are typically clear biases in the distribution
of bases that occur at each binding site position. These biases are commonly
represented mathematically by position specific scoring matrices (PSSM), whose
components give the probabilities of finding each nucleotide at each binding site
position [7, 41].

Motif representations by PSSM, however, ignore dependencies between nucleotide
positions in regulatory motifs. Such dependencies are known to occur [6, 10].
Statistical models that account for such dependencies include hidden Markov models,
and Bayesian networks [15]. Yet, even sophisticated models of this kind have
relatively low values of sensitivity and specificity when required to represent the

known binding sites [3].
1.3 Motivation and outline

The work presented in this dissertation is based on an article that has recently been
submitted for publishing [37]. Here we employ a different approach that attempts to
avoid the limitations and inherent assumptions discussed above. We adapt a recently
published unsupervised algorithm [39], designed originally to extract patterns from
natural-language corpora. This motif extraction algorithm (MEX) is based on a
statistical model that identifies consecutive chains of interdependencies between
adjacent nucleotide positions. It can thus successfully identify motifs as statistically
significant on a genome-wide scale, even without significant over-representation. The
algorithm readily detects the motif boundary, as the position where the series of
highly probable transitions begins or terminates. MEX both overcomes the
requirement to pre-group potentially co-regulated genes, and captures
interdependencies between motif positions.

Applying MEX to genome-wide yeast regulatory sequences, we extract sequence
motifs. We then validate their biological significance using whole genome mRNA

expression data. We use the expression coherence (EC) score [22, 33] in order to



check which of the identified putative motifs exert significant effects on the
expression profiles of their down stream genes. The expression analysis shows an
enormous enrichment of highly-scoring motifs among MEX’s predictions, and it also
identifies potential biological conditions in which these motifs act. We further group
the high-scoring motifs into subsets based not only on their raw DNA sequence, but
also on the biological conditions in which they govern coherent expression. Such
grouping reveals biological insights that are easily missed by conservative clustering
methods, which rely either on sequence or on numerical data alone. For instance
partially overlapping binding sites that are bound by distinct TFs regulating different
biological conditions, are indistinguishable by sequence, yet may appear in separate
clusters using our method. Another biological phenomenon we can capture is slight
variations in binding site sequence which result in different expression outputs. Our
analysis shows that the commonly used PSSM description does not capture some very
important properties as there exist specific structural relations that correlate with high

EC values in particular biological conditions, i.e. they are of functional importance.



2 METHODS

2.1 Motif Extraction algorithm (MEX)

MEX is a motif extraction algorithm [39] that extracts statistically significant motifs
from sequential data. MEX is a data driven unsupervised algorithm, hence does not
need any preprocessing of the data or additional information apart from the data set
itself. Furthermore, MEX finds motifs that are not necessarily over-represented in the
data.

MEX was originally developed in a linguistic context, as a distillation tool for
extracting words from corpora of natural language. As more intuitive, let us first
describe the algorithm in its original context.

Consider a corpus of sentences, whose word delimiters have been removed (such as
spaces, capital letters, punctuations, etc.). The problem at hand is to uncover the
words that have originally constructed the sentences. MEX receives as an input such
corpus, consisting of many sequences of a given finite alphabet of size N (e.g. N=26
letters in the English alphabet, N=20 amino acids in proteins and N=4 nucleic acids in
the case of DNA). The algorithm uses a directed graph, whose vertices, V, are
composed of the letters of the given alphabet, in addition to a ‘begin’ and an ‘end’
vertices. A set of ordered pairs of vertices (directed edges) represent the order in
which the letters appear in the corpus. For example, the edge e(t,h), represents a
connection from the vertex ‘t’ to the vertex ‘h’, which means that the letter ‘h’
appears at some point along the corpus after the letter ‘t’. MEX loads the given corpus
onto a directed graph, one sentence after the other. The edges representing each
sentence are built, starting with the ‘begin’ vertex, followed by the letters composing
the sentence, one after the other, and ending with the ‘end’ vertex. This way, ordered
paths are created in the graph, such that each sentence is represented by a path. Each
path is saved by MEX and will be used as a search path for patterns. This procedure is

demonstrated in figure 2.1.



A)
®®® @@)

alice was

said alice to
alice in

O)
O)
©)
®

®

Figure 2.1 MEX loads the corpus onto a directed graph, one sentence after the other. The graph
is composed of vertices representing the letters of the given alphabet, in addition to two vertices
representing the beginnings and the endings of sentences (A). One sentence at a time, directed
edges are added to the graph, representing the order in which letters appear in each sentence (B-
D). The ordered edges composing a sentence are considered a path along the graph. In this
example, four paths are loaded onto the graph: ‘alicewas’ (blue path), ‘isalice’ (light green path),
‘saidalice’ (turquoise path) and ‘alicein’ (red path), one after the other.



Once the entire corpus has been represented as search paths on a directed graph, the
algorithm starts searching for statistically significant patterns. Intuitively, for each
search path MEX looks for sub-paths that may be considered as candidates for being
significant patterns. A sub-path that represents a significant pattern is expected to be
shared by other paths throughout the graph, such that these paths will converge into
the sub-path at its first vertex, form a bundle along the sub-path and scatter after the
sub-path’s last vertex. This follows the assumption that at different instances of a
given word throughout the corpus, after the word ends, it is likely to find many
different possible words following it. In such a case many paths will form a bundle
along the sub-path representing the word and scatter immediately after it ends. The
vertex after which such a divergence occurs may be considered as the last vertex of
the pattern. A similar notion underlies the way MEX searches the start points of
patterns, by looking for a divergence of a bundle while going leftwards through a
search path. Figure 2.2 demonstrates this idea. The four paths in figure 2.2 converge
and form a bundle along the sub-path ‘a—l—i—c—e’, after which they diverge.

This can be rephrased into a probabilistic language; for each search path (sentence)
that is to be explored for patterns, two probability functions are defined, based on
information inheres in the complete graph. The first one, Prign, 1s the right moving
ratio of the through-going flux of paths to the incoming flux of paths, which varies
along the search path. Starting at the vertex e; we define Prign; at 5 as:

PRl_ght (el ,€, ) = p(ez | e ) = total no. of paths passing frf)m e to e,
total no. of paths entering e;

At e3 Prigne becomes:

PRight (elae3 ) = p(e3 lee, ) =

total no. of paths passing from e; through e, to e;
total no. of paths passing from e; to e,

And generally:

total no. of paths passing from e; up to e;.; and continue to ¢;

P, (e, e.)z (e. ee. e ., e, ):
e \©1>€ )= P\ | €1€iCiuz € total no. of paths passing from e; up to e;

Similarly, a second function, Py, is defined as we proceed leftward from some
vertex e; down the search path towards the vertex e; and examine the left-going ratio

of the through-going flux of paths to the incoming flux of paths:

P,

_ _ total no. of paths passing from e; to e;
Left(ej’ei)_p(ei le, €., ej—le')_ paIS p £ —

! total no. of paths passing from e, to ¢;
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Figure 2.2 A partial view of the graph used by MEX. The search path no. 1, ‘alicewas’ (blue line),
shares the sub-path ‘a—l—i—c—e’ with three other paths: ‘isalice’ (2), ‘saidalice’ (3) and
‘alicein’ (4). The four paths form a bundle that may constitute a significant pattern. The
conditional probabilities Pgigne and Py, originating at the vertices ‘a’ and ‘e’, respectively, are
illustrated for the example shown here. A sharp drop in the right moving probability, Pgigs,
indicates that the paths constructing the bundle have scattered, thus may denote the end of the
pattern. Similarly, a sharp drop in P, may indicate the beginning of the pattern, hence reveal

the pattern ‘alice’.

Vertex

Conditional Probability Expression

Priaht

QO T WV O S OO — —Q

P(a) = 8770/ 109625

P(al|a) = 1046 /8770

P(ali | al ) =486/ 1046

P( alic | ali) =397/ 486

P( alice | alic ) = 397 / 397

P( alicew | alice ) = 48 / 397

P( alicewa | alicew ) = 21 / 48

P( alicewas | alicewa ) = 17/ 21
P( alicewasb | alicewas ) =2/ 17
P( alicewasbe | alicewasb ) = 2/ 2
P( alicewasbeg | alicewasbe ) =2/ 2

0.08
0.12
0.45
0.85

1
0.12
0.44
0.81
0.12

1

1

Table 2.1 Calculating

right-going conditional probebilities

for the search path

‘alicewasbegining...’. Probablities are calculated for a given serach path, based on information
inheres in the entire graph. The corpus used in this example was the sentences from Alice in
wonderland, by Lewis Carroll.




MEX calculates Pgigne from different starting points to each vertex down the search
path. Going rightwards through a sub-path that represents a significant pattern, it is
expected that Pgigne Will first increase since other paths join the search path to form a
coherent bundle, and then decrease as many paths leave the search path.

In order to demonstrate this, let us examine as a toy problem the corpus of Alice in
wonderland, by Lewis Carroll. MEX has received as an input the sentences within
Alice in wonderland, after all word delimiters have been removed. Going through the
first search path ‘alicewasbeginningtogetverytired...” MEX calculates the rightward-
going probabilities, Prign:, along the path, as demonstrated at table 2.1. MEX starts at
the first vertex ‘a’ and calculates the probability of its appearance in the corpus,
Prigni(a); as ‘a’ appears in 8770 cases out of the total of 109625 letters in the corpus,

Prigni(a)=1e0= =0.08. MEX continues to the next vertex ‘I’, calculating the probability

of its appearance after the previous vertex, i.e. Prigni(alla); in this case, ‘1’ appears 1046
— 1046 —

times after the 8770 instances of ‘a’, hence Prign(alla)=55=0.12. MEX continues

calculating the rightward-going probabilities Prig(alilal), Prigni(aliclali) and so on, up
to the end of the search path. As can be seen in table 2.1, the rightward-going
probabilities initially rise and then drop sharply. Such a dramatic drop may occur
owing to the sudden divergence of a coherent bundle, and will be considered as a
candidate for terminating a pattern.

We will define the end of a motif as the vertex after which a dramatic drop in the
right-moving probabilities is apparent (expressing the divergence of edges from that
vertex), and the beginning of a motif as a dramatic drop in the left moving
probabilities (expressing the convergence of edges to that vertex).

Formally, let us define a “decrease ratio”:
Prigi (ei,ej)
PRl.gh, €€,
Preg (ej,el.)

PLeft €€y

DRight (ei’ej):

DLeﬁ(ej,ei)z

We will declare e;.; as a candidate end point of the pattern if Dg;gnei,ej) 1s smaller
than a preset cutoff parameter n<1. Similarly, e;;; will be declared as candidate start
point of a pattern if Dy.s(ej,ei)<n.

The statistical significance of the decreases in Prigne and Ppeq must be evaluated. Prign

and Pr.q can be regarded as variable-order Markov probability functions. We can



define their significance in terms of a null hypothesis stating that Pgrign(eiej) >
NPrighi(€i,6i-1) and Prer(ej,ei) > MPrer(ej,ei+1), and require that the p-values of both
Drgigni(€i,ej)<n and Dy.q(ej,ei)<n be, on average smaller than a preset threshold
parameter a<l.

A bundle of coinciding paths whose end-points obey these significance conditions is
declared as a possibly significant pattern. Given a search path, we calculate both Pgigy
and Pr. from all of the possible starting points, traversing each path leftward and
rightward, correspondingly. This technique defines many search-sections, which may
be candidates for significant patterns. The most significant ones of these candidates

are returned as the outcome patterns for the search path in question.

2.2 Applying MEX on promoter regions of S. cerevisiae

Given a set of DNA sequences, such as the promoters of all genes in S. cerevisiae,
one may regard each promoter as a sentence with an alphabet of size four,
corresponding to the four nucleic acids composing the DNA. This corpus of promoter
regions in S. cerevisiae was given to MEX as an input, aiming to extract regulatory
motifs.

In the yeast problem we apply MEX to 4800 promoters of 6300 genes (some
promoters are shared by two genes because they fall within the intergenic region of
two genes that are located on opposite strands of the DNA chain). Each promoter
sequence, of length up to 1000bp, is considered as a path on the graph. After all
information is loaded onto the graph, we use all 4800 sequences as trial-paths in order
to extract motifs.

MEX selects motifs according to some edge criteria rather than over-representation in
the data set. Nonetheless it can pick up repetitive motifs, in particular those of very
high occurrence (in the thousands), that may be completely unrelated to regulatory
functions. Hence we limit ourselves to motifs whose occurrence rate is between 5 and

100 per promoter. We also require a lower limit of length 6 for the motifs.



2.3 Expression Coherence analysis

In order to check which of the motifs extracted by MEX are likely to function as
regulatory elements in yeast, we have used the expression coherence (EC) method
[22, 33, 42]. The EC score of a motif that appears in the promoters of N genes is
defined as the fraction of gene pairs (7,j) in the set S, such that the Euclidean distance
between their mean and variance normalized expression profiles, D(ij), falls below a
threshold, D, divided by the total number of gene pairs in the set, /2N(N-1). The value
D is set as a distance at which random gene pairs have a probability p of scoring
below. The EC score may range between 0 and 1 and is higher for sets of genes that
cluster in one or a few tight clusters.

A sampling-based means exists for the assessment of the statistical significance of EC
scores, in terms of p-value, given the gene set size N [22]. In order to account for the
testing of multiple hypotheses and to control the amount of false positives, the EC
analysis uses the false discovery rate (FDR) theorem [5]. The FDR criterion
determines the p-value cutoff below which motifs are guaranteed to be statistically
significant at a specified false discovery rate.

Expression analysis of genes that contain regulatory motifs in their promoters allows
not only to select potentially functional motifs, but also to decipher their semantics. A
comprehensive semantic characterization of a regulatory motif would amount to
describing the condition in which it acts, and its regulatory effects, e.g. increase in
expression along a particular stress, or peaking of expression profile during a
particular phase of the cell cycle. Figure 2.3 shows such semantic annotation of two
high scoring sequence-motifs generated by MEX. These motifs govern opposite

responses to hypo-osmotic pressure.
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Figure 2.3 A semantic characterization of two of the motifs extracted by MEX. MEX has
identified two motifs governing opposite responses to hypo-osmotic stress. As shown by the
graph, genes containing the motif CGATGAGCT (corresponding to the PAC motif) in their
promoters (black lines) behave similarly in response to hypo-osmotic stress (EC=0.12, p-value <
6*e-4), whereas genes containing the motif TAAGGGGA (corresponding to STRE) in their
promoters (green lines), behave similarly to each other (EC=0.38, p-value < 1*e-5), yet differently
from the first group of genes. This illustrates the strength of MEX in identifying sequence motifs
corresponding to known S. cerevisiae regulatory motifs based on promoter sequence alone. The
expression data for the analysis was taken from Gasch et al.[18].
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2.4 Finding functional clusters of motifs

We have formulated an iterative method for clustering motifs, according to their
sequences and EC scores information. We first initiate clusters by gathering motifs
that share some building blocks, or "seeds'. Then, a series of iterations improves the
clusters, using various procedures detailed below. The clusters refinement steps
include the addition and removal of motifs from existing clusters and splitting and
merging of clusters. We have quantified the quality of clusters using several criteria
associated with sequential patterns and EC score patterns of the motifs. The metrics as
well as the refinement steps are listed below.

The clustering algorithm may be used to cluster any type of sequential data that are
linked to numerical data. The input to the algorithm is a set of sequences of a given
alphabet (e.g. motifs) and a complementary set of vectors (e.g. EC vectors), holding
an additional information that needs to be taken into account in the clustering process.
Our clustering method may be considered ‘fuzzy’ in the sense that single motifs may
belong to several clusters. Additionally, not all motifs must be clustered and may be
left as singletons.

Initiating clusters by seeds

Our set of motifs was scanned to find short strings of nucleotides (of length 6) that
appear within at least three motifs, to be called ‘seeds'. Selecting all motifs that
contain a given seed defines a preliminary cluster.

Pruning clusters to increase EC tightness

For each motif one defines an EC vector of length 40 whose entries specify the p-
values of significantly successful EC experiments (that had passed the FDR criterion).
Such vectors comprise the matrices in figures 3.3 to 3.5. Let us define the space of all
these vectors as EC space and define an EC divergence measure for a cluster of motifs
as the average distance of all pairs of its EC vectors. In order to decide whether to
eliminate a motif from a given cluster, we ask whether its presence increases the
divergence of the cluster. To decide whether a motif m should be eliminated from a
cluster M., we compare the EC divergence of M. with the empirical distribution of
EC divergence scores resulting from replacing m with every one of the motifs that lie
outside the cluster M (that is, with a background sample Mj;). The motif will be
pruned from the cluster if it does not significantly reduce the cluster’s EC divergence,

in comparison to motifs from the random background. The deletion of motifs from a
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cluster occurs after all motifs have been tested, thus the order of tested motifs does not
affect their chances of remaining in the cluster. A pseudo code describing this

procedure is available in box 2.1. An example is shown in Figure 2.4.

AAACGCGAAAA

200 r 1

ABMAACGCGAA
AAACGCGA
AAACGCGAA
AAACGCGAAA
AACGCGA
AACGCGAA
AACGCGAAAA
ACGCGAA
ATCGCGAA

100 GACGCGA
GACGCGAA
GACGCGAAA
ACGCGAC
50 r TCGCGARA 1
CGCGAARA

150

0
0.1 0.12 0.14 0.16
EC divergence score

Figure 2.4 An example for testing the contribution of a specific motif to the cluster’s tightness.
The EC-divergence score of the cluster including the motif AAACGCGAAAA (black triangle) is
compared to the empirical distribution of EC-divergence of clusters, in which the motif in
question has been replaced with random motifs (histogram). Our null hypothesis claims that the
motif does not reduce EC-divergence of the group (which is equivalent to saying that the motif
harms the tightness of the cluster). In this example, however, the divergence-score of the cluster
with the motif included in it is very small. Hence, we can reject the null hypothesis with a
probability value of 0.001 and include the motif in the cluster.
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Expanding clusters

We search for new motifs to be added to the cluster without increasing its EC
divergence. To decide whether a motif m should be added to a cluster M we compare
the EC divergence resulting from its addition (M +m) with the empirical EC
divergence distribution resulting from additions of each of the motifs lying outside M¢
(that is, in a background sample Mj), one at a time.

At the same time we also require sequential similarity of the new motif to the ones
that belong to the cluster. The sequential distance between motifs is defined as the
edit distance of their best alignment, not allowing gaps. The sequential distance score,
D, is normalized between 0 and 1, such that D=0 if the short motif is fully contained
in the long one and D=1 if the motifs have no match at all.

A cluster will be expanded by motifs that keep its tightness, as well as being strongly
similar to the cluster by sequence. The addition of motifs to a cluster occurs after all
motifs in My have been tested, thus the order of tested motifs does not affect their

chances of being added to the cluster. A pseudo code is available in box 2.2.
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Box 2.1: Pruning clusters to increase EC tightness

Given a set M of motifs, their EC scores vectors, EC,_,, € R, and two disjoint subsets,
M .,M, c M (the cluster in question and a background subset of motifs, respectively), we wish to
eliminate from cluster M/ . motifs that increase its EC divergence. We will test the contribution of M . ’s

motifs to its EC divergence, by comparing them to A ,°s motifS contribution to M .’s EC divergence.

Pseudo code:
1. Calculate the EC distance between every pair of £C vectors in M . UM ,:

ECdist; = avg(| EC, - EC,|) ; i,jeM .UM,
Calculate M . °s divergence score: DivScore,, = avg(ECdist;) ;i<jeM..
Create a new subgroup M i by replacing the 7°th motif of A . with the j’th motif of A .

Calculate M/ j S divergence score.

@ & B

Repeat steps 3, 4 foralli e M., j € M, in order to examine the effect of each motifi on M . ’s

tightness.

6. For each motif; € M ., generate the empirical distribution of divergence scores, as found in the
replacement of motif i with every motif j € M ;.

7. For each motif; € M ., calculate the p-value of getting the divergence score of M . by chance.

8. Compare each p-value to a preset significance value ¢t .
9. Eliminate motifs that are not significantly reducing the divergence of the group in comparison to the
randomly sampled motifs.

Box 2.2: Expanding clusters

Given a set M of motifs, their EC scores vectors, EC,_,, € R* and two disjoint subsets, M ..M, c M ,
we wish to expand A . by similar motifs from a background set M, that do not increase its EC
divergence.

Pseudo code:
1. Find candidates motifs for addition, M , , < M, , that show strong similarity by sequence to at least

one motifin A ..
2. Calculate the EC distance between every pair of EC vectors in M. UM ,:
ECdist,; = avg(| EC, —EC,|) s i,jeM.UM,.

Create a new candidate subgroup M by adding M . a single motif from M/

C,cand cand *

Calculate M .., °s divergence score: DivScore,,  =avg(ECdist;) ;1< j€ M. o

Create a new test group M . ; by adding M . a single motif from M, = M

cand

Calculate M . ;s divergence score.

N e B o>

Repeat steps 5, 6 forall je M, = M
of the test groups.
Calculate the probability value for getting the divergence score of M

to generate the empirical distribution of divergence scores

cand

ge

Cm by chance.

9. Expand the group by the current motif candidate if it produces a significantly low divergence score
(lower than some preset significance value, & ).
10. Repeat steps 3-9 for every motif candidate in respect to the original cluster A/ ..
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Fusion of clusters
Clusters will be merged if they share a minimum percentage of motifs and are also
found to be similar in EC. EC distance between two clusters A and B is defined by a
Fisher criterion, as the distance between the centers of the clusters, divided by the
sum of their standard deviations:
F,- s = 11

o+l
14 and up are the mean EC vectors of the two EC matrices (the center of each cluster).
For each cluster we define ¢ as the vector of the 40 standard deviations corresponding
to the 40 EC experiments. Clusters will be merged if their Fisher distance, F, is

smaller than some threshold, as long as they also obey the sequential similarity

criterion.
P [[a-psl| _
[[oA ||
A
[[a-pus||
«—>
o o
[loall Il B“I
B

Figure 2.5 A demonstration of the Fisher criterion. The fisher distance for distant clusters
exceeds the value 1 (A). The smaller the fisher distance is, the more difficult it gets to distinguish
between the clusters (B, C).
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Splitting of clusters

Clusters will be split into K smaller clusters if they exceed a given size. Splitting is
done using the K-means algorithm on the EC space of the cluster. After applying this
indiscriminative step, however, a fusion step is applied, so that unnecessary splitting
will be reversed.

Fine refinement of clusters

The former procedures are applied iteratively in a preset order, to generate clusters
that are rather tight in EC and in sequence and differ from each other in sizes, EC
patterns and motif sequences. In a final pruning step finer parameters are used. Then
the improvement of each cluster is tested with respect to a cluster score, assessing the
quality of the cluster, and the pruning is accepted or rejected accordingly. The clusters
are given a cluster score, a heuristic function encapsulating the various measures used

in the analysis:

SeqDivScore,,,, DivScore,,,,
ClusterScore = SeqDivScore,,,,, DivScore,,,
(Mc-F 5
cluster ,others

SeqDivScore yser, DivScorens.r are the cluster’s sequential and EC divergence
scores, respectively (the former is defined similarly to the latter, as the average
sequential distance of all pairs of motifs within the cluster). SeqDivScoreymers,
DivScoreyers are the sequential and EC divergence scores of all the motifs outside the
cluster, respectively. Fojuser,omers 18 the EC fisher distance between the cluster and the
rest of the motifs, and MC is the number of motifs within the cluster. The smaller the
cluster score is, the better the quality of the cluster is considered.

The cluster score quantifies the quality of a cluster in terms of its internal tightness
relatively to the background. As affected by many different factors, the cluster score
is sensitive to noise. Hence it is only used at a late stage along the algorithm, when
clusters are already coherent to a great extent.

Flow of the algorithm

After initiation, cycles of the various iterations occur, gradually improving the
clusters with respect to their sequences and EC patterns. The algorithm stops when the
rate of change of the clusters falls below a certain cutoff (a stopping criterion) or if no
clusters are found. Clusters that are too small (below a preset threshold) are

disregarded.
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2.5 Finding GO annotations of clusters

Co-regulated genes might be involved in similar cellular processes and functions.
Information regarding the functional tendencies of the genes on the promoters of
which the cluster’s motifs are found may be helpful in getting a notion about the
identity of clusters. Hence, we have used GO TermFinder [8] in order to test the GO
enrichment [2] of the sets of genes that are relevant to the our clusters.

GO (gene ontology) is a project aimed to provide a common language for describing
aspects of a gene product’s biology. GO provides annotations for genes in three
categories: the molecular functions of the gene product (e.g. transporter activity,
kinase activity, transcription factor, etc.), the biological process as part of which the
gene product acts (e.g. mitosis or protein metabolism) and the cellular component in
which it acts (e.g. sub-cellular structures, locations, and macromolecular complexes).
GO TermFinder looks for significant enrichments of GO terms that are used to
describe a given set of genes. This tool gives an insight on what is common among
the genes within a set, in terms of GO annotations. GO TermFinder calculates p-
values, using a hyper-geometric distribution, as the probability of x or more out of n
genes having a given annotation, given that K of N have that annotation in the
genome in general. A corrected p-value cutoff is calculated to account for multiple

hypotheses.

2.6 TF binding rates

In order to further validate the identity of clusters with respect to known TFs, we have
performed a comprehensive estimation of the binding of various S. cerevisiae TFs to
the promoters on which our motifs are found. For that purpose we have employed
yeast genome-wide location analysis data [19], in which the genomic occupancy of
203 DNA-binding transcriptional regulators had been measured in vivo via ChIP-on-
chip experiments at various environmental conditions. We have calculated the binding
rates, i.e. the percentage of promoters within each cluster that are bound by each
transcription factor. Since some transcription factors are less specific, and typically
bind more genes than other factors, we define incremental binding rates by
subtracting the mean binding rate of each TF from the binding rates of each TF to
every cluster. For this analysis we have used a p-value cutoff smaller or equal to

0.005 at the original TF binding data, to decide whether a TF binds a given promoter.
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The significance of the observed binding rates was tested using a hyper-geometric
distribution and probability of getting at least the observed number of bound
promoters (for each cluster and a given TF) by chance was estimated. P-values were
calculated as the probability that x or more, out of n promoters, are observed to be
bound by a particular TF, given that K of N promoters are bound by that TF in
general.

Figure 3.2 displays the incremental binding rates of each of the 203 tested TFs to our

clusters of motifs and the results of the hyper-geometric tests.
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RESULTS

2.7 Extraction of motifs from promoters of S. cerevisiae

We have applied MEX to 4800 promoters of 6300 genes (as some promoters fall
within the intergenic regions of couples of genes). We have chosen rather permissive
parameters for MEX in order to attain many putative motifs that will be further
screened based on their regulatory activities. Using the parameters 0=0.1 and n=0.99
MEX has extracted 9370 motifs. Considering the occurrences of motifs on both
strands of the DNA as identical objects, we identify motifs with their reverse

complements. Hence, the set has been reduced to 8498 unique putative motifs.

2.8 Testing Expression Coherence

We have calculated EC scores and their p-values for each of our 8498 putative motifs
in 40 experiments where whole-genome mRNA expression of S. cerevisiae had been
monitored using DNA chips*. Setting the false discovery rate to 0.1, we have
discovered that 25% of the sequence motifs have a significant EC score in at least one
of the experiments. This should be contrasted with a 0.6% success rate, under the
same FDR condition, for random sequences of lengths between 7 and 11 nucleotides.
In other words, MEX does a good job of selecting motifs that are relevant to the
problem at hand.

In order to lower the chances for false positives, we have applied further screening to
our motifs, requiring each one to exhibit at least one EC success with a p-value of
0.001 or lower. This distilled set contains 694 significant regulatory motifs. Almost
half of these motifs match perfectly (or are included in) known binding sites of 85

transcription factors (motifs published by Harbison et al. and Pritsker et al. [19, 35]).

2.9 Clustering motifs

Our algorithm finds 20 clusters, covering a total of 182 motifs. 14 of our clusters have
large overlaps with known motifs. Figure 3.1 displays the Fisher distance matrix of
these 14 clusters. On the diagonal (where F=0) we have added F-values that are
obtained by randomly dividing each of the given clusters into two arbitrary ones, in
order to provide some examples when F values are too low to serve as a criterion for
separation among clusters. We clearly obtain groups of related clusters, and we will
study and name them accordingly. In the following we will discuss in detail 8 of our

clusters.

" EC analysis has been performed by Prof. Yitzchak Pilpel and his student Michal Lapidot.

20



MS1
MSs2
MS3
MS4
ST1
ST2
P1
P2
RR
R1
R2
R3
A1
RP
C15
c16
c17
c18
Cc19
Cc20

0.25 0.I48 0.69 0.|87 0.84 1(1 1.6 0!9 1.3 1f2 11 1 085 '; 1.3 0.[88 07 1!2 15 0.I55
0.480.270.780.550.73 09 16 097 1.3 1.2 1.1 0.86 0.850.890.96 0.850.750.97 1.1 0.55
069078051 1 05509 13 058098 1.1 0.940.820680.83 1.2 062047 09 1.2 0.31
0.87055 1 026094091 22 13 1.7 16 14 0.740.980920.880.950.93 1.1 1.2 0.67
0.840.73055094024 06 14 069 1 1.1 0910.710540.73 1.1 0.76 0.520.52 1.1 0.39
1.1 09 09091 06 035 2 11 15 14 1.2 065075068 1 085067042 1 0.58
1.6 7160 1.3 BN 14 B2W0.210.830.37 0.9 1 BEW 1.2 §58 - e 1.3 |8 . 12
0.9 0.97 0.58 1.3 069 1.1 0.830.250.540.880.81 1.1 0.7 11 16 1.1 057 1.1 1.6 0.57
13 1309 1.7 1 15 0370540.380.760.79 15 08914 2 15086 15 2 0893
r12 12 11 16 11 14 09 0880.76028036 14 09 13 18 14 1 15 18 097
11 11094 14 091 12 1 081079036034 12 078 1.2 16 1.1 095 1.3 16 0.84
-1 086082074071065 2 11 15 14 1.2 0410.780.560.820.64 0.730.62 0.83 0.5
0.850.850680.980.540.75 1.2 0.7 0.89 0.9 0.780.78 0.530.84 1.2 0.84 0.630.76 1.2 0.54
-1 0890830920.73068 18 11 14 13 1.2 056084053 1 0.79064066 1 0.54
1.3 0.96 1.2 0.88 1.1 1 .1.6 s 0.82 12 1 071 1.1 1.1 1.2 1.3 0.81
.88 0.850.690.950.76 0.85 19 11 15 14 1.1 064084079 1.1 04 0.640.88 1.1 0.45
0.7 0.750.470.93 0.52 067 1.3 057096 1 0.950.730.630.64 1.1 0.64 0.350.62 1.1 0.31
1.2 097 09 1.1 052042 2 11 15 15 1.3 0620.76066 1.2 0.880.620.58 1.2 0.54

el 1.1 B9800 1 .1.6 BTSN 16083 1.2 1 13 11 1.1 1.2 046 0.82

0.550.5650.310.67 0.390.58 1.2 0.57 0.93 O.IQT 0.84 0.5 0.540.54 0.81 0.450.310.540.82 0.3H
1 1 I 1 1 1 1 1 1

%, @‘5‘9 T, T e BN N T %% %% %

Figure 0.1 Fisher distances between our final clusters. On the diagonal (where F=0) we have
added the mean F-values obtained by randomly dividing each of the clusters into two arbitrary
ones (mean over 1000 random divisions for each cluster). The values along the diagonal are anti-
correlated to the sizes of the clusters (with correlation coefficient of -0.85). These values give a
notion for cases when the F-values are too small to serve as a criterion for separation between
clusters. It appears that most clusters’ EC patterns are rather distant from each other (F~1). Yet,
we clearly obtain groups of related clusters (e.g MS1-MS4).
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Figure 0.2 Binding of transcription factors to promoters that carry our clusters’ motifs.
A. Incremental binding rates for each of the 203 transcription factors (columns) to every cluster
(rows). Hot colors (dark red) represent high Incremental binding rates. B. The results of hyper-
geometric tests, calculating the probability of getting at least the observed number of bound
promoters (for each cluster and every given TF) by chance, with respect to a given TF. Black
indicates that the test’s p-value equals 0.001 at most.

The first four clusters (MS1-MS4) have large overlaps with well-known TFBS, such as those
bound by MCB (Mlul cell cycle box) and SCB (SWI4-SWI6 cell cycle box). The first is a well
known complex, formed by the proteins MBP1 and SWI6, while the latter consists of SWI4 and
SWI6. This reassures the identity of clusters MS1-MS4, as the highest incremental binding rates
attained for these clusters are of MBP1, SWI4 and SWI6. A similar validation arises for other
clusters as well. Note that the TFs which bind the sites known as PAC have not yet been
discovered, as is also reflected by the lack of signal for the clusters P1 and P2.
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2.10 MCB/SCB clusters

The first four clusters shown in Figure 3.2 have large sequential overlaps with well
known TFBS, such as the MCB (Mlul cell cycle box) and SCB (SWI4-SWI6 cell
cycle box) clusters. MBF (Mlul cell cycle box binding factor) and SBF (SWI4-SWI6
cell cycle box binding factor) are two related protein complexes involved in
transcriptional regulation of the transition from the G1 to S phase of the cell cycle.
The two DNA binding complexes are heterodimeric and contain the regulatory
protein SWI6 as a subcomponent. MBF contains the DNA binding protein MBP1, to
which SWI6 is bound, while the DNA binding subunit in SBF is SWI4. MBF and
SBF play important roles in the regulation of many processes, such as DNA synthesis,
DNA repair and budding [1, 31, 34].

We have found four clusters associated with MCB and SCB known motifs. These
clusters and their EC patterns are provided in Figure 3.3. The identity of our four
clusters was further validated in two manners. First, we have tested the GO
enrichment of the set of genes on the promoters of which the cluster’s motifs are
found. Indeed, the four clusters are found to be significantly enriched with GO terms
such as DNA metabolism, DNA repair and response to various types of stress. This
analysis provides some information regarding the functional tendencies of the four
clusters. It does not, however, provide a high enough resolution for discriminating
between them, in terms of specific cellular processes and functions of the genes
associated with those clusters.

A second analysis has estimated the incremental rate of binding of transcription
factors to the set of promoters of each cluster (See Methods and figure 3.2). With
agreement to the results of the previous analysis, it appears that the four clusters at
hand show a significantly high incremental binding rate to MBP1, SWI4 and SWIe6.
Combining the information of known motifs, GO annotation enrichment and the
binding of transcription factors to the genome, we have concluded the following: The
first cluster, MS1, contains “classic” MCB and SCB elements bound by MBP1, SWI4
and SWI6. The cluster is very significant in experiments testing the cell cycle and
various environmental stresses. The motifs of cluster MS2 are identified as MCB
elements, while those of MS3 are identified as SCB motifs. It appears that MS2 is
particularly important in cell cycle experiments, whereas MS3 is significant in stress

related experiments and not as much in cell cycle ones. Cluster MS4, whose motifs
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are functional at cell cycle experiments, is identified mostly as MCB, though some of
its motifs fit SCB as well.

The EC patterns of the four clusters show clear differences (Figure 3.3). The latter can
be correlated with the detailed nucleic acid decomposition of their motifs. Motifs of
MS1 and MS2 have different common cores, ACGCGA and ACGCGT respectively.
Hence, the single adenine to thymine substitution in the core of these motifs may be
responsible for the relevance of MSI to a particular heat shock experiment (Figure
3.3) and for leading MS2 in its effect on the menadione and hydrogen peroxide
experiments.

The MS3 cluster displays a core of TCGCGA, differing from MS1 at another position
within the motif cores. Here again it appears that the particular sequence to which a
transcription factor is bound plays an important role in the regulation of gene
expression. In particular, note the absence of significance of the MS3’s motifs in most
cell cycle experiments and their relative importance in the heat-shock ones.

MS4 displays a complementary behavior to MS3, relevant only to cell cycle
experiments. Most of its motifs have a core of ACGCCA. Thus we show that the
avidity of clusters, and the TFBS that they contain, is strongly dependent on particular

details of their motifs.
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AAACGCGTAR
AAACGCGTCA
AAACGCGTT
ARACGCGTTAG
ARCGCGT
ARCGCGTCA
ARCGCGTT
ARCGCGTTA
ACGCGTA
ACGCGTCA
AGACGCG
TAACGCG
TAACGCGT

ATCGCGA

ATCGCGAA
CATCGCG
CATCGCGA

ARACGCATT
AMACGCCAA
AAACGCCAARA
AMACGCGTG
AACGCCAA
AACGCCAARA
ACGCCARA
ACGCCAAR
ACGCCAARAA
ACGCGTCAA
GACGCGTC
GCGACGC
TGACGCG

Figure 0.3 Four of our clusters contain motifs that are known MCB and SCB elements (Top to
bottom: MS1, MS2, MS3 and MS4). Each matrix represents the EC patterns of the motifs within
one cluster. The EC pattern of a motif is a vector of 40 p-values of EC tests for 40 environmental
experiments (low p-values are represented by dark colors, with a grayscale proportional to -
log(p-values), white implies FDR>0.1). The bars indicate the percentage of motifs that had
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2.11 STRE clusters

Another demonstration of the importance of specific sequences of TFBS can be seen
in two clusters that have been identified as STRE (Stress Response Elements). STRE
are known to be bound by two related transcription factors, MSN2p and MSN4p.
These two Cys2His2 zinc finger proteins are known to take part in regulating the
expression of many stress related genes [29].

The first cluster associated with STRE (ST1) has high overlap with well known
binding sites of MSN2p and MSN4p. The sequences composing the second cluster
(ST2) show sequential similarity to the known binding sites of MSN2p and MSN4p
though have not been identified as STRE in previous studies.

The genes belonging to the promoters on which the two clusters are found are highly
enriched with GO annotations such as response to stress, energy reserve metabolism,
sporulation and more. This agrees with the fact that MSN2p and MSN4p regulate the
expression of stress related genes.

It appears (Figure 3.2) that while ST2 shows high incremental binding rates to
MSN2p and to MSN4p, the well known STRE sequences of ST1 show lower binding
rates to these TFs. Note, though, that the incremental binding rates of ST1 to all the
other tested TFs are even lower.

Furthermore, as can be seen in Figure 3.2, the incremental binding rate of ST1 to
MSN4p is higher than its incremental binding rate to MSN2p, whereas in cluster ST2
the opposite is the case.

As expected, the EC pattern of ST1 is especially rich for stress related conditions
(Figure 3.4). Although similar in tendency to ST1, the EC pattern of ST2 is not as
strong as that of ST1.
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Figure 0.4 Matrices of EC patterns for the two clusters ST1 and ST2. These clusters contain
motifs that are identified as STRE, to which MSN2p and MSN4p bind, regulating the expression
of stress related genes.
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2.12 PAC clusters

A third group of clusters contains P1 and P2. P1 has a large overlap with Polymerase
A and C (PAC) motifs. The EC pattern of Pl (Figure 3.5) is extremely rich in
significance for a vast majority of the experiments. This agrees with the fact that PAC
regulates many ribosomal genes, thus affecting numerous cellular processes [12].
Regulation of ribosomal biogenesis is of major importance to the cell; e.g. more than
50% of the growing cell’s total transcription is devoted to the biogenesis of the
ribosome [30, 45].

The identity of cluster P1 was further validated through the GO annotations analysis
of the relevant genes, pointing mainly to the biogenesis of the ribosome. The genes
associated with P1 have not been found to be significantly bound by any of the 203
transcription factors tested by Harbison et al (Figure 3.2). This is not surprising,
however, since the transcription factor binding PAC motifs is unknown.

The motifs of the second cluster, P2, show some similarity to known PAC motifs,
though some of them have not been previously identified as such. Here as well, we
find the relevant genes to be significantly enriched with GO annotations associated
with the biosynthesis of the ribosome. Similarly to P1, no transcription factor was
found to bind the motifs of P2, and many of the EC patterns are highly significant for
many experiments, as in P1. Although the EC patterns of P1 and P2 are similar in

their tendencies, they are different in potency (Figure 3.5).
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Figure 0.5 Matrices of EC patterns for clusters P1 and P2. The upper cluster (P1) contains
known PAC motifs, while most of the motifs of the lower cluster (P2) have not yet been described.
The EC patterns of the two clusters are significantly rich. This agrees with the fact that PAC
regulates many ribosomal genes, hence affect numerous cellular processes.
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2.13 Other clusters

Apart from the three groups of clusters discussed above, twelve more clusters of
motifs have been found via our analysis. These clusters’ identities, EC patterns and
other analyses are described in appendix B. Among these clusters, six have large
sequential overlaps with well known TFBS. Some of the motifs composing cluster
RR, for example, are known as RRPE (Ribosomal RNA processing elements), while
the motifs of clusters R1, R2 and R3 show high sequential similarity to known RAP1
(Repressor activator protein 1) binding sites, as well as to FHL1 known motifs (R1),
to SFP1 motifs (R2) and to AFT1 (R3) [19, 35]. The EC patterns of clusters RR, R1
and R2 are extremely rich in significant experiments and show resemblance to that of
P1. This makes sense, given that PAC, RRPE, RAP1, SFP1 and FHL1 are known to
be involved in the regulation of ribosomal genes, hence affect many biological
processes [12, 21, 27, 28, 44, 17].

The RR cluster shows significant GO enrichments at processes such as the biogenesis,
assembly and maintenance of the ribosome, transport from the nucleus, tRNA
metabolism, etc. The R1-R3 clusters are found to be enriched with GO processes such
as ribosome biogenesis and assembly, chromosome organization and biogenesis,
telomere organization and biogenesis, histone modification and others, in agreement
to the sequential and EC information.

The only significant binding rate of cluster RR is to ABF1, a chromatin reorganizer
transcription factor. This is interesting as the TF that binds RRPE has not yet been
described. Furthermore, the RRPE motifs are not included in the set of motifs
published by Harbison.

The binding rates of clusters R1-R3 are particularly high for RAP1 as well as for
FHLI1 and SFPI. In addition, the incremental binding rates of clusters R1 and R2 are
high for GAT3 and YAPS, which are assumed to be involved in cell cycle progression
and stress related regulation. This is not unexpected, as ribosome biogenesis is known
to be tightly coupled to cell cycle progression as well as to environmental changes
that affect growth rate [21].

Interestingly, in the case of the ribosomal clusters, P1, P2, RR, R1, R2 and R3, about
40% of the genes that contain RRPE on their promoters (RR) and 20% of the
promoters containing RAPI\SFPI\FHL1 (R1-R3) also have PAC motifs (P1, P2).

This implies that the regulation of ribosomal genes is complex and involves the
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cooperation of several TFs. In fact, it has been recently shown in vivo that regulation
by RRPE might be SFP1 dependent [17]. It has been further suggested that PAC
motifs serve as a repressing element of ribosomal genes, while RRPE motifs activate
transcription of those genes in a SFP1 dependent manner.

Although genes coding for ribosomal proteins represent only 2% of yeast genes, they
contain about one third of all S. cerevisiae’s annotated introns [11, 25, 40]. In
particular, a major class of intron containing genes is that encoding ribosomal
proteins, tRNA, translation factors and factors involved in ribosome biogenesis. We
have tested the enrichment of intron presence on genes on the promoter of which the
clusters’ motifs are found, in comparison to a background random model (of random
groups of motifs of the same sizes as those of the clusters in question). It appears that
the three RAP1 clusters, R1-R3, are significantly enriched with genes that contain
introns, with a p-value smaller than 0.001 in the case of R1 and R2, and with a p-
value smaller than 0.01 at cluster R3. In contrast, clusters P1, P2 and RR have not
shown a significant over representation of intronic genes, nor have any of our other
clusters. Moreover, clusters P1, P2, C16, C17 and C19 have shown a significant under

representation of intronic genes.

The motifs of two more clusters have been identified as known TFBS. Cluster Al’s
motifs are similar to ADR1 and STRE motifs, while those of cluster RP have been
identified as RPN4 motifs. Six other clusters, C15-C20, have not been identified as
known clusters of motifs (Appendix B) [19, 35]. In the following analyses we will

mainly discuss the first three groups of clusters introduced in the previous sections.
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2.14 Mechanisms determining strength of regulation

Genes that are regulated by the same transcription factor are often found to display
various levels of expression. This is biologically motivated by the need to provide a
wide range of behavior, allowing sub-groups of genes to be regulated in different
manners.

Variability of regulation may arise through four major causes: (1) specific TFBS
binding mechanism, (2) different numbers of TFBS occurrences on the promoters, (3)
specific localizations of the TFBS along the promoter [36] and (4) interactions
between different transcription factors [42, 4]. A combination of these causes may
control the high variability in gene expression as well as act as a fine tuner of gene
regulation.

We expect the last cause to be of secondary importance in our analysis of clusters,
since there exist only small overlaps between genes that carry motifs of two different
clusters (Appendix C), or between every cluster and each of our single motifs.
Furthermore, as the EC analysis was conducted one motif at a time, we do not expect
such effects to be visible through our EC results.

We have further analyzed the first three possible causes for the clusters at hand, to
decide which is relevant to the different regulation effects that we have seen in figures
3.3,3.4and 3.5.

For each motif within a cluster, we have tested the distribution of its appearances on
the promoters. This was compared with the distribution of randomly sampled motifs.
The random background model was based on all 694 motifs. It appears that the
distributions of number of appearances of the clusters' motifs on the promoters have
not been found significantly different from the background model for all clusters.
Furthermore, no significant differences have been detected in the number of
appearances on motifs between the different clusters.

A second analysis tested the localization of motifs of each cluster along the
promoters. In Figure 3.6 we provide histograms of motif distances from the
translation start site. This was compared with the localizations of randomly sampled

groups of motifs (of the same sizes as those of the clusters in question).
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Figure 0.6 Localization of motifs on the promoters of several clusters. The black lines indicate,
for each position upstream to the genes (up to -500bp), the percentage of promoters on which the
cluster’s sequences have been found. This can be compared to the localization of randomly
sampled groups of motifs (of the same sizes as those of the clusters in question). For each cluster,
the dark gray line shows the mean motif occurrence per position over 1000 such randomly
sampled groups, while the light gray area represents the samples’ standard deviation of
occurrences per position.
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The motifs of clusters MS1 and MS2, for example, have a similar number of
appearances per promoter. Furthermore, the number of appearances of the motifs of
these clusters on the promoters is distributed in a similar manner to that of a
background model. In addition, the analysis of motifs' localization, described at
Figure 3.6, does not provide any distinction between these two clusters. Hence, we
infer that the difference in their functional behavior in some of the tested experiments
(Figure 3.3) is caused by stronger binding mechanisms of the motifs in MS1.

Changes in magnitude of the binding mechanism may result from a specific binding
affinity of the TF to the TFBS, causing varying preferences of the TF to various TFBS
or affecting possible competitions between more than one TF over similar TFBS.
Alternatively, such effects can result from conformational changes of the TF while
bound to a specific TFBS [24, 26]. Conformational changes may also affect the
recruitment of cofactors, thus alter regulation.

The same holds also for comparisons of MS1 with MS3 and MS4. In all these cases
the changes in regulation strength seem to be caused by variations in the binding
mechanisms of TFs to the relevant TFBS. Thus we conclude that in the case of these
four clusters, changing a single nucleotide in a TFBS have a strong impact on the
binding mechanism of the TF to the promoter.

A similar trend is observed at the STRE clusters. Once again, their differences are
caused neither due to different numbers of copies of motifs on promoters nor due to
specific localizations along these promoters (Figure 3.6). Hence we conclude once
again that the small changes in nucleotide compositions of the relevant motifs lead to
differences in binding mechanisms of the TFBS.

Clusters P1 and P2 tell a different story. As in the previous examples, the motifs of
the two clusters appear with similar rates on the promoters. However, in the case of
P1, motifs strongly tend to occupy the region between -60bp to -150bp upstream to
the genes. This tendency is significantly different from the background model, with a
p-value smaller than 0.001. Thus, at the PAC clusters the whereabouts of the motifs
along the promoters have strong effects on regulation.

An apparently similar phenomenon is observed at cluster RR, whose motifs show a
significant tendency to occupy the region between -80bp and -190bp upstream to the
genes (Figure 6.2). As in cluster P1, the EC pattern of RR is extremely rich with
significant experiments. Cluster RR, however, is the only cluster whose motifs have
been identified as RRPE. Hence, RR’s potency cannot be compared to other clusters,

in terms of the mechanisms affecting the strength of its regulation.
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3 DISCUSSION

3.1 Motif clustering

We have clustered motifs according to both their sequences and their regulatory
semantics, as reflected in the motifs' EC patterns. Such grouping reveals biological
insights that are easily missed by conservative clustering methods, which rely either
on sequence or on numerical data alone.

The resulting clusters of regulatory motifs and their relationships to known TFs have
been analyzed in various manners. In several cases we have obtained few clusters of
motifs that contain elements of several known TFBS groups. Examples are clusters
MS1-MS4 that contain motifs traditionally labeled as MCB and SCB (bound by the
protein complexes MBF and SBF correspondingly). Our clustering does not
necessarily follow conventional labeling; e.g. all MCB motifs belong to one PSSM in

Harbison et al [19], whereas they are scattered among all of our clusters MS1-MS4.

3.2 Mechanisms determining strength of regulation

Differences in EC patterns imply different regulation strengths associated with the
relevant motifs in various sets of experiments. Regulation strength may depend on
various mechanisms. We have looked at repetition rates and loci of motifs on
promoters to decide whether any of them should carry the burden for higher or lower
regulation strength, or whether it is the binding mechanism of the TF to the motif that
does it.

In both the MCB/SCB and STRE clusters we have concluded that the latter is the
case. Different binding mechanisms may occur due to specific TF-TFBS binding
affinity or conformational changes of the TF while bound to a specific TFBS, but may
also come about because of the existence of different TFs competing for similar
TFBS. Comparing Figure 3.2 to Figure 3.3 one can reach very interesting tentative
conclusions: MS4 has very weak or no binding to SWI4, and this may be the reason
why no effect is observed in all stress experiments. MS3 has weak binding to MBP1
and this may be the reason for the absence of effects on four of the cell cycle
experiments.

In the case of our STRE clusters, their differences in regulation may result from the
different tendencies of the clusters’ motifs to be bound by MSN2p and MSN4p. As
can be seen in Figure 3.2, the preferred binding factor of ST1 is MSN4p, while in the

35



case of ST2 MSN2p binds the cluster’s motifs with a higher incremental binding rate
than MSN4p.

3.3 Variations in regulatory motifs lead to high magnitude effects on regulation

Both the MCB/SCB and the STRE clusters demonstrate that small variations in the
regulatory motifs lead to high magnitude effects on regulation. It has been shown that
even a single nucleotide substitution at the motifs of those clusters is sufficient for
such effects. This has been demonstrated between clusters, and can also be seen
within clusters. At the latter case, variation of motifs may act as a fine tuner of
regulation.

Our PAC clusters P1 and P2 show a different behavior. P1 shows higher EC
significance and also has an enhanced spatial distribution within a specific range
along the promoters. The latter may perhaps be correlated with the loci of
nucleosomes on the DNA, affecting the strength of the regulation [36]. We presume
that in this case this is one of the reasons for the much higher regulation strength of

P1 motifs.

3.4 Motif representations

The conventional representations of motifs by Position Specific Scoring Matrices
(PSSM) or via consensus sequences encapsulate the sequential information of a group
of aligned motifs. The simplicity of such representations involves the loss of
information and leads to possibly wrong conclusions. Mononucleotide frequency
weight matrices cannot depict accurately the binding site specificities of their
included motifs [10]. Even though some positions show distinct preferences to certain
nucleotides, such preferences may depend on the nucleotides occupying other
positions. Inter-dependencies between positions within the binding sites may affect
the binding of the TF to the DNA, hence the regulation.

Consensus and PSSM representations are inherent in many motif extraction
algorithms [23, 20, 9, 19, 43, 32]. Even though these methods seem to capture a large
share of the transcription factor binding sites, the predictions of such methods depend
on the way they represent motifs and inherit the assumptions and faults of those
representations.

Here we have started out with single motifs, as extracted by MEX from sequence
data, and filtered by the EC analysis. MEX does not use motif representations such as

PSSM or consensus sequences in its search for motifs. This allows us to analyze each
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sequence independently, and only then generate clusters of motifs, gaining a better
understanding of the regulation without reducing the sequence information. As a
result, inter-dependencies within the sequences are not lost. Furthermore, we have left
our clusters in the form of groups of motifs, rather than combining them into PSSM
representations, as we have learned from our analysis that single changes of a
nucleotide in a motif can go a long way in affecting the biological behavior.

Another problem is that a PSSM is built using a finite set of known sequences, which
may be incomplete and biased, hence resulting in biased predictions. For instance,
most of the P2 motifs have not been mentioned in the literature, presumably because
the effects of P1’s TFBS overshadow them. This demonstrates that one needs a
discriminating analysis to distinguish the P2 motifs from their stronger P1 relatives.
MEX tests the significance of each motif in an independent manner, and is not limited
by statistical considerations such as over-expression or over-representation within a
given class of genes or a given class of motifs. Hence MEX may uncover TFBS, such

as those of P2 that have been overlooked by other methods.
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4 APPENDIX A - EC EXPERIMENTS

Experiment short name

Experiment name'

Cell cycle (1) ExpressDB Cho - cell cycle

Cell cycle (2) ExpressDB Spellman - cell-cycle alpha

Cell cycle (3) ExpressDB Spellman - cell-cycle cdc15

Cell cycle (4) ExpressDB Spellman - cell-cycle cdc28

Cell cycle (5) ExpressDB Spellman - cell-cycle eluteration
Sporulation ExpressDB Chu - sporulation

MapK ExpressDB - MapK

Diaux shift ExpressDB Gasch environmental response - diaux shift
YPD (1) ExpressDB Gasch environmental response - YPD1
YPD (2) ExpressDB Gasch environmental response - YPD2

X media vs. carl

ExpressDB Gasch environmental response - x media vrs carl

YPx media vs. car2

ExpressDB Gasch environmental response - YPx media vrs car2

Nitrogen depletion

ExpressDB Gasch environmental response - Nitrogen Deplation

Amino acid starvation

ExpressDB Gasch environmental response - Amino Acid starv

Acid ExpressDB Environmental response - Acid

Alkali ExpressDB Environmental response - Alkali

Diamide ExpressDB Gasch environmental response - diamide

Hydrogen Peroxide (H202) | ExpressDB Environmental response - Peroxide

Constant H202 ExpressDB Gasch environmental response - constatnt h202
Menadione ExpressDB Gasch environmental response - Menadione

NaCl ExpressDB Environmental response - NaCl

Hypo-osmotic ExpressDB Gasch environmental response - Hypo-osmotic

DTT (1) Eisen - dtt

DTT (2) ExpressDB Gasch environmental response - DTT1

DTT (3) ExpressDB Gasch environmental response - DTT2

Sorbitol (1) ExpressDB Environmental response - Sorbitol

Sorbitol (2) ExpressDB Gasch environmental response - sorbitol

DNA damage Jelinsky - DNA Damage

Cold Eisen - cold

Heat shock (1) ExpressDB Environmental response - Heat

Heat shock (2) Eisen - heat

Heat shock (3) ExpressDB Gasch environmental response - 37-25 shock

Heat shock (4) ExpressDB Gasch environmental response - Heat Shock 1

Heat shock (5) & sorbitol ExpressDB Gasch environmental response - hs 29-33 1m sorbitol
Heat shock (6) ExpressDB Gasch environmental response - hs 29-33

Heat shock (7) ExpressDB Gasch environmental response - hs 29-33 No sorbitol
Heat shock (8) ExpressDB Gasch environmental response - Heat Shock?2 (3 time zero)
Heat shock (9) ExpressDB Gasch environmental response - hs various temp to 37¢

Various temp growth

ExpressDB Gasch environmental response - various temp growth

Various temp steady state

ExpressDB Gasch environmental response - var temp steady state

Table 4.1 List of the 40 EC experiments

" Expression data was collected at: Pilpel et al. 2001, Sudarsanam et al. 2002 and Lapidot and Pilpel

2003 [22, 33, 42]
Data are located at:

http://arep.med.harvard.edu/ExpressDB/yeastindex.html

http://www-genome.stanford.edu/yeast stress/
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5 APPENDIX B - ALL CLUSTERS

5.1 List of clusters

Our algorithm finds 20 clusters, covering a total of 182 motifs. 14 of our clusters have

large overlaps with known clusters:

Cluster name | Identified as
MS1 MBF / SBF
MS2 MBF / SBF
MS3 MBF / SBF
MS4 MBF / SBF
ST1 STRE

ST2 STRE

P1 PAC

P2 PAC

RR RRPE

R1 RAPI1

R2 RAPI

R3 RAPI

Al ADRI1 /STRE
RP RPN4

Cl15 Unknown
Cl6 Unknown
C17 Unknown
C18 Unknown
C19 Unknown
C20 Unknown

Table 5.1 List of clusters
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5.2 Clusters’ EC patterns

Within this dissertation we have put our focus on three groups of clusters: the four
clusters that correspond to the MCB/SCB binding sites, those that match STRE and
the two clusters that correspond to the PAC binding sites. In addition to the clusters
that have been discussed previously, 12 more clusters of motifs have been found via

our analysis. Following are the EC patterns of those 12 clusters:

Figure 5.1 EC patterns of clusters RR, R1, R2, R3, Al, RP, C15, C16, C17, C18, C19 and C20
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5.3 Localization of motifs on the promoters of clusters
Following are localization analyses done for our 12 clusters that have not been

previously shown within the body of this dissertation:

Figure 5.2 Localization of motifs along the promoters: clusters RR, R1, R2, R3, A1, RP, C15,
C16, C17, C18, C19, and C20
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6 APPENDIX C — INTERSECTIONS BETWEEN CLUSTERS

We have examined the number of genes that are shared by every couple of clusters:
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Figure 6.1 Gene intersections between clusters — absolute numbers. For iZj, each value represents
the number of genes that are shared by cluster i and cluster j. On the diagonal appear the
numbers of genes on the promoter of which the clusters motifs are found.
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Figure 6.2 Gene intersections between clusters — rates. The matrix above specifies the fractions of
genes that are shared by every cluster i and cluster j, out of cluster i (i in rows, j in columns). In
the cases of i=j, each value indicates the amount of genes on the promoter of which the clusters
motifs are found (the color on the diagonal is set as 100%, in respect to the grayscale of the rest
of the matrix).
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7 LIST OF ABBREVIATIONS

AP-1
EC
FDR
FHL1
GO
MBF
MCB
MEX
PAC
PSSM
RAP1
RRPE
SBF
SCB
SFP1
STRE
TF
TFBS
YAPS

Activator protein-1

Expression Coherence

False discovery rate

Fork-head like 1 (transcription factor)

Gene Ontology

MCB-binding factor (transcription factor)

Mlul cell cycle box (transcription factor binding site)
Motif Extraction algorithm

Polymerase A and C (transcription factor binding site)
Position specific scoring matrix

Repressor activator protein 1 (transcription factor)
Ribosomal RNA processing elements (transcription factor)
SCB-binding factor (transcription factor)

SWI4/6 dependent cell cycle box (transcription factor binding site)
Split finger protein (transcription factor)

Stress response elements (transcription factor binding site)
Transcription factor

Transcription factor’s binding site

Yeast AP-1 (transcription factor)
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