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METHOD AND APPARATUS FOR QUANTUM
CLUSTERING

RELATED PATENT APPLICATION

This application is a National Phase Application of PCT/
1L.02/00374International Filing Date 14 May 2002, which
claims priority from U.S. Provisional Patent Application No.
60/290,385 filed 14 May 2001.

FIELD AND BACKGROUND OF THE
INVENTION

The present invention relates to a method and apparatus for
clustering multidimensional data and, more particularly, to a
method and apparatus for clustering multidimensional data
incorporating quantum mechanical techniques.

There is a growing emphasis on exploratory analysis of
large datasets to discover useful patterns. Organizations are
investing heavily in “data warehousing” to collect data in a
form suitable for extensive analysis, and there has been exten-
sive research on clustering.

Informatics is the study and application of computer and
statistical techniques for the management of information.

Bioinformatics includes the development of methods to
search biological databases fast and efficiently, to analyze the
information, and to predict structures which appear to exist
within the data. Increasingly, molecular biology is shifting
from the laboratory bench to the computer desktop. Advanced
quantitative analyses and computational algorithms are
needed to explore the relationships between data entries,
thereby to recognize and classify fully or partially the data-
base.

Numerous databases in general and biological databases in
particular include large sequences of data, which need to be
recognized, classified, and/or grouped into families. In the
past, information could only be of assistance for human
experts who would thoroughly research the output of data-
base searching programs and would create a grouping accord-
ing to families. Certainly, this method is time-consuming,
labor-intensive and not very reproducible. Nevertheless, the
diversity of different families often varies and families are not
always exactly defined, hence the task of automated data
grouping is not at all trivial.

Given a very large set of multi-dimensional data points, the
data space is usually not uniformly occupied by the data
points. Instead, some regions in the space are sparse while
others are crowded. A clustering method identifies the sparse
and the crowded regions, and discovers the overall distribu-
tion patterns of the dataset. Therefore, by using clustering
methods, a better understanding can be obtained of the dis-
tribution patterns of the dataset and the relationship patterns
among data attributes to improve data organizing and retriev-
ing. It is also possible to visualize the derived clusters much
more efficiently and effectively than the original dataset.
Indeed, when the dataset is very large and the dimensions are
higher than two, visualizing the whole dataset in full dimen-
sions is almost impossible.

Numerical taxonomy relates to classification methods
using numerical characteristics of individuals and popula-
tions. Over the years, numerical taxonomy methods have
been developed using abstract objects which are not tied to
any particular context, but rather can be applied to various
data types. Known prior art clustering methods, that divide
the data according to natural classes present in it, have been
used in a large variety of scientific disciplines and engineer-
ing applications that include pattern recognition, learning
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theory, astrophysics, medical image and data processing,
image compression, satellite data analysis, automatic target
recognition, speech and text recognition, classification of
diseases in medicine, grouping of chemical compounds, such
as nucleic acids and proteins, classification of statistical find-
ings for social studies and other types of data analysis.

Many clustering methods are known in the art. The meth-
ods are based on a variety of mathematical and/or physical
principles. In graph theory methods, each data entry in the
database is represented as a vertex on a graph, and similarity
measures between data entries are represented as weighted
edges between vertices. Clusters are formed by iterative dele-
tions of edges, and by constructing a minimal spanning tree of
the graph.

In density estimation methods, the entire database is rep-
resented as points in a space which is defined by the charac-
teristics of the data entries. If the data is not completely
random, different regions in the data space have different
density of points. Clusters of data are viewed as high density
regions separated by low-density regions. An example of a
density estimation method is the so called scale-space clus-
tering disclosed in an article authored by Roberts S. I,
entitled “Parametric and non-parametric unsupervised cluster
analysis”, and published in Pattern Recognition, 30(2):261-
272 (1997). In this method, the probability density function is
estimated using a set of Gaussian kernels sited at each data
point. The clusters are located near maxima of the density
function or near zero-crossing of its spatial derivative.

Another clustering method employs the laws of physics in
order to identify clusters in a database. An example is dis-
closed by Blat et al. in U.S. Pat. No. 6,021,383. According to
Blat et al., data points are associated with physical quantities
called Potts-spins. Ferromagnetic interactions are introduced
between each pair of neighboring spins and the strength of
these interactions decreases with increasing distance or dis-
similarity between points.

The two main clustering approaches are called hierarchical
and partitional. In hierarchical methods, the data are orga-
nized in a “nested” sequence of groups. Hierarchical cluster-
ing is a procedure which iteratively adjusts the number of
clusters by either merging small clusters or splitting large
clusters of data points. Different hierarchical methods
employ different decision rules for merging or splitting clus-
ters. The end result of a hierarchical method is a tree of
clusters called a dendrogram, which shows the relation
between the final clusters. Before completing the analysis, a
decision has to be made about an optimal position to cut the
dendrogram in order to retrieve the number of clusters exist-
ing in the data.

Hierarchical methods have been successfully applied to
many biological problems, e.g., for producing taxonomies of
animals and plants. However, hierarchical methods have a
rather large complexity which grows as a cubic power of the
total number of objects which are clustered. Moreover, hier-
archical methods are not suitable to all kinds of databases, as
the basic feature of any hierarchical method is to impose a
hierarchy on the data, while such property of the data may not
exist at all. An additional drawback of hierarchical methods is
that once two objects are merged, these objects always belong
to one cluster, and once two objects are separated, these
objects are never re-grouped into the same cluster. Thus, in
hierarchical methods motion within the data space is limited.
Still another drawback of hierarchical methods is a tendency
to cluster together individuals linked by a series of interme-
diates. This property, generally known as chaining, often
gives poor results in cases where noisy data points are present.
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Unlike hierarchical methods, partitional clustering meth-
ods attempt to directly decompose the data set into a set of
disjoint clusters. These methods minimize some local or glo-
bal criterion function that may emphasize the structure of the
data. Very often, clusters which are found by a partitioning
method are more similar than the clusters which are found by
a hierarchical method, hence partitional clustering provides
more qualitative results. Most of the partitional methods rely,
implicitly or explicitly, upon some assumptions. However,
like in hierarchical methods, data may not conform to these
assumptions and an incorrect structure of the data may be
obtained. Another difficulty, also encountered in hierarchical
method, is the necessity to estimate an optimal number of
clusters, before completing the analysis.

An example of a partitional method is the so called
K-means algorithm. By a successive sequence of iterations,
the K-means algorithm aims to minimize some criterion,
which is typically the sum of the squares of the distances from
all the data points in the cluster to their nearest cluster centers.
The main advantage of the K-means algorithm is the low
complexity which is achieved once the number of clusters is
determined. However, when clustering data using the
K-means algorithm, the number of clusters must be deter-
mined a-priori, and sometimes affects the quality of the
results. The K-means algorithm intrinsically assumes spheri-
cal shape of all the clusters, which of course may not be
correct. LLike many other iterative procedures, not necessarily
related to clustering methods, the K-means algorithm may be
locked in some local minima and may not converge to the
desired global minimum. Although several procedures have
been employed to try and overcome the local minima prob-
lem, so far none guarantees finding the global minimum.

Hence, all the known clustering methods detailed above,
suffer from one or more limitations which may commonly be
attributed to assumptions and decisions which are made in
advance; a predetermined structure of the data even though it
may be erroneous; and a predetermined number of clusters,
which may affect the quality of the results.

The present invention provides solutions to the problems
associated with prior art clustering techniques.

SUMMARY OF THE INVENTION

According to one aspect of the present invention there is
provided a method of determining clusters of data within a
dataset, the dataset is represented by a plurality of multidi-
mensional data entries, the method comprising: (a) spanning
a space, represented by a plurality of points; (b) determining
a density function over the space; (c) associating a potential to
the density function; (d) locating a plurality of local minima
of the potential; and (e) for each of the plurality of local
minima, attributing at least one of the points; thereby deter-
mining clusters of data within the dataset.

According to another aspect of the present invention there
is provided a method of determining clusters of biological
data within a dataset, the dataset is represented by a multidi-
mensional dataset-matrix, M, the method comprising: trun-
cating the dataset-matrix, M, so as to construct a truncated
space having a reduced dimensionality, the truncated space is
represented by a plurality of points, each representing one
biological entry; and partitioning the plurality of points, into
a plurality of clusters; thereby determining clusters of bio-
logical data within the dataset.

According to further features in preferred embodiments of
the invention described below, the spanning of the space is by
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defining, for each of the plurality of points, a multidimen-
sional coordinate respectfully representing one multidimen-
sional data entry.

According to still further features in the described pre-
ferred embodiments the method further comprising itera-
tively merging each cluster into a single point increasing the
width and repeating the steps (a) to (e), thereby defining a
dendrogram of clusters.

According to still further features in the described pre-
ferred embodiments spanning a space is by eliminating at
least one dimension from the dataset.

According to still further features in the described pre-
ferred embodiments eliminating is by constructing a correla-
tion matrix from the dataset, calculating a set of eigenvalues
of the correlation matrix, and selecting a subset of the set of
eigenvalues.

According to still further features in the described pre-
ferred embodiments the subset includes the largest eigenval-
ues of the set of eigenvalues.

According to still further features in the described pre-
ferred embodiments the method further comprising: (f) merg-
ing each cluster into a single point; (g) increasing the width;
and (h) repeating the steps (b) to (e).

According to still further features in the described pre-
ferred embodiments the method further comprising itera-
tively repeating the steps (g) to (h), thereby defining a den-
drogram of clusters.

According to yet another aspect of the present invention
there is provided an apparatus for determining clusters of data
within a dataset, the dataset is represented by a plurality of
multidimensional data entries, the apparatus comprising: a
space spanning unit for spanning a space, represented by a
plurality of points; a density function determinator for deter-
mining a density function over the space; a potential associa-
tor for associating a potential to the density function; a locator
for locating a plurality of local minima of the potential; and a
cluster builder for attributing, for each of the plurality of local
minima, at least one of the points.

According to still another aspect of the present invention
there is provided an apparatus for determining clusters of
biological data within a dataset, the dataset is represented by
a multidimensional dataset-matrix, M, the apparatus com-
prising: a matrix truncating unit for truncating the dataset-
matrix, M, so as to construct a truncated space having a
reduced dimensionality, the truncated space is represented by
a plurality of points, each representing one biological entry;
and a partitioning unit for partitioning the plurality of points,
into a plurality of clusters.

According to still further features in the described pre-
ferred embodiments each one of the plurality of points has a
multidimensional coordinate respectfully representing one
multidimensional data entry.

According to still further features in the described pre-
ferred embodiments the correlation matrix is an autocorrela-
tion matrix.

According to still further features in the described pre-
ferred embodiments the correlation matrix is a covariance
matrix.

According to still further features in the described pre-
ferred embodiments the dataset has a matrix form, hence the
dataset is a dataset-matrix, M.

According to still further features in the described pre-
ferred embodiments the space spanning unit includes a matrix
truncating unit for truncating the dataset-matrix, so as to
construct a truncated space having a reduced dimensionality.

According to still further features in the described pre-
ferred embodiments truncating is by constructing a transfor-
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mation matrix from the dataset-matrix, calculating a set of
eigenvalues of the transformation matrix, and selecting a
subset of the set of eigenvalues, thereby constructing the
truncated space.

According to still further features in the described pre-
ferred embodiments the subset includes largest eigenvalues
of the set of eigenvalues.

According to still further features in the described pre-
ferred embodiments constructing the transformation matrix is
by multiplying the dataset-matrix by a first matrix from the
left and by a second matrix from the right, each of the firstand
second matrices being respectively formed from an orthonor-
mal set of vectors.

According to still further features in the described pre-
ferred embodiments the method further comprising projec-
tion of each point in the truncated space onto a unit sphere in
the truncated space.

According to still further features in the described pre-
ferred embodiments, the partitioning comprising: (a) deter-
mining a density function over the truncated space; (b) asso-
ciating a potential to the density function; (c) locating a
plurality of local minima of the potential; and (d) for each of
the plurality of local minima, attributing at least one of the
points; thereby partitioning the plurality of points, into a
plurality of clusters.

According to still further features in the described pre-
ferred embodiments determining the density function is by
assigning a set of kernels, one for each of the plurality of
points and summing over the set of kernels.

According to still further features in the described pre-
ferred embodiments associating the potential is by construct-
ing a physical analog quantum mechanical model over the
truncated space, the model having a Hamiltonian which
includes the potential.

According to still further features in the described pre-
ferred embodiments associating the potential is by determin-
ing an operator in a manner such that the density functionis an
eigenfunction of the operator with an eigenvalue, E, the
operator includes the potential.

According to still further features in the described pre-
ferred embodiments the eigenvalue, E, is selected so that a
minimal value of the potential is substantially zero.

According to still further features in the described pre-
ferred embodiments locating the plurality of local minima of
the potential is by evaluating the potential in a plurality of
evaluation points, thereby providing a plurality of potential
values, and selecting at least one local minimal value of the
potential values.

According to still further features in the described pre-
ferred embodiments attributing the points is by visual means.

According to still further features in the described pre-
ferred embodiments attributing the points is by a dynamically
descending the points of the space in a direction of a gradient
of the potential, into the plurality of local minima.

According to still further features in the described pre-
ferred embodiments the width o, is selected so that a number
of the clusters is stable under sufficiently small variation of
the width.

According to still further features in the described pre-
ferred embodiments the method further comprising: (e)
merging each cluster into a single point; (f) increasing the
width; and (g) repeating the steps (a) to (d).

According to still further features in the described pre-
ferred embodiments the method further comprising itera-
tively repeating the steps (e) to (g), thereby defining a den-
drogram of clusters.
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According to still further features in the described pre-
ferred embodiments each biological entry is characterized by
a plurality of genes, promoters, proteins, antibodies, physi-
ological parameters and biochemical parameters.

According to still further features in the described pre-
ferred embodiments each biological entry is selected from the
group consisting of a sample, a cell and a tissue.

According to still further features in the described pre-
ferred embodiments each biological entry corresponds to one
subject at one time.

According to still further features in the described pre-
ferred embodiments the space spanning unit includes a
dimension eliminator for eliminating at least one dimension
from the dataset.

According to still further features in the described pre-
ferred embodiments the dimension eliminator includes: a
matrix constructor for constructing a correlation matrix from
the dataset; electronic-calculating functionality for calculat-
ing a set of eigenvalues of the correlation matrix; and an
eigenvalues selector for selecting a subset of the set of eigen-
values.

According to still further features in the described pre-
ferred embodiments the dimension eliminator further com-
prises electronic-calculating functionality for diagonalizing
and for normalizing the correlation matrix to a unitary diago-
nal correlation matrix.

According to still further features in the described pre-
ferred embodiments the matrix truncating unit includes: a
matrix constructor for constructing a transformation matrix
from the dataset-matrix; electronic-calculating functionality
for calculating a set of eigenvalues of the transformation
matrix; and an eigenvalues selector for selecting a subset of
the set of eigenvalues.

According to still further features in the described pre-
ferred embodiments the matrix constructor includes; elec-
tronic-calculating functionality for forming a first matrix and
a second matrix from an orthonormal set of vectors; a matrix
multiplier for multiplying the dataset-matrix by the first
matrix from the left and by the second matrix from the right.

According to still further features in the described pre-
ferred embodiments the first matrix diagonalizes MM” and
the second matrix diagonalizes MM, where M7 is a trans-
pose representation of the dataset-matrix, M.

According to still further features in the described pre-
ferred embodiments the matrix constructor further includes a
projector for projection each point in the truncated space onto
a unit sphere in the truncated space.

According to still further features in the described pre-
ferred embodiments the eigenvalues selector is operable to
select largest eigenvalues of the set of eigenvalues.

According to still further features in the described pre-
ferred embodiments the partitioning unit comprises: a density
function determinator for determining a density function over
the truncated space; a potential associator for associating a
potential to the density function; a locator for locating a
plurality of local minima of the potential; and a cluster builder
for attributing, for each of the plurality of local minima, at
least one of the points.

According to still further features in the described pre-
ferred embodiments the potential associator includes a
model-constructor for constructing a physical analog quan-
tum mechanical model over the space. the model having a
Hamiltonian which includes the potential.

According to still further features in the described pre-
ferred embodiments the density function and the potential are
each independently positive quantities.
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According to still further features in the described pre-
ferred embodiments the density function is a sum of a set of
kernels, one kernel for each of the plurality of points.

According to still further features in the described pre-
ferred embodiments each of the set of kernels represents a
Hilbert space state.

According to still further features in the described pre-
ferred embodiments each of the kernels is substantially local-
ized at one of the plurality of points, and characterized by a
width, o.

According to still further features in the described pre-
ferred embodiments the kernels have equal weights.

According to still further features in the described pre-
ferred embodiments each of the kernels has a predetermined
weight.

According to still further features in the described pre-
ferred embodiments the kernels are Gaussians.

According to still further features in the described pre-
ferred embodiments the potential associator includes a model
constructor for constructing a physical analog quantum
mechanical model over the truncated space, the model having
a Hamiltonian which includes the potential.

According to still further features in the described pre-
ferred embodiments the Hamiltonian equals —0.50°V2+V(x),
where the V is the potential and x is a set of coordinates of the
space.

According to still further features in the described pre-
ferred embodiments the density function is a ground state of
the Hamiltonian.

According to still further features in the described pre-
ferred embodiments the potential associator includes an
operator determinator for determining an operator in manner
that the density function is an eigenfunction of the operator
with an eigenvalue, E, the operator includes the potential.

According to still further features in the described pre-
ferred embodiments the operator determinator operable to
select the eigenvalue, E, so that a minimal value of the poten-
tial is substantially zero.

According to still further features in the described pre-
ferred embodiments the operator determinator operable to
include in the operator at least one additional term.

According to still further features in the described pre-
ferred embodiments the at least one additional term includes
a kinetic term.

According to still further features in the described pre-
ferred embodiments the kinetic term comprises a Laplacian.

According to still further features in the described pre-
ferred embodiments the potential equals E+(c®Vy)/2ys,
wherein  is the density function and E is calculated in
accordance with the formula E=—min [(0®V>)/21)].

According to still further features in the described pre-
ferred embodiments the locator is operable to evaluate the
potential in a plurality of evaluation points, thereby to provide
a plurality of potential values.

According to still further features in the described pre-
ferred embodiments the locator is operable to select at least
one local minimal values of the potential values.

According to still further features in the described pre-
ferred embodiments each of the evaluation points is respec-
tively one point of the truncated space.

According to still further features in the described pre-
ferred embodiments the cluster builder includes electronic-
calculating functionality to dynamically descend the points of
the truncated space in a direction of a gradient of the potential
into the plurality of local minima.

According to still further features in the described pre-
ferred embodiments the density function determinator is

10

15

20

25

40

45

60

65

8

operable to select the width o, so that a number of clusters is
stable under sufficiently small variation of the width.

According to still further features in the described pre-
ferred embodiments the apparatus further comprising an iter-
ating unit for defining a dendrogram of clusters by perform-
ing a sequence of iterations.

According to still further features in the described pre-
ferred embodiments the iterating unit includes a width initia-
tor for selecting an initial value of the width and a merging
unit for merging each cluster into a single point.

The present invention successfully addresses the short-
comings of the presently known configurations by providing
a method and apparatus for determining clusters far exceed-
ing prior art.

Implementation of the method and apparatus of the present
invention involves performing or completing selected tasks or
steps manually, automatically, or a combination thereof.
Moreover, according to actual instrumentation and equip-
ment of preferred embodiments of the method and apparatus
of the present invention, several selected steps could be
implemented by hardware or by software on any operating
apparatus of any firmware or a combination thereof. For
example, as hardware, selected steps of the invention could be
implemented as a chip or a circuit. As software, selected steps
of the invention could be implemented as a plurality of soft-
ware instructions being executed by a computer using any
suitable operating apparatus. In any case, selected steps of the
method and apparatus of the invention could be described as
being performed by a data processor, such as a computing
platform for executing a plurality of instructions.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is herein described, by way of example only,
with reference to the accompanying drawings. With specific
reference now to the drawings in detail, it is stressed that the
particulars shown are by way of example and for purposes of
illustrative discussion of the preferred embodiments of the
present invention only, and are presented in the cause of
providing what is believed to be the most useful and readily
understood description of the principles and conceptual
aspects of the invention. In this regard, no attempt is made to
show structural details of the invention in more detail than is
necessary, for a fundamental understanding of the invention,
the description taken with the drawings making apparent to
those skilled in the art how the several forms of the invention
may be embodied in practice.

In the drawings:

FIG. 1 is an apparatus for determining clusters, according
to one aspect of the present invention;

FIG. 2 is an apparatus for determining clusters, according
to another aspect of the present invention;

FIGS. 3a-b show data of a crab data set represented in a
space of their second and third principal components as a
contour plot (a) and a three dimensional plot (b) of Parzen
density function;

FIGS. 4a-b show the second and third principal compo-
nents of the crab data and a contour plot (a) and a three
dimensional plot (b) of a potential for 0°=0.5;

FIGS. 5a-d show plots of the number of minima of'V (a,c)
compared with the number of maxima of y(b,d), on a loga-
rithmic scale of o, and on a linear scale of o, as calculated for
the crab data;

FIG. 6 shows a contour plot of the potential and obtained
clusters of the crab data with o®=V4;

FIG. 7 shows a three-dimensional plot of the potential and
obtained clusters of the crab data with o®=V4;
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FIG. 8 shows gradient descent dynamics applied to the first
three principal components of the crab data;

FIG. 9 shows a graph of values of a ratio between the
potential and the eigenvalue as function of the serial number
of the data;

FIG. 10 shows a contour plot of the potential for the Iris
data;

FIG. 11 shows snapshots of a progress of gradient descent
dynamics for the Iris data set on principal components 1 and
2;

FIGS. 124a-d show plots of the number of minima of'V (a,c)
compared with the number of maxima of 1(b,d), on a loga-
rithmic scale of 0, and on a linear scale of o, as calculated for
the Iris data;

FIG. 13 shows the number of misclassifications as a func-
tion of o, for the Iris data, using four dimensional raw data;

FIG. 14 shows the first and second principal components of
the wine recognition data as well as a contour plot of the
potential, for width value of 0=0.6;

FIGS. 154a-d show plots of the number of minima of'V (a,c)
compared with the number of maxima of 1(b,d), on a loga-
rithmic scale of 0, and on a linear scale of o, as calculated for
the wine recognition data;

FIGS. 16a-b show plots of values of a ratio between the
potential V and the eigenvalue E, as function of the serial
number of the data, for two- and six-dimensional analysis of
the Swiss franc bills, respectively;

FIGS. 17a-d show contour plots of the potential for 0=0.4,
0.2, 0.3 and 0.1, respectively, as calculated for a Synthetic
Ring Dataset;

FIG. 18 shows a dendrogram of 60 cancer cell samples;

FIG. 19 shows a representation of data of four classes of
cancer cells on two dimensions of the truncated space;

FIG. 20 shows a Jaccard measure for the AMIL/ALL set as
function of o;

FIG. 21 shows a clustering solution for the AML/ALL set
using 0=0.54;

FIG. 22 shows a representation of five gene families in two
coordinates of the four dimensional truncated space, as
obtained from the yeast data; and

FIG. 23 shows cluster assignments of genes for quantum
clustering with 0=0.46 compared with K-means clustering
with k=4.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present invention is of a method and apparatus for
determining clusters of multidimensional data, which can be
used for analysis of large datasets. Specifically, the present
invention can be used to obtain similarity clusters of a plural-
ity of samples, cells or tissues, which are characterized by,
e.g., expressed genes, expressed proteins, antibodies, physi-
ological parameters and biochemical parameters.

The principles and operation of a method and apparatus for
clustering data according to the present invention may be
better understood with reference to the drawings and accom-
panying descriptions.

The quantum theory, in general, and specifically quantum
mechanics, has been developed to describe physical systems
at an atomic and sub-atomic scale. The present invention
exploits quantum mechanical techniques for clustering of
data. For the purpose of providing a complete and self con-
tained description of the invention, an introductory explana-
tion of the principles of quantum mechanics precedes the
detailed description of the invention.
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Quantum mechanics differs from classical mechanics in
that it does not provide a unique prediction for the behavior of
a system from a given initial configuration, but its predictions
have a probabilistic nature. In quantum mechanics, a physical
state of a system is specified by a wavefunction, and all
possible information about the system can be derived from
this wavefunction. According to the postulates of quantum
mechanics, each state can be expressed as a superposition of
all the wavefunctions of the system, hence, the wavefunctions
of'the system form a complete set of functions. Any physical
observable corresponds in quantum mechanics to an operator
which, upon acting on a state, may either transform this state
into another one or it may just multiply the state by a number.
In the latter case, it is said that the state and the corresponding
number are respectfully an eigenstate. and an eigenvalue of
the operator.

Mathematically, any quantum state can be considered as a
vector in some abstract space called Hilbert space (this rep-
resentation of quantum mechanics is attributed to Werner
Heisenberg, 1901-1976). One way to define the components
of a Hilbert space vector is by the coefficients in a complete
set expansion of the state wavefunctions. Alternatively, all the
wavefunctions, the superposition of which describes the
physical state ofthe system, can be considered as components
of'a Hilbert space vector along some basis vectors. In Heisen-
berg representation of quantum mechanics, operators are
matrices in a Hilbert space, and the action of an operator on a
state is a multiplication of the corresponding vector by a
corresponding matrix.

A typical example of a quantum mechanical operator is a
Hamiltonian, H, which corresponds to the energy, E, of the
system, i.e., the energy is the eigenvalue of the operator H.
Every eigenstate of the operator H with eigenvalue E, either in
wavefunction representation or in vector representation, sat-
isfies the following equation, also commonly known as the
Schrodinger (1887-1961) equation:

Hy=Ey, (Eq. 1)
where 1 is an eigenstate of H. The eigenstate with the mini-
mal eigenvalue. of a specific operator is called the ground
state of the operator. In principle H may include a plurality of
contributions, for example, a contribution of free motion (a
kinetic term), a contribution of an interaction of the system
with an external source (a potential term), a contribution of
self interactions within the system and the like.

While conceiving the present invention, it has been real-
ized that the principles and the mathematical techniques of
quantum mechanics may be implemented on large datasets
represented by a plurality of multidimensional data entries,
for the purpose of obtaining similarity clusters.

Hence, according to one aspect of the present invention
there is provided an apparatus for determining clusters, gen-
erally referred to herein as apparatus 10.

Before explaining at least one embodiment ofthe invention
in detail, it is to be understood that the invention is not limited
in its application to the details of construction and the
arrangement of the components set forth in the following
description or illustrated in the drawings. The invention is
capable of other embodiments or of being practiced or carried
out in various ways. Also, it is to be understood that the
phraseology and terminology employed herein is for the pur-
pose of description and should not be regarded as limiting.

Referring now to the drawings, FIG. 1 illustrates apparatus
10 including a space spanning unit 12, a density function
determinator 14 and a potential associator 16. According to a
preferred embodiment of the present invention unit 12 serves
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for spanning a space, represented by a plurality of points, %,
(1=1,2, . . .), which may be considered as a “working space”

of the other components of apparatus 10. The space spanned
by unit 12 may have any dimensionality which is preferably
lower than or equal to the dimensionality of the dataset (the
input of apparatus 10). Thus, for example, each point of the
space may be defined as a multidimensional coordinate
respectively representing one multidimensional data entry. It
should be appreciated, however, that other definitions of the
points may be used, as is further detailed hereinunder.

Determinator 14 serves for determining a density function
which estimates the density of the dataset over the space
spanned by unit 12. Density functions are known in the art.
For example, so called Parzen density function is a set of
equally weighted kernels. Hence, according to a preferred
embodiment of the present invention, the density function is
constructed as a weighted combination of a set of kernels each
of which being substantially located at one of the points, x,.
Preferably, the kernels are characterized by a predetermined
width, 0. Hence, the dataset is mathematically represented by
the points, X,, in the space spanned by unit 12, and each point
is a center of a kernel, which can be viewed as a state in a
Hilbert space.

Associator 16 serves for associating a potential, V(x),
which is preferably chosen so that the density function cor-
responds to an eigenstate, ), with an eigenvalue, E, of a
Hilbert space operator, H, which includes the potential, as
described above with reference to Equation 1. Hence, accord-
ing to a preferred embodiment of the present invention, a
physical analog quantum mechanical model is constructed
over the space. The model, represented by the Hamiltonian,
H, corresponds to quantum states in a potential field V(x).

Beside the potential V(x), the operator H includes at least
one additional term, which may be for example a kinetic term
(e.g., a Laplacian operator, V), or any other term which may
be chosen so as to optimize the clusters which are obtained by
apparatus 10, as further detailed herein.

According to a preferred embodiment of the present inven-
tion each of the clusters is represented by a set of points, one
of which is identified as the center of the cluster, and all the
other points of the set are respectively attributed to the center
point. Hence, referring again to FIG. 1, apparatus 10 further
includes a locator 18 and a cluster builder 20. Locator 18
serves for locating a plurality of local minima of the potential
V(x), each minimum is a center of a different cluster, while
cluster builder 20 serves for attributing, for each center, one
data point as further detailed hereinunder.

Unlike a typical situation in a quantum mechanical system,
the state, 1\, of the system is determined first, and the potential
is actually associated with an (already known) eigenstate. For
example, in a preferred embodiment of the invention the
Hamiltonian may be defined in accordance with the equation:

H=0.50°V24+V(x). (Eq. 2)
Given the eigenstate ), the potential V(x) which is associated
with this eigenstate is preferably:

V(x)=E+(c?V2)/ 2. (Eq. 3)

Equation 3 defines the potential up to the eigenvalue, E,
which has to be explicitly determined. According to a pre-
ferred embodiment of the present invention the eigenvalue, E,
is conveniently selected so as to ensure that the potential is a
non-negative quantity. Specifically,

E=31 min[(c®V2§)/2 y]. (Eq. 4)
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By selecting the eigenvalue, E, in accordance with Equa-
tion 4, it is ensured that the potential has a zero global mini-
mum.

As stated, the eigenstate corresponds to the density func-
tion, which, according to a preferred embodiment of the
present invention, is a weighted sum of localized kernels of
width o. The weights of the kernels may be either constant or
they may vary, e.g., based on a previous knowledge of a
relative importance of a specific datum over the others.
According to a preferred embodiment of the present inven-
tion, the kernels may be any functions which are localized at
a specific point, e.g., Gaussians. It should be understood, that
the potential which is defined by Equation 3, develops at least
one local minimum for other localized function as well. Each
local minimum is identified with one cluster center.

The local minima of the potential V(x) may be located
using any known method for finding local extremum points of
a multidimensional function. For example. locator 18 may be
operable to evaluate the potential in a plurality of evaluation
points, thereby to provide a plurality of potential values, and
then to select at least one local minimal values of these poten-
tial values. Although there exist a variety of known proce-
dures for locating local minima of continuous functions, the
complexity of such procedures may be relatively high. Hence,
according to a preferred embodiment of the present invention,
the efficiency of locator 18 may be substantially increased if
the evaluation points are only near data points, since any
cluster center is eventually located near at least one data point.

A skilled artisan will appreciate that the density function
develops some local maxima within the space spanned by unit
12, which maxima could be identified with cluster centers.
However, the alternative proposed by the present invention, of
associating cluster centers with minima of the potential, has
the advantage that minima of V are easy to locate.

An additional the advantage of the present invention is the
ability to choose the eigenvalue, E, so as to set the scale on
which local minima of the potential are observed. As further
exemplified in the Examples section below, in cases in which
E is relatively high, the density function spreads over a large
region of the space covering more than one cluster center.
Contrarily, the potential develops a larger number of local
minima, thus allowing an identification of a correct number of
cluster centers. Still another advantage of the present inven-
tion is that low minima of V are stable with respect to varia-
tion of the scale parameter.

Once the cluster centers have been located, cluster builder
20 attributes additional points to each cluster center, thereby
builds a cluster near every cluster center. As further detailed
hereinunder, unit 12 may considerably reduce the dimension-
ality of the dataset which is investigated.

Specifically, although rarely, a two-dimensional space may
be spanned. In preferred embodiments of two-dimensional
space, points are attributed to clusters by visual means. This
may be done by more than one way. For example, it is con-
venient to construct a two dimensional contour plot, repre-
senting equipotential lines of the potential, and to identify
local minima similarly to the way in which mountains and
valleys are identified on a topographic map. Alternatively,
local minima may be illustrated by constructing a three-di-
mensional plot of the potential over a planar image of the
points of the space, and, again, attribute points which are
within a predetermined distance from each local minimum. A
third alternative is to transform potential values to predeter-
mined colors and to illustrate local minima on a density plot
where different regions of colors corresponds to different
potential values. In any case, clusters of points are visually
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obtained from all the points which are within the basin of
attraction of each local minimum.

The present invention successfully provides a well defined
procedure for attributing points to cluster centers also for
multidimensional space. Hence. according to a preferred
embodiment of the present invention points may be attributed
to cluster centers by a dynamically descending of points in a
direction of a gradient of the potential, into the local minima.
This procedure is also known as a gradient descent algorithm
[R. O. Duda, P. E. Hart, and D. G. Stork “Pattern Classifica-
tion”, Wiley, New York (2001), the contents of which are
hereby incorporated by reference], which mathematically
formulated in the following way.

Defining for the ith datum point a time-dependent dynami-
cal process according to which, at each time interval, At, the
point “falls” closer to the cluster center. The dynamical pro-
cess is preferably in accordance with the equation:

YiHAD=p(O-NOVV (L), (Eq. 4)
where y,(1) represent the location of the ith point at time t, and
M(t) is a descent rate which is selected in order not to miss a
local minimum and skip to an adjacent one. y,(0) is selected to
be the initial location of the point being descended.

Other method known in the art may also be used by cluster
builder 20 so as to attribute points to cluster centers. For
example, more sophisticated minimum search algorithms can
be found in W. H. Press, S. A. Teuklosky, W. T. Vetterling and
B. P. Flannery, “Numerical Recipes—The Art of Scientific
Computing”, 2nd ed. Cambridge Univ. Press, 1992, the con-
tents of which are hereby incorporated by reference.

Once the cluster centers have been identified and additional
points have been attributed to each center, a set of clusters is
determined. According to a preferred embodiment of the
present invention the density function has a free parameter,
which is the width of the kernels, o, characterizing the length
scale over which clusters are searched. Varying o one can
have any number of clusters, from one cluster, in the case of
very high values of o, to N clusters in the case of low value of
0, where N is the number of data entries. Hence, it is impor-
tant to ensure that o is selected so that the number of the
clusters is stable under sufficiently small variation of said o.

The possibility to vary the width, o, may also be exploited
to provide a hierarchical formulation in an agglomerative
manner. Hence, according to a preferred embodiment of the
present invention, the width is iteratively increased so as to
provide a dendrogram of clusters. Specifically, starting out
with a very low o, such that each point is a cluster of its own,
then, o is increased by some amount obtaining a new set of
cluster centers. Each of the new set of clusters is then consid-
ered as a single point for the next step of iteration, (again, with
an additional increment of ©). The iterations are repeated
until large o values are reached with only one cluster. On the
way, the above procedure defines a dendrogram whose clus-
tering quality may be compared to biological sample data.

As stated hereinabove, the space, which is spanned by
space spanning unit 12, may be of reduced dimensionality so
as to enhance the performances of apparatus 10 and or the
clustering method. The reduced dimensionality is achieved
preferably by eliminating at least one dimension from the
dataset. According to a preferred embodiment of the present
invention this elimination may be done by any method known
in the art.

According to one embodiment, the elimination of dimen-
sion is done by a method commonly known as principle
component analysis (PCA). In PCA, a correlation matrix is
constructed from the dataset, then a set of eigenvalues of the
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correlation matrix is calculated, and finally a subset of the set
of eigenvalues is selected. The subset is preferably of the
largest eigenvalues of the correlation matrix, which typically
corresponds to the most “important” dimensions of the data.
The correlation matrix is constructed based on correlations
which are calculated between different components of each
data entry, and are averaged over all the data entries. Accord-
ing to the presently preferred embodiment of the invention,
any correlation matrix may be constructed, and more than one
kind of correlation matrix may be obtained so as to optimize
the clustering procedure. Thus, for example, the correlation
matrix may be an autocorrelation matrix or a covariance
matrix. The correlation matrix provides a natural basis to span
the space, which basis is specified by the eigenvectors of the
matrix which are known as the principal components of the
dataset.

In many cases of interest, the dataset is provided as a huge
association matrix, such as a gene-sample matrix, M, in
which, e.g., each row corresponds to different sample and
each column corresponds to different gene. The dataset may
include other association matrices as well. For example, the
columns may be samples, cells or tissues any of which being
associated with rows of expressed genes, expressed proteins,
antibodies, physiological parameters or biochemical param-
eters.

The main features of the data can be captured by a highly
compressed form of the matrix, which forms a truncated
space. For example, in a gene-sample matrix this truncated
space can be expressed in terms of “eigengenes” and “eigen-
samples” with leading eigenvalues.

Hence, According to a second embodiment, the elimina-
tion of dimension is done by diagonalizing M, thereby pro-
viding a transformation matrix, 2, and selecting a sub-matrix
preferably having the largest eigenvalues of the transforma-
tion matrix. In principle, any non-singular matrix is diagonal-
ized by multiplying it by diagonalizing matrices from the left
and from the right. A typical diagonalizing matrix is formed
from an orthonormal set of vectors. It would be appreciated,
however, that since M may be a non-square matrix, there are
two diagonalzing matrices each having an orthonormal set of
vectors of different dimensions. According to a preferred
embodiment of the present invention the two diagonalzing
matrices are obtained from two different algebraic calcula-
tions.

The first matrix, U, is calculated so as to diagonal MMZ,
and the second matrix, U,, is calculated so as to diagonal
M”M, where M” is a transpose representation of M. Once the
two matrices are obtained the transformation matrix is calcu-
lated using U, and U, in accordance with the equation:

(Eq. 4)

Similarly to the PCA detailed above, X provides a natural
basis which is specified by the eigenvectors of Z.

According to a preferred embodiment of the present inven-
tion, irrespectively of the procedure which led to the truncated
space, each of the data points represented in the truncated
space of the association matrix is projected onto a unit sphere
in the truncated space, to obtain a normalized basis to the
space.

It is to be understood, that the above truncation procedure
may be employed, irrespectively of the method and/or appa-
ratus being used for the purpose of clustering. Hence, once the
dataset-matrix has been truncated, as detailed hereinabove,
any clustering procedure may be employed on a sub-matrix of
2, s0 as to provide similarity clusters from the data-set.

Hence, according to another aspect of the invention, there
is provided an apparatus for determining clusters of biologi-

==U,"MU,.
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cal data within a dataset, the dataset is represented by a
multidimensional dataset-matrix, M, the apparatus is referred
to herein as apparatus 30.

Reference is now made to FIG. 2, apparatus 30 includes a
matrix truncating unit 32 for truncating the dataset-matrix, M,
s0 as to construct a truncated space having a reduced dimen-
sionality, the truncated space is represented by a plurality of
points, each representing one biological entry. Apparatus 30
further includes a partitioning unit 34 for partitioning said
plurality of points, into a plurality of clusters.

According to an additional aspect of the invention, there is
provided a method of determining clusters of data within a
dataset, the dataset is represented by a plurality of multidi-
mensional data entries. The method may be executed by a
computer program and/or any other apparatus suitable for
clustering (e.g. apparatus 10). The method includes the fol-
lowing sequential steps. Thus, according to the presently
preferred embodiment of the invention, a first step includes
spanning a space, represented by a plurality of points, as is
further detailed hereinabove. In a second step of the method a
density function is determined, in a third step a potential is
associated to the density function, in a forth step a plurality of
local minima of the potential are located, and in a fifth step
clusters are obtained by attributing data one points to each
local minimum.

According to yet an additional aspect of the invention,
there is provided a method of determining clusters of' biologi-
cal data within a dataset, the dataset is represented by a
multidimensional dataset-matrix, M. The method may be
executed by a computer program and/or any other apparatus
suitable for clustering (e.g. apparatus 30). The method
includes the following sequential steps. In a first step the
dataset-matrix, M, is truncated so as to construct a truncated
space having a reduced dimensionality, the truncated space is
represented by a plurality of points, each representing one
biological entry, and in a second step of the method, the points
are partitioned into a plurality of clusters.

It is appreciated that certain features of the invention,
which are, for clarity, described in the context of separate
embodiments, may also be provided in combination in a
single embodiment. Conversely, various features of the
invention, which are, for brevity, described in the context of a
single embodiment, may also be provided separately or in any
suitable subcombination.

Additional objects, advantages, and novel features of the
present invention will become apparent to one ordinarily
skilled in the art upon examination of the following examples,
which are not intended to be limiting. Additionally, each of
the various embodiments and aspects of the present invention
as delineated hereinabove and as claimed in the claims sec-
tion below finds experimental support in the following
examples.

EXAMPLES

Reference is now made to the following examples, which
together with the above descriptions, illustrate the invention
in a non limiting fashion.

Example 1
Crab Data

Crab data were taken from B. D. Ripley, “Pattern Recog-
nition and Neural Networks”, Cambridge University Press,
Cambridge UK, (1996). The set contains 200 samples divided
equally into four classes of crabs: two species, male and
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female each. This data set is defined over a five-dimensional
parameter space. When analyzed in terms of the second and
third principal components of the correlation matrix one
observes a nice separation of the 200 instances into their four
classes.

The correlation matrix which was used was the autocorre-
lation matrix.

Reference is now made to FIGS. 3a-b, showing the second
and third principal components of the data as well as a contour
plot (FIG. 3a) and a three dimensional plot (FIG. 35) of the
density function, 1, for width value of o®=0.5. It is quite
obvious that this width is not sufficiently small to deduce the
correct clustering according to a conventional approach
which uses maxima of the density function.

In FIGS. 4a-b, the crab data are shown together with con-
tour plot (FIG. 4a) and a three dimensional plot (FIG. 45) of
the potential again with 0®=0.5. The contours are set at values
of V/IE=0.2, 0.4, 0.6, 0.8 and 1. As can be seen from FIGS.
4a-b, there are four minima of the potential in accordance
with the four clusters of the data. Thus, the necessary infor-
mation is already available, for 0°=0.5, one needs, however,
the quantum clustering approach, to bring it out.

Another illustration of the differences between clusters
obtained using maxima of 1, to clusters obtained using
minima in V, may be seen by comparing the stability of the
solution to variations in o. In FIGS. 5a-d, the number of
minima of V is compared with the number of maxima of ).
FIGS. 5a-b show, respectively, the number of minima of V
and maxima of1, on a logarithmic scale of o, and FIGS. 5¢-d
show the same on a linear scale of 0. The solution of 4 minima
in V is stable over a wider range of o than the solution of 4
maxima in .

Reference is now made to FIGS. 6 and 7, showing the
obtained clusters with o=V, together with contour plot
(FIG. 6) and a three-dimensional plot (FIG. 7) of the poten-
tial.

The gradient descent dynamics applied to the first three
principal components of the crab data are illustrated in FIG. 8.
The four clusters are clearly observed. Although there are a
few misclassifications, it can be seen from FIG. 8 that the
clusters agree quite well with the classes.

In FIG. 9, values of a ratio between the potential V and the
eigenvalue E, are shown as function of the serial number of
the data. The clustering procedure was performed on the first
three principal components of the crab data. Each data group
is shown as a different symbol in FIG. 9. As can be seen, by
using all data of V<0.3E one obtains cluster cores that are well
separated in space, corresponding to the four classes that exist
in the data. Only 9 of the 129 points that obey V<0.3E are
misclassified by this procedure. Adding higher principle
components, first component 4 and then component 5, leads
to deterioration in clustering quality. In particular, lower cut-
offs in V/E, including lower fractions of data, are required to
define cluster cores that are well separated in their relevant
spaces.

Example 2
Iris Data

The present invention was tested on an iris dataset of Fisher
[R. A. Fisher, Annals of Eugenics, 7, 179 (1936)], obtained
from C. L. Blake and C. J. Mer, “UCI Repository of machine
learning databases” (1998). The data set contains 150
instances each composed of four measurements of an iris
flower. There are three types of flowers, represented by 50
instances each. Clustering of these data in the space of the first
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two principal components, using 0=0.25, has an amazing
result of only four misclassifications.

The correlation matrix which was used was the autocorre-
lation matrix.

Reference is now made to FIG. 10, showing a contour plot
of'the potential for the iris data. The three minima are denoted
by crossed circles and interpreted as cluster centers. The
contours are set at values of V/E=0.2, 0.4, 0.6, 0.8 and 1.

Reference is now made to FIGS. 11a-d, showing the
progress of the gradient descent dynamics for the iris data set
on principal components 1 and 2. It can be seen how the data
points are descending to the center of attraction.

In FIGS. 124-d, the number of minima of V is compared to
the number of maxima in 1, for the Iris dataset. FIGS. 12a-b
show, respectively, the number of minima of V and maxima of
1, onalogarithmic scale of o, and FIGS. 12¢-d show the same
ona linear scale of 0. Although the correct number of clusters
is 3, the solution of 2 clusters is stable over a wide range of
widths both for the potential and the density function. This
property of the Iris dataset was noted also in the literature for
example, in an article of S. J. Roberts, R. Everson, and 1.
Rezek entitled “Maximum Certainty Data Partitioning”,
which was published in Pattern Recognition 33:5 (2000).

The present invention was applied to the Iris data in various
ways. When applied to the data as represented in the original
four dimensional space it led to misclassifications of the order
of 15 instances, similarly to the clustering quality of M. Blat,
S. Wiseman and E. Domany, Phys. Rev. Letters 76 3251
(1996). FIG. 13 illustrates the number of misclassifications as
a function of o, for the Iris data, using the four dimensional
raw data.

Example 3
Wine Recognition Data

The present invention was tested on a wine recognition
dataset obtained from C. L. Blake and C. J. Mer, “UCI
Repository of machine learning databases” (1998). The
dataset represents 13 different chemical constituents of 178
wines manufactured from grapes grown in the same region in
Italy but derived from three different cultivars.

Due to the wide variation between the mean of the features,
an additional linear normalization was performed on the
dataset. The correlation matrix which was used was the cova-
riance matrix.

Reference is now made to FIG. 14, showing the first and
second principal components of the data as well as a contour
plot of the potential, for width value of 0=0.6. The contours
are set at values of V/E=0.2, 0.4, 0.6, 0.8 and 1. Beside six
misclassifications, originally from the second cluster, the fit
of the potential to the data is quite remarkable.

In FIGS. 15a-d, the number of minima of V is compared to
the number of maxima in 1, for the wine recognition dataset.
FIGS. 15a-b show, respectively, the number of minima of V
and maxima of , on a logarithmic scale of o, and FIGS.
15¢-d show the same on a linear scale of 0. The change in
number of clusters as a function of a exhibits the same behav-
ior as was seen in the Iris and crabs examples. The solution of
3 clusters is the most stable.

Example 4
Forged Franc Bills Data
A dataset based on 200 Swiss thousand franc bills was

obtained from Flury and Riedwyl (1988). The data consist of
six variables, measured on 100 genuine and 100 forged bills.
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The present invention was tested on the dataset both using
a reduced two-dimensional space and a full six-dimensional
space. The reduced two-dimensional space included the sec-
ond and the third principal components. For the full six-
dimensional space, a simple linear normalization was per-
formed in order to put each of the six dimensions on the same
scale.

In FIGS. 16a-b, values of a ratio between the potential V
and the eigenvalue E, are shown as function of the serial
number of the data, for two- and six-dimensional analysis,
respectively. Both analyses are satisfactory, with one misclas-
sification for the two-dimensional analysis and two misclas-
sifications for the six-dimensional analysis.

Example 5
Synthetic Ring Data

The present invention was tested on a dataset which has
been synthesized by a computer. The synthetic dataset was
shaped as aring surrounding a sphere. The sphere consisted of
100 points and the surrounding ring consisted of 250 points.

In this example the algorithm wraps the data and separates
the ring from the sphere, but exhibits several minima formed
at the centers of local densities inside the ring.

Reference is now made to FIGS. 17a-d showing contour
plots of the potential for 0=0.4, 0.2, 0.3 and 0.1, respectively.
In each of the four figures, the contours are set at values of
V/E=0.2, 0.4, 0.6, 0.8 and 1. The dynamical change in the
shape of the clusters as a function of the width, o, can be seen
from the figures. A clear boundary between the sphere and the
ring was observed for V=E, which is equivalent to zero-
crossing according to Equation 3.

Example 6
Cancer Cells Data

NCI60 is a gene expression profile of 60 human cancer
cells using 9,703 cDNAs representing approximately 8000
unique genes. The data were obtained from Scherf et al., “A
gene expression database for the molecular pharmacology of
cancer”, Nature Genetics 24(3): 227-234 (2000). NCI60
includes cell lines derived from cancers of colorectal, renal,
ovarian, breast, prostate, lung and central nervous system, as
well as leukemia and melanomas. After application of selec-
tive filters the number of gene spots has been reduced to a
1,376 subset.

Quantum clustering was performed on a truncated 5
dimensional eigengene space.

Reference is now made to FIG. 18, showing a dendrogram,
of 60 cancer cell samples. The first 2 letters in each sample
represent the tissue/cancer type. As can be seen in FIG. 18, at
0=0.2 one obtains many clusters, some including just one
sample, others having 2-4 samples. From this point on a was
increased by dividing it by a factor of 2 at each step. Around
0=0.5, one finds clustering into roughly the groups described
by the first letters designating the cancer classes.

The effect of the projection onto the sphere in the truncated
space may be better understood from FIG. 19. It is a repre-
sentation of data of four classes of cancer cells on two dimen-
sions of the truncated space. These data points (denoted by
star and by the relevant letters) are shown after the normal-
ization of each data point in the truncated space. The circles
denote the locations of the data points before this normaliza-
tion was applied. It is quite evident that this projection onto
the sphere is an important preprocessing step for any cluster-
ing algorithm.
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Example 7

Leukemia Patients Data

Data of 72 leukemia patients was obtained from Golub, et
al., “Molecular classification of cancer: class discovery and
class prediction by gene expression monitoring”, Science,
286:531-537(1999). The dataset includes 2 types of leukemia
called ALL and AML. The ALL set is further divided into
T-lineage leukemia and B-lineage leukemia and the AML set
is divided into patients who have undergone treatment (with
an anthracycline-cytarabine regimen) and those who have
not. The microarray data correspond to 72 samples tested on
7129 genes.

The dataset was truncated down to 5 dimensions. Quantum
clustering obtained four classes of the dataset, in conforma-
tion with the definition of the set. To describe the quality of the
results a Jaccard score was calculated at each increment of o.
The Jaccard score is defined as J=n, ,/(n, ,+n, ,+n,, ), where,
n,, is the number of pairs of samples that appear in the same
cluster both according to the cell type and according to the
clustering method, and n,,+n,, is the number of pairs that
appear together in one classification and not in the other. This
score should be 1 for perfect clustering and decrease as the
clustering quality decreases.

Reference is now made to FIG. 20, showing the Jaccard
measure for the AMI/ALL set as function of o. The best
performance is obtained around 0=0.5, which is where four
clusters is the preferred solution.

FIG. 21, shows the clustering solutions for the AML/ALL
set using 0=0.54. The samples are ordered on the x-axis
according to the classification into four groups. Each new
group starts with a grey line. The first two clusters are the ALL
B-cells and T-cells, where only 2 (out of 47) misclassifica-
tions were observed.

Example 8
Yeast Cell Cycle Data

Yeast data were obtained from Spellman, et al., “Compre-
hensive Identification of Cell Cycle-regulated Genes of the
Yeast Saccharomyces cerevisiae by Microarray Hybridiza-
tion”, Mol. Biol. Cell 9,3273-3297(1998).

The purpose of the study was to test clustering of genes,
whose classification into groups was investigated by Spell-
man, et al. The starting gene/sample matrix had dimensions of
798x72. The matrix was truncated to four dimensions. Once
again, the best results were obtained for 0=0.5, where four
clusters have been observed, whereas the original data were
classified by Spellman, et al. into five classes. The resulting
Jaccard score is 0.5. When two of the five classes were
grouped into one, the score increased to 0.54. In other words,
the clustering and classification have only a partial overlap.

In FIG. 22 the five gene families as represented in two
coordinates of the four dimensional truncated space.
Although the data are given in a high number (72) of dimen-
sions, meaningful clustering can be seen.

Reference is now made to FIG. 23 showing cluster assign-
ments of genes for quantum clustering with 0=0.46 compared
with k-means clustering with k=4. The cluster assignments
are shown by the ordering of genes on the x-axis. There are
four cluster assignments of the genes that are presented in an
order that preserves their original classification into five
groups. The fourth and fifth classes are strongly mixed by
both methods. Quantum clustering results are slightly better
than the k-means ones. The Jaccard scores are 0.5 for the
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quantum clustering and 0.46 for the k-means clustering. The
k-means method turned out to lead to an even worse Jaccard
score for k=5.

Although the invention has been described in conjunction
with specific embodiments thereof, it is evident that many
alternatives, modifications and variations will be apparent to
those skilled in the art. Accordingly, it is intended to embrace
all such alternatives, modifications and variations that fall
within the spirit and broad scope of the appended claims. All
publications, patents and patent applications mentioned in
this specification are herein incorporated in their entirety by
reference into the specification, to the same extent as if each
individual publication, patent or patent application was spe-
cifically and individually indicated to be incorporated herein
by reference. In addition, citation or identification of any
reference in this application shall not be construed as an
admission that such reference is available as prior art to the
present invention.

What is claimed is:

1. A method of determining clusters of data within a
dataset, the dataset is represented by a plurality of multidi-
mensional data entries, the method comprising:

(a) spanning a space, represented by a plurality of points;

(b) determining a density function over said space;

(c) associating a potential to said density function, such
that said density function corresponds to an eigenstate of
an operator which includes the potential;

(d) locating a plurality of local minima of'said potential by
evaluating, using a data processor, said potential in a
plurality of evaluation points, thereby providing a plu-
rality of potential values, and selecting minimal values
of said potential values; and

(e) for each of said plurality of local minima, attributing at
least one of said points; thereby determining clusters of
data within the dataset.

2. The method of claim 1, wherein said spanning of said
space is by defining, for each of said plurality of points, a
multidimensional coordinate respectfully representing one
multidimensional data entry.

3. The method of claim 1, wherein said density function
and said potential are each independently positive quantities.

4. The method of claim 1, wherein said determining said
density function is by assigning a set of kernels, one for each
of said plurality of points and summing over said set of
kernels.

5. The method of claim 4, wherein each of said kernels is
substantially localized at one of said plurality of points, and
characterized by a width, o.

6. The method of claim 5, wherein said associating said
potential is by constructing a physical analog quantum
mechanical model over said space, said model having a
Hamiltonian which includes said potential.

7. The method of claim 6, wherein said Hamiltonian equals
-0.50°V?+V(x), where said V is said potential and said x is a
set of coordinates of said space.

8. The method of claim 6, wherein said density function is
a ground state of said Hamiltonian.

9. The method of claim 5, wherein said potential equals
E+(0® V)21, wherein said 1 is said density function and
said E is calculated in accordance with the formula E=—min
[(®V*p /2]

10. The method of claim 5, wherein said width o, is
selected so that a number of clusters is stable under suffi-
ciently small variation of said o.
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11. The method of claim 5, further comprising iteratively
merging each cluster into a single point, increasing said width
and repeating said steps (a) to (e), thereby defining a dendro-
gram of clusters.

12. The method of claim 5, further comprising:

(f) merging each cluster into a single point;

(g) increasing said width; and

(h) repeating said steps (b) to (e).

13. The method of claim 12, further comprising iteratively
repeating said steps (g) to (h), thereby defining a dendrogram
of clusters.

14. The method of claim 4, wherein said kernels have equal
weights.

15. The method of claim 4, wherein each of said kernels has
a predetermined weight.

16. The method of claim 4, wherein said kernels are Gaus-
sians.

17. The method of claim 1, wherein each of said set of
kernels represents a Hilbert space state.

18. The method of claim 1, wherein said associating said
potential is by constructing a physical analog quantum
mechanical model over said space, said model having a
Hamiltonian which includes said potential.

19. The method of claim 18, wherein said density function
is a ground state of said Hamiltonian.

20. The method of claim 1, wherein said associating said
potential is by determining an operator in manner that said
density function is an eigenfunction of said operator with an
eigenvalue, E, said operator includes said potential.

21. The method of claim 20, wherein said eigenvalue, E, is
selected so that a minimal value of said potential is substan-
tially zero.

22. The method of claim 20, wherein said operator further
includes at least one additional term.

23. The method of claim 22, wherein said at least one
additional term includes a kinetic term.

24. The method of claim 23, wherein said kinetic term
comprises a Laplacian.

25. The method of claim 1, wherein each of said evaluation
points respectively corresponds to one data entry.

26. The method of claim 1, wherein said attributing at least
one of said points is by visual means.

27. The method of claim 1, wherein said attributing at least
one of said points is by a dynamically descending said at least
one points of said space in a direction of a gradient of said
potential, into said plurality of local minima.

28. The method of claim 1, wherein said spanning a space
is by eliminating at least one dimension from the dataset.

29. The method of claim 28, wherein said eliminating is by
constructing a correlation matrix from the dataset, calculating
a set of eigenvalues of said correlation matrix, and selecting a
subset of said set of eigenvalues.

30. The method of claim 29, wherein said subset includes
largest eigenvalues of said set of eigenvalues.

31. The method of claim 29, wherein said correlation
matrix is an autocorrelation matrix.

32. The method of claim 29, wherein said correlation
matrix is a covariance matrix.

33. The method of claim 29, further comprising diagonal-
izing and normalizing said correlation matrix to a unitary
diagonal correlation matrix.

34. The method of claim 1, wherein the dataset has a matrix
form, hence the dataset is a dataset-matrix, M.

35. The method of claim 34, wherein said spanning a space
is by truncating said dataset-matrix, so as to construct a trun-
cated space having a reduced dimensionality.
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36. The method of claim 35, wherein said truncating is by
constructing a transformation matrix from said dataset-ma-
trix, calculating a set of eigenvalues of said transformation
matrix, and selecting a subset of said set of eigenvalues,
thereby constructing said truncated space.

37. The method of claim 36, wherein said subset includes
largest eigenvalues of said set of eigenvalues.

38. The method of claim 36, wherein said constructing said
transformation matrix is by multiplying said dataset-matrix
by a first matrix from the left and by a second matrix from the
fight, each of said first and second matrices being respectively
formed from an orthonormal set of vectors.

39. The method of claim 38, further comprising projecting
each point in said truncated space onto a unit sphere in said
truncated space.

40. The method of claim 36, wherein said first matrix
diagonalizes MM? and said second matrix diagonalizes
M™M, where M7 is a transpose representation of said dataset-
matrix, M.

41. A method of determining clusters of biological data
within a dataset, the dataset is represented by a multidimen-
sional dataset-matrix, M, the method comprising:

truncating the dataset-matrix, M, so as to construct a trun-

cated space having a reduced dimensionality, said trun-
cated space is represented by a plurality of points, each
representing one biological entry; and

using a data processor for partitioning said plurality of

points, into a plurality of clusters;

thereby determining clusters of determining clusters of

biological data within the dataset.

42. The method of claim 41, wherein each biological entry
is characterized by a plurality of expressed genes, expressed
proteins, antibodies, physiological parameters, biochemical
parameters.

43. The method of claim 41, wherein each biological entry
is selected from the group consisting of a sample, a cell and a
tissue.

44. The method of claim 41, wherein each biological entry
corresponds to one subject at one time.

45. The method of claim 41, wherein said truncating is by
constructing a transformation matrix from the dataset-matrix,
calculating a set of eigenvalues of said transformation matrix,
and selecting a subset of said set of eigenvalues, thereby
constructing said truncated space.

46. The method of claim 45, wherein said subset includes
largest eigenvalues of said set of eigenvalues.

47. The method of claim 45, wherein said constructing said
transformation matrix is by multiplying the dataset-matrix by
a first matrix from the left and by a second matrix from the
right, each of'said first and second matrices being respectively
formed from an orthonormal set of vectors.

48. The method of claim 47, further comprising projection
each point in said truncated space onto a unit sphere in said
truncated space.

49. The method of claim 45, wherein said first matrix
diagonalizes MM” and said second matrix diagonalizes
M™M, where M7 is a transpose representation of said dataset-
matrix, M.

50. The method of claim 41, wherein said partitioning
comprising:

(a) determining a density function over said truncated

space;

(b) associating a potential to said density function;

(c) locating a plurality of local minima of said potential;

and

(d) for each of said plurality of local minima, attributing at

least one of said points;
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thereby partitioning said plurality of points, into a plurality

of clusters.

51. A method of determining clusters of data within a
dataset, the dataset is represented by a plurality of multidi-
mensional data entries, the method comprising:

(a) spanning a space, represented by a plurality of points;

(b) determining a density function over said space by

assigning a set of kernels, one for each of said plurality
of points and summing over said set of kernels;

(c) associating a potential to said density function;

(d) using a data processor for locating a plurality of local

minima of said potential;

and

(e) for each of said plurality of local minima, attributing at

least one of said points;

thereby determining clusters of data within the dataset.

52. A method of determining clusters of data within a
dataset, the dataset is represented by a plurality of multidi-
mensional data entries, the method comprising:

(a) spanning a space, represented by a plurality of points;

(b) determining a density function over said space;
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(c) associating a potential to said density function by deter-
mining an operator in manner that said density function
is an eigenfunction of said operator with an eigenvalue,
E, said operator includes said potential;

(d) using a data processor for locating a plurality of local
minima of said potential; and

(e) for each of said plurality of local minima, attributing at
least one of said points;

thereby determining clusters of data within the dataset.

53. A method of determining clusters of data within a

dataset, the dataset is represented by a plurality of multidi-
mensional data entries, the method comprising:

(a) spanning a space, represented by a plurality of points,
by eliminating at least one dimension from the dataset;

(b) determining a density function over said space;

(c) associating a potential to said density function;

(d) using a data processor for locating a plurality of local
minima of said potential; and

(e) for each of said plurality of local minima, attributing at
least one of said points;

thereby determining clusters of data within the dataset.

#* #* #* #* #*
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